Linux 3.4.102
[linux/fpc-iii.git] / drivers / tty / vt / keyboard.c
bloba6d5d51fcbc555db22c015372ca72050c6842975
1 /*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
5 * Some additional features added by Christoph Niemann (ChN), March 1993
7 * Loadable keymaps by Risto Kankkunen, May 1993
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
37 #include <linux/kbd_kern.h>
38 #include <linux/kbd_diacr.h>
39 #include <linux/vt_kern.h>
40 #include <linux/input.h>
41 #include <linux/reboot.h>
42 #include <linux/notifier.h>
43 #include <linux/jiffies.h>
44 #include <linux/uaccess.h>
46 #include <asm/irq_regs.h>
48 extern void ctrl_alt_del(void);
51 * Exported functions/variables
54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
57 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
58 * This seems a good reason to start with NumLock off. On HIL keyboards
59 * of PARISC machines however there is no NumLock key and everyone expects the
60 * keypad to be used for numbers.
63 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
64 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
65 #else
66 #define KBD_DEFLEDS 0
67 #endif
69 #define KBD_DEFLOCK 0
72 * Handler Tables.
75 #define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
81 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83 static k_handler_fn K_HANDLERS;
84 static k_handler_fn *k_handler[16] = { K_HANDLERS };
86 #define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
93 typedef void (fn_handler_fn)(struct vc_data *vc);
94 static fn_handler_fn FN_HANDLERS;
95 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
98 * Variables exported for vt_ioctl.c
101 struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
109 * Internal Data.
112 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 static struct kbd_struct *kbd = kbd_table;
115 /* maximum values each key_handler can handle */
116 static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
122 static const int NR_TYPES = ARRAY_SIZE(max_vals);
124 static struct input_handler kbd_handler;
125 static DEFINE_SPINLOCK(kbd_event_lock);
126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
128 static bool dead_key_next;
129 static int npadch = -1; /* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep; /* flag telling character repeat */
133 static int shift_state = 0;
135 static unsigned char ledstate = 0xff; /* undefined */
136 static unsigned char ledioctl;
138 static struct ledptr {
139 unsigned int *addr;
140 unsigned int mask;
141 unsigned char valid:1;
142 } ledptrs[3];
145 * Notifier list for console keyboard events
147 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
149 int register_keyboard_notifier(struct notifier_block *nb)
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
153 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
155 int unregister_keyboard_notifier(struct notifier_block *nb)
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
159 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
171 struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
176 static int getkeycode_helper(struct input_handle *handle, void *data)
178 struct getset_keycode_data *d = data;
180 d->error = input_get_keycode(handle->dev, &d->ke);
182 return d->error == 0; /* stop as soon as we successfully get one */
185 static int getkeycode(unsigned int scancode)
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
193 .error = -ENODEV,
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
200 return d.error ?: d.ke.keycode;
203 static int setkeycode_helper(struct input_handle *handle, void *data)
205 struct getset_keycode_data *d = data;
207 d->error = input_set_keycode(handle->dev, &d->ke);
209 return d->error == 0; /* stop as soon as we successfully set one */
212 static int setkeycode(unsigned int scancode, unsigned int keycode)
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
220 .error = -ENODEV,
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
227 return d.error;
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
235 static int kd_sound_helper(struct input_handle *handle, void *data)
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
250 return 0;
253 static void kd_nosound(unsigned long ignored)
255 static unsigned int zero;
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
260 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
262 void kd_mksound(unsigned int hz, unsigned int ticks)
264 del_timer_sync(&kd_mksound_timer);
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
271 EXPORT_SYMBOL(kd_mksound);
274 * Setting the keyboard rate.
277 static int kbd_rate_helper(struct input_handle *handle, void *data)
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rep = data;
282 if (test_bit(EV_REP, dev->evbit)) {
284 if (rep[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rep[0].delay);
287 if (rep[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rep[0].period);
291 rep[1].delay = dev->rep[REP_DELAY];
292 rep[1].period = dev->rep[REP_PERIOD];
295 return 0;
298 int kbd_rate(struct kbd_repeat *rep)
300 struct kbd_repeat data[2] = { *rep };
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rep = data[1]; /* Copy currently used settings */
305 return 0;
309 * Helper Functions.
311 static void put_queue(struct vc_data *vc, int ch)
313 struct tty_struct *tty = vc->port.tty;
315 if (tty) {
316 tty_insert_flip_char(tty, ch, 0);
317 con_schedule_flip(tty);
321 static void puts_queue(struct vc_data *vc, char *cp)
323 struct tty_struct *tty = vc->port.tty;
325 if (!tty)
326 return;
328 while (*cp) {
329 tty_insert_flip_char(tty, *cp, 0);
330 cp++;
332 con_schedule_flip(tty);
335 static void applkey(struct vc_data *vc, int key, char mode)
337 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
339 buf[1] = (mode ? 'O' : '[');
340 buf[2] = key;
341 puts_queue(vc, buf);
345 * Many other routines do put_queue, but I think either
346 * they produce ASCII, or they produce some user-assigned
347 * string, and in both cases we might assume that it is
348 * in utf-8 already.
350 static void to_utf8(struct vc_data *vc, uint c)
352 if (c < 0x80)
353 /* 0******* */
354 put_queue(vc, c);
355 else if (c < 0x800) {
356 /* 110***** 10****** */
357 put_queue(vc, 0xc0 | (c >> 6));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x10000) {
360 if (c >= 0xD800 && c < 0xE000)
361 return;
362 if (c == 0xFFFF)
363 return;
364 /* 1110**** 10****** 10****** */
365 put_queue(vc, 0xe0 | (c >> 12));
366 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
367 put_queue(vc, 0x80 | (c & 0x3f));
368 } else if (c < 0x110000) {
369 /* 11110*** 10****** 10****** 10****** */
370 put_queue(vc, 0xf0 | (c >> 18));
371 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
372 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
373 put_queue(vc, 0x80 | (c & 0x3f));
378 * Called after returning from RAW mode or when changing consoles - recompute
379 * shift_down[] and shift_state from key_down[] maybe called when keymap is
380 * undefined, so that shiftkey release is seen. The caller must hold the
381 * kbd_event_lock.
384 static void do_compute_shiftstate(void)
386 unsigned int i, j, k, sym, val;
388 shift_state = 0;
389 memset(shift_down, 0, sizeof(shift_down));
391 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
393 if (!key_down[i])
394 continue;
396 k = i * BITS_PER_LONG;
398 for (j = 0; j < BITS_PER_LONG; j++, k++) {
400 if (!test_bit(k, key_down))
401 continue;
403 sym = U(key_maps[0][k]);
404 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
405 continue;
407 val = KVAL(sym);
408 if (val == KVAL(K_CAPSSHIFT))
409 val = KVAL(K_SHIFT);
411 shift_down[val]++;
412 shift_state |= (1 << val);
417 /* We still have to export this method to vt.c */
418 void compute_shiftstate(void)
420 unsigned long flags;
421 spin_lock_irqsave(&kbd_event_lock, flags);
422 do_compute_shiftstate();
423 spin_unlock_irqrestore(&kbd_event_lock, flags);
427 * We have a combining character DIACR here, followed by the character CH.
428 * If the combination occurs in the table, return the corresponding value.
429 * Otherwise, if CH is a space or equals DIACR, return DIACR.
430 * Otherwise, conclude that DIACR was not combining after all,
431 * queue it and return CH.
433 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
435 unsigned int d = diacr;
436 unsigned int i;
438 diacr = 0;
440 if ((d & ~0xff) == BRL_UC_ROW) {
441 if ((ch & ~0xff) == BRL_UC_ROW)
442 return d | ch;
443 } else {
444 for (i = 0; i < accent_table_size; i++)
445 if (accent_table[i].diacr == d && accent_table[i].base == ch)
446 return accent_table[i].result;
449 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
450 return d;
452 if (kbd->kbdmode == VC_UNICODE)
453 to_utf8(vc, d);
454 else {
455 int c = conv_uni_to_8bit(d);
456 if (c != -1)
457 put_queue(vc, c);
460 return ch;
464 * Special function handlers
466 static void fn_enter(struct vc_data *vc)
468 if (diacr) {
469 if (kbd->kbdmode == VC_UNICODE)
470 to_utf8(vc, diacr);
471 else {
472 int c = conv_uni_to_8bit(diacr);
473 if (c != -1)
474 put_queue(vc, c);
476 diacr = 0;
479 put_queue(vc, 13);
480 if (vc_kbd_mode(kbd, VC_CRLF))
481 put_queue(vc, 10);
484 static void fn_caps_toggle(struct vc_data *vc)
486 if (rep)
487 return;
489 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
492 static void fn_caps_on(struct vc_data *vc)
494 if (rep)
495 return;
497 set_vc_kbd_led(kbd, VC_CAPSLOCK);
500 static void fn_show_ptregs(struct vc_data *vc)
502 struct pt_regs *regs = get_irq_regs();
504 if (regs)
505 show_regs(regs);
508 static void fn_hold(struct vc_data *vc)
510 struct tty_struct *tty = vc->port.tty;
512 if (rep || !tty)
513 return;
516 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
517 * these routines are also activated by ^S/^Q.
518 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
520 if (tty->stopped)
521 start_tty(tty);
522 else
523 stop_tty(tty);
526 static void fn_num(struct vc_data *vc)
528 if (vc_kbd_mode(kbd, VC_APPLIC))
529 applkey(vc, 'P', 1);
530 else
531 fn_bare_num(vc);
535 * Bind this to Shift-NumLock if you work in application keypad mode
536 * but want to be able to change the NumLock flag.
537 * Bind this to NumLock if you prefer that the NumLock key always
538 * changes the NumLock flag.
540 static void fn_bare_num(struct vc_data *vc)
542 if (!rep)
543 chg_vc_kbd_led(kbd, VC_NUMLOCK);
546 static void fn_lastcons(struct vc_data *vc)
548 /* switch to the last used console, ChN */
549 set_console(last_console);
552 static void fn_dec_console(struct vc_data *vc)
554 int i, cur = fg_console;
556 /* Currently switching? Queue this next switch relative to that. */
557 if (want_console != -1)
558 cur = want_console;
560 for (i = cur - 1; i != cur; i--) {
561 if (i == -1)
562 i = MAX_NR_CONSOLES - 1;
563 if (vc_cons_allocated(i))
564 break;
566 set_console(i);
569 static void fn_inc_console(struct vc_data *vc)
571 int i, cur = fg_console;
573 /* Currently switching? Queue this next switch relative to that. */
574 if (want_console != -1)
575 cur = want_console;
577 for (i = cur+1; i != cur; i++) {
578 if (i == MAX_NR_CONSOLES)
579 i = 0;
580 if (vc_cons_allocated(i))
581 break;
583 set_console(i);
586 static void fn_send_intr(struct vc_data *vc)
588 struct tty_struct *tty = vc->port.tty;
590 if (!tty)
591 return;
592 tty_insert_flip_char(tty, 0, TTY_BREAK);
593 con_schedule_flip(tty);
596 static void fn_scroll_forw(struct vc_data *vc)
598 scrollfront(vc, 0);
601 static void fn_scroll_back(struct vc_data *vc)
603 scrollback(vc, 0);
606 static void fn_show_mem(struct vc_data *vc)
608 show_mem(0);
611 static void fn_show_state(struct vc_data *vc)
613 show_state();
616 static void fn_boot_it(struct vc_data *vc)
618 ctrl_alt_del();
621 static void fn_compose(struct vc_data *vc)
623 dead_key_next = true;
626 static void fn_spawn_con(struct vc_data *vc)
628 spin_lock(&vt_spawn_con.lock);
629 if (vt_spawn_con.pid)
630 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
631 put_pid(vt_spawn_con.pid);
632 vt_spawn_con.pid = NULL;
634 spin_unlock(&vt_spawn_con.lock);
637 static void fn_SAK(struct vc_data *vc)
639 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
640 schedule_work(SAK_work);
643 static void fn_null(struct vc_data *vc)
645 do_compute_shiftstate();
649 * Special key handlers
651 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
655 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657 if (up_flag)
658 return;
659 if (value >= ARRAY_SIZE(fn_handler))
660 return;
661 if ((kbd->kbdmode == VC_RAW ||
662 kbd->kbdmode == VC_MEDIUMRAW ||
663 kbd->kbdmode == VC_OFF) &&
664 value != KVAL(K_SAK))
665 return; /* SAK is allowed even in raw mode */
666 fn_handler[value](vc);
669 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671 pr_err("k_lowercase was called - impossible\n");
674 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676 if (up_flag)
677 return; /* no action, if this is a key release */
679 if (diacr)
680 value = handle_diacr(vc, value);
682 if (dead_key_next) {
683 dead_key_next = false;
684 diacr = value;
685 return;
687 if (kbd->kbdmode == VC_UNICODE)
688 to_utf8(vc, value);
689 else {
690 int c = conv_uni_to_8bit(value);
691 if (c != -1)
692 put_queue(vc, c);
697 * Handle dead key. Note that we now may have several
698 * dead keys modifying the same character. Very useful
699 * for Vietnamese.
701 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703 if (up_flag)
704 return;
706 diacr = (diacr ? handle_diacr(vc, value) : value);
709 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
714 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716 k_deadunicode(vc, value, up_flag);
720 * Obsolete - for backwards compatibility only
722 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
726 k_deadunicode(vc, ret_diacr[value], up_flag);
729 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
731 if (up_flag)
732 return;
734 set_console(value);
737 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
739 if (up_flag)
740 return;
742 if ((unsigned)value < ARRAY_SIZE(func_table)) {
743 if (func_table[value])
744 puts_queue(vc, func_table[value]);
745 } else
746 pr_err("k_fn called with value=%d\n", value);
749 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
751 static const char cur_chars[] = "BDCA";
753 if (up_flag)
754 return;
756 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
759 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
761 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
762 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
764 if (up_flag)
765 return; /* no action, if this is a key release */
767 /* kludge... shift forces cursor/number keys */
768 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
769 applkey(vc, app_map[value], 1);
770 return;
773 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
775 switch (value) {
776 case KVAL(K_PCOMMA):
777 case KVAL(K_PDOT):
778 k_fn(vc, KVAL(K_REMOVE), 0);
779 return;
780 case KVAL(K_P0):
781 k_fn(vc, KVAL(K_INSERT), 0);
782 return;
783 case KVAL(K_P1):
784 k_fn(vc, KVAL(K_SELECT), 0);
785 return;
786 case KVAL(K_P2):
787 k_cur(vc, KVAL(K_DOWN), 0);
788 return;
789 case KVAL(K_P3):
790 k_fn(vc, KVAL(K_PGDN), 0);
791 return;
792 case KVAL(K_P4):
793 k_cur(vc, KVAL(K_LEFT), 0);
794 return;
795 case KVAL(K_P6):
796 k_cur(vc, KVAL(K_RIGHT), 0);
797 return;
798 case KVAL(K_P7):
799 k_fn(vc, KVAL(K_FIND), 0);
800 return;
801 case KVAL(K_P8):
802 k_cur(vc, KVAL(K_UP), 0);
803 return;
804 case KVAL(K_P9):
805 k_fn(vc, KVAL(K_PGUP), 0);
806 return;
807 case KVAL(K_P5):
808 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
809 return;
813 put_queue(vc, pad_chars[value]);
814 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
815 put_queue(vc, 10);
818 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
820 int old_state = shift_state;
822 if (rep)
823 return;
825 * Mimic typewriter:
826 * a CapsShift key acts like Shift but undoes CapsLock
828 if (value == KVAL(K_CAPSSHIFT)) {
829 value = KVAL(K_SHIFT);
830 if (!up_flag)
831 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
834 if (up_flag) {
836 * handle the case that two shift or control
837 * keys are depressed simultaneously
839 if (shift_down[value])
840 shift_down[value]--;
841 } else
842 shift_down[value]++;
844 if (shift_down[value])
845 shift_state |= (1 << value);
846 else
847 shift_state &= ~(1 << value);
849 /* kludge */
850 if (up_flag && shift_state != old_state && npadch != -1) {
851 if (kbd->kbdmode == VC_UNICODE)
852 to_utf8(vc, npadch);
853 else
854 put_queue(vc, npadch & 0xff);
855 npadch = -1;
859 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
861 if (up_flag)
862 return;
864 if (vc_kbd_mode(kbd, VC_META)) {
865 put_queue(vc, '\033');
866 put_queue(vc, value);
867 } else
868 put_queue(vc, value | 0x80);
871 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
873 int base;
875 if (up_flag)
876 return;
878 if (value < 10) {
879 /* decimal input of code, while Alt depressed */
880 base = 10;
881 } else {
882 /* hexadecimal input of code, while AltGr depressed */
883 value -= 10;
884 base = 16;
887 if (npadch == -1)
888 npadch = value;
889 else
890 npadch = npadch * base + value;
893 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
895 if (up_flag || rep)
896 return;
898 chg_vc_kbd_lock(kbd, value);
901 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
903 k_shift(vc, value, up_flag);
904 if (up_flag || rep)
905 return;
907 chg_vc_kbd_slock(kbd, value);
908 /* try to make Alt, oops, AltGr and such work */
909 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
910 kbd->slockstate = 0;
911 chg_vc_kbd_slock(kbd, value);
915 /* by default, 300ms interval for combination release */
916 static unsigned brl_timeout = 300;
917 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
918 module_param(brl_timeout, uint, 0644);
920 static unsigned brl_nbchords = 1;
921 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
922 module_param(brl_nbchords, uint, 0644);
924 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
926 static unsigned long chords;
927 static unsigned committed;
929 if (!brl_nbchords)
930 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
931 else {
932 committed |= pattern;
933 chords++;
934 if (chords == brl_nbchords) {
935 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
936 chords = 0;
937 committed = 0;
942 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
944 static unsigned pressed, committing;
945 static unsigned long releasestart;
947 if (kbd->kbdmode != VC_UNICODE) {
948 if (!up_flag)
949 pr_warning("keyboard mode must be unicode for braille patterns\n");
950 return;
953 if (!value) {
954 k_unicode(vc, BRL_UC_ROW, up_flag);
955 return;
958 if (value > 8)
959 return;
961 if (!up_flag) {
962 pressed |= 1 << (value - 1);
963 if (!brl_timeout)
964 committing = pressed;
965 } else if (brl_timeout) {
966 if (!committing ||
967 time_after(jiffies,
968 releasestart + msecs_to_jiffies(brl_timeout))) {
969 committing = pressed;
970 releasestart = jiffies;
972 pressed &= ~(1 << (value - 1));
973 if (!pressed && committing) {
974 k_brlcommit(vc, committing, 0);
975 committing = 0;
977 } else {
978 if (committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
982 pressed &= ~(1 << (value - 1));
987 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
988 * or (ii) whatever pattern of lights people want to show using KDSETLED,
989 * or (iii) specified bits of specified words in kernel memory.
991 unsigned char getledstate(void)
993 return ledstate;
996 void setledstate(struct kbd_struct *kbd, unsigned int led)
998 unsigned long flags;
999 spin_lock_irqsave(&kbd_event_lock, flags);
1000 if (!(led & ~7)) {
1001 ledioctl = led;
1002 kbd->ledmode = LED_SHOW_IOCTL;
1003 } else
1004 kbd->ledmode = LED_SHOW_FLAGS;
1006 set_leds();
1007 spin_unlock_irqrestore(&kbd_event_lock, flags);
1010 static inline unsigned char getleds(void)
1012 struct kbd_struct *kbd = kbd_table + fg_console;
1013 unsigned char leds;
1014 int i;
1016 if (kbd->ledmode == LED_SHOW_IOCTL)
1017 return ledioctl;
1019 leds = kbd->ledflagstate;
1021 if (kbd->ledmode == LED_SHOW_MEM) {
1022 for (i = 0; i < 3; i++)
1023 if (ledptrs[i].valid) {
1024 if (*ledptrs[i].addr & ledptrs[i].mask)
1025 leds |= (1 << i);
1026 else
1027 leds &= ~(1 << i);
1030 return leds;
1033 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1035 unsigned char leds = *(unsigned char *)data;
1037 if (test_bit(EV_LED, handle->dev->evbit)) {
1038 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1039 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1040 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1041 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1044 return 0;
1048 * vt_get_leds - helper for braille console
1049 * @console: console to read
1050 * @flag: flag we want to check
1052 * Check the status of a keyboard led flag and report it back
1054 int vt_get_leds(int console, int flag)
1056 struct kbd_struct * kbd = kbd_table + console;
1057 int ret;
1059 ret = vc_kbd_led(kbd, flag);
1061 return ret;
1063 EXPORT_SYMBOL_GPL(vt_get_leds);
1066 * vt_set_led_state - set LED state of a console
1067 * @console: console to set
1068 * @leds: LED bits
1070 * Set the LEDs on a console. This is a wrapper for the VT layer
1071 * so that we can keep kbd knowledge internal
1073 void vt_set_led_state(int console, int leds)
1075 struct kbd_struct * kbd = kbd_table + console;
1076 setledstate(kbd, leds);
1080 * vt_kbd_con_start - Keyboard side of console start
1081 * @console: console
1083 * Handle console start. This is a wrapper for the VT layer
1084 * so that we can keep kbd knowledge internal
1086 * FIXME: We eventually need to hold the kbd lock here to protect
1087 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1088 * and start_tty under the kbd_event_lock, while normal tty paths
1089 * don't hold the lock. We probably need to split out an LED lock
1090 * but not during an -rc release!
1092 void vt_kbd_con_start(int console)
1094 struct kbd_struct * kbd = kbd_table + console;
1095 /* unsigned long flags; */
1096 /* spin_lock_irqsave(&kbd_event_lock, flags); */
1097 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1098 set_leds();
1099 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1103 * vt_kbd_con_stop - Keyboard side of console stop
1104 * @console: console
1106 * Handle console stop. This is a wrapper for the VT layer
1107 * so that we can keep kbd knowledge internal
1109 * FIXME: We eventually need to hold the kbd lock here to protect
1110 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1111 * and start_tty under the kbd_event_lock, while normal tty paths
1112 * don't hold the lock. We probably need to split out an LED lock
1113 * but not during an -rc release!
1115 void vt_kbd_con_stop(int console)
1117 struct kbd_struct * kbd = kbd_table + console;
1118 /* unsigned long flags; */
1119 /* spin_lock_irqsave(&kbd_event_lock, flags); */
1120 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1121 set_leds();
1122 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1126 * This is the tasklet that updates LED state on all keyboards
1127 * attached to the box. The reason we use tasklet is that we
1128 * need to handle the scenario when keyboard handler is not
1129 * registered yet but we already getting updates from the VT to
1130 * update led state.
1132 static void kbd_bh(unsigned long dummy)
1134 unsigned char leds = getleds();
1136 if (leds != ledstate) {
1137 input_handler_for_each_handle(&kbd_handler, &leds,
1138 kbd_update_leds_helper);
1139 ledstate = leds;
1143 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1145 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1146 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1147 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1148 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1149 defined(CONFIG_AVR32)
1151 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1152 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1154 static const unsigned short x86_keycodes[256] =
1155 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1156 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1157 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1158 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1159 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1160 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1161 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1162 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1163 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1164 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1165 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1166 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1167 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1168 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1169 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1171 #ifdef CONFIG_SPARC
1172 static int sparc_l1_a_state;
1173 extern void sun_do_break(void);
1174 #endif
1176 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1177 unsigned char up_flag)
1179 int code;
1181 switch (keycode) {
1183 case KEY_PAUSE:
1184 put_queue(vc, 0xe1);
1185 put_queue(vc, 0x1d | up_flag);
1186 put_queue(vc, 0x45 | up_flag);
1187 break;
1189 case KEY_HANGEUL:
1190 if (!up_flag)
1191 put_queue(vc, 0xf2);
1192 break;
1194 case KEY_HANJA:
1195 if (!up_flag)
1196 put_queue(vc, 0xf1);
1197 break;
1199 case KEY_SYSRQ:
1201 * Real AT keyboards (that's what we're trying
1202 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1203 * pressing PrtSc/SysRq alone, but simply 0x54
1204 * when pressing Alt+PrtSc/SysRq.
1206 if (test_bit(KEY_LEFTALT, key_down) ||
1207 test_bit(KEY_RIGHTALT, key_down)) {
1208 put_queue(vc, 0x54 | up_flag);
1209 } else {
1210 put_queue(vc, 0xe0);
1211 put_queue(vc, 0x2a | up_flag);
1212 put_queue(vc, 0xe0);
1213 put_queue(vc, 0x37 | up_flag);
1215 break;
1217 default:
1218 if (keycode > 255)
1219 return -1;
1221 code = x86_keycodes[keycode];
1222 if (!code)
1223 return -1;
1225 if (code & 0x100)
1226 put_queue(vc, 0xe0);
1227 put_queue(vc, (code & 0x7f) | up_flag);
1229 break;
1232 return 0;
1235 #else
1237 #define HW_RAW(dev) 0
1239 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1241 if (keycode > 127)
1242 return -1;
1244 put_queue(vc, keycode | up_flag);
1245 return 0;
1247 #endif
1249 static void kbd_rawcode(unsigned char data)
1251 struct vc_data *vc = vc_cons[fg_console].d;
1253 kbd = kbd_table + vc->vc_num;
1254 if (kbd->kbdmode == VC_RAW)
1255 put_queue(vc, data);
1258 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1260 struct vc_data *vc = vc_cons[fg_console].d;
1261 unsigned short keysym, *key_map;
1262 unsigned char type;
1263 bool raw_mode;
1264 struct tty_struct *tty;
1265 int shift_final;
1266 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1267 int rc;
1269 tty = vc->port.tty;
1271 if (tty && (!tty->driver_data)) {
1272 /* No driver data? Strange. Okay we fix it then. */
1273 tty->driver_data = vc;
1276 kbd = kbd_table + vc->vc_num;
1278 #ifdef CONFIG_SPARC
1279 if (keycode == KEY_STOP)
1280 sparc_l1_a_state = down;
1281 #endif
1283 rep = (down == 2);
1285 raw_mode = (kbd->kbdmode == VC_RAW);
1286 if (raw_mode && !hw_raw)
1287 if (emulate_raw(vc, keycode, !down << 7))
1288 if (keycode < BTN_MISC && printk_ratelimit())
1289 pr_warning("can't emulate rawmode for keycode %d\n",
1290 keycode);
1292 #ifdef CONFIG_SPARC
1293 if (keycode == KEY_A && sparc_l1_a_state) {
1294 sparc_l1_a_state = false;
1295 sun_do_break();
1297 #endif
1299 if (kbd->kbdmode == VC_MEDIUMRAW) {
1301 * This is extended medium raw mode, with keys above 127
1302 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1303 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1304 * interfere with anything else. The two bytes after 0 will
1305 * always have the up flag set not to interfere with older
1306 * applications. This allows for 16384 different keycodes,
1307 * which should be enough.
1309 if (keycode < 128) {
1310 put_queue(vc, keycode | (!down << 7));
1311 } else {
1312 put_queue(vc, !down << 7);
1313 put_queue(vc, (keycode >> 7) | 0x80);
1314 put_queue(vc, keycode | 0x80);
1316 raw_mode = true;
1319 if (down)
1320 set_bit(keycode, key_down);
1321 else
1322 clear_bit(keycode, key_down);
1324 if (rep &&
1325 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1326 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1328 * Don't repeat a key if the input buffers are not empty and the
1329 * characters get aren't echoed locally. This makes key repeat
1330 * usable with slow applications and under heavy loads.
1332 return;
1335 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1336 param.ledstate = kbd->ledflagstate;
1337 key_map = key_maps[shift_final];
1339 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1340 KBD_KEYCODE, &param);
1341 if (rc == NOTIFY_STOP || !key_map) {
1342 atomic_notifier_call_chain(&keyboard_notifier_list,
1343 KBD_UNBOUND_KEYCODE, &param);
1344 do_compute_shiftstate();
1345 kbd->slockstate = 0;
1346 return;
1349 if (keycode < NR_KEYS)
1350 keysym = key_map[keycode];
1351 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1352 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1353 else
1354 return;
1356 type = KTYP(keysym);
1358 if (type < 0xf0) {
1359 param.value = keysym;
1360 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1361 KBD_UNICODE, &param);
1362 if (rc != NOTIFY_STOP)
1363 if (down && !raw_mode)
1364 to_utf8(vc, keysym);
1365 return;
1368 type -= 0xf0;
1370 if (type == KT_LETTER) {
1371 type = KT_LATIN;
1372 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1373 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1374 if (key_map)
1375 keysym = key_map[keycode];
1379 param.value = keysym;
1380 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1381 KBD_KEYSYM, &param);
1382 if (rc == NOTIFY_STOP)
1383 return;
1385 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1386 return;
1388 (*k_handler[type])(vc, keysym & 0xff, !down);
1390 param.ledstate = kbd->ledflagstate;
1391 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1393 if (type != KT_SLOCK)
1394 kbd->slockstate = 0;
1397 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1398 unsigned int event_code, int value)
1400 /* We are called with interrupts disabled, just take the lock */
1401 spin_lock(&kbd_event_lock);
1403 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1404 kbd_rawcode(value);
1405 if (event_type == EV_KEY)
1406 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1408 spin_unlock(&kbd_event_lock);
1410 tasklet_schedule(&keyboard_tasklet);
1411 do_poke_blanked_console = 1;
1412 schedule_console_callback();
1415 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1417 int i;
1419 if (test_bit(EV_SND, dev->evbit))
1420 return true;
1422 if (test_bit(EV_KEY, dev->evbit)) {
1423 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1424 if (test_bit(i, dev->keybit))
1425 return true;
1426 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1427 if (test_bit(i, dev->keybit))
1428 return true;
1431 return false;
1435 * When a keyboard (or other input device) is found, the kbd_connect
1436 * function is called. The function then looks at the device, and if it
1437 * likes it, it can open it and get events from it. In this (kbd_connect)
1438 * function, we should decide which VT to bind that keyboard to initially.
1440 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1441 const struct input_device_id *id)
1443 struct input_handle *handle;
1444 int error;
1446 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1447 if (!handle)
1448 return -ENOMEM;
1450 handle->dev = dev;
1451 handle->handler = handler;
1452 handle->name = "kbd";
1454 error = input_register_handle(handle);
1455 if (error)
1456 goto err_free_handle;
1458 error = input_open_device(handle);
1459 if (error)
1460 goto err_unregister_handle;
1462 return 0;
1464 err_unregister_handle:
1465 input_unregister_handle(handle);
1466 err_free_handle:
1467 kfree(handle);
1468 return error;
1471 static void kbd_disconnect(struct input_handle *handle)
1473 input_close_device(handle);
1474 input_unregister_handle(handle);
1475 kfree(handle);
1479 * Start keyboard handler on the new keyboard by refreshing LED state to
1480 * match the rest of the system.
1482 static void kbd_start(struct input_handle *handle)
1484 tasklet_disable(&keyboard_tasklet);
1486 if (ledstate != 0xff)
1487 kbd_update_leds_helper(handle, &ledstate);
1489 tasklet_enable(&keyboard_tasklet);
1492 static const struct input_device_id kbd_ids[] = {
1494 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1495 .evbit = { BIT_MASK(EV_KEY) },
1499 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1500 .evbit = { BIT_MASK(EV_SND) },
1503 { }, /* Terminating entry */
1506 MODULE_DEVICE_TABLE(input, kbd_ids);
1508 static struct input_handler kbd_handler = {
1509 .event = kbd_event,
1510 .match = kbd_match,
1511 .connect = kbd_connect,
1512 .disconnect = kbd_disconnect,
1513 .start = kbd_start,
1514 .name = "kbd",
1515 .id_table = kbd_ids,
1518 int __init kbd_init(void)
1520 int i;
1521 int error;
1523 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1524 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1525 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1526 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1527 kbd_table[i].lockstate = KBD_DEFLOCK;
1528 kbd_table[i].slockstate = 0;
1529 kbd_table[i].modeflags = KBD_DEFMODE;
1530 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1533 error = input_register_handler(&kbd_handler);
1534 if (error)
1535 return error;
1537 tasklet_enable(&keyboard_tasklet);
1538 tasklet_schedule(&keyboard_tasklet);
1540 return 0;
1543 /* Ioctl support code */
1546 * vt_do_diacrit - diacritical table updates
1547 * @cmd: ioctl request
1548 * @up: pointer to user data for ioctl
1549 * @perm: permissions check computed by caller
1551 * Update the diacritical tables atomically and safely. Lock them
1552 * against simultaneous keypresses
1554 int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1556 struct kbdiacrs __user *a = up;
1557 unsigned long flags;
1558 int asize;
1559 int ret = 0;
1561 switch (cmd) {
1562 case KDGKBDIACR:
1564 struct kbdiacr *diacr;
1565 int i;
1567 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1568 GFP_KERNEL);
1569 if (diacr == NULL)
1570 return -ENOMEM;
1572 /* Lock the diacriticals table, make a copy and then
1573 copy it after we unlock */
1574 spin_lock_irqsave(&kbd_event_lock, flags);
1576 asize = accent_table_size;
1577 for (i = 0; i < asize; i++) {
1578 diacr[i].diacr = conv_uni_to_8bit(
1579 accent_table[i].diacr);
1580 diacr[i].base = conv_uni_to_8bit(
1581 accent_table[i].base);
1582 diacr[i].result = conv_uni_to_8bit(
1583 accent_table[i].result);
1585 spin_unlock_irqrestore(&kbd_event_lock, flags);
1587 if (put_user(asize, &a->kb_cnt))
1588 ret = -EFAULT;
1589 else if (copy_to_user(a->kbdiacr, diacr,
1590 asize * sizeof(struct kbdiacr)))
1591 ret = -EFAULT;
1592 kfree(diacr);
1593 return ret;
1595 case KDGKBDIACRUC:
1597 struct kbdiacrsuc __user *a = up;
1598 void *buf;
1600 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1601 GFP_KERNEL);
1602 if (buf == NULL)
1603 return -ENOMEM;
1605 /* Lock the diacriticals table, make a copy and then
1606 copy it after we unlock */
1607 spin_lock_irqsave(&kbd_event_lock, flags);
1609 asize = accent_table_size;
1610 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1612 spin_unlock_irqrestore(&kbd_event_lock, flags);
1614 if (put_user(asize, &a->kb_cnt))
1615 ret = -EFAULT;
1616 else if (copy_to_user(a->kbdiacruc, buf,
1617 asize*sizeof(struct kbdiacruc)))
1618 ret = -EFAULT;
1619 kfree(buf);
1620 return ret;
1623 case KDSKBDIACR:
1625 struct kbdiacrs __user *a = up;
1626 struct kbdiacr *diacr = NULL;
1627 unsigned int ct;
1628 int i;
1630 if (!perm)
1631 return -EPERM;
1632 if (get_user(ct, &a->kb_cnt))
1633 return -EFAULT;
1634 if (ct >= MAX_DIACR)
1635 return -EINVAL;
1637 if (ct) {
1638 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1639 GFP_KERNEL);
1640 if (diacr == NULL)
1641 return -ENOMEM;
1643 if (copy_from_user(diacr, a->kbdiacr,
1644 sizeof(struct kbdiacr) * ct)) {
1645 kfree(diacr);
1646 return -EFAULT;
1650 spin_lock_irqsave(&kbd_event_lock, flags);
1651 accent_table_size = ct;
1652 for (i = 0; i < ct; i++) {
1653 accent_table[i].diacr =
1654 conv_8bit_to_uni(diacr[i].diacr);
1655 accent_table[i].base =
1656 conv_8bit_to_uni(diacr[i].base);
1657 accent_table[i].result =
1658 conv_8bit_to_uni(diacr[i].result);
1660 spin_unlock_irqrestore(&kbd_event_lock, flags);
1661 kfree(diacr);
1662 return 0;
1665 case KDSKBDIACRUC:
1667 struct kbdiacrsuc __user *a = up;
1668 unsigned int ct;
1669 void *buf = NULL;
1671 if (!perm)
1672 return -EPERM;
1674 if (get_user(ct, &a->kb_cnt))
1675 return -EFAULT;
1677 if (ct >= MAX_DIACR)
1678 return -EINVAL;
1680 if (ct) {
1681 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1682 GFP_KERNEL);
1683 if (buf == NULL)
1684 return -ENOMEM;
1686 if (copy_from_user(buf, a->kbdiacruc,
1687 ct * sizeof(struct kbdiacruc))) {
1688 kfree(buf);
1689 return -EFAULT;
1692 spin_lock_irqsave(&kbd_event_lock, flags);
1693 if (ct)
1694 memcpy(accent_table, buf,
1695 ct * sizeof(struct kbdiacruc));
1696 accent_table_size = ct;
1697 spin_unlock_irqrestore(&kbd_event_lock, flags);
1698 kfree(buf);
1699 return 0;
1702 return ret;
1706 * vt_do_kdskbmode - set keyboard mode ioctl
1707 * @console: the console to use
1708 * @arg: the requested mode
1710 * Update the keyboard mode bits while holding the correct locks.
1711 * Return 0 for success or an error code.
1713 int vt_do_kdskbmode(int console, unsigned int arg)
1715 struct kbd_struct * kbd = kbd_table + console;
1716 int ret = 0;
1717 unsigned long flags;
1719 spin_lock_irqsave(&kbd_event_lock, flags);
1720 switch(arg) {
1721 case K_RAW:
1722 kbd->kbdmode = VC_RAW;
1723 break;
1724 case K_MEDIUMRAW:
1725 kbd->kbdmode = VC_MEDIUMRAW;
1726 break;
1727 case K_XLATE:
1728 kbd->kbdmode = VC_XLATE;
1729 do_compute_shiftstate();
1730 break;
1731 case K_UNICODE:
1732 kbd->kbdmode = VC_UNICODE;
1733 do_compute_shiftstate();
1734 break;
1735 case K_OFF:
1736 kbd->kbdmode = VC_OFF;
1737 break;
1738 default:
1739 ret = -EINVAL;
1741 spin_unlock_irqrestore(&kbd_event_lock, flags);
1742 return ret;
1746 * vt_do_kdskbmeta - set keyboard meta state
1747 * @console: the console to use
1748 * @arg: the requested meta state
1750 * Update the keyboard meta bits while holding the correct locks.
1751 * Return 0 for success or an error code.
1753 int vt_do_kdskbmeta(int console, unsigned int arg)
1755 struct kbd_struct * kbd = kbd_table + console;
1756 int ret = 0;
1757 unsigned long flags;
1759 spin_lock_irqsave(&kbd_event_lock, flags);
1760 switch(arg) {
1761 case K_METABIT:
1762 clr_vc_kbd_mode(kbd, VC_META);
1763 break;
1764 case K_ESCPREFIX:
1765 set_vc_kbd_mode(kbd, VC_META);
1766 break;
1767 default:
1768 ret = -EINVAL;
1770 spin_unlock_irqrestore(&kbd_event_lock, flags);
1771 return ret;
1774 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1775 int perm)
1777 struct kbkeycode tmp;
1778 int kc = 0;
1780 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1781 return -EFAULT;
1782 switch (cmd) {
1783 case KDGETKEYCODE:
1784 kc = getkeycode(tmp.scancode);
1785 if (kc >= 0)
1786 kc = put_user(kc, &user_kbkc->keycode);
1787 break;
1788 case KDSETKEYCODE:
1789 if (!perm)
1790 return -EPERM;
1791 kc = setkeycode(tmp.scancode, tmp.keycode);
1792 break;
1794 return kc;
1797 #define i (tmp.kb_index)
1798 #define s (tmp.kb_table)
1799 #define v (tmp.kb_value)
1801 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1802 int console)
1804 struct kbd_struct * kbd = kbd_table + console;
1805 struct kbentry tmp;
1806 ushort *key_map, *new_map, val, ov;
1807 unsigned long flags;
1809 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1810 return -EFAULT;
1812 if (!capable(CAP_SYS_TTY_CONFIG))
1813 perm = 0;
1815 switch (cmd) {
1816 case KDGKBENT:
1817 /* Ensure another thread doesn't free it under us */
1818 spin_lock_irqsave(&kbd_event_lock, flags);
1819 key_map = key_maps[s];
1820 if (key_map) {
1821 val = U(key_map[i]);
1822 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1823 val = K_HOLE;
1824 } else
1825 val = (i ? K_HOLE : K_NOSUCHMAP);
1826 spin_unlock_irqrestore(&kbd_event_lock, flags);
1827 return put_user(val, &user_kbe->kb_value);
1828 case KDSKBENT:
1829 if (!perm)
1830 return -EPERM;
1831 if (!i && v == K_NOSUCHMAP) {
1832 spin_lock_irqsave(&kbd_event_lock, flags);
1833 /* deallocate map */
1834 key_map = key_maps[s];
1835 if (s && key_map) {
1836 key_maps[s] = NULL;
1837 if (key_map[0] == U(K_ALLOCATED)) {
1838 kfree(key_map);
1839 keymap_count--;
1842 spin_unlock_irqrestore(&kbd_event_lock, flags);
1843 break;
1846 if (KTYP(v) < NR_TYPES) {
1847 if (KVAL(v) > max_vals[KTYP(v)])
1848 return -EINVAL;
1849 } else
1850 if (kbd->kbdmode != VC_UNICODE)
1851 return -EINVAL;
1853 /* ++Geert: non-PC keyboards may generate keycode zero */
1854 #if !defined(__mc68000__) && !defined(__powerpc__)
1855 /* assignment to entry 0 only tests validity of args */
1856 if (!i)
1857 break;
1858 #endif
1860 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1861 if (!new_map)
1862 return -ENOMEM;
1863 spin_lock_irqsave(&kbd_event_lock, flags);
1864 key_map = key_maps[s];
1865 if (key_map == NULL) {
1866 int j;
1868 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1869 !capable(CAP_SYS_RESOURCE)) {
1870 spin_unlock_irqrestore(&kbd_event_lock, flags);
1871 kfree(new_map);
1872 return -EPERM;
1874 key_maps[s] = new_map;
1875 key_map = new_map;
1876 key_map[0] = U(K_ALLOCATED);
1877 for (j = 1; j < NR_KEYS; j++)
1878 key_map[j] = U(K_HOLE);
1879 keymap_count++;
1880 } else
1881 kfree(new_map);
1883 ov = U(key_map[i]);
1884 if (v == ov)
1885 goto out;
1887 * Attention Key.
1889 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1890 spin_unlock_irqrestore(&kbd_event_lock, flags);
1891 return -EPERM;
1893 key_map[i] = U(v);
1894 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1895 do_compute_shiftstate();
1896 out:
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1898 break;
1900 return 0;
1902 #undef i
1903 #undef s
1904 #undef v
1906 /* FIXME: This one needs untangling and locking */
1907 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1909 struct kbsentry *kbs;
1910 char *p;
1911 u_char *q;
1912 u_char __user *up;
1913 int sz;
1914 int delta;
1915 char *first_free, *fj, *fnw;
1916 int i, j, k;
1917 int ret;
1919 if (!capable(CAP_SYS_TTY_CONFIG))
1920 perm = 0;
1922 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1923 if (!kbs) {
1924 ret = -ENOMEM;
1925 goto reterr;
1928 /* we mostly copy too much here (512bytes), but who cares ;) */
1929 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1930 ret = -EFAULT;
1931 goto reterr;
1933 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1934 i = kbs->kb_func;
1936 switch (cmd) {
1937 case KDGKBSENT:
1938 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1939 a struct member */
1940 up = user_kdgkb->kb_string;
1941 p = func_table[i];
1942 if(p)
1943 for ( ; *p && sz; p++, sz--)
1944 if (put_user(*p, up++)) {
1945 ret = -EFAULT;
1946 goto reterr;
1948 if (put_user('\0', up)) {
1949 ret = -EFAULT;
1950 goto reterr;
1952 kfree(kbs);
1953 return ((p && *p) ? -EOVERFLOW : 0);
1954 case KDSKBSENT:
1955 if (!perm) {
1956 ret = -EPERM;
1957 goto reterr;
1960 q = func_table[i];
1961 first_free = funcbufptr + (funcbufsize - funcbufleft);
1962 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1964 if (j < MAX_NR_FUNC)
1965 fj = func_table[j];
1966 else
1967 fj = first_free;
1969 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1970 if (delta <= funcbufleft) { /* it fits in current buf */
1971 if (j < MAX_NR_FUNC) {
1972 memmove(fj + delta, fj, first_free - fj);
1973 for (k = j; k < MAX_NR_FUNC; k++)
1974 if (func_table[k])
1975 func_table[k] += delta;
1977 if (!q)
1978 func_table[i] = fj;
1979 funcbufleft -= delta;
1980 } else { /* allocate a larger buffer */
1981 sz = 256;
1982 while (sz < funcbufsize - funcbufleft + delta)
1983 sz <<= 1;
1984 fnw = kmalloc(sz, GFP_KERNEL);
1985 if(!fnw) {
1986 ret = -ENOMEM;
1987 goto reterr;
1990 if (!q)
1991 func_table[i] = fj;
1992 if (fj > funcbufptr)
1993 memmove(fnw, funcbufptr, fj - funcbufptr);
1994 for (k = 0; k < j; k++)
1995 if (func_table[k])
1996 func_table[k] = fnw + (func_table[k] - funcbufptr);
1998 if (first_free > fj) {
1999 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2000 for (k = j; k < MAX_NR_FUNC; k++)
2001 if (func_table[k])
2002 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2004 if (funcbufptr != func_buf)
2005 kfree(funcbufptr);
2006 funcbufptr = fnw;
2007 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2008 funcbufsize = sz;
2010 strcpy(func_table[i], kbs->kb_string);
2011 break;
2013 ret = 0;
2014 reterr:
2015 kfree(kbs);
2016 return ret;
2019 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2021 struct kbd_struct * kbd = kbd_table + console;
2022 unsigned long flags;
2023 unsigned char ucval;
2025 switch(cmd) {
2026 /* the ioctls below read/set the flags usually shown in the leds */
2027 /* don't use them - they will go away without warning */
2028 case KDGKBLED:
2029 spin_lock_irqsave(&kbd_event_lock, flags);
2030 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2031 spin_unlock_irqrestore(&kbd_event_lock, flags);
2032 return put_user(ucval, (char __user *)arg);
2034 case KDSKBLED:
2035 if (!perm)
2036 return -EPERM;
2037 if (arg & ~0x77)
2038 return -EINVAL;
2039 spin_lock_irqsave(&kbd_event_lock, flags);
2040 kbd->ledflagstate = (arg & 7);
2041 kbd->default_ledflagstate = ((arg >> 4) & 7);
2042 set_leds();
2043 spin_unlock_irqrestore(&kbd_event_lock, flags);
2044 return 0;
2046 /* the ioctls below only set the lights, not the functions */
2047 /* for those, see KDGKBLED and KDSKBLED above */
2048 case KDGETLED:
2049 ucval = getledstate();
2050 return put_user(ucval, (char __user *)arg);
2052 case KDSETLED:
2053 if (!perm)
2054 return -EPERM;
2055 setledstate(kbd, arg);
2056 return 0;
2058 return -ENOIOCTLCMD;
2061 int vt_do_kdgkbmode(int console)
2063 struct kbd_struct * kbd = kbd_table + console;
2064 /* This is a spot read so needs no locking */
2065 switch (kbd->kbdmode) {
2066 case VC_RAW:
2067 return K_RAW;
2068 case VC_MEDIUMRAW:
2069 return K_MEDIUMRAW;
2070 case VC_UNICODE:
2071 return K_UNICODE;
2072 case VC_OFF:
2073 return K_OFF;
2074 default:
2075 return K_XLATE;
2080 * vt_do_kdgkbmeta - report meta status
2081 * @console: console to report
2083 * Report the meta flag status of this console
2085 int vt_do_kdgkbmeta(int console)
2087 struct kbd_struct * kbd = kbd_table + console;
2088 /* Again a spot read so no locking */
2089 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2093 * vt_reset_unicode - reset the unicode status
2094 * @console: console being reset
2096 * Restore the unicode console state to its default
2098 void vt_reset_unicode(int console)
2100 unsigned long flags;
2102 spin_lock_irqsave(&kbd_event_lock, flags);
2103 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2104 spin_unlock_irqrestore(&kbd_event_lock, flags);
2108 * vt_get_shiftstate - shift bit state
2110 * Report the shift bits from the keyboard state. We have to export
2111 * this to support some oddities in the vt layer.
2113 int vt_get_shift_state(void)
2115 /* Don't lock as this is a transient report */
2116 return shift_state;
2120 * vt_reset_keyboard - reset keyboard state
2121 * @console: console to reset
2123 * Reset the keyboard bits for a console as part of a general console
2124 * reset event
2126 void vt_reset_keyboard(int console)
2128 struct kbd_struct * kbd = kbd_table + console;
2129 unsigned long flags;
2131 spin_lock_irqsave(&kbd_event_lock, flags);
2132 set_vc_kbd_mode(kbd, VC_REPEAT);
2133 clr_vc_kbd_mode(kbd, VC_CKMODE);
2134 clr_vc_kbd_mode(kbd, VC_APPLIC);
2135 clr_vc_kbd_mode(kbd, VC_CRLF);
2136 kbd->lockstate = 0;
2137 kbd->slockstate = 0;
2138 kbd->ledmode = LED_SHOW_FLAGS;
2139 kbd->ledflagstate = kbd->default_ledflagstate;
2140 /* do not do set_leds here because this causes an endless tasklet loop
2141 when the keyboard hasn't been initialized yet */
2142 spin_unlock_irqrestore(&kbd_event_lock, flags);
2146 * vt_get_kbd_mode_bit - read keyboard status bits
2147 * @console: console to read from
2148 * @bit: mode bit to read
2150 * Report back a vt mode bit. We do this without locking so the
2151 * caller must be sure that there are no synchronization needs
2154 int vt_get_kbd_mode_bit(int console, int bit)
2156 struct kbd_struct * kbd = kbd_table + console;
2157 return vc_kbd_mode(kbd, bit);
2161 * vt_set_kbd_mode_bit - read keyboard status bits
2162 * @console: console to read from
2163 * @bit: mode bit to read
2165 * Set a vt mode bit. We do this without locking so the
2166 * caller must be sure that there are no synchronization needs
2169 void vt_set_kbd_mode_bit(int console, int bit)
2171 struct kbd_struct * kbd = kbd_table + console;
2172 unsigned long flags;
2174 spin_lock_irqsave(&kbd_event_lock, flags);
2175 set_vc_kbd_mode(kbd, bit);
2176 spin_unlock_irqrestore(&kbd_event_lock, flags);
2180 * vt_clr_kbd_mode_bit - read keyboard status bits
2181 * @console: console to read from
2182 * @bit: mode bit to read
2184 * Report back a vt mode bit. We do this without locking so the
2185 * caller must be sure that there are no synchronization needs
2188 void vt_clr_kbd_mode_bit(int console, int bit)
2190 struct kbd_struct * kbd = kbd_table + console;
2191 unsigned long flags;
2193 spin_lock_irqsave(&kbd_event_lock, flags);
2194 clr_vc_kbd_mode(kbd, bit);
2195 spin_unlock_irqrestore(&kbd_event_lock, flags);