Linux 3.4.102
[linux/fpc-iii.git] / drivers / tty / serial / amba-pl011.c
blobb69356c227c44314338f7babea5cf6b03ee89800
1 /*
2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
56 #include <asm/io.h>
57 #include <asm/sizes.h>
59 #define UART_NR 14
61 #define SERIAL_AMBA_MAJOR 204
62 #define SERIAL_AMBA_MINOR 64
63 #define SERIAL_AMBA_NR UART_NR
65 #define AMBA_ISR_PASS_LIMIT 256
67 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
68 #define UART_DUMMY_DR_RX (1 << 16)
71 #define UART_WA_SAVE_NR 14
73 static void pl011_lockup_wa(unsigned long data);
74 static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
75 ST_UART011_DMAWM,
76 ST_UART011_TIMEOUT,
77 ST_UART011_LCRH_RX,
78 UART011_IBRD,
79 UART011_FBRD,
80 ST_UART011_LCRH_TX,
81 UART011_IFLS,
82 ST_UART011_XFCR,
83 ST_UART011_XON1,
84 ST_UART011_XON2,
85 ST_UART011_XOFF1,
86 ST_UART011_XOFF2,
87 UART011_CR,
88 UART011_IMSC
91 static u32 uart_wa_regdata[UART_WA_SAVE_NR];
92 static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
94 /* There is by now at least one vendor with differing details, so handle it */
95 struct vendor_data {
96 unsigned int ifls;
97 unsigned int fifosize;
98 unsigned int lcrh_tx;
99 unsigned int lcrh_rx;
100 bool oversampling;
101 bool interrupt_may_hang; /* vendor-specific */
102 bool dma_threshold;
105 static struct vendor_data vendor_arm = {
106 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
107 .fifosize = 16,
108 .lcrh_tx = UART011_LCRH,
109 .lcrh_rx = UART011_LCRH,
110 .oversampling = false,
111 .dma_threshold = false,
114 static struct vendor_data vendor_st = {
115 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
116 .fifosize = 64,
117 .lcrh_tx = ST_UART011_LCRH_TX,
118 .lcrh_rx = ST_UART011_LCRH_RX,
119 .oversampling = true,
120 .interrupt_may_hang = true,
121 .dma_threshold = true,
124 static struct uart_amba_port *amba_ports[UART_NR];
126 /* Deals with DMA transactions */
128 struct pl011_sgbuf {
129 struct scatterlist sg;
130 char *buf;
133 struct pl011_dmarx_data {
134 struct dma_chan *chan;
135 struct completion complete;
136 bool use_buf_b;
137 struct pl011_sgbuf sgbuf_a;
138 struct pl011_sgbuf sgbuf_b;
139 dma_cookie_t cookie;
140 bool running;
143 struct pl011_dmatx_data {
144 struct dma_chan *chan;
145 struct scatterlist sg;
146 char *buf;
147 bool queued;
151 * We wrap our port structure around the generic uart_port.
153 struct uart_amba_port {
154 struct uart_port port;
155 struct clk *clk;
156 const struct vendor_data *vendor;
157 unsigned int dmacr; /* dma control reg */
158 unsigned int im; /* interrupt mask */
159 unsigned int old_status;
160 unsigned int fifosize; /* vendor-specific */
161 unsigned int lcrh_tx; /* vendor-specific */
162 unsigned int lcrh_rx; /* vendor-specific */
163 unsigned int old_cr; /* state during shutdown */
164 bool autorts;
165 char type[12];
166 bool interrupt_may_hang; /* vendor-specific */
167 #ifdef CONFIG_DMA_ENGINE
168 /* DMA stuff */
169 bool using_tx_dma;
170 bool using_rx_dma;
171 struct pl011_dmarx_data dmarx;
172 struct pl011_dmatx_data dmatx;
173 #endif
177 * Reads up to 256 characters from the FIFO or until it's empty and
178 * inserts them into the TTY layer. Returns the number of characters
179 * read from the FIFO.
181 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
183 u16 status, ch;
184 unsigned int flag, max_count = 256;
185 int fifotaken = 0;
187 while (max_count--) {
188 status = readw(uap->port.membase + UART01x_FR);
189 if (status & UART01x_FR_RXFE)
190 break;
192 /* Take chars from the FIFO and update status */
193 ch = readw(uap->port.membase + UART01x_DR) |
194 UART_DUMMY_DR_RX;
195 flag = TTY_NORMAL;
196 uap->port.icount.rx++;
197 fifotaken++;
199 if (unlikely(ch & UART_DR_ERROR)) {
200 if (ch & UART011_DR_BE) {
201 ch &= ~(UART011_DR_FE | UART011_DR_PE);
202 uap->port.icount.brk++;
203 if (uart_handle_break(&uap->port))
204 continue;
205 } else if (ch & UART011_DR_PE)
206 uap->port.icount.parity++;
207 else if (ch & UART011_DR_FE)
208 uap->port.icount.frame++;
209 if (ch & UART011_DR_OE)
210 uap->port.icount.overrun++;
212 ch &= uap->port.read_status_mask;
214 if (ch & UART011_DR_BE)
215 flag = TTY_BREAK;
216 else if (ch & UART011_DR_PE)
217 flag = TTY_PARITY;
218 else if (ch & UART011_DR_FE)
219 flag = TTY_FRAME;
222 if (uart_handle_sysrq_char(&uap->port, ch & 255))
223 continue;
225 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
228 return fifotaken;
233 * All the DMA operation mode stuff goes inside this ifdef.
234 * This assumes that you have a generic DMA device interface,
235 * no custom DMA interfaces are supported.
237 #ifdef CONFIG_DMA_ENGINE
239 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
241 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
242 enum dma_data_direction dir)
244 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
245 if (!sg->buf)
246 return -ENOMEM;
248 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
250 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
251 kfree(sg->buf);
252 return -EINVAL;
254 return 0;
257 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
258 enum dma_data_direction dir)
260 if (sg->buf) {
261 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
262 kfree(sg->buf);
266 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
268 /* DMA is the sole user of the platform data right now */
269 struct amba_pl011_data *plat = uap->port.dev->platform_data;
270 struct dma_slave_config tx_conf = {
271 .dst_addr = uap->port.mapbase + UART01x_DR,
272 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
273 .direction = DMA_MEM_TO_DEV,
274 .dst_maxburst = uap->fifosize >> 1,
275 .device_fc = false,
277 struct dma_chan *chan;
278 dma_cap_mask_t mask;
280 /* We need platform data */
281 if (!plat || !plat->dma_filter) {
282 dev_info(uap->port.dev, "no DMA platform data\n");
283 return;
286 /* Try to acquire a generic DMA engine slave TX channel */
287 dma_cap_zero(mask);
288 dma_cap_set(DMA_SLAVE, mask);
290 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
291 if (!chan) {
292 dev_err(uap->port.dev, "no TX DMA channel!\n");
293 return;
296 dmaengine_slave_config(chan, &tx_conf);
297 uap->dmatx.chan = chan;
299 dev_info(uap->port.dev, "DMA channel TX %s\n",
300 dma_chan_name(uap->dmatx.chan));
302 /* Optionally make use of an RX channel as well */
303 if (plat->dma_rx_param) {
304 struct dma_slave_config rx_conf = {
305 .src_addr = uap->port.mapbase + UART01x_DR,
306 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
307 .direction = DMA_DEV_TO_MEM,
308 .src_maxburst = uap->fifosize >> 1,
309 .device_fc = false,
312 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
313 if (!chan) {
314 dev_err(uap->port.dev, "no RX DMA channel!\n");
315 return;
318 dmaengine_slave_config(chan, &rx_conf);
319 uap->dmarx.chan = chan;
321 dev_info(uap->port.dev, "DMA channel RX %s\n",
322 dma_chan_name(uap->dmarx.chan));
326 #ifndef MODULE
328 * Stack up the UARTs and let the above initcall be done at device
329 * initcall time, because the serial driver is called as an arch
330 * initcall, and at this time the DMA subsystem is not yet registered.
331 * At this point the driver will switch over to using DMA where desired.
333 struct dma_uap {
334 struct list_head node;
335 struct uart_amba_port *uap;
338 static LIST_HEAD(pl011_dma_uarts);
340 static int __init pl011_dma_initcall(void)
342 struct list_head *node, *tmp;
344 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
345 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
346 pl011_dma_probe_initcall(dmau->uap);
347 list_del(node);
348 kfree(dmau);
350 return 0;
353 device_initcall(pl011_dma_initcall);
355 static void pl011_dma_probe(struct uart_amba_port *uap)
357 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
358 if (dmau) {
359 dmau->uap = uap;
360 list_add_tail(&dmau->node, &pl011_dma_uarts);
363 #else
364 static void pl011_dma_probe(struct uart_amba_port *uap)
366 pl011_dma_probe_initcall(uap);
368 #endif
370 static void pl011_dma_remove(struct uart_amba_port *uap)
372 /* TODO: remove the initcall if it has not yet executed */
373 if (uap->dmatx.chan)
374 dma_release_channel(uap->dmatx.chan);
375 if (uap->dmarx.chan)
376 dma_release_channel(uap->dmarx.chan);
379 /* Forward declare this for the refill routine */
380 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
383 * The current DMA TX buffer has been sent.
384 * Try to queue up another DMA buffer.
386 static void pl011_dma_tx_callback(void *data)
388 struct uart_amba_port *uap = data;
389 struct pl011_dmatx_data *dmatx = &uap->dmatx;
390 unsigned long flags;
391 u16 dmacr;
393 spin_lock_irqsave(&uap->port.lock, flags);
394 if (uap->dmatx.queued)
395 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
396 DMA_TO_DEVICE);
398 dmacr = uap->dmacr;
399 uap->dmacr = dmacr & ~UART011_TXDMAE;
400 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
403 * If TX DMA was disabled, it means that we've stopped the DMA for
404 * some reason (eg, XOFF received, or we want to send an X-char.)
406 * Note: we need to be careful here of a potential race between DMA
407 * and the rest of the driver - if the driver disables TX DMA while
408 * a TX buffer completing, we must update the tx queued status to
409 * get further refills (hence we check dmacr).
411 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
412 uart_circ_empty(&uap->port.state->xmit)) {
413 uap->dmatx.queued = false;
414 spin_unlock_irqrestore(&uap->port.lock, flags);
415 return;
418 if (pl011_dma_tx_refill(uap) <= 0) {
420 * We didn't queue a DMA buffer for some reason, but we
421 * have data pending to be sent. Re-enable the TX IRQ.
423 uap->im |= UART011_TXIM;
424 writew(uap->im, uap->port.membase + UART011_IMSC);
426 spin_unlock_irqrestore(&uap->port.lock, flags);
430 * Try to refill the TX DMA buffer.
431 * Locking: called with port lock held and IRQs disabled.
432 * Returns:
433 * 1 if we queued up a TX DMA buffer.
434 * 0 if we didn't want to handle this by DMA
435 * <0 on error
437 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
439 struct pl011_dmatx_data *dmatx = &uap->dmatx;
440 struct dma_chan *chan = dmatx->chan;
441 struct dma_device *dma_dev = chan->device;
442 struct dma_async_tx_descriptor *desc;
443 struct circ_buf *xmit = &uap->port.state->xmit;
444 unsigned int count;
447 * Try to avoid the overhead involved in using DMA if the
448 * transaction fits in the first half of the FIFO, by using
449 * the standard interrupt handling. This ensures that we
450 * issue a uart_write_wakeup() at the appropriate time.
452 count = uart_circ_chars_pending(xmit);
453 if (count < (uap->fifosize >> 1)) {
454 uap->dmatx.queued = false;
455 return 0;
459 * Bodge: don't send the last character by DMA, as this
460 * will prevent XON from notifying us to restart DMA.
462 count -= 1;
464 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
465 if (count > PL011_DMA_BUFFER_SIZE)
466 count = PL011_DMA_BUFFER_SIZE;
468 if (xmit->tail < xmit->head)
469 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
470 else {
471 size_t first = UART_XMIT_SIZE - xmit->tail;
472 size_t second = xmit->head;
474 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
475 if (second)
476 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
479 dmatx->sg.length = count;
481 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
482 uap->dmatx.queued = false;
483 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
484 return -EBUSY;
487 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
488 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
489 if (!desc) {
490 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
491 uap->dmatx.queued = false;
493 * If DMA cannot be used right now, we complete this
494 * transaction via IRQ and let the TTY layer retry.
496 dev_dbg(uap->port.dev, "TX DMA busy\n");
497 return -EBUSY;
500 /* Some data to go along to the callback */
501 desc->callback = pl011_dma_tx_callback;
502 desc->callback_param = uap;
504 /* All errors should happen at prepare time */
505 dmaengine_submit(desc);
507 /* Fire the DMA transaction */
508 dma_dev->device_issue_pending(chan);
510 uap->dmacr |= UART011_TXDMAE;
511 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
512 uap->dmatx.queued = true;
515 * Now we know that DMA will fire, so advance the ring buffer
516 * with the stuff we just dispatched.
518 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
519 uap->port.icount.tx += count;
521 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
522 uart_write_wakeup(&uap->port);
524 return 1;
528 * We received a transmit interrupt without a pending X-char but with
529 * pending characters.
530 * Locking: called with port lock held and IRQs disabled.
531 * Returns:
532 * false if we want to use PIO to transmit
533 * true if we queued a DMA buffer
535 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
537 if (!uap->using_tx_dma)
538 return false;
541 * If we already have a TX buffer queued, but received a
542 * TX interrupt, it will be because we've just sent an X-char.
543 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
545 if (uap->dmatx.queued) {
546 uap->dmacr |= UART011_TXDMAE;
547 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
548 uap->im &= ~UART011_TXIM;
549 writew(uap->im, uap->port.membase + UART011_IMSC);
550 return true;
554 * We don't have a TX buffer queued, so try to queue one.
555 * If we successfully queued a buffer, mask the TX IRQ.
557 if (pl011_dma_tx_refill(uap) > 0) {
558 uap->im &= ~UART011_TXIM;
559 writew(uap->im, uap->port.membase + UART011_IMSC);
560 return true;
562 return false;
566 * Stop the DMA transmit (eg, due to received XOFF).
567 * Locking: called with port lock held and IRQs disabled.
569 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
571 if (uap->dmatx.queued) {
572 uap->dmacr &= ~UART011_TXDMAE;
573 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
578 * Try to start a DMA transmit, or in the case of an XON/OFF
579 * character queued for send, try to get that character out ASAP.
580 * Locking: called with port lock held and IRQs disabled.
581 * Returns:
582 * false if we want the TX IRQ to be enabled
583 * true if we have a buffer queued
585 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
587 u16 dmacr;
589 if (!uap->using_tx_dma)
590 return false;
592 if (!uap->port.x_char) {
593 /* no X-char, try to push chars out in DMA mode */
594 bool ret = true;
596 if (!uap->dmatx.queued) {
597 if (pl011_dma_tx_refill(uap) > 0) {
598 uap->im &= ~UART011_TXIM;
599 ret = true;
600 } else {
601 uap->im |= UART011_TXIM;
602 ret = false;
604 writew(uap->im, uap->port.membase + UART011_IMSC);
605 } else if (!(uap->dmacr & UART011_TXDMAE)) {
606 uap->dmacr |= UART011_TXDMAE;
607 writew(uap->dmacr,
608 uap->port.membase + UART011_DMACR);
610 return ret;
614 * We have an X-char to send. Disable DMA to prevent it loading
615 * the TX fifo, and then see if we can stuff it into the FIFO.
617 dmacr = uap->dmacr;
618 uap->dmacr &= ~UART011_TXDMAE;
619 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
621 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
623 * No space in the FIFO, so enable the transmit interrupt
624 * so we know when there is space. Note that once we've
625 * loaded the character, we should just re-enable DMA.
627 return false;
630 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
631 uap->port.icount.tx++;
632 uap->port.x_char = 0;
634 /* Success - restore the DMA state */
635 uap->dmacr = dmacr;
636 writew(dmacr, uap->port.membase + UART011_DMACR);
638 return true;
642 * Flush the transmit buffer.
643 * Locking: called with port lock held and IRQs disabled.
645 static void pl011_dma_flush_buffer(struct uart_port *port)
647 struct uart_amba_port *uap = (struct uart_amba_port *)port;
649 if (!uap->using_tx_dma)
650 return;
652 /* Avoid deadlock with the DMA engine callback */
653 spin_unlock(&uap->port.lock);
654 dmaengine_terminate_all(uap->dmatx.chan);
655 spin_lock(&uap->port.lock);
656 if (uap->dmatx.queued) {
657 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
658 DMA_TO_DEVICE);
659 uap->dmatx.queued = false;
660 uap->dmacr &= ~UART011_TXDMAE;
661 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
665 static void pl011_dma_rx_callback(void *data);
667 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
669 struct dma_chan *rxchan = uap->dmarx.chan;
670 struct pl011_dmarx_data *dmarx = &uap->dmarx;
671 struct dma_async_tx_descriptor *desc;
672 struct pl011_sgbuf *sgbuf;
674 if (!rxchan)
675 return -EIO;
677 /* Start the RX DMA job */
678 sgbuf = uap->dmarx.use_buf_b ?
679 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
680 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
681 DMA_DEV_TO_MEM,
682 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
684 * If the DMA engine is busy and cannot prepare a
685 * channel, no big deal, the driver will fall back
686 * to interrupt mode as a result of this error code.
688 if (!desc) {
689 uap->dmarx.running = false;
690 dmaengine_terminate_all(rxchan);
691 return -EBUSY;
694 /* Some data to go along to the callback */
695 desc->callback = pl011_dma_rx_callback;
696 desc->callback_param = uap;
697 dmarx->cookie = dmaengine_submit(desc);
698 dma_async_issue_pending(rxchan);
700 uap->dmacr |= UART011_RXDMAE;
701 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
702 uap->dmarx.running = true;
704 uap->im &= ~UART011_RXIM;
705 writew(uap->im, uap->port.membase + UART011_IMSC);
707 return 0;
711 * This is called when either the DMA job is complete, or
712 * the FIFO timeout interrupt occurred. This must be called
713 * with the port spinlock uap->port.lock held.
715 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
716 u32 pending, bool use_buf_b,
717 bool readfifo)
719 struct tty_struct *tty = uap->port.state->port.tty;
720 struct pl011_sgbuf *sgbuf = use_buf_b ?
721 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
722 struct device *dev = uap->dmarx.chan->device->dev;
723 int dma_count = 0;
724 u32 fifotaken = 0; /* only used for vdbg() */
726 /* Pick everything from the DMA first */
727 if (pending) {
728 /* Sync in buffer */
729 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
732 * First take all chars in the DMA pipe, then look in the FIFO.
733 * Note that tty_insert_flip_buf() tries to take as many chars
734 * as it can.
736 dma_count = tty_insert_flip_string(uap->port.state->port.tty,
737 sgbuf->buf, pending);
739 /* Return buffer to device */
740 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
742 uap->port.icount.rx += dma_count;
743 if (dma_count < pending)
744 dev_warn(uap->port.dev,
745 "couldn't insert all characters (TTY is full?)\n");
749 * Only continue with trying to read the FIFO if all DMA chars have
750 * been taken first.
752 if (dma_count == pending && readfifo) {
753 /* Clear any error flags */
754 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
755 uap->port.membase + UART011_ICR);
758 * If we read all the DMA'd characters, and we had an
759 * incomplete buffer, that could be due to an rx error, or
760 * maybe we just timed out. Read any pending chars and check
761 * the error status.
763 * Error conditions will only occur in the FIFO, these will
764 * trigger an immediate interrupt and stop the DMA job, so we
765 * will always find the error in the FIFO, never in the DMA
766 * buffer.
768 fifotaken = pl011_fifo_to_tty(uap);
771 spin_unlock(&uap->port.lock);
772 dev_vdbg(uap->port.dev,
773 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
774 dma_count, fifotaken);
775 tty_flip_buffer_push(tty);
776 spin_lock(&uap->port.lock);
779 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
781 struct pl011_dmarx_data *dmarx = &uap->dmarx;
782 struct dma_chan *rxchan = dmarx->chan;
783 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
784 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
785 size_t pending;
786 struct dma_tx_state state;
787 enum dma_status dmastat;
790 * Pause the transfer so we can trust the current counter,
791 * do this before we pause the PL011 block, else we may
792 * overflow the FIFO.
794 if (dmaengine_pause(rxchan))
795 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
796 dmastat = rxchan->device->device_tx_status(rxchan,
797 dmarx->cookie, &state);
798 if (dmastat != DMA_PAUSED)
799 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
801 /* Disable RX DMA - incoming data will wait in the FIFO */
802 uap->dmacr &= ~UART011_RXDMAE;
803 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
804 uap->dmarx.running = false;
806 pending = sgbuf->sg.length - state.residue;
807 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
808 /* Then we terminate the transfer - we now know our residue */
809 dmaengine_terminate_all(rxchan);
812 * This will take the chars we have so far and insert
813 * into the framework.
815 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
817 /* Switch buffer & re-trigger DMA job */
818 dmarx->use_buf_b = !dmarx->use_buf_b;
819 if (pl011_dma_rx_trigger_dma(uap)) {
820 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
821 "fall back to interrupt mode\n");
822 uap->im |= UART011_RXIM;
823 writew(uap->im, uap->port.membase + UART011_IMSC);
827 static void pl011_dma_rx_callback(void *data)
829 struct uart_amba_port *uap = data;
830 struct pl011_dmarx_data *dmarx = &uap->dmarx;
831 struct dma_chan *rxchan = dmarx->chan;
832 bool lastbuf = dmarx->use_buf_b;
833 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
834 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
835 size_t pending;
836 struct dma_tx_state state;
837 int ret;
840 * This completion interrupt occurs typically when the
841 * RX buffer is totally stuffed but no timeout has yet
842 * occurred. When that happens, we just want the RX
843 * routine to flush out the secondary DMA buffer while
844 * we immediately trigger the next DMA job.
846 spin_lock_irq(&uap->port.lock);
848 * Rx data can be taken by the UART interrupts during
849 * the DMA irq handler. So we check the residue here.
851 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
852 pending = sgbuf->sg.length - state.residue;
853 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
854 /* Then we terminate the transfer - we now know our residue */
855 dmaengine_terminate_all(rxchan);
857 uap->dmarx.running = false;
858 dmarx->use_buf_b = !lastbuf;
859 ret = pl011_dma_rx_trigger_dma(uap);
861 pl011_dma_rx_chars(uap, pending, lastbuf, false);
862 spin_unlock_irq(&uap->port.lock);
864 * Do this check after we picked the DMA chars so we don't
865 * get some IRQ immediately from RX.
867 if (ret) {
868 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
869 "fall back to interrupt mode\n");
870 uap->im |= UART011_RXIM;
871 writew(uap->im, uap->port.membase + UART011_IMSC);
876 * Stop accepting received characters, when we're shutting down or
877 * suspending this port.
878 * Locking: called with port lock held and IRQs disabled.
880 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
882 /* FIXME. Just disable the DMA enable */
883 uap->dmacr &= ~UART011_RXDMAE;
884 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
887 static void pl011_dma_startup(struct uart_amba_port *uap)
889 int ret;
891 if (!uap->dmatx.chan)
892 return;
894 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
895 if (!uap->dmatx.buf) {
896 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
897 uap->port.fifosize = uap->fifosize;
898 return;
901 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
903 /* The DMA buffer is now the FIFO the TTY subsystem can use */
904 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
905 uap->using_tx_dma = true;
907 if (!uap->dmarx.chan)
908 goto skip_rx;
910 /* Allocate and map DMA RX buffers */
911 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
912 DMA_FROM_DEVICE);
913 if (ret) {
914 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
915 "RX buffer A", ret);
916 goto skip_rx;
919 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
920 DMA_FROM_DEVICE);
921 if (ret) {
922 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
923 "RX buffer B", ret);
924 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
925 DMA_FROM_DEVICE);
926 goto skip_rx;
929 uap->using_rx_dma = true;
931 skip_rx:
932 /* Turn on DMA error (RX/TX will be enabled on demand) */
933 uap->dmacr |= UART011_DMAONERR;
934 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
937 * ST Micro variants has some specific dma burst threshold
938 * compensation. Set this to 16 bytes, so burst will only
939 * be issued above/below 16 bytes.
941 if (uap->vendor->dma_threshold)
942 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
943 uap->port.membase + ST_UART011_DMAWM);
945 if (uap->using_rx_dma) {
946 if (pl011_dma_rx_trigger_dma(uap))
947 dev_dbg(uap->port.dev, "could not trigger initial "
948 "RX DMA job, fall back to interrupt mode\n");
952 static void pl011_dma_shutdown(struct uart_amba_port *uap)
954 if (!(uap->using_tx_dma || uap->using_rx_dma))
955 return;
957 /* Disable RX and TX DMA */
958 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
959 barrier();
961 spin_lock_irq(&uap->port.lock);
962 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
963 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
964 spin_unlock_irq(&uap->port.lock);
966 if (uap->using_tx_dma) {
967 /* In theory, this should already be done by pl011_dma_flush_buffer */
968 dmaengine_terminate_all(uap->dmatx.chan);
969 if (uap->dmatx.queued) {
970 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
971 DMA_TO_DEVICE);
972 uap->dmatx.queued = false;
975 kfree(uap->dmatx.buf);
976 uap->using_tx_dma = false;
979 if (uap->using_rx_dma) {
980 dmaengine_terminate_all(uap->dmarx.chan);
981 /* Clean up the RX DMA */
982 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
983 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
984 uap->using_rx_dma = false;
988 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
990 return uap->using_rx_dma;
993 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
995 return uap->using_rx_dma && uap->dmarx.running;
999 #else
1000 /* Blank functions if the DMA engine is not available */
1001 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1005 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1009 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1013 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1017 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1019 return false;
1022 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1026 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1028 return false;
1031 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1035 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1041 return -EIO;
1044 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1046 return false;
1049 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1051 return false;
1054 #define pl011_dma_flush_buffer NULL
1055 #endif
1059 * pl011_lockup_wa
1060 * This workaround aims to break the deadlock situation
1061 * when after long transfer over uart in hardware flow
1062 * control, uart interrupt registers cannot be cleared.
1063 * Hence uart transfer gets blocked.
1065 * It is seen that during such deadlock condition ICR
1066 * don't get cleared even on multiple write. This leads
1067 * pass_counter to decrease and finally reach zero. This
1068 * can be taken as trigger point to run this UART_BT_WA.
1071 static void pl011_lockup_wa(unsigned long data)
1073 struct uart_amba_port *uap = amba_ports[0];
1074 void __iomem *base = uap->port.membase;
1075 struct circ_buf *xmit = &uap->port.state->xmit;
1076 struct tty_struct *tty = uap->port.state->port.tty;
1077 int buf_empty_retries = 200;
1078 int loop;
1080 /* Stop HCI layer from submitting data for tx */
1081 tty->hw_stopped = 1;
1082 while (!uart_circ_empty(xmit)) {
1083 if (buf_empty_retries-- == 0)
1084 break;
1085 udelay(100);
1088 /* Backup registers */
1089 for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1090 uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1092 /* Disable UART so that FIFO data is flushed out */
1093 writew(0x00, uap->port.membase + UART011_CR);
1095 /* Soft reset UART module */
1096 if (uap->port.dev->platform_data) {
1097 struct amba_pl011_data *plat;
1099 plat = uap->port.dev->platform_data;
1100 if (plat->reset)
1101 plat->reset();
1104 /* Restore registers */
1105 for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1106 writew(uart_wa_regdata[loop] ,
1107 uap->port.membase + uart_wa_reg[loop]);
1109 /* Initialise the old status of the modem signals */
1110 uap->old_status = readw(uap->port.membase + UART01x_FR) &
1111 UART01x_FR_MODEM_ANY;
1113 if (readl(base + UART011_MIS) & 0x2)
1114 printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1116 /* Start Tx/Rx */
1117 tty->hw_stopped = 0;
1120 static void pl011_stop_tx(struct uart_port *port)
1122 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1124 uap->im &= ~UART011_TXIM;
1125 writew(uap->im, uap->port.membase + UART011_IMSC);
1126 pl011_dma_tx_stop(uap);
1129 static void pl011_start_tx(struct uart_port *port)
1131 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1133 if (!pl011_dma_tx_start(uap)) {
1134 uap->im |= UART011_TXIM;
1135 writew(uap->im, uap->port.membase + UART011_IMSC);
1139 static void pl011_stop_rx(struct uart_port *port)
1141 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1143 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1144 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1145 writew(uap->im, uap->port.membase + UART011_IMSC);
1147 pl011_dma_rx_stop(uap);
1150 static void pl011_enable_ms(struct uart_port *port)
1152 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1154 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1155 writew(uap->im, uap->port.membase + UART011_IMSC);
1158 static void pl011_rx_chars(struct uart_amba_port *uap)
1160 struct tty_struct *tty = uap->port.state->port.tty;
1162 pl011_fifo_to_tty(uap);
1164 spin_unlock(&uap->port.lock);
1165 tty_flip_buffer_push(tty);
1167 * If we were temporarily out of DMA mode for a while,
1168 * attempt to switch back to DMA mode again.
1170 if (pl011_dma_rx_available(uap)) {
1171 if (pl011_dma_rx_trigger_dma(uap)) {
1172 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1173 "fall back to interrupt mode again\n");
1174 uap->im |= UART011_RXIM;
1175 } else
1176 uap->im &= ~UART011_RXIM;
1177 writew(uap->im, uap->port.membase + UART011_IMSC);
1179 spin_lock(&uap->port.lock);
1182 static void pl011_tx_chars(struct uart_amba_port *uap)
1184 struct circ_buf *xmit = &uap->port.state->xmit;
1185 int count;
1187 if (uap->port.x_char) {
1188 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1189 uap->port.icount.tx++;
1190 uap->port.x_char = 0;
1191 return;
1193 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1194 pl011_stop_tx(&uap->port);
1195 return;
1198 /* If we are using DMA mode, try to send some characters. */
1199 if (pl011_dma_tx_irq(uap))
1200 return;
1202 count = uap->fifosize >> 1;
1203 do {
1204 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1205 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1206 uap->port.icount.tx++;
1207 if (uart_circ_empty(xmit))
1208 break;
1209 } while (--count > 0);
1211 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1212 uart_write_wakeup(&uap->port);
1214 if (uart_circ_empty(xmit))
1215 pl011_stop_tx(&uap->port);
1218 static void pl011_modem_status(struct uart_amba_port *uap)
1220 unsigned int status, delta;
1222 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1224 delta = status ^ uap->old_status;
1225 uap->old_status = status;
1227 if (!delta)
1228 return;
1230 if (delta & UART01x_FR_DCD)
1231 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1233 if (delta & UART01x_FR_DSR)
1234 uap->port.icount.dsr++;
1236 if (delta & UART01x_FR_CTS)
1237 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1239 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1242 static irqreturn_t pl011_int(int irq, void *dev_id)
1244 struct uart_amba_port *uap = dev_id;
1245 unsigned long flags;
1246 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1247 int handled = 0;
1249 spin_lock_irqsave(&uap->port.lock, flags);
1251 status = readw(uap->port.membase + UART011_MIS);
1252 if (status) {
1253 do {
1254 writew(status & ~(UART011_TXIS|UART011_RTIS|
1255 UART011_RXIS),
1256 uap->port.membase + UART011_ICR);
1258 if (status & (UART011_RTIS|UART011_RXIS)) {
1259 if (pl011_dma_rx_running(uap))
1260 pl011_dma_rx_irq(uap);
1261 else
1262 pl011_rx_chars(uap);
1264 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1265 UART011_CTSMIS|UART011_RIMIS))
1266 pl011_modem_status(uap);
1267 if (status & UART011_TXIS)
1268 pl011_tx_chars(uap);
1270 if (pass_counter-- == 0) {
1271 if (uap->interrupt_may_hang)
1272 tasklet_schedule(&pl011_lockup_tlet);
1273 break;
1276 status = readw(uap->port.membase + UART011_MIS);
1277 } while (status != 0);
1278 handled = 1;
1281 spin_unlock_irqrestore(&uap->port.lock, flags);
1283 return IRQ_RETVAL(handled);
1286 static unsigned int pl01x_tx_empty(struct uart_port *port)
1288 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1289 unsigned int status = readw(uap->port.membase + UART01x_FR);
1290 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1293 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1295 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1296 unsigned int result = 0;
1297 unsigned int status = readw(uap->port.membase + UART01x_FR);
1299 #define TIOCMBIT(uartbit, tiocmbit) \
1300 if (status & uartbit) \
1301 result |= tiocmbit
1303 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1304 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1305 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1306 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1307 #undef TIOCMBIT
1308 return result;
1311 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1313 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1314 unsigned int cr;
1316 cr = readw(uap->port.membase + UART011_CR);
1318 #define TIOCMBIT(tiocmbit, uartbit) \
1319 if (mctrl & tiocmbit) \
1320 cr |= uartbit; \
1321 else \
1322 cr &= ~uartbit
1324 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1325 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1326 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1327 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1328 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1330 if (uap->autorts) {
1331 /* We need to disable auto-RTS if we want to turn RTS off */
1332 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1334 #undef TIOCMBIT
1336 writew(cr, uap->port.membase + UART011_CR);
1339 static void pl011_break_ctl(struct uart_port *port, int break_state)
1341 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1342 unsigned long flags;
1343 unsigned int lcr_h;
1345 spin_lock_irqsave(&uap->port.lock, flags);
1346 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1347 if (break_state == -1)
1348 lcr_h |= UART01x_LCRH_BRK;
1349 else
1350 lcr_h &= ~UART01x_LCRH_BRK;
1351 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1352 spin_unlock_irqrestore(&uap->port.lock, flags);
1355 #ifdef CONFIG_CONSOLE_POLL
1356 static int pl010_get_poll_char(struct uart_port *port)
1358 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1359 unsigned int status;
1361 status = readw(uap->port.membase + UART01x_FR);
1362 if (status & UART01x_FR_RXFE)
1363 return NO_POLL_CHAR;
1365 return readw(uap->port.membase + UART01x_DR);
1368 static void pl010_put_poll_char(struct uart_port *port,
1369 unsigned char ch)
1371 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1373 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1374 barrier();
1376 writew(ch, uap->port.membase + UART01x_DR);
1379 #endif /* CONFIG_CONSOLE_POLL */
1381 static int pl011_startup(struct uart_port *port)
1383 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1384 unsigned int cr;
1385 int retval;
1387 retval = clk_prepare(uap->clk);
1388 if (retval)
1389 goto out;
1392 * Try to enable the clock producer.
1394 retval = clk_enable(uap->clk);
1395 if (retval)
1396 goto clk_unprep;
1398 uap->port.uartclk = clk_get_rate(uap->clk);
1400 /* Clear pending error and receive interrupts */
1401 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1402 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1405 * Allocate the IRQ
1407 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1408 if (retval)
1409 goto clk_dis;
1411 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1414 * Provoke TX FIFO interrupt into asserting.
1416 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1417 writew(cr, uap->port.membase + UART011_CR);
1418 writew(0, uap->port.membase + UART011_FBRD);
1419 writew(1, uap->port.membase + UART011_IBRD);
1420 writew(0, uap->port.membase + uap->lcrh_rx);
1421 if (uap->lcrh_tx != uap->lcrh_rx) {
1422 int i;
1424 * Wait 10 PCLKs before writing LCRH_TX register,
1425 * to get this delay write read only register 10 times
1427 for (i = 0; i < 10; ++i)
1428 writew(0xff, uap->port.membase + UART011_MIS);
1429 writew(0, uap->port.membase + uap->lcrh_tx);
1431 writew(0, uap->port.membase + UART01x_DR);
1432 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1433 barrier();
1435 /* restore RTS and DTR */
1436 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1437 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1438 writew(cr, uap->port.membase + UART011_CR);
1441 * initialise the old status of the modem signals
1443 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1445 /* Startup DMA */
1446 pl011_dma_startup(uap);
1449 * Finally, enable interrupts, only timeouts when using DMA
1450 * if initial RX DMA job failed, start in interrupt mode
1451 * as well.
1453 spin_lock_irq(&uap->port.lock);
1454 /* Clear out any spuriously appearing RX interrupts */
1455 writew(UART011_RTIS | UART011_RXIS,
1456 uap->port.membase + UART011_ICR);
1457 uap->im = UART011_RTIM;
1458 if (!pl011_dma_rx_running(uap))
1459 uap->im |= UART011_RXIM;
1460 writew(uap->im, uap->port.membase + UART011_IMSC);
1461 spin_unlock_irq(&uap->port.lock);
1463 if (uap->port.dev->platform_data) {
1464 struct amba_pl011_data *plat;
1466 plat = uap->port.dev->platform_data;
1467 if (plat->init)
1468 plat->init();
1471 return 0;
1473 clk_dis:
1474 clk_disable(uap->clk);
1475 clk_unprep:
1476 clk_unprepare(uap->clk);
1477 out:
1478 return retval;
1481 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1482 unsigned int lcrh)
1484 unsigned long val;
1486 val = readw(uap->port.membase + lcrh);
1487 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1488 writew(val, uap->port.membase + lcrh);
1491 static void pl011_shutdown(struct uart_port *port)
1493 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1494 unsigned int cr;
1497 * disable all interrupts
1499 spin_lock_irq(&uap->port.lock);
1500 uap->im = 0;
1501 writew(uap->im, uap->port.membase + UART011_IMSC);
1502 writew(0xffff, uap->port.membase + UART011_ICR);
1503 spin_unlock_irq(&uap->port.lock);
1505 pl011_dma_shutdown(uap);
1508 * Free the interrupt
1510 free_irq(uap->port.irq, uap);
1513 * disable the port
1514 * disable the port. It should not disable RTS and DTR.
1515 * Also RTS and DTR state should be preserved to restore
1516 * it during startup().
1518 uap->autorts = false;
1519 cr = readw(uap->port.membase + UART011_CR);
1520 uap->old_cr = cr;
1521 cr &= UART011_CR_RTS | UART011_CR_DTR;
1522 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1523 writew(cr, uap->port.membase + UART011_CR);
1526 * disable break condition and fifos
1528 pl011_shutdown_channel(uap, uap->lcrh_rx);
1529 if (uap->lcrh_rx != uap->lcrh_tx)
1530 pl011_shutdown_channel(uap, uap->lcrh_tx);
1533 * Shut down the clock producer
1535 clk_disable(uap->clk);
1536 clk_unprepare(uap->clk);
1538 if (uap->port.dev->platform_data) {
1539 struct amba_pl011_data *plat;
1541 plat = uap->port.dev->platform_data;
1542 if (plat->exit)
1543 plat->exit();
1548 static void
1549 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1550 struct ktermios *old)
1552 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1553 unsigned int lcr_h, old_cr;
1554 unsigned long flags;
1555 unsigned int baud, quot, clkdiv;
1557 if (uap->vendor->oversampling)
1558 clkdiv = 8;
1559 else
1560 clkdiv = 16;
1563 * Ask the core to calculate the divisor for us.
1565 baud = uart_get_baud_rate(port, termios, old, 0,
1566 port->uartclk / clkdiv);
1568 if (baud > port->uartclk/16)
1569 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1570 else
1571 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1573 switch (termios->c_cflag & CSIZE) {
1574 case CS5:
1575 lcr_h = UART01x_LCRH_WLEN_5;
1576 break;
1577 case CS6:
1578 lcr_h = UART01x_LCRH_WLEN_6;
1579 break;
1580 case CS7:
1581 lcr_h = UART01x_LCRH_WLEN_7;
1582 break;
1583 default: // CS8
1584 lcr_h = UART01x_LCRH_WLEN_8;
1585 break;
1587 if (termios->c_cflag & CSTOPB)
1588 lcr_h |= UART01x_LCRH_STP2;
1589 if (termios->c_cflag & PARENB) {
1590 lcr_h |= UART01x_LCRH_PEN;
1591 if (!(termios->c_cflag & PARODD))
1592 lcr_h |= UART01x_LCRH_EPS;
1594 if (uap->fifosize > 1)
1595 lcr_h |= UART01x_LCRH_FEN;
1597 spin_lock_irqsave(&port->lock, flags);
1600 * Update the per-port timeout.
1602 uart_update_timeout(port, termios->c_cflag, baud);
1604 port->read_status_mask = UART011_DR_OE | 255;
1605 if (termios->c_iflag & INPCK)
1606 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1607 if (termios->c_iflag & (BRKINT | PARMRK))
1608 port->read_status_mask |= UART011_DR_BE;
1611 * Characters to ignore
1613 port->ignore_status_mask = 0;
1614 if (termios->c_iflag & IGNPAR)
1615 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1616 if (termios->c_iflag & IGNBRK) {
1617 port->ignore_status_mask |= UART011_DR_BE;
1619 * If we're ignoring parity and break indicators,
1620 * ignore overruns too (for real raw support).
1622 if (termios->c_iflag & IGNPAR)
1623 port->ignore_status_mask |= UART011_DR_OE;
1627 * Ignore all characters if CREAD is not set.
1629 if ((termios->c_cflag & CREAD) == 0)
1630 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1632 if (UART_ENABLE_MS(port, termios->c_cflag))
1633 pl011_enable_ms(port);
1635 /* first, disable everything */
1636 old_cr = readw(port->membase + UART011_CR);
1637 writew(0, port->membase + UART011_CR);
1639 if (termios->c_cflag & CRTSCTS) {
1640 if (old_cr & UART011_CR_RTS)
1641 old_cr |= UART011_CR_RTSEN;
1643 old_cr |= UART011_CR_CTSEN;
1644 uap->autorts = true;
1645 } else {
1646 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1647 uap->autorts = false;
1650 if (uap->vendor->oversampling) {
1651 if (baud > port->uartclk / 16)
1652 old_cr |= ST_UART011_CR_OVSFACT;
1653 else
1654 old_cr &= ~ST_UART011_CR_OVSFACT;
1658 * Workaround for the ST Micro oversampling variants to
1659 * increase the bitrate slightly, by lowering the divisor,
1660 * to avoid delayed sampling of start bit at high speeds,
1661 * else we see data corruption.
1663 if (uap->vendor->oversampling) {
1664 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1665 quot -= 1;
1666 else if ((baud > 3250000) && (quot > 2))
1667 quot -= 2;
1669 /* Set baud rate */
1670 writew(quot & 0x3f, port->membase + UART011_FBRD);
1671 writew(quot >> 6, port->membase + UART011_IBRD);
1674 * ----------v----------v----------v----------v-----
1675 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1676 * UART011_FBRD & UART011_IBRD.
1677 * ----------^----------^----------^----------^-----
1679 writew(lcr_h, port->membase + uap->lcrh_rx);
1680 if (uap->lcrh_rx != uap->lcrh_tx) {
1681 int i;
1683 * Wait 10 PCLKs before writing LCRH_TX register,
1684 * to get this delay write read only register 10 times
1686 for (i = 0; i < 10; ++i)
1687 writew(0xff, uap->port.membase + UART011_MIS);
1688 writew(lcr_h, port->membase + uap->lcrh_tx);
1690 writew(old_cr, port->membase + UART011_CR);
1692 spin_unlock_irqrestore(&port->lock, flags);
1695 static const char *pl011_type(struct uart_port *port)
1697 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1698 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1702 * Release the memory region(s) being used by 'port'
1704 static void pl010_release_port(struct uart_port *port)
1706 release_mem_region(port->mapbase, SZ_4K);
1710 * Request the memory region(s) being used by 'port'
1712 static int pl010_request_port(struct uart_port *port)
1714 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1715 != NULL ? 0 : -EBUSY;
1719 * Configure/autoconfigure the port.
1721 static void pl010_config_port(struct uart_port *port, int flags)
1723 if (flags & UART_CONFIG_TYPE) {
1724 port->type = PORT_AMBA;
1725 pl010_request_port(port);
1730 * verify the new serial_struct (for TIOCSSERIAL).
1732 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1734 int ret = 0;
1735 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1736 ret = -EINVAL;
1737 if (ser->irq < 0 || ser->irq >= nr_irqs)
1738 ret = -EINVAL;
1739 if (ser->baud_base < 9600)
1740 ret = -EINVAL;
1741 return ret;
1744 static struct uart_ops amba_pl011_pops = {
1745 .tx_empty = pl01x_tx_empty,
1746 .set_mctrl = pl011_set_mctrl,
1747 .get_mctrl = pl01x_get_mctrl,
1748 .stop_tx = pl011_stop_tx,
1749 .start_tx = pl011_start_tx,
1750 .stop_rx = pl011_stop_rx,
1751 .enable_ms = pl011_enable_ms,
1752 .break_ctl = pl011_break_ctl,
1753 .startup = pl011_startup,
1754 .shutdown = pl011_shutdown,
1755 .flush_buffer = pl011_dma_flush_buffer,
1756 .set_termios = pl011_set_termios,
1757 .type = pl011_type,
1758 .release_port = pl010_release_port,
1759 .request_port = pl010_request_port,
1760 .config_port = pl010_config_port,
1761 .verify_port = pl010_verify_port,
1762 #ifdef CONFIG_CONSOLE_POLL
1763 .poll_get_char = pl010_get_poll_char,
1764 .poll_put_char = pl010_put_poll_char,
1765 #endif
1768 static struct uart_amba_port *amba_ports[UART_NR];
1770 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1772 static void pl011_console_putchar(struct uart_port *port, int ch)
1774 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1776 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1777 barrier();
1778 writew(ch, uap->port.membase + UART01x_DR);
1781 static void
1782 pl011_console_write(struct console *co, const char *s, unsigned int count)
1784 struct uart_amba_port *uap = amba_ports[co->index];
1785 unsigned int status, old_cr, new_cr;
1786 unsigned long flags;
1787 int locked = 1;
1789 clk_enable(uap->clk);
1791 local_irq_save(flags);
1792 if (uap->port.sysrq)
1793 locked = 0;
1794 else if (oops_in_progress)
1795 locked = spin_trylock(&uap->port.lock);
1796 else
1797 spin_lock(&uap->port.lock);
1800 * First save the CR then disable the interrupts
1802 old_cr = readw(uap->port.membase + UART011_CR);
1803 new_cr = old_cr & ~UART011_CR_CTSEN;
1804 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1805 writew(new_cr, uap->port.membase + UART011_CR);
1807 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1810 * Finally, wait for transmitter to become empty
1811 * and restore the TCR
1813 do {
1814 status = readw(uap->port.membase + UART01x_FR);
1815 } while (status & UART01x_FR_BUSY);
1816 writew(old_cr, uap->port.membase + UART011_CR);
1818 if (locked)
1819 spin_unlock(&uap->port.lock);
1820 local_irq_restore(flags);
1822 clk_disable(uap->clk);
1825 static void __init
1826 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1827 int *parity, int *bits)
1829 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1830 unsigned int lcr_h, ibrd, fbrd;
1832 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1834 *parity = 'n';
1835 if (lcr_h & UART01x_LCRH_PEN) {
1836 if (lcr_h & UART01x_LCRH_EPS)
1837 *parity = 'e';
1838 else
1839 *parity = 'o';
1842 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1843 *bits = 7;
1844 else
1845 *bits = 8;
1847 ibrd = readw(uap->port.membase + UART011_IBRD);
1848 fbrd = readw(uap->port.membase + UART011_FBRD);
1850 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1852 if (uap->vendor->oversampling) {
1853 if (readw(uap->port.membase + UART011_CR)
1854 & ST_UART011_CR_OVSFACT)
1855 *baud *= 2;
1860 static int __init pl011_console_setup(struct console *co, char *options)
1862 struct uart_amba_port *uap;
1863 int baud = 38400;
1864 int bits = 8;
1865 int parity = 'n';
1866 int flow = 'n';
1867 int ret;
1870 * Check whether an invalid uart number has been specified, and
1871 * if so, search for the first available port that does have
1872 * console support.
1874 if (co->index >= UART_NR)
1875 co->index = 0;
1876 uap = amba_ports[co->index];
1877 if (!uap)
1878 return -ENODEV;
1880 ret = clk_prepare(uap->clk);
1881 if (ret)
1882 return ret;
1884 if (uap->port.dev->platform_data) {
1885 struct amba_pl011_data *plat;
1887 plat = uap->port.dev->platform_data;
1888 if (plat->init)
1889 plat->init();
1892 uap->port.uartclk = clk_get_rate(uap->clk);
1894 if (options)
1895 uart_parse_options(options, &baud, &parity, &bits, &flow);
1896 else
1897 pl011_console_get_options(uap, &baud, &parity, &bits);
1899 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1902 static struct uart_driver amba_reg;
1903 static struct console amba_console = {
1904 .name = "ttyAMA",
1905 .write = pl011_console_write,
1906 .device = uart_console_device,
1907 .setup = pl011_console_setup,
1908 .flags = CON_PRINTBUFFER,
1909 .index = -1,
1910 .data = &amba_reg,
1913 #define AMBA_CONSOLE (&amba_console)
1914 #else
1915 #define AMBA_CONSOLE NULL
1916 #endif
1918 static struct uart_driver amba_reg = {
1919 .owner = THIS_MODULE,
1920 .driver_name = "ttyAMA",
1921 .dev_name = "ttyAMA",
1922 .major = SERIAL_AMBA_MAJOR,
1923 .minor = SERIAL_AMBA_MINOR,
1924 .nr = UART_NR,
1925 .cons = AMBA_CONSOLE,
1928 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1930 struct uart_amba_port *uap;
1931 struct vendor_data *vendor = id->data;
1932 void __iomem *base;
1933 int i, ret;
1935 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1936 if (amba_ports[i] == NULL)
1937 break;
1939 if (i == ARRAY_SIZE(amba_ports)) {
1940 ret = -EBUSY;
1941 goto out;
1944 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1945 if (uap == NULL) {
1946 ret = -ENOMEM;
1947 goto out;
1950 base = ioremap(dev->res.start, resource_size(&dev->res));
1951 if (!base) {
1952 ret = -ENOMEM;
1953 goto free;
1956 uap->clk = clk_get(&dev->dev, NULL);
1957 if (IS_ERR(uap->clk)) {
1958 ret = PTR_ERR(uap->clk);
1959 goto unmap;
1962 uap->vendor = vendor;
1963 uap->lcrh_rx = vendor->lcrh_rx;
1964 uap->lcrh_tx = vendor->lcrh_tx;
1965 uap->old_cr = 0;
1966 uap->fifosize = vendor->fifosize;
1967 uap->interrupt_may_hang = vendor->interrupt_may_hang;
1968 uap->port.dev = &dev->dev;
1969 uap->port.mapbase = dev->res.start;
1970 uap->port.membase = base;
1971 uap->port.iotype = UPIO_MEM;
1972 uap->port.irq = dev->irq[0];
1973 uap->port.fifosize = uap->fifosize;
1974 uap->port.ops = &amba_pl011_pops;
1975 uap->port.flags = UPF_BOOT_AUTOCONF;
1976 uap->port.line = i;
1977 pl011_dma_probe(uap);
1979 /* Ensure interrupts from this UART are masked and cleared */
1980 writew(0, uap->port.membase + UART011_IMSC);
1981 writew(0xffff, uap->port.membase + UART011_ICR);
1983 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1985 amba_ports[i] = uap;
1987 amba_set_drvdata(dev, uap);
1988 ret = uart_add_one_port(&amba_reg, &uap->port);
1989 if (ret) {
1990 amba_set_drvdata(dev, NULL);
1991 amba_ports[i] = NULL;
1992 pl011_dma_remove(uap);
1993 clk_put(uap->clk);
1994 unmap:
1995 iounmap(base);
1996 free:
1997 kfree(uap);
1999 out:
2000 return ret;
2003 static int pl011_remove(struct amba_device *dev)
2005 struct uart_amba_port *uap = amba_get_drvdata(dev);
2006 int i;
2008 amba_set_drvdata(dev, NULL);
2010 uart_remove_one_port(&amba_reg, &uap->port);
2012 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2013 if (amba_ports[i] == uap)
2014 amba_ports[i] = NULL;
2016 pl011_dma_remove(uap);
2017 iounmap(uap->port.membase);
2018 clk_put(uap->clk);
2019 kfree(uap);
2020 return 0;
2023 #ifdef CONFIG_PM
2024 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2026 struct uart_amba_port *uap = amba_get_drvdata(dev);
2028 if (!uap)
2029 return -EINVAL;
2031 return uart_suspend_port(&amba_reg, &uap->port);
2034 static int pl011_resume(struct amba_device *dev)
2036 struct uart_amba_port *uap = amba_get_drvdata(dev);
2038 if (!uap)
2039 return -EINVAL;
2041 return uart_resume_port(&amba_reg, &uap->port);
2043 #endif
2045 static struct amba_id pl011_ids[] = {
2047 .id = 0x00041011,
2048 .mask = 0x000fffff,
2049 .data = &vendor_arm,
2052 .id = 0x00380802,
2053 .mask = 0x00ffffff,
2054 .data = &vendor_st,
2056 { 0, 0 },
2059 MODULE_DEVICE_TABLE(amba, pl011_ids);
2061 static struct amba_driver pl011_driver = {
2062 .drv = {
2063 .name = "uart-pl011",
2065 .id_table = pl011_ids,
2066 .probe = pl011_probe,
2067 .remove = pl011_remove,
2068 #ifdef CONFIG_PM
2069 .suspend = pl011_suspend,
2070 .resume = pl011_resume,
2071 #endif
2074 static int __init pl011_init(void)
2076 int ret;
2077 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2079 ret = uart_register_driver(&amba_reg);
2080 if (ret == 0) {
2081 ret = amba_driver_register(&pl011_driver);
2082 if (ret)
2083 uart_unregister_driver(&amba_reg);
2085 return ret;
2088 static void __exit pl011_exit(void)
2090 amba_driver_unregister(&pl011_driver);
2091 uart_unregister_driver(&amba_reg);
2095 * While this can be a module, if builtin it's most likely the console
2096 * So let's leave module_exit but move module_init to an earlier place
2098 arch_initcall(pl011_init);
2099 module_exit(pl011_exit);
2101 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2102 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2103 MODULE_LICENSE("GPL");