2 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios
= { /* for the benefit of tty drivers */
114 .c_iflag
= ICRNL
| IXON
,
115 .c_oflag
= OPOST
| ONLCR
,
116 .c_cflag
= B38400
| CS8
| CREAD
| HUPCL
,
117 .c_lflag
= ISIG
| ICANON
| ECHO
| ECHOE
| ECHOK
|
118 ECHOCTL
| ECHOKE
| IEXTEN
,
124 EXPORT_SYMBOL(tty_std_termios
);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
130 LIST_HEAD(tty_drivers
); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex
);
135 EXPORT_SYMBOL(tty_mutex
);
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock
);
140 static ssize_t
tty_read(struct file
*, char __user
*, size_t, loff_t
*);
141 static ssize_t
tty_write(struct file
*, const char __user
*, size_t, loff_t
*);
142 ssize_t
redirected_tty_write(struct file
*, const char __user
*,
144 static unsigned int tty_poll(struct file
*, poll_table
*);
145 static int tty_open(struct inode
*, struct file
*);
146 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
148 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
151 #define tty_compat_ioctl NULL
153 static int __tty_fasync(int fd
, struct file
*filp
, int on
);
154 static int tty_fasync(int fd
, struct file
*filp
, int on
);
155 static void release_tty(struct tty_struct
*tty
, int idx
);
156 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
157 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
168 struct tty_struct
*alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct
), GFP_KERNEL
);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 void free_tty_struct(struct tty_struct
*tty
)
185 put_device(tty
->dev
);
186 kfree(tty
->write_buf
);
187 tty_buffer_free_all(tty
);
191 static inline struct tty_struct
*file_tty(struct file
*file
)
193 return ((struct tty_file_private
*)file
->private_data
)->tty
;
196 int tty_alloc_file(struct file
*file
)
198 struct tty_file_private
*priv
;
200 priv
= kmalloc(sizeof(*priv
), GFP_KERNEL
);
204 file
->private_data
= priv
;
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct
*tty
, struct file
*file
)
212 struct tty_file_private
*priv
= file
->private_data
;
217 spin_lock(&tty_files_lock
);
218 list_add(&priv
->list
, &tty
->tty_files
);
219 spin_unlock(&tty_files_lock
);
223 * tty_free_file - free file->private_data
225 * This shall be used only for fail path handling when tty_add_file was not
228 void tty_free_file(struct file
*file
)
230 struct tty_file_private
*priv
= file
->private_data
;
232 file
->private_data
= NULL
;
236 /* Delete file from its tty */
237 void tty_del_file(struct file
*file
)
239 struct tty_file_private
*priv
= file
->private_data
;
241 spin_lock(&tty_files_lock
);
242 list_del(&priv
->list
);
243 spin_unlock(&tty_files_lock
);
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 * tty_name - return tty naming
252 * @tty: tty structure
253 * @buf: buffer for output
255 * Convert a tty structure into a name. The name reflects the kernel
256 * naming policy and if udev is in use may not reflect user space
261 char *tty_name(struct tty_struct
*tty
, char *buf
)
263 if (!tty
) /* Hmm. NULL pointer. That's fun. */
264 strcpy(buf
, "NULL tty");
266 strcpy(buf
, tty
->name
);
270 EXPORT_SYMBOL(tty_name
);
272 int tty_paranoia_check(struct tty_struct
*tty
, struct inode
*inode
,
275 #ifdef TTY_PARANOIA_CHECK
278 "null TTY for (%d:%d) in %s\n",
279 imajor(inode
), iminor(inode
), routine
);
282 if (tty
->magic
!= TTY_MAGIC
) {
284 "bad magic number for tty struct (%d:%d) in %s\n",
285 imajor(inode
), iminor(inode
), routine
);
292 static int check_tty_count(struct tty_struct
*tty
, const char *routine
)
294 #ifdef CHECK_TTY_COUNT
298 spin_lock(&tty_files_lock
);
299 list_for_each(p
, &tty
->tty_files
) {
302 spin_unlock(&tty_files_lock
);
303 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
304 tty
->driver
->subtype
== PTY_TYPE_SLAVE
&&
305 tty
->link
&& tty
->link
->count
)
307 if (tty
->count
!= count
) {
308 printk(KERN_WARNING
"Warning: dev (%s) tty->count(%d) "
309 "!= #fd's(%d) in %s\n",
310 tty
->name
, tty
->count
, count
, routine
);
318 * get_tty_driver - find device of a tty
319 * @dev_t: device identifier
320 * @index: returns the index of the tty
322 * This routine returns a tty driver structure, given a device number
323 * and also passes back the index number.
325 * Locking: caller must hold tty_mutex
328 static struct tty_driver
*get_tty_driver(dev_t device
, int *index
)
330 struct tty_driver
*p
;
332 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
333 dev_t base
= MKDEV(p
->major
, p
->minor_start
);
334 if (device
< base
|| device
>= base
+ p
->num
)
336 *index
= device
- base
;
337 return tty_driver_kref_get(p
);
342 #ifdef CONFIG_CONSOLE_POLL
345 * tty_find_polling_driver - find device of a polled tty
346 * @name: name string to match
347 * @line: pointer to resulting tty line nr
349 * This routine returns a tty driver structure, given a name
350 * and the condition that the tty driver is capable of polled
353 struct tty_driver
*tty_find_polling_driver(char *name
, int *line
)
355 struct tty_driver
*p
, *res
= NULL
;
360 for (str
= name
; *str
; str
++)
361 if ((*str
>= '0' && *str
<= '9') || *str
== ',')
367 tty_line
= simple_strtoul(str
, &str
, 10);
369 mutex_lock(&tty_mutex
);
370 /* Search through the tty devices to look for a match */
371 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
372 if (strncmp(name
, p
->name
, len
) != 0)
380 if (tty_line
>= 0 && tty_line
< p
->num
&& p
->ops
&&
381 p
->ops
->poll_init
&& !p
->ops
->poll_init(p
, tty_line
, stp
)) {
382 res
= tty_driver_kref_get(p
);
387 mutex_unlock(&tty_mutex
);
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver
);
395 * tty_check_change - check for POSIX terminal changes
398 * If we try to write to, or set the state of, a terminal and we're
399 * not in the foreground, send a SIGTTOU. If the signal is blocked or
400 * ignored, go ahead and perform the operation. (POSIX 7.2)
405 int tty_check_change(struct tty_struct
*tty
)
410 if (current
->signal
->tty
!= tty
)
413 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
416 printk(KERN_WARNING
"tty_check_change: tty->pgrp == NULL!\n");
419 if (task_pgrp(current
) == tty
->pgrp
)
421 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
422 if (is_ignored(SIGTTOU
))
424 if (is_current_pgrp_orphaned()) {
428 kill_pgrp(task_pgrp(current
), SIGTTOU
, 1);
429 set_thread_flag(TIF_SIGPENDING
);
434 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
438 EXPORT_SYMBOL(tty_check_change
);
440 static ssize_t
hung_up_tty_read(struct file
*file
, char __user
*buf
,
441 size_t count
, loff_t
*ppos
)
446 static ssize_t
hung_up_tty_write(struct file
*file
, const char __user
*buf
,
447 size_t count
, loff_t
*ppos
)
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file
*filp
, poll_table
*wait
)
455 return POLLIN
| POLLOUT
| POLLERR
| POLLHUP
| POLLRDNORM
| POLLWRNORM
;
458 static long hung_up_tty_ioctl(struct file
*file
, unsigned int cmd
,
461 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
464 static long hung_up_tty_compat_ioctl(struct file
*file
,
465 unsigned int cmd
, unsigned long arg
)
467 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
470 static const struct file_operations tty_fops
= {
475 .unlocked_ioctl
= tty_ioctl
,
476 .compat_ioctl
= tty_compat_ioctl
,
478 .release
= tty_release
,
479 .fasync
= tty_fasync
,
482 static const struct file_operations console_fops
= {
485 .write
= redirected_tty_write
,
487 .unlocked_ioctl
= tty_ioctl
,
488 .compat_ioctl
= tty_compat_ioctl
,
490 .release
= tty_release
,
491 .fasync
= tty_fasync
,
494 static const struct file_operations hung_up_tty_fops
= {
496 .read
= hung_up_tty_read
,
497 .write
= hung_up_tty_write
,
498 .poll
= hung_up_tty_poll
,
499 .unlocked_ioctl
= hung_up_tty_ioctl
,
500 .compat_ioctl
= hung_up_tty_compat_ioctl
,
501 .release
= tty_release
,
504 static DEFINE_SPINLOCK(redirect_lock
);
505 static struct file
*redirect
;
508 * tty_wakeup - request more data
511 * Internal and external helper for wakeups of tty. This function
512 * informs the line discipline if present that the driver is ready
513 * to receive more output data.
516 void tty_wakeup(struct tty_struct
*tty
)
518 struct tty_ldisc
*ld
;
520 if (test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) {
521 ld
= tty_ldisc_ref(tty
);
523 if (ld
->ops
->write_wakeup
)
524 ld
->ops
->write_wakeup(tty
);
528 wake_up_interruptible_poll(&tty
->write_wait
, POLLOUT
);
531 EXPORT_SYMBOL_GPL(tty_wakeup
);
534 * __tty_hangup - actual handler for hangup events
537 * This can be called by the "eventd" kernel thread. That is process
538 * synchronous but doesn't hold any locks, so we need to make sure we
539 * have the appropriate locks for what we're doing.
541 * The hangup event clears any pending redirections onto the hung up
542 * device. It ensures future writes will error and it does the needed
543 * line discipline hangup and signal delivery. The tty object itself
548 * redirect lock for undoing redirection
549 * file list lock for manipulating list of ttys
550 * tty_ldisc_lock from called functions
551 * termios_mutex resetting termios data
552 * tasklist_lock to walk task list for hangup event
553 * ->siglock to protect ->signal/->sighand
555 void __tty_hangup(struct tty_struct
*tty
)
557 struct file
*cons_filp
= NULL
;
558 struct file
*filp
, *f
= NULL
;
559 struct task_struct
*p
;
560 struct tty_file_private
*priv
;
561 int closecount
= 0, n
;
569 spin_lock(&redirect_lock
);
570 if (redirect
&& file_tty(redirect
) == tty
) {
574 spin_unlock(&redirect_lock
);
578 /* some functions below drop BTM, so we need this bit */
579 set_bit(TTY_HUPPING
, &tty
->flags
);
581 /* inuse_filps is protected by the single tty lock,
582 this really needs to change if we want to flush the
583 workqueue with the lock held */
584 check_tty_count(tty
, "tty_hangup");
586 spin_lock(&tty_files_lock
);
587 /* This breaks for file handles being sent over AF_UNIX sockets ? */
588 list_for_each_entry(priv
, &tty
->tty_files
, list
) {
590 if (filp
->f_op
->write
== redirected_tty_write
)
592 if (filp
->f_op
->write
!= tty_write
)
595 __tty_fasync(-1, filp
, 0); /* can't block */
596 filp
->f_op
= &hung_up_tty_fops
;
598 spin_unlock(&tty_files_lock
);
601 * it drops BTM and thus races with reopen
602 * we protect the race by TTY_HUPPING
604 tty_ldisc_hangup(tty
);
606 read_lock(&tasklist_lock
);
608 do_each_pid_task(tty
->session
, PIDTYPE_SID
, p
) {
609 spin_lock_irq(&p
->sighand
->siglock
);
610 if (p
->signal
->tty
== tty
) {
611 p
->signal
->tty
= NULL
;
612 /* We defer the dereferences outside fo
616 if (!p
->signal
->leader
) {
617 spin_unlock_irq(&p
->sighand
->siglock
);
620 __group_send_sig_info(SIGHUP
, SEND_SIG_PRIV
, p
);
621 __group_send_sig_info(SIGCONT
, SEND_SIG_PRIV
, p
);
622 put_pid(p
->signal
->tty_old_pgrp
); /* A noop */
623 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
625 p
->signal
->tty_old_pgrp
= get_pid(tty
->pgrp
);
626 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
627 spin_unlock_irq(&p
->sighand
->siglock
);
628 } while_each_pid_task(tty
->session
, PIDTYPE_SID
, p
);
630 read_unlock(&tasklist_lock
);
632 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
633 clear_bit(TTY_THROTTLED
, &tty
->flags
);
634 clear_bit(TTY_PUSH
, &tty
->flags
);
635 clear_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
);
636 put_pid(tty
->session
);
640 tty
->ctrl_status
= 0;
641 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
643 /* Account for the p->signal references we killed */
648 * If one of the devices matches a console pointer, we
649 * cannot just call hangup() because that will cause
650 * tty->count and state->count to go out of sync.
651 * So we just call close() the right number of times.
655 for (n
= 0; n
< closecount
; n
++)
656 tty
->ops
->close(tty
, cons_filp
);
657 } else if (tty
->ops
->hangup
)
658 (tty
->ops
->hangup
)(tty
);
660 * We don't want to have driver/ldisc interactions beyond
661 * the ones we did here. The driver layer expects no
662 * calls after ->hangup() from the ldisc side. However we
663 * can't yet guarantee all that.
665 set_bit(TTY_HUPPED
, &tty
->flags
);
666 clear_bit(TTY_HUPPING
, &tty
->flags
);
667 tty_ldisc_enable(tty
);
675 static void do_tty_hangup(struct work_struct
*work
)
677 struct tty_struct
*tty
=
678 container_of(work
, struct tty_struct
, hangup_work
);
684 * tty_hangup - trigger a hangup event
685 * @tty: tty to hangup
687 * A carrier loss (virtual or otherwise) has occurred on this like
688 * schedule a hangup sequence to run after this event.
691 void tty_hangup(struct tty_struct
*tty
)
693 #ifdef TTY_DEBUG_HANGUP
695 printk(KERN_DEBUG
"%s hangup...\n", tty_name(tty
, buf
));
697 schedule_work(&tty
->hangup_work
);
700 EXPORT_SYMBOL(tty_hangup
);
703 * tty_vhangup - process vhangup
704 * @tty: tty to hangup
706 * The user has asked via system call for the terminal to be hung up.
707 * We do this synchronously so that when the syscall returns the process
708 * is complete. That guarantee is necessary for security reasons.
711 void tty_vhangup(struct tty_struct
*tty
)
713 #ifdef TTY_DEBUG_HANGUP
716 printk(KERN_DEBUG
"%s vhangup...\n", tty_name(tty
, buf
));
721 EXPORT_SYMBOL(tty_vhangup
);
725 * tty_vhangup_self - process vhangup for own ctty
727 * Perform a vhangup on the current controlling tty
730 void tty_vhangup_self(void)
732 struct tty_struct
*tty
;
734 tty
= get_current_tty();
742 * tty_hung_up_p - was tty hung up
743 * @filp: file pointer of tty
745 * Return true if the tty has been subject to a vhangup or a carrier
749 int tty_hung_up_p(struct file
*filp
)
751 return (filp
->f_op
== &hung_up_tty_fops
);
754 EXPORT_SYMBOL(tty_hung_up_p
);
756 static void session_clear_tty(struct pid
*session
)
758 struct task_struct
*p
;
759 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
761 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
765 * disassociate_ctty - disconnect controlling tty
766 * @on_exit: true if exiting so need to "hang up" the session
768 * This function is typically called only by the session leader, when
769 * it wants to disassociate itself from its controlling tty.
771 * It performs the following functions:
772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
773 * (2) Clears the tty from being controlling the session
774 * (3) Clears the controlling tty for all processes in the
777 * The argument on_exit is set to 1 if called when a process is
778 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
781 * BTM is taken for hysterical raisins, and held when
782 * called from no_tty().
783 * tty_mutex is taken to protect tty
784 * ->siglock is taken to protect ->signal/->sighand
785 * tasklist_lock is taken to walk process list for sessions
786 * ->siglock is taken to protect ->signal/->sighand
789 void disassociate_ctty(int on_exit
)
791 struct tty_struct
*tty
;
793 if (!current
->signal
->leader
)
796 tty
= get_current_tty();
798 struct pid
*tty_pgrp
= get_pid(tty
->pgrp
);
800 if (tty
->driver
->type
!= TTY_DRIVER_TYPE_PTY
)
805 kill_pgrp(tty_pgrp
, SIGHUP
, on_exit
);
807 kill_pgrp(tty_pgrp
, SIGCONT
, on_exit
);
810 } else if (on_exit
) {
811 struct pid
*old_pgrp
;
812 spin_lock_irq(¤t
->sighand
->siglock
);
813 old_pgrp
= current
->signal
->tty_old_pgrp
;
814 current
->signal
->tty_old_pgrp
= NULL
;
815 spin_unlock_irq(¤t
->sighand
->siglock
);
817 kill_pgrp(old_pgrp
, SIGHUP
, on_exit
);
818 kill_pgrp(old_pgrp
, SIGCONT
, on_exit
);
824 spin_lock_irq(¤t
->sighand
->siglock
);
825 put_pid(current
->signal
->tty_old_pgrp
);
826 current
->signal
->tty_old_pgrp
= NULL
;
827 spin_unlock_irq(¤t
->sighand
->siglock
);
829 tty
= get_current_tty();
832 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
833 put_pid(tty
->session
);
837 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
840 #ifdef TTY_DEBUG_HANGUP
841 printk(KERN_DEBUG
"error attempted to write to tty [0x%p]"
846 /* Now clear signal->tty under the lock */
847 read_lock(&tasklist_lock
);
848 session_clear_tty(task_session(current
));
849 read_unlock(&tasklist_lock
);
854 * no_tty - Ensure the current process does not have a controlling tty
858 struct task_struct
*tsk
= current
;
860 disassociate_ctty(0);
867 * stop_tty - propagate flow control
870 * Perform flow control to the driver. For PTY/TTY pairs we
871 * must also propagate the TIOCKPKT status. May be called
872 * on an already stopped device and will not re-call the driver
875 * This functionality is used by both the line disciplines for
876 * halting incoming flow and by the driver. It may therefore be
877 * called from any context, may be under the tty atomic_write_lock
881 * Uses the tty control lock internally
884 void stop_tty(struct tty_struct
*tty
)
887 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
889 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
893 if (tty
->link
&& tty
->link
->packet
) {
894 tty
->ctrl_status
&= ~TIOCPKT_START
;
895 tty
->ctrl_status
|= TIOCPKT_STOP
;
896 wake_up_interruptible_poll(&tty
->link
->read_wait
, POLLIN
);
898 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
900 (tty
->ops
->stop
)(tty
);
903 EXPORT_SYMBOL(stop_tty
);
906 * start_tty - propagate flow control
909 * Start a tty that has been stopped if at all possible. Perform
910 * any necessary wakeups and propagate the TIOCPKT status. If this
911 * is the tty was previous stopped and is being started then the
912 * driver start method is invoked and the line discipline woken.
918 void start_tty(struct tty_struct
*tty
)
921 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
922 if (!tty
->stopped
|| tty
->flow_stopped
) {
923 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
927 if (tty
->link
&& tty
->link
->packet
) {
928 tty
->ctrl_status
&= ~TIOCPKT_STOP
;
929 tty
->ctrl_status
|= TIOCPKT_START
;
930 wake_up_interruptible_poll(&tty
->link
->read_wait
, POLLIN
);
932 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
934 (tty
->ops
->start
)(tty
);
935 /* If we have a running line discipline it may need kicking */
939 EXPORT_SYMBOL(start_tty
);
941 /* We limit tty time update visibility to every 8 seconds or so. */
942 static void tty_update_time(struct timespec
*time
)
944 unsigned long sec
= get_seconds() & ~7;
945 if ((long)(sec
- time
->tv_sec
) > 0)
950 * tty_read - read method for tty device files
951 * @file: pointer to tty file
953 * @count: size of user buffer
956 * Perform the read system call function on this terminal device. Checks
957 * for hung up devices before calling the line discipline method.
960 * Locks the line discipline internally while needed. Multiple
961 * read calls may be outstanding in parallel.
964 static ssize_t
tty_read(struct file
*file
, char __user
*buf
, size_t count
,
968 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
969 struct tty_struct
*tty
= file_tty(file
);
970 struct tty_ldisc
*ld
;
972 if (tty_paranoia_check(tty
, inode
, "tty_read"))
974 if (!tty
|| (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
977 /* We want to wait for the line discipline to sort out in this
979 ld
= tty_ldisc_ref_wait(tty
);
981 i
= (ld
->ops
->read
)(tty
, file
, buf
, count
);
987 tty_update_time(&inode
->i_atime
);
992 void tty_write_unlock(struct tty_struct
*tty
)
993 __releases(&tty
->atomic_write_lock
)
995 mutex_unlock(&tty
->atomic_write_lock
);
996 wake_up_interruptible_poll(&tty
->write_wait
, POLLOUT
);
999 int tty_write_lock(struct tty_struct
*tty
, int ndelay
)
1000 __acquires(&tty
->atomic_write_lock
)
1002 if (!mutex_trylock(&tty
->atomic_write_lock
)) {
1005 if (mutex_lock_interruptible(&tty
->atomic_write_lock
))
1006 return -ERESTARTSYS
;
1012 * Split writes up in sane blocksizes to avoid
1013 * denial-of-service type attacks
1015 static inline ssize_t
do_tty_write(
1016 ssize_t (*write
)(struct tty_struct
*, struct file
*, const unsigned char *, size_t),
1017 struct tty_struct
*tty
,
1019 const char __user
*buf
,
1022 ssize_t ret
, written
= 0;
1025 ret
= tty_write_lock(tty
, file
->f_flags
& O_NDELAY
);
1030 * We chunk up writes into a temporary buffer. This
1031 * simplifies low-level drivers immensely, since they
1032 * don't have locking issues and user mode accesses.
1034 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1037 * The default chunk-size is 2kB, because the NTTY
1038 * layer has problems with bigger chunks. It will
1039 * claim to be able to handle more characters than
1042 * FIXME: This can probably go away now except that 64K chunks
1043 * are too likely to fail unless switched to vmalloc...
1046 if (test_bit(TTY_NO_WRITE_SPLIT
, &tty
->flags
))
1051 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1052 if (tty
->write_cnt
< chunk
) {
1053 unsigned char *buf_chunk
;
1058 buf_chunk
= kmalloc(chunk
, GFP_KERNEL
);
1063 kfree(tty
->write_buf
);
1064 tty
->write_cnt
= chunk
;
1065 tty
->write_buf
= buf_chunk
;
1068 /* Do the write .. */
1070 size_t size
= count
;
1074 if (copy_from_user(tty
->write_buf
, buf
, size
))
1076 ret
= write(tty
, file
, tty
->write_buf
, size
);
1085 if (signal_pending(current
))
1090 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1091 tty_update_time(&inode
->i_mtime
);
1095 tty_write_unlock(tty
);
1100 * tty_write_message - write a message to a certain tty, not just the console.
1101 * @tty: the destination tty_struct
1102 * @msg: the message to write
1104 * This is used for messages that need to be redirected to a specific tty.
1105 * We don't put it into the syslog queue right now maybe in the future if
1108 * We must still hold the BTM and test the CLOSING flag for the moment.
1111 void tty_write_message(struct tty_struct
*tty
, char *msg
)
1114 mutex_lock(&tty
->atomic_write_lock
);
1116 if (tty
->ops
->write
&& !test_bit(TTY_CLOSING
, &tty
->flags
)) {
1118 tty
->ops
->write(tty
, msg
, strlen(msg
));
1121 tty_write_unlock(tty
);
1128 * tty_write - write method for tty device file
1129 * @file: tty file pointer
1130 * @buf: user data to write
1131 * @count: bytes to write
1134 * Write data to a tty device via the line discipline.
1137 * Locks the line discipline as required
1138 * Writes to the tty driver are serialized by the atomic_write_lock
1139 * and are then processed in chunks to the device. The line discipline
1140 * write method will not be invoked in parallel for each device.
1143 static ssize_t
tty_write(struct file
*file
, const char __user
*buf
,
1144 size_t count
, loff_t
*ppos
)
1146 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1147 struct tty_struct
*tty
= file_tty(file
);
1148 struct tty_ldisc
*ld
;
1151 if (tty_paranoia_check(tty
, inode
, "tty_write"))
1153 if (!tty
|| !tty
->ops
->write
||
1154 (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1156 /* Short term debug to catch buggy drivers */
1157 if (tty
->ops
->write_room
== NULL
)
1158 printk(KERN_ERR
"tty driver %s lacks a write_room method.\n",
1160 ld
= tty_ldisc_ref_wait(tty
);
1161 if (!ld
->ops
->write
)
1164 ret
= do_tty_write(ld
->ops
->write
, tty
, file
, buf
, count
);
1165 tty_ldisc_deref(ld
);
1169 ssize_t
redirected_tty_write(struct file
*file
, const char __user
*buf
,
1170 size_t count
, loff_t
*ppos
)
1172 struct file
*p
= NULL
;
1174 spin_lock(&redirect_lock
);
1179 spin_unlock(&redirect_lock
);
1183 res
= vfs_write(p
, buf
, count
, &p
->f_pos
);
1187 return tty_write(file
, buf
, count
, ppos
);
1190 static char ptychar
[] = "pqrstuvwxyzabcde";
1193 * pty_line_name - generate name for a pty
1194 * @driver: the tty driver in use
1195 * @index: the minor number
1196 * @p: output buffer of at least 6 bytes
1198 * Generate a name from a driver reference and write it to the output
1203 static void pty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1205 int i
= index
+ driver
->name_base
;
1206 /* ->name is initialized to "ttyp", but "tty" is expected */
1207 sprintf(p
, "%s%c%x",
1208 driver
->subtype
== PTY_TYPE_SLAVE
? "tty" : driver
->name
,
1209 ptychar
[i
>> 4 & 0xf], i
& 0xf);
1213 * tty_line_name - generate name for a tty
1214 * @driver: the tty driver in use
1215 * @index: the minor number
1216 * @p: output buffer of at least 7 bytes
1218 * Generate a name from a driver reference and write it to the output
1223 static void tty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1225 sprintf(p
, "%s%d", driver
->name
, index
+ driver
->name_base
);
1229 * tty_driver_lookup_tty() - find an existing tty, if any
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1233 * Return the tty, if found or ERR_PTR() otherwise.
1235 * Locking: tty_mutex must be held. If tty is found, the mutex must
1236 * be held until the 'fast-open' is also done. Will change once we
1237 * have refcounting in the driver and per driver locking
1239 static struct tty_struct
*tty_driver_lookup_tty(struct tty_driver
*driver
,
1240 struct inode
*inode
, int idx
)
1242 if (driver
->ops
->lookup
)
1243 return driver
->ops
->lookup(driver
, inode
, idx
);
1245 return driver
->ttys
[idx
];
1249 * tty_init_termios - helper for termios setup
1250 * @tty: the tty to set up
1252 * Initialise the termios structures for this tty. Thus runs under
1253 * the tty_mutex currently so we can be relaxed about ordering.
1256 int tty_init_termios(struct tty_struct
*tty
)
1258 struct ktermios
*tp
;
1259 int idx
= tty
->index
;
1261 tp
= tty
->driver
->termios
[idx
];
1263 tp
= kzalloc(sizeof(struct ktermios
[2]), GFP_KERNEL
);
1266 memcpy(tp
, &tty
->driver
->init_termios
,
1267 sizeof(struct ktermios
));
1268 tty
->driver
->termios
[idx
] = tp
;
1271 tty
->termios_locked
= tp
+ 1;
1273 /* Compatibility until drivers always set this */
1274 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
1275 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
1278 EXPORT_SYMBOL_GPL(tty_init_termios
);
1280 int tty_standard_install(struct tty_driver
*driver
, struct tty_struct
*tty
)
1282 int ret
= tty_init_termios(tty
);
1286 tty_driver_kref_get(driver
);
1288 driver
->ttys
[tty
->index
] = tty
;
1291 EXPORT_SYMBOL_GPL(tty_standard_install
);
1294 * tty_driver_install_tty() - install a tty entry in the driver
1295 * @driver: the driver for the tty
1298 * Install a tty object into the driver tables. The tty->index field
1299 * will be set by the time this is called. This method is responsible
1300 * for ensuring any need additional structures are allocated and
1303 * Locking: tty_mutex for now
1305 static int tty_driver_install_tty(struct tty_driver
*driver
,
1306 struct tty_struct
*tty
)
1308 return driver
->ops
->install
? driver
->ops
->install(driver
, tty
) :
1309 tty_standard_install(driver
, tty
);
1313 * tty_driver_remove_tty() - remove a tty from the driver tables
1314 * @driver: the driver for the tty
1315 * @idx: the minor number
1317 * Remvoe a tty object from the driver tables. The tty->index field
1318 * will be set by the time this is called.
1320 * Locking: tty_mutex for now
1322 void tty_driver_remove_tty(struct tty_driver
*driver
, struct tty_struct
*tty
)
1324 if (driver
->ops
->remove
)
1325 driver
->ops
->remove(driver
, tty
);
1327 driver
->ttys
[tty
->index
] = NULL
;
1331 * tty_reopen() - fast re-open of an open tty
1332 * @tty - the tty to open
1334 * Return 0 on success, -errno on error.
1336 * Locking: tty_mutex must be held from the time the tty was found
1337 * till this open completes.
1339 static int tty_reopen(struct tty_struct
*tty
)
1341 struct tty_driver
*driver
= tty
->driver
;
1343 if (test_bit(TTY_CLOSING
, &tty
->flags
) ||
1344 test_bit(TTY_HUPPING
, &tty
->flags
) ||
1345 test_bit(TTY_LDISC_CHANGING
, &tty
->flags
))
1348 if (driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1349 driver
->subtype
== PTY_TYPE_MASTER
) {
1351 * special case for PTY masters: only one open permitted,
1352 * and the slave side open count is incremented as well.
1361 mutex_lock(&tty
->ldisc_mutex
);
1362 WARN_ON(!test_bit(TTY_LDISC
, &tty
->flags
));
1363 mutex_unlock(&tty
->ldisc_mutex
);
1369 * tty_init_dev - initialise a tty device
1370 * @driver: tty driver we are opening a device on
1371 * @idx: device index
1372 * @ret_tty: returned tty structure
1374 * Prepare a tty device. This may not be a "new" clean device but
1375 * could also be an active device. The pty drivers require special
1376 * handling because of this.
1379 * The function is called under the tty_mutex, which
1380 * protects us from the tty struct or driver itself going away.
1382 * On exit the tty device has the line discipline attached and
1383 * a reference count of 1. If a pair was created for pty/tty use
1384 * and the other was a pty master then it too has a reference count of 1.
1386 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1387 * failed open. The new code protects the open with a mutex, so it's
1388 * really quite straightforward. The mutex locking can probably be
1389 * relaxed for the (most common) case of reopening a tty.
1392 struct tty_struct
*tty_init_dev(struct tty_driver
*driver
, int idx
)
1394 struct tty_struct
*tty
;
1398 * First time open is complex, especially for PTY devices.
1399 * This code guarantees that either everything succeeds and the
1400 * TTY is ready for operation, or else the table slots are vacated
1401 * and the allocated memory released. (Except that the termios
1402 * and locked termios may be retained.)
1405 if (!try_module_get(driver
->owner
))
1406 return ERR_PTR(-ENODEV
);
1408 tty
= alloc_tty_struct();
1411 goto err_module_put
;
1413 initialize_tty_struct(tty
, driver
, idx
);
1415 retval
= tty_driver_install_tty(driver
, tty
);
1417 goto err_deinit_tty
;
1420 * Structures all installed ... call the ldisc open routines.
1421 * If we fail here just call release_tty to clean up. No need
1422 * to decrement the use counts, as release_tty doesn't care.
1424 retval
= tty_ldisc_setup(tty
, tty
->link
);
1426 goto err_release_tty
;
1430 deinitialize_tty_struct(tty
);
1431 free_tty_struct(tty
);
1433 module_put(driver
->owner
);
1434 return ERR_PTR(retval
);
1436 /* call the tty release_tty routine to clean out this slot */
1438 printk_ratelimited(KERN_INFO
"tty_init_dev: ldisc open failed, "
1439 "clearing slot %d\n", idx
);
1440 release_tty(tty
, idx
);
1441 return ERR_PTR(retval
);
1444 void tty_free_termios(struct tty_struct
*tty
)
1446 struct ktermios
*tp
;
1447 int idx
= tty
->index
;
1448 /* Kill this flag and push into drivers for locking etc */
1449 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
) {
1450 /* FIXME: Locking on ->termios array */
1452 tty
->driver
->termios
[idx
] = NULL
;
1456 EXPORT_SYMBOL(tty_free_termios
);
1458 void tty_shutdown(struct tty_struct
*tty
)
1460 tty_driver_remove_tty(tty
->driver
, tty
);
1461 tty_free_termios(tty
);
1463 EXPORT_SYMBOL(tty_shutdown
);
1466 * release_one_tty - release tty structure memory
1467 * @kref: kref of tty we are obliterating
1469 * Releases memory associated with a tty structure, and clears out the
1470 * driver table slots. This function is called when a device is no longer
1471 * in use. It also gets called when setup of a device fails.
1474 * tty_mutex - sometimes only
1475 * takes the file list lock internally when working on the list
1476 * of ttys that the driver keeps.
1478 * This method gets called from a work queue so that the driver private
1479 * cleanup ops can sleep (needed for USB at least)
1481 static void release_one_tty(struct work_struct
*work
)
1483 struct tty_struct
*tty
=
1484 container_of(work
, struct tty_struct
, hangup_work
);
1485 struct tty_driver
*driver
= tty
->driver
;
1487 if (tty
->ops
->cleanup
)
1488 tty
->ops
->cleanup(tty
);
1491 tty_driver_kref_put(driver
);
1492 module_put(driver
->owner
);
1494 spin_lock(&tty_files_lock
);
1495 list_del_init(&tty
->tty_files
);
1496 spin_unlock(&tty_files_lock
);
1499 put_pid(tty
->session
);
1500 free_tty_struct(tty
);
1503 static void queue_release_one_tty(struct kref
*kref
)
1505 struct tty_struct
*tty
= container_of(kref
, struct tty_struct
, kref
);
1507 if (tty
->ops
->shutdown
)
1508 tty
->ops
->shutdown(tty
);
1512 /* The hangup queue is now free so we can reuse it rather than
1513 waste a chunk of memory for each port */
1514 INIT_WORK(&tty
->hangup_work
, release_one_tty
);
1515 schedule_work(&tty
->hangup_work
);
1519 * tty_kref_put - release a tty kref
1522 * Release a reference to a tty device and if need be let the kref
1523 * layer destruct the object for us
1526 void tty_kref_put(struct tty_struct
*tty
)
1529 kref_put(&tty
->kref
, queue_release_one_tty
);
1531 EXPORT_SYMBOL(tty_kref_put
);
1534 * release_tty - release tty structure memory
1536 * Release both @tty and a possible linked partner (think pty pair),
1537 * and decrement the refcount of the backing module.
1540 * tty_mutex - sometimes only
1541 * takes the file list lock internally when working on the list
1542 * of ttys that the driver keeps.
1543 * FIXME: should we require tty_mutex is held here ??
1546 static void release_tty(struct tty_struct
*tty
, int idx
)
1548 /* This should always be true but check for the moment */
1549 WARN_ON(tty
->index
!= idx
);
1552 tty_kref_put(tty
->link
);
1557 * tty_release_checks - check a tty before real release
1558 * @tty: tty to check
1559 * @o_tty: link of @tty (if any)
1560 * @idx: index of the tty
1562 * Performs some paranoid checking before true release of the @tty.
1563 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1565 static int tty_release_checks(struct tty_struct
*tty
, struct tty_struct
*o_tty
,
1568 #ifdef TTY_PARANOIA_CHECK
1569 if (idx
< 0 || idx
>= tty
->driver
->num
) {
1570 printk(KERN_DEBUG
"%s: bad idx when trying to free (%s)\n",
1571 __func__
, tty
->name
);
1575 /* not much to check for devpts */
1576 if (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)
1579 if (tty
!= tty
->driver
->ttys
[idx
]) {
1580 printk(KERN_DEBUG
"%s: driver.table[%d] not tty for (%s)\n",
1581 __func__
, idx
, tty
->name
);
1584 if (tty
->termios
!= tty
->driver
->termios
[idx
]) {
1585 printk(KERN_DEBUG
"%s: driver.termios[%d] not termios for (%s)\n",
1586 __func__
, idx
, tty
->name
);
1589 if (tty
->driver
->other
) {
1590 if (o_tty
!= tty
->driver
->other
->ttys
[idx
]) {
1591 printk(KERN_DEBUG
"%s: other->table[%d] not o_tty for (%s)\n",
1592 __func__
, idx
, tty
->name
);
1595 if (o_tty
->termios
!= tty
->driver
->other
->termios
[idx
]) {
1596 printk(KERN_DEBUG
"%s: other->termios[%d] not o_termios for (%s)\n",
1597 __func__
, idx
, tty
->name
);
1600 if (o_tty
->link
!= tty
) {
1601 printk(KERN_DEBUG
"%s: bad pty pointers\n", __func__
);
1610 * tty_release - vfs callback for close
1611 * @inode: inode of tty
1612 * @filp: file pointer for handle to tty
1614 * Called the last time each file handle is closed that references
1615 * this tty. There may however be several such references.
1618 * Takes bkl. See tty_release_dev
1620 * Even releasing the tty structures is a tricky business.. We have
1621 * to be very careful that the structures are all released at the
1622 * same time, as interrupts might otherwise get the wrong pointers.
1624 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1625 * lead to double frees or releasing memory still in use.
1628 int tty_release(struct inode
*inode
, struct file
*filp
)
1630 struct tty_struct
*tty
= file_tty(filp
);
1631 struct tty_struct
*o_tty
;
1632 int pty_master
, tty_closing
, o_tty_closing
, do_sleep
;
1637 if (tty_paranoia_check(tty
, inode
, __func__
))
1641 check_tty_count(tty
, __func__
);
1643 __tty_fasync(-1, filp
, 0);
1646 pty_master
= (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1647 tty
->driver
->subtype
== PTY_TYPE_MASTER
);
1648 devpts
= (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) != 0;
1651 if (tty_release_checks(tty
, o_tty
, idx
)) {
1656 #ifdef TTY_DEBUG_HANGUP
1657 printk(KERN_DEBUG
"%s: %s (tty count=%d)...\n", __func__
,
1658 tty_name(tty
, buf
), tty
->count
);
1661 if (tty
->ops
->close
)
1662 tty
->ops
->close(tty
, filp
);
1666 * Sanity check: if tty->count is going to zero, there shouldn't be
1667 * any waiters on tty->read_wait or tty->write_wait. We test the
1668 * wait queues and kick everyone out _before_ actually starting to
1669 * close. This ensures that we won't block while releasing the tty
1672 * The test for the o_tty closing is necessary, since the master and
1673 * slave sides may close in any order. If the slave side closes out
1674 * first, its count will be one, since the master side holds an open.
1675 * Thus this test wouldn't be triggered at the time the slave closes,
1678 * Note that it's possible for the tty to be opened again while we're
1679 * flushing out waiters. By recalculating the closing flags before
1680 * each iteration we avoid any problems.
1683 /* Guard against races with tty->count changes elsewhere and
1684 opens on /dev/tty */
1686 mutex_lock(&tty_mutex
);
1688 tty_closing
= tty
->count
<= 1;
1689 o_tty_closing
= o_tty
&&
1690 (o_tty
->count
<= (pty_master
? 1 : 0));
1694 if (waitqueue_active(&tty
->read_wait
)) {
1695 wake_up_poll(&tty
->read_wait
, POLLIN
);
1698 if (waitqueue_active(&tty
->write_wait
)) {
1699 wake_up_poll(&tty
->write_wait
, POLLOUT
);
1703 if (o_tty_closing
) {
1704 if (waitqueue_active(&o_tty
->read_wait
)) {
1705 wake_up_poll(&o_tty
->read_wait
, POLLIN
);
1708 if (waitqueue_active(&o_tty
->write_wait
)) {
1709 wake_up_poll(&o_tty
->write_wait
, POLLOUT
);
1716 printk(KERN_WARNING
"%s: %s: read/write wait queue active!\n",
1717 __func__
, tty_name(tty
, buf
));
1719 mutex_unlock(&tty_mutex
);
1724 * The closing flags are now consistent with the open counts on
1725 * both sides, and we've completed the last operation that could
1726 * block, so it's safe to proceed with closing.
1729 if (--o_tty
->count
< 0) {
1730 printk(KERN_WARNING
"%s: bad pty slave count (%d) for %s\n",
1731 __func__
, o_tty
->count
, tty_name(o_tty
, buf
));
1735 if (--tty
->count
< 0) {
1736 printk(KERN_WARNING
"%s: bad tty->count (%d) for %s\n",
1737 __func__
, tty
->count
, tty_name(tty
, buf
));
1742 * We've decremented tty->count, so we need to remove this file
1743 * descriptor off the tty->tty_files list; this serves two
1745 * - check_tty_count sees the correct number of file descriptors
1746 * associated with this tty.
1747 * - do_tty_hangup no longer sees this file descriptor as
1748 * something that needs to be handled for hangups.
1753 * Perform some housekeeping before deciding whether to return.
1755 * Set the TTY_CLOSING flag if this was the last open. In the
1756 * case of a pty we may have to wait around for the other side
1757 * to close, and TTY_CLOSING makes sure we can't be reopened.
1760 set_bit(TTY_CLOSING
, &tty
->flags
);
1762 set_bit(TTY_CLOSING
, &o_tty
->flags
);
1765 * If _either_ side is closing, make sure there aren't any
1766 * processes that still think tty or o_tty is their controlling
1769 if (tty_closing
|| o_tty_closing
) {
1770 read_lock(&tasklist_lock
);
1771 session_clear_tty(tty
->session
);
1773 session_clear_tty(o_tty
->session
);
1774 read_unlock(&tasklist_lock
);
1777 mutex_unlock(&tty_mutex
);
1779 /* check whether both sides are closing ... */
1780 if (!tty_closing
|| (o_tty
&& !o_tty_closing
)) {
1785 #ifdef TTY_DEBUG_HANGUP
1786 printk(KERN_DEBUG
"%s: freeing tty structure...\n", __func__
);
1789 * Ask the line discipline code to release its structures
1791 tty_ldisc_release(tty
, o_tty
);
1793 * The release_tty function takes care of the details of clearing
1794 * the slots and preserving the termios structure.
1796 release_tty(tty
, idx
);
1798 /* Make this pty number available for reallocation */
1800 devpts_kill_index(inode
, idx
);
1806 * tty_open_current_tty - get tty of current task for open
1807 * @device: device number
1808 * @filp: file pointer to tty
1809 * @return: tty of the current task iff @device is /dev/tty
1811 * We cannot return driver and index like for the other nodes because
1812 * devpts will not work then. It expects inodes to be from devpts FS.
1814 static struct tty_struct
*tty_open_current_tty(dev_t device
, struct file
*filp
)
1816 struct tty_struct
*tty
;
1818 if (device
!= MKDEV(TTYAUX_MAJOR
, 0))
1821 tty
= get_current_tty();
1823 return ERR_PTR(-ENXIO
);
1825 filp
->f_flags
|= O_NONBLOCK
; /* Don't let /dev/tty block */
1828 /* FIXME: we put a reference and return a TTY! */
1833 * tty_lookup_driver - lookup a tty driver for a given device file
1834 * @device: device number
1835 * @filp: file pointer to tty
1836 * @noctty: set if the device should not become a controlling tty
1837 * @index: index for the device in the @return driver
1838 * @return: driver for this inode (with increased refcount)
1840 * If @return is not erroneous, the caller is responsible to decrement the
1841 * refcount by tty_driver_kref_put.
1843 * Locking: tty_mutex protects get_tty_driver
1845 static struct tty_driver
*tty_lookup_driver(dev_t device
, struct file
*filp
,
1846 int *noctty
, int *index
)
1848 struct tty_driver
*driver
;
1852 case MKDEV(TTY_MAJOR
, 0): {
1853 extern struct tty_driver
*console_driver
;
1854 driver
= tty_driver_kref_get(console_driver
);
1855 *index
= fg_console
;
1860 case MKDEV(TTYAUX_MAJOR
, 1): {
1861 struct tty_driver
*console_driver
= console_device(index
);
1862 if (console_driver
) {
1863 driver
= tty_driver_kref_get(console_driver
);
1865 /* Don't let /dev/console block */
1866 filp
->f_flags
|= O_NONBLOCK
;
1871 return ERR_PTR(-ENODEV
);
1874 driver
= get_tty_driver(device
, index
);
1876 return ERR_PTR(-ENODEV
);
1883 * tty_open - open a tty device
1884 * @inode: inode of device file
1885 * @filp: file pointer to tty
1887 * tty_open and tty_release keep up the tty count that contains the
1888 * number of opens done on a tty. We cannot use the inode-count, as
1889 * different inodes might point to the same tty.
1891 * Open-counting is needed for pty masters, as well as for keeping
1892 * track of serial lines: DTR is dropped when the last close happens.
1893 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1895 * The termios state of a pty is reset on first open so that
1896 * settings don't persist across reuse.
1898 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1899 * tty->count should protect the rest.
1900 * ->siglock protects ->signal/->sighand
1903 static int tty_open(struct inode
*inode
, struct file
*filp
)
1905 struct tty_struct
*tty
;
1907 struct tty_driver
*driver
= NULL
;
1909 dev_t device
= inode
->i_rdev
;
1910 unsigned saved_flags
= filp
->f_flags
;
1912 nonseekable_open(inode
, filp
);
1915 retval
= tty_alloc_file(filp
);
1919 noctty
= filp
->f_flags
& O_NOCTTY
;
1923 mutex_lock(&tty_mutex
);
1926 tty
= tty_open_current_tty(device
, filp
);
1928 retval
= PTR_ERR(tty
);
1931 driver
= tty_lookup_driver(device
, filp
, &noctty
, &index
);
1932 if (IS_ERR(driver
)) {
1933 retval
= PTR_ERR(driver
);
1937 /* check whether we're reopening an existing tty */
1938 tty
= tty_driver_lookup_tty(driver
, inode
, index
);
1940 retval
= PTR_ERR(tty
);
1946 retval
= tty_reopen(tty
);
1948 tty
= ERR_PTR(retval
);
1950 tty
= tty_init_dev(driver
, index
);
1952 mutex_unlock(&tty_mutex
);
1954 tty_driver_kref_put(driver
);
1957 retval
= PTR_ERR(tty
);
1961 tty_add_file(tty
, filp
);
1963 check_tty_count(tty
, __func__
);
1964 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
1965 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
1967 #ifdef TTY_DEBUG_HANGUP
1968 printk(KERN_DEBUG
"%s: opening %s...\n", __func__
, tty
->name
);
1971 retval
= tty
->ops
->open(tty
, filp
);
1974 filp
->f_flags
= saved_flags
;
1976 if (!retval
&& test_bit(TTY_EXCLUSIVE
, &tty
->flags
) &&
1977 !capable(CAP_SYS_ADMIN
))
1981 #ifdef TTY_DEBUG_HANGUP
1982 printk(KERN_DEBUG
"%s: error %d in opening %s...\n", __func__
,
1985 tty_unlock(); /* need to call tty_release without BTM */
1986 tty_release(inode
, filp
);
1987 if (retval
!= -ERESTARTSYS
)
1990 if (signal_pending(current
))
1995 * Need to reset f_op in case a hangup happened.
1998 if (filp
->f_op
== &hung_up_tty_fops
)
1999 filp
->f_op
= &tty_fops
;
2006 mutex_lock(&tty_mutex
);
2008 spin_lock_irq(¤t
->sighand
->siglock
);
2010 current
->signal
->leader
&&
2011 !current
->signal
->tty
&&
2012 tty
->session
== NULL
)
2013 __proc_set_tty(current
, tty
);
2014 spin_unlock_irq(¤t
->sighand
->siglock
);
2016 mutex_unlock(&tty_mutex
);
2020 mutex_unlock(&tty_mutex
);
2021 /* after locks to avoid deadlock */
2022 if (!IS_ERR_OR_NULL(driver
))
2023 tty_driver_kref_put(driver
);
2025 tty_free_file(filp
);
2032 * tty_poll - check tty status
2033 * @filp: file being polled
2034 * @wait: poll wait structures to update
2036 * Call the line discipline polling method to obtain the poll
2037 * status of the device.
2039 * Locking: locks called line discipline but ldisc poll method
2040 * may be re-entered freely by other callers.
2043 static unsigned int tty_poll(struct file
*filp
, poll_table
*wait
)
2045 struct tty_struct
*tty
= file_tty(filp
);
2046 struct tty_ldisc
*ld
;
2049 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_poll"))
2052 ld
= tty_ldisc_ref_wait(tty
);
2054 ret
= (ld
->ops
->poll
)(tty
, filp
, wait
);
2055 tty_ldisc_deref(ld
);
2059 static int __tty_fasync(int fd
, struct file
*filp
, int on
)
2061 struct tty_struct
*tty
= file_tty(filp
);
2062 unsigned long flags
;
2065 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_fasync"))
2068 retval
= fasync_helper(fd
, filp
, on
, &tty
->fasync
);
2075 if (!waitqueue_active(&tty
->read_wait
))
2076 tty
->minimum_to_wake
= 1;
2077 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2080 type
= PIDTYPE_PGID
;
2082 pid
= task_pid(current
);
2086 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2087 retval
= __f_setown(filp
, pid
, type
, 0);
2092 if (!tty
->fasync
&& !waitqueue_active(&tty
->read_wait
))
2093 tty
->minimum_to_wake
= N_TTY_BUF_SIZE
;
2100 static int tty_fasync(int fd
, struct file
*filp
, int on
)
2104 retval
= __tty_fasync(fd
, filp
, on
);
2110 * tiocsti - fake input character
2111 * @tty: tty to fake input into
2112 * @p: pointer to character
2114 * Fake input to a tty device. Does the necessary locking and
2117 * FIXME: does not honour flow control ??
2120 * Called functions take tty_ldisc_lock
2121 * current->signal->tty check is safe without locks
2123 * FIXME: may race normal receive processing
2126 static int tiocsti(struct tty_struct
*tty
, char __user
*p
)
2129 struct tty_ldisc
*ld
;
2131 if ((current
->signal
->tty
!= tty
) && !capable(CAP_SYS_ADMIN
))
2133 if (get_user(ch
, p
))
2135 tty_audit_tiocsti(tty
, ch
);
2136 ld
= tty_ldisc_ref_wait(tty
);
2137 ld
->ops
->receive_buf(tty
, &ch
, &mbz
, 1);
2138 tty_ldisc_deref(ld
);
2143 * tiocgwinsz - implement window query ioctl
2145 * @arg: user buffer for result
2147 * Copies the kernel idea of the window size into the user buffer.
2149 * Locking: tty->termios_mutex is taken to ensure the winsize data
2153 static int tiocgwinsz(struct tty_struct
*tty
, struct winsize __user
*arg
)
2157 mutex_lock(&tty
->termios_mutex
);
2158 err
= copy_to_user(arg
, &tty
->winsize
, sizeof(*arg
));
2159 mutex_unlock(&tty
->termios_mutex
);
2161 return err
? -EFAULT
: 0;
2165 * tty_do_resize - resize event
2166 * @tty: tty being resized
2167 * @rows: rows (character)
2168 * @cols: cols (character)
2170 * Update the termios variables and send the necessary signals to
2171 * peform a terminal resize correctly
2174 int tty_do_resize(struct tty_struct
*tty
, struct winsize
*ws
)
2177 unsigned long flags
;
2180 mutex_lock(&tty
->termios_mutex
);
2181 if (!memcmp(ws
, &tty
->winsize
, sizeof(*ws
)))
2183 /* Get the PID values and reference them so we can
2184 avoid holding the tty ctrl lock while sending signals */
2185 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2186 pgrp
= get_pid(tty
->pgrp
);
2187 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2190 kill_pgrp(pgrp
, SIGWINCH
, 1);
2195 mutex_unlock(&tty
->termios_mutex
);
2200 * tiocswinsz - implement window size set ioctl
2201 * @tty; tty side of tty
2202 * @arg: user buffer for result
2204 * Copies the user idea of the window size to the kernel. Traditionally
2205 * this is just advisory information but for the Linux console it
2206 * actually has driver level meaning and triggers a VC resize.
2209 * Driver dependent. The default do_resize method takes the
2210 * tty termios mutex and ctrl_lock. The console takes its own lock
2211 * then calls into the default method.
2214 static int tiocswinsz(struct tty_struct
*tty
, struct winsize __user
*arg
)
2216 struct winsize tmp_ws
;
2217 if (copy_from_user(&tmp_ws
, arg
, sizeof(*arg
)))
2220 if (tty
->ops
->resize
)
2221 return tty
->ops
->resize(tty
, &tmp_ws
);
2223 return tty_do_resize(tty
, &tmp_ws
);
2227 * tioccons - allow admin to move logical console
2228 * @file: the file to become console
2230 * Allow the administrator to move the redirected console device
2232 * Locking: uses redirect_lock to guard the redirect information
2235 static int tioccons(struct file
*file
)
2237 if (!capable(CAP_SYS_ADMIN
))
2239 if (file
->f_op
->write
== redirected_tty_write
) {
2241 spin_lock(&redirect_lock
);
2244 spin_unlock(&redirect_lock
);
2249 spin_lock(&redirect_lock
);
2251 spin_unlock(&redirect_lock
);
2256 spin_unlock(&redirect_lock
);
2261 * fionbio - non blocking ioctl
2262 * @file: file to set blocking value
2263 * @p: user parameter
2265 * Historical tty interfaces had a blocking control ioctl before
2266 * the generic functionality existed. This piece of history is preserved
2267 * in the expected tty API of posix OS's.
2269 * Locking: none, the open file handle ensures it won't go away.
2272 static int fionbio(struct file
*file
, int __user
*p
)
2276 if (get_user(nonblock
, p
))
2279 spin_lock(&file
->f_lock
);
2281 file
->f_flags
|= O_NONBLOCK
;
2283 file
->f_flags
&= ~O_NONBLOCK
;
2284 spin_unlock(&file
->f_lock
);
2289 * tiocsctty - set controlling tty
2290 * @tty: tty structure
2291 * @arg: user argument
2293 * This ioctl is used to manage job control. It permits a session
2294 * leader to set this tty as the controlling tty for the session.
2297 * Takes tty_mutex() to protect tty instance
2298 * Takes tasklist_lock internally to walk sessions
2299 * Takes ->siglock() when updating signal->tty
2302 static int tiocsctty(struct tty_struct
*tty
, int arg
)
2305 if (current
->signal
->leader
&& (task_session(current
) == tty
->session
))
2308 mutex_lock(&tty_mutex
);
2310 * The process must be a session leader and
2311 * not have a controlling tty already.
2313 if (!current
->signal
->leader
|| current
->signal
->tty
) {
2320 * This tty is already the controlling
2321 * tty for another session group!
2323 if (arg
== 1 && capable(CAP_SYS_ADMIN
)) {
2327 read_lock(&tasklist_lock
);
2328 session_clear_tty(tty
->session
);
2329 read_unlock(&tasklist_lock
);
2335 proc_set_tty(current
, tty
);
2337 mutex_unlock(&tty_mutex
);
2342 * tty_get_pgrp - return a ref counted pgrp pid
2345 * Returns a refcounted instance of the pid struct for the process
2346 * group controlling the tty.
2349 struct pid
*tty_get_pgrp(struct tty_struct
*tty
)
2351 unsigned long flags
;
2354 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2355 pgrp
= get_pid(tty
->pgrp
);
2356 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2360 EXPORT_SYMBOL_GPL(tty_get_pgrp
);
2363 * tiocgpgrp - get process group
2364 * @tty: tty passed by user
2365 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2368 * Obtain the process group of the tty. If there is no process group
2371 * Locking: none. Reference to current->signal->tty is safe.
2374 static int tiocgpgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2379 * (tty == real_tty) is a cheap way of
2380 * testing if the tty is NOT a master pty.
2382 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2384 pid
= tty_get_pgrp(real_tty
);
2385 ret
= put_user(pid_vnr(pid
), p
);
2391 * tiocspgrp - attempt to set process group
2392 * @tty: tty passed by user
2393 * @real_tty: tty side device matching tty passed by user
2396 * Set the process group of the tty to the session passed. Only
2397 * permitted where the tty session is our session.
2399 * Locking: RCU, ctrl lock
2402 static int tiocspgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2406 int retval
= tty_check_change(real_tty
);
2407 unsigned long flags
;
2413 if (!current
->signal
->tty
||
2414 (current
->signal
->tty
!= real_tty
) ||
2415 (real_tty
->session
!= task_session(current
)))
2417 if (get_user(pgrp_nr
, p
))
2422 pgrp
= find_vpid(pgrp_nr
);
2427 if (session_of_pgrp(pgrp
) != task_session(current
))
2430 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
2431 put_pid(real_tty
->pgrp
);
2432 real_tty
->pgrp
= get_pid(pgrp
);
2433 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
2440 * tiocgsid - get session id
2441 * @tty: tty passed by user
2442 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2443 * @p: pointer to returned session id
2445 * Obtain the session id of the tty. If there is no session
2448 * Locking: none. Reference to current->signal->tty is safe.
2451 static int tiocgsid(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2454 * (tty == real_tty) is a cheap way of
2455 * testing if the tty is NOT a master pty.
2457 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2459 if (!real_tty
->session
)
2461 return put_user(pid_vnr(real_tty
->session
), p
);
2465 * tiocsetd - set line discipline
2467 * @p: pointer to user data
2469 * Set the line discipline according to user request.
2471 * Locking: see tty_set_ldisc, this function is just a helper
2474 static int tiocsetd(struct tty_struct
*tty
, int __user
*p
)
2479 if (get_user(ldisc
, p
))
2482 ret
= tty_set_ldisc(tty
, ldisc
);
2488 * send_break - performed time break
2489 * @tty: device to break on
2490 * @duration: timeout in mS
2492 * Perform a timed break on hardware that lacks its own driver level
2493 * timed break functionality.
2496 * atomic_write_lock serializes
2500 static int send_break(struct tty_struct
*tty
, unsigned int duration
)
2504 if (tty
->ops
->break_ctl
== NULL
)
2507 if (tty
->driver
->flags
& TTY_DRIVER_HARDWARE_BREAK
)
2508 retval
= tty
->ops
->break_ctl(tty
, duration
);
2510 /* Do the work ourselves */
2511 if (tty_write_lock(tty
, 0) < 0)
2513 retval
= tty
->ops
->break_ctl(tty
, -1);
2516 if (!signal_pending(current
))
2517 msleep_interruptible(duration
);
2518 retval
= tty
->ops
->break_ctl(tty
, 0);
2520 tty_write_unlock(tty
);
2521 if (signal_pending(current
))
2528 * tty_tiocmget - get modem status
2530 * @file: user file pointer
2531 * @p: pointer to result
2533 * Obtain the modem status bits from the tty driver if the feature
2534 * is supported. Return -EINVAL if it is not available.
2536 * Locking: none (up to the driver)
2539 static int tty_tiocmget(struct tty_struct
*tty
, int __user
*p
)
2541 int retval
= -EINVAL
;
2543 if (tty
->ops
->tiocmget
) {
2544 retval
= tty
->ops
->tiocmget(tty
);
2547 retval
= put_user(retval
, p
);
2553 * tty_tiocmset - set modem status
2555 * @cmd: command - clear bits, set bits or set all
2556 * @p: pointer to desired bits
2558 * Set the modem status bits from the tty driver if the feature
2559 * is supported. Return -EINVAL if it is not available.
2561 * Locking: none (up to the driver)
2564 static int tty_tiocmset(struct tty_struct
*tty
, unsigned int cmd
,
2568 unsigned int set
, clear
, val
;
2570 if (tty
->ops
->tiocmset
== NULL
)
2573 retval
= get_user(val
, p
);
2589 set
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2590 clear
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
2591 return tty
->ops
->tiocmset(tty
, set
, clear
);
2594 static int tty_tiocgicount(struct tty_struct
*tty
, void __user
*arg
)
2596 int retval
= -EINVAL
;
2597 struct serial_icounter_struct icount
;
2598 memset(&icount
, 0, sizeof(icount
));
2599 if (tty
->ops
->get_icount
)
2600 retval
= tty
->ops
->get_icount(tty
, &icount
);
2603 if (copy_to_user(arg
, &icount
, sizeof(icount
)))
2608 struct tty_struct
*tty_pair_get_tty(struct tty_struct
*tty
)
2610 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2611 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2615 EXPORT_SYMBOL(tty_pair_get_tty
);
2617 struct tty_struct
*tty_pair_get_pty(struct tty_struct
*tty
)
2619 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2620 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2624 EXPORT_SYMBOL(tty_pair_get_pty
);
2627 * Split this up, as gcc can choke on it otherwise..
2629 long tty_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2631 struct tty_struct
*tty
= file_tty(file
);
2632 struct tty_struct
*real_tty
;
2633 void __user
*p
= (void __user
*)arg
;
2635 struct tty_ldisc
*ld
;
2636 struct inode
*inode
= file
->f_dentry
->d_inode
;
2638 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
2641 real_tty
= tty_pair_get_tty(tty
);
2644 * Factor out some common prep work
2652 retval
= tty_check_change(tty
);
2655 if (cmd
!= TIOCCBRK
) {
2656 tty_wait_until_sent(tty
, 0);
2657 if (signal_pending(current
))
2668 return tiocsti(tty
, p
);
2670 return tiocgwinsz(real_tty
, p
);
2672 return tiocswinsz(real_tty
, p
);
2674 return real_tty
!= tty
? -EINVAL
: tioccons(file
);
2676 return fionbio(file
, p
);
2678 set_bit(TTY_EXCLUSIVE
, &tty
->flags
);
2681 clear_bit(TTY_EXCLUSIVE
, &tty
->flags
);
2684 if (current
->signal
->tty
!= tty
)
2689 return tiocsctty(tty
, arg
);
2691 return tiocgpgrp(tty
, real_tty
, p
);
2693 return tiocspgrp(tty
, real_tty
, p
);
2695 return tiocgsid(tty
, real_tty
, p
);
2697 return put_user(tty
->ldisc
->ops
->num
, (int __user
*)p
);
2699 return tiocsetd(tty
, p
);
2701 if (!capable(CAP_SYS_ADMIN
))
2707 unsigned int ret
= new_encode_dev(tty_devnum(real_tty
));
2708 return put_user(ret
, (unsigned int __user
*)p
);
2713 case TIOCSBRK
: /* Turn break on, unconditionally */
2714 if (tty
->ops
->break_ctl
)
2715 return tty
->ops
->break_ctl(tty
, -1);
2717 case TIOCCBRK
: /* Turn break off, unconditionally */
2718 if (tty
->ops
->break_ctl
)
2719 return tty
->ops
->break_ctl(tty
, 0);
2721 case TCSBRK
: /* SVID version: non-zero arg --> no break */
2722 /* non-zero arg means wait for all output data
2723 * to be sent (performed above) but don't send break.
2724 * This is used by the tcdrain() termios function.
2727 return send_break(tty
, 250);
2729 case TCSBRKP
: /* support for POSIX tcsendbreak() */
2730 return send_break(tty
, arg
? arg
*100 : 250);
2733 return tty_tiocmget(tty
, p
);
2737 return tty_tiocmset(tty
, cmd
, p
);
2739 retval
= tty_tiocgicount(tty
, p
);
2740 /* For the moment allow fall through to the old method */
2741 if (retval
!= -EINVAL
)
2748 /* flush tty buffer and allow ldisc to process ioctl */
2749 tty_buffer_flush(tty
);
2754 if (tty
->ops
->ioctl
) {
2755 retval
= (tty
->ops
->ioctl
)(tty
, cmd
, arg
);
2756 if (retval
!= -ENOIOCTLCMD
)
2759 ld
= tty_ldisc_ref_wait(tty
);
2761 if (ld
->ops
->ioctl
) {
2762 retval
= ld
->ops
->ioctl(tty
, file
, cmd
, arg
);
2763 if (retval
== -ENOIOCTLCMD
)
2766 tty_ldisc_deref(ld
);
2770 #ifdef CONFIG_COMPAT
2771 static long tty_compat_ioctl(struct file
*file
, unsigned int cmd
,
2774 struct inode
*inode
= file
->f_dentry
->d_inode
;
2775 struct tty_struct
*tty
= file_tty(file
);
2776 struct tty_ldisc
*ld
;
2777 int retval
= -ENOIOCTLCMD
;
2779 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
2782 if (tty
->ops
->compat_ioctl
) {
2783 retval
= (tty
->ops
->compat_ioctl
)(tty
, cmd
, arg
);
2784 if (retval
!= -ENOIOCTLCMD
)
2788 ld
= tty_ldisc_ref_wait(tty
);
2789 if (ld
->ops
->compat_ioctl
)
2790 retval
= ld
->ops
->compat_ioctl(tty
, file
, cmd
, arg
);
2792 retval
= n_tty_compat_ioctl_helper(tty
, file
, cmd
, arg
);
2793 tty_ldisc_deref(ld
);
2800 * This implements the "Secure Attention Key" --- the idea is to
2801 * prevent trojan horses by killing all processes associated with this
2802 * tty when the user hits the "Secure Attention Key". Required for
2803 * super-paranoid applications --- see the Orange Book for more details.
2805 * This code could be nicer; ideally it should send a HUP, wait a few
2806 * seconds, then send a INT, and then a KILL signal. But you then
2807 * have to coordinate with the init process, since all processes associated
2808 * with the current tty must be dead before the new getty is allowed
2811 * Now, if it would be correct ;-/ The current code has a nasty hole -
2812 * it doesn't catch files in flight. We may send the descriptor to ourselves
2813 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2815 * Nasty bug: do_SAK is being called in interrupt context. This can
2816 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2818 void __do_SAK(struct tty_struct
*tty
)
2823 struct task_struct
*g
, *p
;
2824 struct pid
*session
;
2827 struct fdtable
*fdt
;
2831 session
= tty
->session
;
2833 tty_ldisc_flush(tty
);
2835 tty_driver_flush_buffer(tty
);
2837 read_lock(&tasklist_lock
);
2838 /* Kill the entire session */
2839 do_each_pid_task(session
, PIDTYPE_SID
, p
) {
2840 printk(KERN_NOTICE
"SAK: killed process %d"
2841 " (%s): task_session(p)==tty->session\n",
2842 task_pid_nr(p
), p
->comm
);
2843 send_sig(SIGKILL
, p
, 1);
2844 } while_each_pid_task(session
, PIDTYPE_SID
, p
);
2845 /* Now kill any processes that happen to have the
2848 do_each_thread(g
, p
) {
2849 if (p
->signal
->tty
== tty
) {
2850 printk(KERN_NOTICE
"SAK: killed process %d"
2851 " (%s): task_session(p)==tty->session\n",
2852 task_pid_nr(p
), p
->comm
);
2853 send_sig(SIGKILL
, p
, 1);
2859 * We don't take a ref to the file, so we must
2860 * hold ->file_lock instead.
2862 spin_lock(&p
->files
->file_lock
);
2863 fdt
= files_fdtable(p
->files
);
2864 for (i
= 0; i
< fdt
->max_fds
; i
++) {
2865 filp
= fcheck_files(p
->files
, i
);
2868 if (filp
->f_op
->read
== tty_read
&&
2869 file_tty(filp
) == tty
) {
2870 printk(KERN_NOTICE
"SAK: killed process %d"
2871 " (%s): fd#%d opened to the tty\n",
2872 task_pid_nr(p
), p
->comm
, i
);
2873 force_sig(SIGKILL
, p
);
2877 spin_unlock(&p
->files
->file_lock
);
2880 } while_each_thread(g
, p
);
2881 read_unlock(&tasklist_lock
);
2885 static void do_SAK_work(struct work_struct
*work
)
2887 struct tty_struct
*tty
=
2888 container_of(work
, struct tty_struct
, SAK_work
);
2893 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2894 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2895 * the values which we write to it will be identical to the values which it
2896 * already has. --akpm
2898 void do_SAK(struct tty_struct
*tty
)
2902 schedule_work(&tty
->SAK_work
);
2905 EXPORT_SYMBOL(do_SAK
);
2907 static int dev_match_devt(struct device
*dev
, void *data
)
2910 return dev
->devt
== *devt
;
2913 /* Must put_device() after it's unused! */
2914 static struct device
*tty_get_device(struct tty_struct
*tty
)
2916 dev_t devt
= tty_devnum(tty
);
2917 return class_find_device(tty_class
, NULL
, &devt
, dev_match_devt
);
2922 * initialize_tty_struct
2923 * @tty: tty to initialize
2925 * This subroutine initializes a tty structure that has been newly
2928 * Locking: none - tty in question must not be exposed at this point
2931 void initialize_tty_struct(struct tty_struct
*tty
,
2932 struct tty_driver
*driver
, int idx
)
2934 memset(tty
, 0, sizeof(struct tty_struct
));
2935 kref_init(&tty
->kref
);
2936 tty
->magic
= TTY_MAGIC
;
2937 tty_ldisc_init(tty
);
2938 tty
->session
= NULL
;
2940 tty
->overrun_time
= jiffies
;
2941 tty_buffer_init(tty
);
2942 mutex_init(&tty
->termios_mutex
);
2943 mutex_init(&tty
->ldisc_mutex
);
2944 init_waitqueue_head(&tty
->write_wait
);
2945 init_waitqueue_head(&tty
->read_wait
);
2946 INIT_WORK(&tty
->hangup_work
, do_tty_hangup
);
2947 mutex_init(&tty
->atomic_read_lock
);
2948 mutex_init(&tty
->atomic_write_lock
);
2949 mutex_init(&tty
->output_lock
);
2950 mutex_init(&tty
->echo_lock
);
2951 spin_lock_init(&tty
->read_lock
);
2952 spin_lock_init(&tty
->ctrl_lock
);
2953 INIT_LIST_HEAD(&tty
->tty_files
);
2954 INIT_WORK(&tty
->SAK_work
, do_SAK_work
);
2956 tty
->driver
= driver
;
2957 tty
->ops
= driver
->ops
;
2959 tty_line_name(driver
, idx
, tty
->name
);
2960 tty
->dev
= tty_get_device(tty
);
2964 * deinitialize_tty_struct
2965 * @tty: tty to deinitialize
2967 * This subroutine deinitializes a tty structure that has been newly
2968 * allocated but tty_release cannot be called on that yet.
2970 * Locking: none - tty in question must not be exposed at this point
2972 void deinitialize_tty_struct(struct tty_struct
*tty
)
2974 tty_ldisc_deinit(tty
);
2978 * tty_put_char - write one character to a tty
2982 * Write one byte to the tty using the provided put_char method
2983 * if present. Returns the number of characters successfully output.
2985 * Note: the specific put_char operation in the driver layer may go
2986 * away soon. Don't call it directly, use this method
2989 int tty_put_char(struct tty_struct
*tty
, unsigned char ch
)
2991 if (tty
->ops
->put_char
)
2992 return tty
->ops
->put_char(tty
, ch
);
2993 return tty
->ops
->write(tty
, &ch
, 1);
2995 EXPORT_SYMBOL_GPL(tty_put_char
);
2997 struct class *tty_class
;
3000 * tty_register_device - register a tty device
3001 * @driver: the tty driver that describes the tty device
3002 * @index: the index in the tty driver for this tty device
3003 * @device: a struct device that is associated with this tty device.
3004 * This field is optional, if there is no known struct device
3005 * for this tty device it can be set to NULL safely.
3007 * Returns a pointer to the struct device for this tty device
3008 * (or ERR_PTR(-EFOO) on error).
3010 * This call is required to be made to register an individual tty device
3011 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3012 * that bit is not set, this function should not be called by a tty
3018 struct device
*tty_register_device(struct tty_driver
*driver
, unsigned index
,
3019 struct device
*device
)
3022 dev_t dev
= MKDEV(driver
->major
, driver
->minor_start
) + index
;
3024 if (index
>= driver
->num
) {
3025 printk(KERN_ERR
"Attempt to register invalid tty line number "
3027 return ERR_PTR(-EINVAL
);
3030 if (driver
->type
== TTY_DRIVER_TYPE_PTY
)
3031 pty_line_name(driver
, index
, name
);
3033 tty_line_name(driver
, index
, name
);
3035 return device_create(tty_class
, device
, dev
, NULL
, name
);
3037 EXPORT_SYMBOL(tty_register_device
);
3040 * tty_unregister_device - unregister a tty device
3041 * @driver: the tty driver that describes the tty device
3042 * @index: the index in the tty driver for this tty device
3044 * If a tty device is registered with a call to tty_register_device() then
3045 * this function must be called when the tty device is gone.
3050 void tty_unregister_device(struct tty_driver
*driver
, unsigned index
)
3052 device_destroy(tty_class
,
3053 MKDEV(driver
->major
, driver
->minor_start
) + index
);
3055 EXPORT_SYMBOL(tty_unregister_device
);
3057 struct tty_driver
*__alloc_tty_driver(int lines
, struct module
*owner
)
3059 struct tty_driver
*driver
;
3061 driver
= kzalloc(sizeof(struct tty_driver
), GFP_KERNEL
);
3063 kref_init(&driver
->kref
);
3064 driver
->magic
= TTY_DRIVER_MAGIC
;
3065 driver
->num
= lines
;
3066 driver
->owner
= owner
;
3067 /* later we'll move allocation of tables here */
3071 EXPORT_SYMBOL(__alloc_tty_driver
);
3073 static void destruct_tty_driver(struct kref
*kref
)
3075 struct tty_driver
*driver
= container_of(kref
, struct tty_driver
, kref
);
3077 struct ktermios
*tp
;
3080 if (driver
->flags
& TTY_DRIVER_INSTALLED
) {
3082 * Free the termios and termios_locked structures because
3083 * we don't want to get memory leaks when modular tty
3084 * drivers are removed from the kernel.
3086 for (i
= 0; i
< driver
->num
; i
++) {
3087 tp
= driver
->termios
[i
];
3089 driver
->termios
[i
] = NULL
;
3092 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
))
3093 tty_unregister_device(driver
, i
);
3096 proc_tty_unregister_driver(driver
);
3097 driver
->ttys
= NULL
;
3098 driver
->termios
= NULL
;
3100 cdev_del(&driver
->cdev
);
3105 void tty_driver_kref_put(struct tty_driver
*driver
)
3107 kref_put(&driver
->kref
, destruct_tty_driver
);
3109 EXPORT_SYMBOL(tty_driver_kref_put
);
3111 void tty_set_operations(struct tty_driver
*driver
,
3112 const struct tty_operations
*op
)
3116 EXPORT_SYMBOL(tty_set_operations
);
3118 void put_tty_driver(struct tty_driver
*d
)
3120 tty_driver_kref_put(d
);
3122 EXPORT_SYMBOL(put_tty_driver
);
3125 * Called by a tty driver to register itself.
3127 int tty_register_driver(struct tty_driver
*driver
)
3135 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) && driver
->num
) {
3136 p
= kzalloc(driver
->num
* 2 * sizeof(void *), GFP_KERNEL
);
3141 if (!driver
->major
) {
3142 error
= alloc_chrdev_region(&dev
, driver
->minor_start
,
3143 driver
->num
, driver
->name
);
3145 driver
->major
= MAJOR(dev
);
3146 driver
->minor_start
= MINOR(dev
);
3149 dev
= MKDEV(driver
->major
, driver
->minor_start
);
3150 error
= register_chrdev_region(dev
, driver
->num
, driver
->name
);
3158 driver
->ttys
= (struct tty_struct
**)p
;
3159 driver
->termios
= (struct ktermios
**)(p
+ driver
->num
);
3161 driver
->ttys
= NULL
;
3162 driver
->termios
= NULL
;
3165 cdev_init(&driver
->cdev
, &tty_fops
);
3166 driver
->cdev
.owner
= driver
->owner
;
3167 error
= cdev_add(&driver
->cdev
, dev
, driver
->num
);
3169 unregister_chrdev_region(dev
, driver
->num
);
3170 driver
->ttys
= NULL
;
3171 driver
->termios
= NULL
;
3176 mutex_lock(&tty_mutex
);
3177 list_add(&driver
->tty_drivers
, &tty_drivers
);
3178 mutex_unlock(&tty_mutex
);
3180 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
)) {
3181 for (i
= 0; i
< driver
->num
; i
++) {
3182 d
= tty_register_device(driver
, i
, NULL
);
3189 proc_tty_register_driver(driver
);
3190 driver
->flags
|= TTY_DRIVER_INSTALLED
;
3194 for (i
--; i
>= 0; i
--)
3195 tty_unregister_device(driver
, i
);
3197 mutex_lock(&tty_mutex
);
3198 list_del(&driver
->tty_drivers
);
3199 mutex_unlock(&tty_mutex
);
3201 unregister_chrdev_region(dev
, driver
->num
);
3202 driver
->ttys
= NULL
;
3203 driver
->termios
= NULL
;
3208 EXPORT_SYMBOL(tty_register_driver
);
3211 * Called by a tty driver to unregister itself.
3213 int tty_unregister_driver(struct tty_driver
*driver
)
3217 if (driver
->refcount
)
3220 unregister_chrdev_region(MKDEV(driver
->major
, driver
->minor_start
),
3222 mutex_lock(&tty_mutex
);
3223 list_del(&driver
->tty_drivers
);
3224 mutex_unlock(&tty_mutex
);
3228 EXPORT_SYMBOL(tty_unregister_driver
);
3230 dev_t
tty_devnum(struct tty_struct
*tty
)
3232 return MKDEV(tty
->driver
->major
, tty
->driver
->minor_start
) + tty
->index
;
3234 EXPORT_SYMBOL(tty_devnum
);
3236 void proc_clear_tty(struct task_struct
*p
)
3238 unsigned long flags
;
3239 struct tty_struct
*tty
;
3240 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
3241 tty
= p
->signal
->tty
;
3242 p
->signal
->tty
= NULL
;
3243 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
3247 /* Called under the sighand lock */
3249 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3252 unsigned long flags
;
3253 /* We should not have a session or pgrp to put here but.... */
3254 spin_lock_irqsave(&tty
->ctrl_lock
, flags
);
3255 put_pid(tty
->session
);
3257 tty
->pgrp
= get_pid(task_pgrp(tsk
));
3258 spin_unlock_irqrestore(&tty
->ctrl_lock
, flags
);
3259 tty
->session
= get_pid(task_session(tsk
));
3260 if (tsk
->signal
->tty
) {
3261 printk(KERN_DEBUG
"tty not NULL!!\n");
3262 tty_kref_put(tsk
->signal
->tty
);
3265 put_pid(tsk
->signal
->tty_old_pgrp
);
3266 tsk
->signal
->tty
= tty_kref_get(tty
);
3267 tsk
->signal
->tty_old_pgrp
= NULL
;
3270 static void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3272 spin_lock_irq(&tsk
->sighand
->siglock
);
3273 __proc_set_tty(tsk
, tty
);
3274 spin_unlock_irq(&tsk
->sighand
->siglock
);
3277 struct tty_struct
*get_current_tty(void)
3279 struct tty_struct
*tty
;
3280 unsigned long flags
;
3282 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
3283 tty
= tty_kref_get(current
->signal
->tty
);
3284 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
3287 EXPORT_SYMBOL_GPL(get_current_tty
);
3289 void tty_default_fops(struct file_operations
*fops
)
3295 * Initialize the console device. This is called *early*, so
3296 * we can't necessarily depend on lots of kernel help here.
3297 * Just do some early initializations, and do the complex setup
3300 void __init
console_init(void)
3304 /* Setup the default TTY line discipline. */
3308 * set up the console device so that later boot sequences can
3309 * inform about problems etc..
3311 call
= __con_initcall_start
;
3312 while (call
< __con_initcall_end
) {
3318 static char *tty_devnode(struct device
*dev
, umode_t
*mode
)
3322 if (dev
->devt
== MKDEV(TTYAUX_MAJOR
, 0) ||
3323 dev
->devt
== MKDEV(TTYAUX_MAJOR
, 2))
3328 static int __init
tty_class_init(void)
3330 tty_class
= class_create(THIS_MODULE
, "tty");
3331 if (IS_ERR(tty_class
))
3332 return PTR_ERR(tty_class
);
3333 tty_class
->devnode
= tty_devnode
;
3337 postcore_initcall(tty_class_init
);
3339 /* 3/2004 jmc: why do these devices exist? */
3340 static struct cdev tty_cdev
, console_cdev
;
3342 static ssize_t
show_cons_active(struct device
*dev
,
3343 struct device_attribute
*attr
, char *buf
)
3345 struct console
*cs
[16];
3351 for_each_console(c
) {
3356 if ((c
->flags
& CON_ENABLED
) == 0)
3359 if (i
>= ARRAY_SIZE(cs
))
3363 count
+= sprintf(buf
+ count
, "%s%d%c",
3364 cs
[i
]->name
, cs
[i
]->index
, i
? ' ':'\n');
3369 static DEVICE_ATTR(active
, S_IRUGO
, show_cons_active
, NULL
);
3371 static struct device
*consdev
;
3373 void console_sysfs_notify(void)
3376 sysfs_notify(&consdev
->kobj
, NULL
, "active");
3380 * Ok, now we can initialize the rest of the tty devices and can count
3381 * on memory allocations, interrupts etc..
3383 int __init
tty_init(void)
3385 cdev_init(&tty_cdev
, &tty_fops
);
3386 if (cdev_add(&tty_cdev
, MKDEV(TTYAUX_MAJOR
, 0), 1) ||
3387 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 0), 1, "/dev/tty") < 0)
3388 panic("Couldn't register /dev/tty driver\n");
3389 device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 0), NULL
, "tty");
3391 cdev_init(&console_cdev
, &console_fops
);
3392 if (cdev_add(&console_cdev
, MKDEV(TTYAUX_MAJOR
, 1), 1) ||
3393 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 1), 1, "/dev/console") < 0)
3394 panic("Couldn't register /dev/console driver\n");
3395 consdev
= device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 1), NULL
,
3397 if (IS_ERR(consdev
))
3400 WARN_ON(device_create_file(consdev
, &dev_attr_active
) < 0);
3403 vty_init(&console_fops
);