Linux 3.4.102
[linux/fpc-iii.git] / fs / ext3 / inode.c
blobaad0f3989e52e598172050100039d4560dc3a1ae
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
38 * Test whether an inode is a fast symlink.
40 static int ext3_inode_is_fast_symlink(struct inode *inode)
42 int ea_blocks = EXT3_I(inode)->i_file_acl ?
43 (inode->i_sb->s_blocksize >> 9) : 0;
45 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
49 * The ext3 forget function must perform a revoke if we are freeing data
50 * which has been journaled. Metadata (eg. indirect blocks) must be
51 * revoked in all cases.
53 * "bh" may be NULL: a metadata block may have been freed from memory
54 * but there may still be a record of it in the journal, and that record
55 * still needs to be revoked.
57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58 struct buffer_head *bh, ext3_fsblk_t blocknr)
60 int err;
62 might_sleep();
64 trace_ext3_forget(inode, is_metadata, blocknr);
65 BUFFER_TRACE(bh, "enter");
67 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68 "data mode %lx\n",
69 bh, is_metadata, inode->i_mode,
70 test_opt(inode->i_sb, DATA_FLAGS));
72 /* Never use the revoke function if we are doing full data
73 * journaling: there is no need to, and a V1 superblock won't
74 * support it. Otherwise, only skip the revoke on un-journaled
75 * data blocks. */
77 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78 (!is_metadata && !ext3_should_journal_data(inode))) {
79 if (bh) {
80 BUFFER_TRACE(bh, "call journal_forget");
81 return ext3_journal_forget(handle, bh);
83 return 0;
87 * data!=journal && (is_metadata || should_journal_data(inode))
89 BUFFER_TRACE(bh, "call ext3_journal_revoke");
90 err = ext3_journal_revoke(handle, blocknr, bh);
91 if (err)
92 ext3_abort(inode->i_sb, __func__,
93 "error %d when attempting revoke", err);
94 BUFFER_TRACE(bh, "exit");
95 return err;
99 * Work out how many blocks we need to proceed with the next chunk of a
100 * truncate transaction.
102 static unsigned long blocks_for_truncate(struct inode *inode)
104 unsigned long needed;
106 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
108 /* Give ourselves just enough room to cope with inodes in which
109 * i_blocks is corrupt: we've seen disk corruptions in the past
110 * which resulted in random data in an inode which looked enough
111 * like a regular file for ext3 to try to delete it. Things
112 * will go a bit crazy if that happens, but at least we should
113 * try not to panic the whole kernel. */
114 if (needed < 2)
115 needed = 2;
117 /* But we need to bound the transaction so we don't overflow the
118 * journal. */
119 if (needed > EXT3_MAX_TRANS_DATA)
120 needed = EXT3_MAX_TRANS_DATA;
122 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
126 * Truncate transactions can be complex and absolutely huge. So we need to
127 * be able to restart the transaction at a conventient checkpoint to make
128 * sure we don't overflow the journal.
130 * start_transaction gets us a new handle for a truncate transaction,
131 * and extend_transaction tries to extend the existing one a bit. If
132 * extend fails, we need to propagate the failure up and restart the
133 * transaction in the top-level truncate loop. --sct
135 static handle_t *start_transaction(struct inode *inode)
137 handle_t *result;
139 result = ext3_journal_start(inode, blocks_for_truncate(inode));
140 if (!IS_ERR(result))
141 return result;
143 ext3_std_error(inode->i_sb, PTR_ERR(result));
144 return result;
148 * Try to extend this transaction for the purposes of truncation.
150 * Returns 0 if we managed to create more room. If we can't create more
151 * room, and the transaction must be restarted we return 1.
153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
155 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156 return 0;
157 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158 return 0;
159 return 1;
163 * Restart the transaction associated with *handle. This does a commit,
164 * so before we call here everything must be consistently dirtied against
165 * this transaction.
167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
169 int ret;
171 jbd_debug(2, "restarting handle %p\n", handle);
173 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174 * At this moment, get_block can be called only for blocks inside
175 * i_size since page cache has been already dropped and writes are
176 * blocked by i_mutex. So we can safely drop the truncate_mutex.
178 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180 mutex_lock(&EXT3_I(inode)->truncate_mutex);
181 return ret;
185 * Called at inode eviction from icache
187 void ext3_evict_inode (struct inode *inode)
189 struct ext3_inode_info *ei = EXT3_I(inode);
190 struct ext3_block_alloc_info *rsv;
191 handle_t *handle;
192 int want_delete = 0;
194 trace_ext3_evict_inode(inode);
195 if (!inode->i_nlink && !is_bad_inode(inode)) {
196 dquot_initialize(inode);
197 want_delete = 1;
201 * When journalling data dirty buffers are tracked only in the journal.
202 * So although mm thinks everything is clean and ready for reaping the
203 * inode might still have some pages to write in the running
204 * transaction or waiting to be checkpointed. Thus calling
205 * journal_invalidatepage() (via truncate_inode_pages()) to discard
206 * these buffers can cause data loss. Also even if we did not discard
207 * these buffers, we would have no way to find them after the inode
208 * is reaped and thus user could see stale data if he tries to read
209 * them before the transaction is checkpointed. So be careful and
210 * force everything to disk here... We use ei->i_datasync_tid to
211 * store the newest transaction containing inode's data.
213 * Note that directories do not have this problem because they don't
214 * use page cache.
216 * The s_journal check handles the case when ext3_get_journal() fails
217 * and puts the journal inode.
219 if (inode->i_nlink && ext3_should_journal_data(inode) &&
220 EXT3_SB(inode->i_sb)->s_journal &&
221 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
222 inode->i_ino != EXT3_JOURNAL_INO) {
223 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
224 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
226 log_start_commit(journal, commit_tid);
227 log_wait_commit(journal, commit_tid);
228 filemap_write_and_wait(&inode->i_data);
230 truncate_inode_pages(&inode->i_data, 0);
232 ext3_discard_reservation(inode);
233 rsv = ei->i_block_alloc_info;
234 ei->i_block_alloc_info = NULL;
235 if (unlikely(rsv))
236 kfree(rsv);
238 if (!want_delete)
239 goto no_delete;
241 handle = start_transaction(inode);
242 if (IS_ERR(handle)) {
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
248 ext3_orphan_del(NULL, inode);
249 goto no_delete;
252 if (IS_SYNC(inode))
253 handle->h_sync = 1;
254 inode->i_size = 0;
255 if (inode->i_blocks)
256 ext3_truncate(inode);
258 * Kill off the orphan record created when the inode lost the last
259 * link. Note that ext3_orphan_del() has to be able to cope with the
260 * deletion of a non-existent orphan - ext3_truncate() could
261 * have removed the record.
263 ext3_orphan_del(handle, inode);
264 ei->i_dtime = get_seconds();
267 * One subtle ordering requirement: if anything has gone wrong
268 * (transaction abort, IO errors, whatever), then we can still
269 * do these next steps (the fs will already have been marked as
270 * having errors), but we can't free the inode if the mark_dirty
271 * fails.
273 if (ext3_mark_inode_dirty(handle, inode)) {
274 /* If that failed, just dquot_drop() and be done with that */
275 dquot_drop(inode);
276 end_writeback(inode);
277 } else {
278 ext3_xattr_delete_inode(handle, inode);
279 dquot_free_inode(inode);
280 dquot_drop(inode);
281 end_writeback(inode);
282 ext3_free_inode(handle, inode);
284 ext3_journal_stop(handle);
285 return;
286 no_delete:
287 end_writeback(inode);
288 dquot_drop(inode);
291 typedef struct {
292 __le32 *p;
293 __le32 key;
294 struct buffer_head *bh;
295 } Indirect;
297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299 p->key = *(p->p = v);
300 p->bh = bh;
303 static int verify_chain(Indirect *from, Indirect *to)
305 while (from <= to && from->key == *from->p)
306 from++;
307 return (from > to);
311 * ext3_block_to_path - parse the block number into array of offsets
312 * @inode: inode in question (we are only interested in its superblock)
313 * @i_block: block number to be parsed
314 * @offsets: array to store the offsets in
315 * @boundary: set this non-zero if the referred-to block is likely to be
316 * followed (on disk) by an indirect block.
318 * To store the locations of file's data ext3 uses a data structure common
319 * for UNIX filesystems - tree of pointers anchored in the inode, with
320 * data blocks at leaves and indirect blocks in intermediate nodes.
321 * This function translates the block number into path in that tree -
322 * return value is the path length and @offsets[n] is the offset of
323 * pointer to (n+1)th node in the nth one. If @block is out of range
324 * (negative or too large) warning is printed and zero returned.
326 * Note: function doesn't find node addresses, so no IO is needed. All
327 * we need to know is the capacity of indirect blocks (taken from the
328 * inode->i_sb).
332 * Portability note: the last comparison (check that we fit into triple
333 * indirect block) is spelled differently, because otherwise on an
334 * architecture with 32-bit longs and 8Kb pages we might get into trouble
335 * if our filesystem had 8Kb blocks. We might use long long, but that would
336 * kill us on x86. Oh, well, at least the sign propagation does not matter -
337 * i_block would have to be negative in the very beginning, so we would not
338 * get there at all.
341 static int ext3_block_to_path(struct inode *inode,
342 long i_block, int offsets[4], int *boundary)
344 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
345 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
346 const long direct_blocks = EXT3_NDIR_BLOCKS,
347 indirect_blocks = ptrs,
348 double_blocks = (1 << (ptrs_bits * 2));
349 int n = 0;
350 int final = 0;
352 if (i_block < 0) {
353 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
354 } else if (i_block < direct_blocks) {
355 offsets[n++] = i_block;
356 final = direct_blocks;
357 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
358 offsets[n++] = EXT3_IND_BLOCK;
359 offsets[n++] = i_block;
360 final = ptrs;
361 } else if ((i_block -= indirect_blocks) < double_blocks) {
362 offsets[n++] = EXT3_DIND_BLOCK;
363 offsets[n++] = i_block >> ptrs_bits;
364 offsets[n++] = i_block & (ptrs - 1);
365 final = ptrs;
366 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
367 offsets[n++] = EXT3_TIND_BLOCK;
368 offsets[n++] = i_block >> (ptrs_bits * 2);
369 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
370 offsets[n++] = i_block & (ptrs - 1);
371 final = ptrs;
372 } else {
373 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
375 if (boundary)
376 *boundary = final - 1 - (i_block & (ptrs - 1));
377 return n;
381 * ext3_get_branch - read the chain of indirect blocks leading to data
382 * @inode: inode in question
383 * @depth: depth of the chain (1 - direct pointer, etc.)
384 * @offsets: offsets of pointers in inode/indirect blocks
385 * @chain: place to store the result
386 * @err: here we store the error value
388 * Function fills the array of triples <key, p, bh> and returns %NULL
389 * if everything went OK or the pointer to the last filled triple
390 * (incomplete one) otherwise. Upon the return chain[i].key contains
391 * the number of (i+1)-th block in the chain (as it is stored in memory,
392 * i.e. little-endian 32-bit), chain[i].p contains the address of that
393 * number (it points into struct inode for i==0 and into the bh->b_data
394 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395 * block for i>0 and NULL for i==0. In other words, it holds the block
396 * numbers of the chain, addresses they were taken from (and where we can
397 * verify that chain did not change) and buffer_heads hosting these
398 * numbers.
400 * Function stops when it stumbles upon zero pointer (absent block)
401 * (pointer to last triple returned, *@err == 0)
402 * or when it gets an IO error reading an indirect block
403 * (ditto, *@err == -EIO)
404 * or when it notices that chain had been changed while it was reading
405 * (ditto, *@err == -EAGAIN)
406 * or when it reads all @depth-1 indirect blocks successfully and finds
407 * the whole chain, all way to the data (returns %NULL, *err == 0).
409 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
410 Indirect chain[4], int *err)
412 struct super_block *sb = inode->i_sb;
413 Indirect *p = chain;
414 struct buffer_head *bh;
416 *err = 0;
417 /* i_data is not going away, no lock needed */
418 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
419 if (!p->key)
420 goto no_block;
421 while (--depth) {
422 bh = sb_bread(sb, le32_to_cpu(p->key));
423 if (!bh)
424 goto failure;
425 /* Reader: pointers */
426 if (!verify_chain(chain, p))
427 goto changed;
428 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
433 return NULL;
435 changed:
436 brelse(bh);
437 *err = -EAGAIN;
438 goto no_block;
439 failure:
440 *err = -EIO;
441 no_block:
442 return p;
446 * ext3_find_near - find a place for allocation with sufficient locality
447 * @inode: owner
448 * @ind: descriptor of indirect block.
450 * This function returns the preferred place for block allocation.
451 * It is used when heuristic for sequential allocation fails.
452 * Rules are:
453 * + if there is a block to the left of our position - allocate near it.
454 * + if pointer will live in indirect block - allocate near that block.
455 * + if pointer will live in inode - allocate in the same
456 * cylinder group.
458 * In the latter case we colour the starting block by the callers PID to
459 * prevent it from clashing with concurrent allocations for a different inode
460 * in the same block group. The PID is used here so that functionally related
461 * files will be close-by on-disk.
463 * Caller must make sure that @ind is valid and will stay that way.
465 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
467 struct ext3_inode_info *ei = EXT3_I(inode);
468 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
469 __le32 *p;
470 ext3_fsblk_t bg_start;
471 ext3_grpblk_t colour;
473 /* Try to find previous block */
474 for (p = ind->p - 1; p >= start; p--) {
475 if (*p)
476 return le32_to_cpu(*p);
479 /* No such thing, so let's try location of indirect block */
480 if (ind->bh)
481 return ind->bh->b_blocknr;
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
487 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
488 colour = (current->pid % 16) *
489 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
490 return bg_start + colour;
494 * ext3_find_goal - find a preferred place for allocation.
495 * @inode: owner
496 * @block: block we want
497 * @partial: pointer to the last triple within a chain
499 * Normally this function find the preferred place for block allocation,
500 * returns it.
503 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
504 Indirect *partial)
506 struct ext3_block_alloc_info *block_i;
508 block_i = EXT3_I(inode)->i_block_alloc_info;
511 * try the heuristic for sequential allocation,
512 * failing that at least try to get decent locality.
514 if (block_i && (block == block_i->last_alloc_logical_block + 1)
515 && (block_i->last_alloc_physical_block != 0)) {
516 return block_i->last_alloc_physical_block + 1;
519 return ext3_find_near(inode, partial);
523 * ext3_blks_to_allocate - Look up the block map and count the number
524 * of direct blocks need to be allocated for the given branch.
526 * @branch: chain of indirect blocks
527 * @k: number of blocks need for indirect blocks
528 * @blks: number of data blocks to be mapped.
529 * @blocks_to_boundary: the offset in the indirect block
531 * return the total number of blocks to be allocate, including the
532 * direct and indirect blocks.
534 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
535 int blocks_to_boundary)
537 unsigned long count = 0;
540 * Simple case, [t,d]Indirect block(s) has not allocated yet
541 * then it's clear blocks on that path have not allocated
543 if (k > 0) {
544 /* right now we don't handle cross boundary allocation */
545 if (blks < blocks_to_boundary + 1)
546 count += blks;
547 else
548 count += blocks_to_boundary + 1;
549 return count;
552 count++;
553 while (count < blks && count <= blocks_to_boundary &&
554 le32_to_cpu(*(branch[0].p + count)) == 0) {
555 count++;
557 return count;
561 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
562 * @handle: handle for this transaction
563 * @inode: owner
564 * @goal: preferred place for allocation
565 * @indirect_blks: the number of blocks need to allocate for indirect
566 * blocks
567 * @blks: number of blocks need to allocated for direct blocks
568 * @new_blocks: on return it will store the new block numbers for
569 * the indirect blocks(if needed) and the first direct block,
570 * @err: here we store the error value
572 * return the number of direct blocks allocated
574 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
575 ext3_fsblk_t goal, int indirect_blks, int blks,
576 ext3_fsblk_t new_blocks[4], int *err)
578 int target, i;
579 unsigned long count = 0;
580 int index = 0;
581 ext3_fsblk_t current_block = 0;
582 int ret = 0;
585 * Here we try to allocate the requested multiple blocks at once,
586 * on a best-effort basis.
587 * To build a branch, we should allocate blocks for
588 * the indirect blocks(if not allocated yet), and at least
589 * the first direct block of this branch. That's the
590 * minimum number of blocks need to allocate(required)
592 target = blks + indirect_blks;
594 while (1) {
595 count = target;
596 /* allocating blocks for indirect blocks and direct blocks */
597 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
598 if (*err)
599 goto failed_out;
601 target -= count;
602 /* allocate blocks for indirect blocks */
603 while (index < indirect_blks && count) {
604 new_blocks[index++] = current_block++;
605 count--;
608 if (count > 0)
609 break;
612 /* save the new block number for the first direct block */
613 new_blocks[index] = current_block;
615 /* total number of blocks allocated for direct blocks */
616 ret = count;
617 *err = 0;
618 return ret;
619 failed_out:
620 for (i = 0; i <index; i++)
621 ext3_free_blocks(handle, inode, new_blocks[i], 1);
622 return ret;
626 * ext3_alloc_branch - allocate and set up a chain of blocks.
627 * @handle: handle for this transaction
628 * @inode: owner
629 * @indirect_blks: number of allocated indirect blocks
630 * @blks: number of allocated direct blocks
631 * @goal: preferred place for allocation
632 * @offsets: offsets (in the blocks) to store the pointers to next.
633 * @branch: place to store the chain in.
635 * This function allocates blocks, zeroes out all but the last one,
636 * links them into chain and (if we are synchronous) writes them to disk.
637 * In other words, it prepares a branch that can be spliced onto the
638 * inode. It stores the information about that chain in the branch[], in
639 * the same format as ext3_get_branch() would do. We are calling it after
640 * we had read the existing part of chain and partial points to the last
641 * triple of that (one with zero ->key). Upon the exit we have the same
642 * picture as after the successful ext3_get_block(), except that in one
643 * place chain is disconnected - *branch->p is still zero (we did not
644 * set the last link), but branch->key contains the number that should
645 * be placed into *branch->p to fill that gap.
647 * If allocation fails we free all blocks we've allocated (and forget
648 * their buffer_heads) and return the error value the from failed
649 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
650 * as described above and return 0.
652 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
653 int indirect_blks, int *blks, ext3_fsblk_t goal,
654 int *offsets, Indirect *branch)
656 int blocksize = inode->i_sb->s_blocksize;
657 int i, n = 0;
658 int err = 0;
659 struct buffer_head *bh;
660 int num;
661 ext3_fsblk_t new_blocks[4];
662 ext3_fsblk_t current_block;
664 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
665 *blks, new_blocks, &err);
666 if (err)
667 return err;
669 branch[0].key = cpu_to_le32(new_blocks[0]);
671 * metadata blocks and data blocks are allocated.
673 for (n = 1; n <= indirect_blks; n++) {
675 * Get buffer_head for parent block, zero it out
676 * and set the pointer to new one, then send
677 * parent to disk.
679 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
680 branch[n].bh = bh;
681 lock_buffer(bh);
682 BUFFER_TRACE(bh, "call get_create_access");
683 err = ext3_journal_get_create_access(handle, bh);
684 if (err) {
685 unlock_buffer(bh);
686 brelse(bh);
687 goto failed;
690 memset(bh->b_data, 0, blocksize);
691 branch[n].p = (__le32 *) bh->b_data + offsets[n];
692 branch[n].key = cpu_to_le32(new_blocks[n]);
693 *branch[n].p = branch[n].key;
694 if ( n == indirect_blks) {
695 current_block = new_blocks[n];
697 * End of chain, update the last new metablock of
698 * the chain to point to the new allocated
699 * data blocks numbers
701 for (i=1; i < num; i++)
702 *(branch[n].p + i) = cpu_to_le32(++current_block);
704 BUFFER_TRACE(bh, "marking uptodate");
705 set_buffer_uptodate(bh);
706 unlock_buffer(bh);
708 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
709 err = ext3_journal_dirty_metadata(handle, bh);
710 if (err)
711 goto failed;
713 *blks = num;
714 return err;
715 failed:
716 /* Allocation failed, free what we already allocated */
717 for (i = 1; i <= n ; i++) {
718 BUFFER_TRACE(branch[i].bh, "call journal_forget");
719 ext3_journal_forget(handle, branch[i].bh);
721 for (i = 0; i <indirect_blks; i++)
722 ext3_free_blocks(handle, inode, new_blocks[i], 1);
724 ext3_free_blocks(handle, inode, new_blocks[i], num);
726 return err;
730 * ext3_splice_branch - splice the allocated branch onto inode.
731 * @handle: handle for this transaction
732 * @inode: owner
733 * @block: (logical) number of block we are adding
734 * @where: location of missing link
735 * @num: number of indirect blocks we are adding
736 * @blks: number of direct blocks we are adding
738 * This function fills the missing link and does all housekeeping needed in
739 * inode (->i_blocks, etc.). In case of success we end up with the full
740 * chain to new block and return 0.
742 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
743 long block, Indirect *where, int num, int blks)
745 int i;
746 int err = 0;
747 struct ext3_block_alloc_info *block_i;
748 ext3_fsblk_t current_block;
749 struct ext3_inode_info *ei = EXT3_I(inode);
750 struct timespec now;
752 block_i = ei->i_block_alloc_info;
754 * If we're splicing into a [td]indirect block (as opposed to the
755 * inode) then we need to get write access to the [td]indirect block
756 * before the splice.
758 if (where->bh) {
759 BUFFER_TRACE(where->bh, "get_write_access");
760 err = ext3_journal_get_write_access(handle, where->bh);
761 if (err)
762 goto err_out;
764 /* That's it */
766 *where->p = where->key;
769 * Update the host buffer_head or inode to point to more just allocated
770 * direct blocks blocks
772 if (num == 0 && blks > 1) {
773 current_block = le32_to_cpu(where->key) + 1;
774 for (i = 1; i < blks; i++)
775 *(where->p + i ) = cpu_to_le32(current_block++);
779 * update the most recently allocated logical & physical block
780 * in i_block_alloc_info, to assist find the proper goal block for next
781 * allocation
783 if (block_i) {
784 block_i->last_alloc_logical_block = block + blks - 1;
785 block_i->last_alloc_physical_block =
786 le32_to_cpu(where[num].key) + blks - 1;
789 /* We are done with atomic stuff, now do the rest of housekeeping */
790 now = CURRENT_TIME_SEC;
791 if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
792 inode->i_ctime = now;
793 ext3_mark_inode_dirty(handle, inode);
795 /* ext3_mark_inode_dirty already updated i_sync_tid */
796 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
798 /* had we spliced it onto indirect block? */
799 if (where->bh) {
801 * If we spliced it onto an indirect block, we haven't
802 * altered the inode. Note however that if it is being spliced
803 * onto an indirect block at the very end of the file (the
804 * file is growing) then we *will* alter the inode to reflect
805 * the new i_size. But that is not done here - it is done in
806 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
808 jbd_debug(5, "splicing indirect only\n");
809 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
810 err = ext3_journal_dirty_metadata(handle, where->bh);
811 if (err)
812 goto err_out;
813 } else {
815 * OK, we spliced it into the inode itself on a direct block.
816 * Inode was dirtied above.
818 jbd_debug(5, "splicing direct\n");
820 return err;
822 err_out:
823 for (i = 1; i <= num; i++) {
824 BUFFER_TRACE(where[i].bh, "call journal_forget");
825 ext3_journal_forget(handle, where[i].bh);
826 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
828 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
830 return err;
834 * Allocation strategy is simple: if we have to allocate something, we will
835 * have to go the whole way to leaf. So let's do it before attaching anything
836 * to tree, set linkage between the newborn blocks, write them if sync is
837 * required, recheck the path, free and repeat if check fails, otherwise
838 * set the last missing link (that will protect us from any truncate-generated
839 * removals - all blocks on the path are immune now) and possibly force the
840 * write on the parent block.
841 * That has a nice additional property: no special recovery from the failed
842 * allocations is needed - we simply release blocks and do not touch anything
843 * reachable from inode.
845 * `handle' can be NULL if create == 0.
847 * The BKL may not be held on entry here. Be sure to take it early.
848 * return > 0, # of blocks mapped or allocated.
849 * return = 0, if plain lookup failed.
850 * return < 0, error case.
852 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
853 sector_t iblock, unsigned long maxblocks,
854 struct buffer_head *bh_result,
855 int create)
857 int err = -EIO;
858 int offsets[4];
859 Indirect chain[4];
860 Indirect *partial;
861 ext3_fsblk_t goal;
862 int indirect_blks;
863 int blocks_to_boundary = 0;
864 int depth;
865 struct ext3_inode_info *ei = EXT3_I(inode);
866 int count = 0;
867 ext3_fsblk_t first_block = 0;
870 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
871 J_ASSERT(handle != NULL || create == 0);
872 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
874 if (depth == 0)
875 goto out;
877 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
879 /* Simplest case - block found, no allocation needed */
880 if (!partial) {
881 first_block = le32_to_cpu(chain[depth - 1].key);
882 clear_buffer_new(bh_result);
883 count++;
884 /*map more blocks*/
885 while (count < maxblocks && count <= blocks_to_boundary) {
886 ext3_fsblk_t blk;
888 if (!verify_chain(chain, chain + depth - 1)) {
890 * Indirect block might be removed by
891 * truncate while we were reading it.
892 * Handling of that case: forget what we've
893 * got now. Flag the err as EAGAIN, so it
894 * will reread.
896 err = -EAGAIN;
897 count = 0;
898 break;
900 blk = le32_to_cpu(*(chain[depth-1].p + count));
902 if (blk == first_block + count)
903 count++;
904 else
905 break;
907 if (err != -EAGAIN)
908 goto got_it;
911 /* Next simple case - plain lookup or failed read of indirect block */
912 if (!create || err == -EIO)
913 goto cleanup;
916 * Block out ext3_truncate while we alter the tree
918 mutex_lock(&ei->truncate_mutex);
921 * If the indirect block is missing while we are reading
922 * the chain(ext3_get_branch() returns -EAGAIN err), or
923 * if the chain has been changed after we grab the semaphore,
924 * (either because another process truncated this branch, or
925 * another get_block allocated this branch) re-grab the chain to see if
926 * the request block has been allocated or not.
928 * Since we already block the truncate/other get_block
929 * at this point, we will have the current copy of the chain when we
930 * splice the branch into the tree.
932 if (err == -EAGAIN || !verify_chain(chain, partial)) {
933 while (partial > chain) {
934 brelse(partial->bh);
935 partial--;
937 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
938 if (!partial) {
939 count++;
940 mutex_unlock(&ei->truncate_mutex);
941 if (err)
942 goto cleanup;
943 clear_buffer_new(bh_result);
944 goto got_it;
949 * Okay, we need to do block allocation. Lazily initialize the block
950 * allocation info here if necessary
952 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
953 ext3_init_block_alloc_info(inode);
955 goal = ext3_find_goal(inode, iblock, partial);
957 /* the number of blocks need to allocate for [d,t]indirect blocks */
958 indirect_blks = (chain + depth) - partial - 1;
961 * Next look up the indirect map to count the totoal number of
962 * direct blocks to allocate for this branch.
964 count = ext3_blks_to_allocate(partial, indirect_blks,
965 maxblocks, blocks_to_boundary);
966 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
967 offsets + (partial - chain), partial);
970 * The ext3_splice_branch call will free and forget any buffers
971 * on the new chain if there is a failure, but that risks using
972 * up transaction credits, especially for bitmaps where the
973 * credits cannot be returned. Can we handle this somehow? We
974 * may need to return -EAGAIN upwards in the worst case. --sct
976 if (!err)
977 err = ext3_splice_branch(handle, inode, iblock,
978 partial, indirect_blks, count);
979 mutex_unlock(&ei->truncate_mutex);
980 if (err)
981 goto cleanup;
983 set_buffer_new(bh_result);
984 got_it:
985 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
986 if (count > blocks_to_boundary)
987 set_buffer_boundary(bh_result);
988 err = count;
989 /* Clean up and exit */
990 partial = chain + depth - 1; /* the whole chain */
991 cleanup:
992 while (partial > chain) {
993 BUFFER_TRACE(partial->bh, "call brelse");
994 brelse(partial->bh);
995 partial--;
997 BUFFER_TRACE(bh_result, "returned");
998 out:
999 trace_ext3_get_blocks_exit(inode, iblock,
1000 depth ? le32_to_cpu(chain[depth-1].key) : 0,
1001 count, err);
1002 return err;
1005 /* Maximum number of blocks we map for direct IO at once. */
1006 #define DIO_MAX_BLOCKS 4096
1008 * Number of credits we need for writing DIO_MAX_BLOCKS:
1009 * We need sb + group descriptor + bitmap + inode -> 4
1010 * For B blocks with A block pointers per block we need:
1011 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1012 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1014 #define DIO_CREDITS 25
1016 static int ext3_get_block(struct inode *inode, sector_t iblock,
1017 struct buffer_head *bh_result, int create)
1019 handle_t *handle = ext3_journal_current_handle();
1020 int ret = 0, started = 0;
1021 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1023 if (create && !handle) { /* Direct IO write... */
1024 if (max_blocks > DIO_MAX_BLOCKS)
1025 max_blocks = DIO_MAX_BLOCKS;
1026 handle = ext3_journal_start(inode, DIO_CREDITS +
1027 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1028 if (IS_ERR(handle)) {
1029 ret = PTR_ERR(handle);
1030 goto out;
1032 started = 1;
1035 ret = ext3_get_blocks_handle(handle, inode, iblock,
1036 max_blocks, bh_result, create);
1037 if (ret > 0) {
1038 bh_result->b_size = (ret << inode->i_blkbits);
1039 ret = 0;
1041 if (started)
1042 ext3_journal_stop(handle);
1043 out:
1044 return ret;
1047 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1048 u64 start, u64 len)
1050 return generic_block_fiemap(inode, fieinfo, start, len,
1051 ext3_get_block);
1055 * `handle' can be NULL if create is zero
1057 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1058 long block, int create, int *errp)
1060 struct buffer_head dummy;
1061 int fatal = 0, err;
1063 J_ASSERT(handle != NULL || create == 0);
1065 dummy.b_state = 0;
1066 dummy.b_blocknr = -1000;
1067 buffer_trace_init(&dummy.b_history);
1068 err = ext3_get_blocks_handle(handle, inode, block, 1,
1069 &dummy, create);
1071 * ext3_get_blocks_handle() returns number of blocks
1072 * mapped. 0 in case of a HOLE.
1074 if (err > 0) {
1075 if (err > 1)
1076 WARN_ON(1);
1077 err = 0;
1079 *errp = err;
1080 if (!err && buffer_mapped(&dummy)) {
1081 struct buffer_head *bh;
1082 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1083 if (!bh) {
1084 *errp = -EIO;
1085 goto err;
1087 if (buffer_new(&dummy)) {
1088 J_ASSERT(create != 0);
1089 J_ASSERT(handle != NULL);
1092 * Now that we do not always journal data, we should
1093 * keep in mind whether this should always journal the
1094 * new buffer as metadata. For now, regular file
1095 * writes use ext3_get_block instead, so it's not a
1096 * problem.
1098 lock_buffer(bh);
1099 BUFFER_TRACE(bh, "call get_create_access");
1100 fatal = ext3_journal_get_create_access(handle, bh);
1101 if (!fatal && !buffer_uptodate(bh)) {
1102 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1103 set_buffer_uptodate(bh);
1105 unlock_buffer(bh);
1106 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1107 err = ext3_journal_dirty_metadata(handle, bh);
1108 if (!fatal)
1109 fatal = err;
1110 } else {
1111 BUFFER_TRACE(bh, "not a new buffer");
1113 if (fatal) {
1114 *errp = fatal;
1115 brelse(bh);
1116 bh = NULL;
1118 return bh;
1120 err:
1121 return NULL;
1124 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1125 int block, int create, int *err)
1127 struct buffer_head * bh;
1129 bh = ext3_getblk(handle, inode, block, create, err);
1130 if (!bh)
1131 return bh;
1132 if (bh_uptodate_or_lock(bh))
1133 return bh;
1134 get_bh(bh);
1135 bh->b_end_io = end_buffer_read_sync;
1136 submit_bh(READ | REQ_META | REQ_PRIO, bh);
1137 wait_on_buffer(bh);
1138 if (buffer_uptodate(bh))
1139 return bh;
1140 put_bh(bh);
1141 *err = -EIO;
1142 return NULL;
1145 static int walk_page_buffers( handle_t *handle,
1146 struct buffer_head *head,
1147 unsigned from,
1148 unsigned to,
1149 int *partial,
1150 int (*fn)( handle_t *handle,
1151 struct buffer_head *bh))
1153 struct buffer_head *bh;
1154 unsigned block_start, block_end;
1155 unsigned blocksize = head->b_size;
1156 int err, ret = 0;
1157 struct buffer_head *next;
1159 for ( bh = head, block_start = 0;
1160 ret == 0 && (bh != head || !block_start);
1161 block_start = block_end, bh = next)
1163 next = bh->b_this_page;
1164 block_end = block_start + blocksize;
1165 if (block_end <= from || block_start >= to) {
1166 if (partial && !buffer_uptodate(bh))
1167 *partial = 1;
1168 continue;
1170 err = (*fn)(handle, bh);
1171 if (!ret)
1172 ret = err;
1174 return ret;
1178 * To preserve ordering, it is essential that the hole instantiation and
1179 * the data write be encapsulated in a single transaction. We cannot
1180 * close off a transaction and start a new one between the ext3_get_block()
1181 * and the commit_write(). So doing the journal_start at the start of
1182 * prepare_write() is the right place.
1184 * Also, this function can nest inside ext3_writepage() ->
1185 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1186 * has generated enough buffer credits to do the whole page. So we won't
1187 * block on the journal in that case, which is good, because the caller may
1188 * be PF_MEMALLOC.
1190 * By accident, ext3 can be reentered when a transaction is open via
1191 * quota file writes. If we were to commit the transaction while thus
1192 * reentered, there can be a deadlock - we would be holding a quota
1193 * lock, and the commit would never complete if another thread had a
1194 * transaction open and was blocking on the quota lock - a ranking
1195 * violation.
1197 * So what we do is to rely on the fact that journal_stop/journal_start
1198 * will _not_ run commit under these circumstances because handle->h_ref
1199 * is elevated. We'll still have enough credits for the tiny quotafile
1200 * write.
1202 static int do_journal_get_write_access(handle_t *handle,
1203 struct buffer_head *bh)
1205 int dirty = buffer_dirty(bh);
1206 int ret;
1208 if (!buffer_mapped(bh) || buffer_freed(bh))
1209 return 0;
1211 * __block_prepare_write() could have dirtied some buffers. Clean
1212 * the dirty bit as jbd2_journal_get_write_access() could complain
1213 * otherwise about fs integrity issues. Setting of the dirty bit
1214 * by __block_prepare_write() isn't a real problem here as we clear
1215 * the bit before releasing a page lock and thus writeback cannot
1216 * ever write the buffer.
1218 if (dirty)
1219 clear_buffer_dirty(bh);
1220 ret = ext3_journal_get_write_access(handle, bh);
1221 if (!ret && dirty)
1222 ret = ext3_journal_dirty_metadata(handle, bh);
1223 return ret;
1227 * Truncate blocks that were not used by write. We have to truncate the
1228 * pagecache as well so that corresponding buffers get properly unmapped.
1230 static void ext3_truncate_failed_write(struct inode *inode)
1232 truncate_inode_pages(inode->i_mapping, inode->i_size);
1233 ext3_truncate(inode);
1237 * Truncate blocks that were not used by direct IO write. We have to zero out
1238 * the last file block as well because direct IO might have written to it.
1240 static void ext3_truncate_failed_direct_write(struct inode *inode)
1242 ext3_block_truncate_page(inode, inode->i_size);
1243 ext3_truncate(inode);
1246 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1247 loff_t pos, unsigned len, unsigned flags,
1248 struct page **pagep, void **fsdata)
1250 struct inode *inode = mapping->host;
1251 int ret;
1252 handle_t *handle;
1253 int retries = 0;
1254 struct page *page;
1255 pgoff_t index;
1256 unsigned from, to;
1257 /* Reserve one block more for addition to orphan list in case
1258 * we allocate blocks but write fails for some reason */
1259 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1261 trace_ext3_write_begin(inode, pos, len, flags);
1263 index = pos >> PAGE_CACHE_SHIFT;
1264 from = pos & (PAGE_CACHE_SIZE - 1);
1265 to = from + len;
1267 retry:
1268 page = grab_cache_page_write_begin(mapping, index, flags);
1269 if (!page)
1270 return -ENOMEM;
1271 *pagep = page;
1273 handle = ext3_journal_start(inode, needed_blocks);
1274 if (IS_ERR(handle)) {
1275 unlock_page(page);
1276 page_cache_release(page);
1277 ret = PTR_ERR(handle);
1278 goto out;
1280 ret = __block_write_begin(page, pos, len, ext3_get_block);
1281 if (ret)
1282 goto write_begin_failed;
1284 if (ext3_should_journal_data(inode)) {
1285 ret = walk_page_buffers(handle, page_buffers(page),
1286 from, to, NULL, do_journal_get_write_access);
1288 write_begin_failed:
1289 if (ret) {
1291 * block_write_begin may have instantiated a few blocks
1292 * outside i_size. Trim these off again. Don't need
1293 * i_size_read because we hold i_mutex.
1295 * Add inode to orphan list in case we crash before truncate
1296 * finishes. Do this only if ext3_can_truncate() agrees so
1297 * that orphan processing code is happy.
1299 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1300 ext3_orphan_add(handle, inode);
1301 ext3_journal_stop(handle);
1302 unlock_page(page);
1303 page_cache_release(page);
1304 if (pos + len > inode->i_size)
1305 ext3_truncate_failed_write(inode);
1307 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1308 goto retry;
1309 out:
1310 return ret;
1314 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1316 int err = journal_dirty_data(handle, bh);
1317 if (err)
1318 ext3_journal_abort_handle(__func__, __func__,
1319 bh, handle, err);
1320 return err;
1323 /* For ordered writepage and write_end functions */
1324 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1327 * Write could have mapped the buffer but it didn't copy the data in
1328 * yet. So avoid filing such buffer into a transaction.
1330 if (buffer_mapped(bh) && buffer_uptodate(bh))
1331 return ext3_journal_dirty_data(handle, bh);
1332 return 0;
1335 /* For write_end() in data=journal mode */
1336 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1338 if (!buffer_mapped(bh) || buffer_freed(bh))
1339 return 0;
1340 set_buffer_uptodate(bh);
1341 return ext3_journal_dirty_metadata(handle, bh);
1345 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1346 * for the whole page but later we failed to copy the data in. Update inode
1347 * size according to what we managed to copy. The rest is going to be
1348 * truncated in write_end function.
1350 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1352 /* What matters to us is i_disksize. We don't write i_size anywhere */
1353 if (pos + copied > inode->i_size)
1354 i_size_write(inode, pos + copied);
1355 if (pos + copied > EXT3_I(inode)->i_disksize) {
1356 EXT3_I(inode)->i_disksize = pos + copied;
1357 mark_inode_dirty(inode);
1362 * We need to pick up the new inode size which generic_commit_write gave us
1363 * `file' can be NULL - eg, when called from page_symlink().
1365 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1366 * buffers are managed internally.
1368 static int ext3_ordered_write_end(struct file *file,
1369 struct address_space *mapping,
1370 loff_t pos, unsigned len, unsigned copied,
1371 struct page *page, void *fsdata)
1373 handle_t *handle = ext3_journal_current_handle();
1374 struct inode *inode = file->f_mapping->host;
1375 unsigned from, to;
1376 int ret = 0, ret2;
1378 trace_ext3_ordered_write_end(inode, pos, len, copied);
1379 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1381 from = pos & (PAGE_CACHE_SIZE - 1);
1382 to = from + copied;
1383 ret = walk_page_buffers(handle, page_buffers(page),
1384 from, to, NULL, journal_dirty_data_fn);
1386 if (ret == 0)
1387 update_file_sizes(inode, pos, copied);
1389 * There may be allocated blocks outside of i_size because
1390 * we failed to copy some data. Prepare for truncate.
1392 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1393 ext3_orphan_add(handle, inode);
1394 ret2 = ext3_journal_stop(handle);
1395 if (!ret)
1396 ret = ret2;
1397 unlock_page(page);
1398 page_cache_release(page);
1400 if (pos + len > inode->i_size)
1401 ext3_truncate_failed_write(inode);
1402 return ret ? ret : copied;
1405 static int ext3_writeback_write_end(struct file *file,
1406 struct address_space *mapping,
1407 loff_t pos, unsigned len, unsigned copied,
1408 struct page *page, void *fsdata)
1410 handle_t *handle = ext3_journal_current_handle();
1411 struct inode *inode = file->f_mapping->host;
1412 int ret;
1414 trace_ext3_writeback_write_end(inode, pos, len, copied);
1415 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1416 update_file_sizes(inode, pos, copied);
1418 * There may be allocated blocks outside of i_size because
1419 * we failed to copy some data. Prepare for truncate.
1421 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1422 ext3_orphan_add(handle, inode);
1423 ret = ext3_journal_stop(handle);
1424 unlock_page(page);
1425 page_cache_release(page);
1427 if (pos + len > inode->i_size)
1428 ext3_truncate_failed_write(inode);
1429 return ret ? ret : copied;
1432 static int ext3_journalled_write_end(struct file *file,
1433 struct address_space *mapping,
1434 loff_t pos, unsigned len, unsigned copied,
1435 struct page *page, void *fsdata)
1437 handle_t *handle = ext3_journal_current_handle();
1438 struct inode *inode = mapping->host;
1439 struct ext3_inode_info *ei = EXT3_I(inode);
1440 int ret = 0, ret2;
1441 int partial = 0;
1442 unsigned from, to;
1444 trace_ext3_journalled_write_end(inode, pos, len, copied);
1445 from = pos & (PAGE_CACHE_SIZE - 1);
1446 to = from + len;
1448 if (copied < len) {
1449 if (!PageUptodate(page))
1450 copied = 0;
1451 page_zero_new_buffers(page, from + copied, to);
1452 to = from + copied;
1455 ret = walk_page_buffers(handle, page_buffers(page), from,
1456 to, &partial, write_end_fn);
1457 if (!partial)
1458 SetPageUptodate(page);
1460 if (pos + copied > inode->i_size)
1461 i_size_write(inode, pos + copied);
1463 * There may be allocated blocks outside of i_size because
1464 * we failed to copy some data. Prepare for truncate.
1466 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1467 ext3_orphan_add(handle, inode);
1468 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1469 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1470 if (inode->i_size > ei->i_disksize) {
1471 ei->i_disksize = inode->i_size;
1472 ret2 = ext3_mark_inode_dirty(handle, inode);
1473 if (!ret)
1474 ret = ret2;
1477 ret2 = ext3_journal_stop(handle);
1478 if (!ret)
1479 ret = ret2;
1480 unlock_page(page);
1481 page_cache_release(page);
1483 if (pos + len > inode->i_size)
1484 ext3_truncate_failed_write(inode);
1485 return ret ? ret : copied;
1489 * bmap() is special. It gets used by applications such as lilo and by
1490 * the swapper to find the on-disk block of a specific piece of data.
1492 * Naturally, this is dangerous if the block concerned is still in the
1493 * journal. If somebody makes a swapfile on an ext3 data-journaling
1494 * filesystem and enables swap, then they may get a nasty shock when the
1495 * data getting swapped to that swapfile suddenly gets overwritten by
1496 * the original zero's written out previously to the journal and
1497 * awaiting writeback in the kernel's buffer cache.
1499 * So, if we see any bmap calls here on a modified, data-journaled file,
1500 * take extra steps to flush any blocks which might be in the cache.
1502 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1504 struct inode *inode = mapping->host;
1505 journal_t *journal;
1506 int err;
1508 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1510 * This is a REALLY heavyweight approach, but the use of
1511 * bmap on dirty files is expected to be extremely rare:
1512 * only if we run lilo or swapon on a freshly made file
1513 * do we expect this to happen.
1515 * (bmap requires CAP_SYS_RAWIO so this does not
1516 * represent an unprivileged user DOS attack --- we'd be
1517 * in trouble if mortal users could trigger this path at
1518 * will.)
1520 * NB. EXT3_STATE_JDATA is not set on files other than
1521 * regular files. If somebody wants to bmap a directory
1522 * or symlink and gets confused because the buffer
1523 * hasn't yet been flushed to disk, they deserve
1524 * everything they get.
1527 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1528 journal = EXT3_JOURNAL(inode);
1529 journal_lock_updates(journal);
1530 err = journal_flush(journal);
1531 journal_unlock_updates(journal);
1533 if (err)
1534 return 0;
1537 return generic_block_bmap(mapping,block,ext3_get_block);
1540 static int bget_one(handle_t *handle, struct buffer_head *bh)
1542 get_bh(bh);
1543 return 0;
1546 static int bput_one(handle_t *handle, struct buffer_head *bh)
1548 put_bh(bh);
1549 return 0;
1552 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1554 return !buffer_mapped(bh);
1558 * Note that we always start a transaction even if we're not journalling
1559 * data. This is to preserve ordering: any hole instantiation within
1560 * __block_write_full_page -> ext3_get_block() should be journalled
1561 * along with the data so we don't crash and then get metadata which
1562 * refers to old data.
1564 * In all journalling modes block_write_full_page() will start the I/O.
1566 * Problem:
1568 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1569 * ext3_writepage()
1571 * Similar for:
1573 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1575 * Same applies to ext3_get_block(). We will deadlock on various things like
1576 * lock_journal and i_truncate_mutex.
1578 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1579 * allocations fail.
1581 * 16May01: If we're reentered then journal_current_handle() will be
1582 * non-zero. We simply *return*.
1584 * 1 July 2001: @@@ FIXME:
1585 * In journalled data mode, a data buffer may be metadata against the
1586 * current transaction. But the same file is part of a shared mapping
1587 * and someone does a writepage() on it.
1589 * We will move the buffer onto the async_data list, but *after* it has
1590 * been dirtied. So there's a small window where we have dirty data on
1591 * BJ_Metadata.
1593 * Note that this only applies to the last partial page in the file. The
1594 * bit which block_write_full_page() uses prepare/commit for. (That's
1595 * broken code anyway: it's wrong for msync()).
1597 * It's a rare case: affects the final partial page, for journalled data
1598 * where the file is subject to bith write() and writepage() in the same
1599 * transction. To fix it we'll need a custom block_write_full_page().
1600 * We'll probably need that anyway for journalling writepage() output.
1602 * We don't honour synchronous mounts for writepage(). That would be
1603 * disastrous. Any write() or metadata operation will sync the fs for
1604 * us.
1606 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1607 * we don't need to open a transaction here.
1609 static int ext3_ordered_writepage(struct page *page,
1610 struct writeback_control *wbc)
1612 struct inode *inode = page->mapping->host;
1613 struct buffer_head *page_bufs;
1614 handle_t *handle = NULL;
1615 int ret = 0;
1616 int err;
1618 J_ASSERT(PageLocked(page));
1620 * We don't want to warn for emergency remount. The condition is
1621 * ordered to avoid dereferencing inode->i_sb in non-error case to
1622 * avoid slow-downs.
1624 WARN_ON_ONCE(IS_RDONLY(inode) &&
1625 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1628 * We give up here if we're reentered, because it might be for a
1629 * different filesystem.
1631 if (ext3_journal_current_handle())
1632 goto out_fail;
1634 trace_ext3_ordered_writepage(page);
1635 if (!page_has_buffers(page)) {
1636 create_empty_buffers(page, inode->i_sb->s_blocksize,
1637 (1 << BH_Dirty)|(1 << BH_Uptodate));
1638 page_bufs = page_buffers(page);
1639 } else {
1640 page_bufs = page_buffers(page);
1641 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1642 NULL, buffer_unmapped)) {
1643 /* Provide NULL get_block() to catch bugs if buffers
1644 * weren't really mapped */
1645 return block_write_full_page(page, NULL, wbc);
1648 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1650 if (IS_ERR(handle)) {
1651 ret = PTR_ERR(handle);
1652 goto out_fail;
1655 walk_page_buffers(handle, page_bufs, 0,
1656 PAGE_CACHE_SIZE, NULL, bget_one);
1658 ret = block_write_full_page(page, ext3_get_block, wbc);
1661 * The page can become unlocked at any point now, and
1662 * truncate can then come in and change things. So we
1663 * can't touch *page from now on. But *page_bufs is
1664 * safe due to elevated refcount.
1668 * And attach them to the current transaction. But only if
1669 * block_write_full_page() succeeded. Otherwise they are unmapped,
1670 * and generally junk.
1672 if (ret == 0) {
1673 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1674 NULL, journal_dirty_data_fn);
1675 if (!ret)
1676 ret = err;
1678 walk_page_buffers(handle, page_bufs, 0,
1679 PAGE_CACHE_SIZE, NULL, bput_one);
1680 err = ext3_journal_stop(handle);
1681 if (!ret)
1682 ret = err;
1683 return ret;
1685 out_fail:
1686 redirty_page_for_writepage(wbc, page);
1687 unlock_page(page);
1688 return ret;
1691 static int ext3_writeback_writepage(struct page *page,
1692 struct writeback_control *wbc)
1694 struct inode *inode = page->mapping->host;
1695 handle_t *handle = NULL;
1696 int ret = 0;
1697 int err;
1699 J_ASSERT(PageLocked(page));
1701 * We don't want to warn for emergency remount. The condition is
1702 * ordered to avoid dereferencing inode->i_sb in non-error case to
1703 * avoid slow-downs.
1705 WARN_ON_ONCE(IS_RDONLY(inode) &&
1706 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1708 if (ext3_journal_current_handle())
1709 goto out_fail;
1711 trace_ext3_writeback_writepage(page);
1712 if (page_has_buffers(page)) {
1713 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1714 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1715 /* Provide NULL get_block() to catch bugs if buffers
1716 * weren't really mapped */
1717 return block_write_full_page(page, NULL, wbc);
1721 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1722 if (IS_ERR(handle)) {
1723 ret = PTR_ERR(handle);
1724 goto out_fail;
1727 ret = block_write_full_page(page, ext3_get_block, wbc);
1729 err = ext3_journal_stop(handle);
1730 if (!ret)
1731 ret = err;
1732 return ret;
1734 out_fail:
1735 redirty_page_for_writepage(wbc, page);
1736 unlock_page(page);
1737 return ret;
1740 static int ext3_journalled_writepage(struct page *page,
1741 struct writeback_control *wbc)
1743 struct inode *inode = page->mapping->host;
1744 handle_t *handle = NULL;
1745 int ret = 0;
1746 int err;
1748 J_ASSERT(PageLocked(page));
1750 * We don't want to warn for emergency remount. The condition is
1751 * ordered to avoid dereferencing inode->i_sb in non-error case to
1752 * avoid slow-downs.
1754 WARN_ON_ONCE(IS_RDONLY(inode) &&
1755 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1757 if (ext3_journal_current_handle())
1758 goto no_write;
1760 trace_ext3_journalled_writepage(page);
1761 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1762 if (IS_ERR(handle)) {
1763 ret = PTR_ERR(handle);
1764 goto no_write;
1767 if (!page_has_buffers(page) || PageChecked(page)) {
1769 * It's mmapped pagecache. Add buffers and journal it. There
1770 * doesn't seem much point in redirtying the page here.
1772 ClearPageChecked(page);
1773 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1774 ext3_get_block);
1775 if (ret != 0) {
1776 ext3_journal_stop(handle);
1777 goto out_unlock;
1779 ret = walk_page_buffers(handle, page_buffers(page), 0,
1780 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1782 err = walk_page_buffers(handle, page_buffers(page), 0,
1783 PAGE_CACHE_SIZE, NULL, write_end_fn);
1784 if (ret == 0)
1785 ret = err;
1786 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1787 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1788 handle->h_transaction->t_tid);
1789 unlock_page(page);
1790 } else {
1792 * It may be a page full of checkpoint-mode buffers. We don't
1793 * really know unless we go poke around in the buffer_heads.
1794 * But block_write_full_page will do the right thing.
1796 ret = block_write_full_page(page, ext3_get_block, wbc);
1798 err = ext3_journal_stop(handle);
1799 if (!ret)
1800 ret = err;
1801 out:
1802 return ret;
1804 no_write:
1805 redirty_page_for_writepage(wbc, page);
1806 out_unlock:
1807 unlock_page(page);
1808 goto out;
1811 static int ext3_readpage(struct file *file, struct page *page)
1813 trace_ext3_readpage(page);
1814 return mpage_readpage(page, ext3_get_block);
1817 static int
1818 ext3_readpages(struct file *file, struct address_space *mapping,
1819 struct list_head *pages, unsigned nr_pages)
1821 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1824 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1826 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1828 trace_ext3_invalidatepage(page, offset);
1831 * If it's a full truncate we just forget about the pending dirtying
1833 if (offset == 0)
1834 ClearPageChecked(page);
1836 journal_invalidatepage(journal, page, offset);
1839 static int ext3_releasepage(struct page *page, gfp_t wait)
1841 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1843 trace_ext3_releasepage(page);
1844 WARN_ON(PageChecked(page));
1845 if (!page_has_buffers(page))
1846 return 0;
1847 return journal_try_to_free_buffers(journal, page, wait);
1851 * If the O_DIRECT write will extend the file then add this inode to the
1852 * orphan list. So recovery will truncate it back to the original size
1853 * if the machine crashes during the write.
1855 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1856 * crashes then stale disk data _may_ be exposed inside the file. But current
1857 * VFS code falls back into buffered path in that case so we are safe.
1859 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1860 const struct iovec *iov, loff_t offset,
1861 unsigned long nr_segs)
1863 struct file *file = iocb->ki_filp;
1864 struct inode *inode = file->f_mapping->host;
1865 struct ext3_inode_info *ei = EXT3_I(inode);
1866 handle_t *handle;
1867 ssize_t ret;
1868 int orphan = 0;
1869 size_t count = iov_length(iov, nr_segs);
1870 int retries = 0;
1872 trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1874 if (rw == WRITE) {
1875 loff_t final_size = offset + count;
1877 if (final_size > inode->i_size) {
1878 /* Credits for sb + inode write */
1879 handle = ext3_journal_start(inode, 2);
1880 if (IS_ERR(handle)) {
1881 ret = PTR_ERR(handle);
1882 goto out;
1884 ret = ext3_orphan_add(handle, inode);
1885 if (ret) {
1886 ext3_journal_stop(handle);
1887 goto out;
1889 orphan = 1;
1890 ei->i_disksize = inode->i_size;
1891 ext3_journal_stop(handle);
1895 retry:
1896 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1897 ext3_get_block);
1899 * In case of error extending write may have instantiated a few
1900 * blocks outside i_size. Trim these off again.
1902 if (unlikely((rw & WRITE) && ret < 0)) {
1903 loff_t isize = i_size_read(inode);
1904 loff_t end = offset + iov_length(iov, nr_segs);
1906 if (end > isize)
1907 ext3_truncate_failed_direct_write(inode);
1909 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1910 goto retry;
1912 if (orphan) {
1913 int err;
1915 /* Credits for sb + inode write */
1916 handle = ext3_journal_start(inode, 2);
1917 if (IS_ERR(handle)) {
1918 /* This is really bad luck. We've written the data
1919 * but cannot extend i_size. Truncate allocated blocks
1920 * and pretend the write failed... */
1921 ext3_truncate_failed_direct_write(inode);
1922 ret = PTR_ERR(handle);
1923 goto out;
1925 if (inode->i_nlink)
1926 ext3_orphan_del(handle, inode);
1927 if (ret > 0) {
1928 loff_t end = offset + ret;
1929 if (end > inode->i_size) {
1930 ei->i_disksize = end;
1931 i_size_write(inode, end);
1933 * We're going to return a positive `ret'
1934 * here due to non-zero-length I/O, so there's
1935 * no way of reporting error returns from
1936 * ext3_mark_inode_dirty() to userspace. So
1937 * ignore it.
1939 ext3_mark_inode_dirty(handle, inode);
1942 err = ext3_journal_stop(handle);
1943 if (ret == 0)
1944 ret = err;
1946 out:
1947 trace_ext3_direct_IO_exit(inode, offset,
1948 iov_length(iov, nr_segs), rw, ret);
1949 return ret;
1953 * Pages can be marked dirty completely asynchronously from ext3's journalling
1954 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1955 * much here because ->set_page_dirty is called under VFS locks. The page is
1956 * not necessarily locked.
1958 * We cannot just dirty the page and leave attached buffers clean, because the
1959 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1960 * or jbddirty because all the journalling code will explode.
1962 * So what we do is to mark the page "pending dirty" and next time writepage
1963 * is called, propagate that into the buffers appropriately.
1965 static int ext3_journalled_set_page_dirty(struct page *page)
1967 SetPageChecked(page);
1968 return __set_page_dirty_nobuffers(page);
1971 static const struct address_space_operations ext3_ordered_aops = {
1972 .readpage = ext3_readpage,
1973 .readpages = ext3_readpages,
1974 .writepage = ext3_ordered_writepage,
1975 .write_begin = ext3_write_begin,
1976 .write_end = ext3_ordered_write_end,
1977 .bmap = ext3_bmap,
1978 .invalidatepage = ext3_invalidatepage,
1979 .releasepage = ext3_releasepage,
1980 .direct_IO = ext3_direct_IO,
1981 .migratepage = buffer_migrate_page,
1982 .is_partially_uptodate = block_is_partially_uptodate,
1983 .error_remove_page = generic_error_remove_page,
1986 static const struct address_space_operations ext3_writeback_aops = {
1987 .readpage = ext3_readpage,
1988 .readpages = ext3_readpages,
1989 .writepage = ext3_writeback_writepage,
1990 .write_begin = ext3_write_begin,
1991 .write_end = ext3_writeback_write_end,
1992 .bmap = ext3_bmap,
1993 .invalidatepage = ext3_invalidatepage,
1994 .releasepage = ext3_releasepage,
1995 .direct_IO = ext3_direct_IO,
1996 .migratepage = buffer_migrate_page,
1997 .is_partially_uptodate = block_is_partially_uptodate,
1998 .error_remove_page = generic_error_remove_page,
2001 static const struct address_space_operations ext3_journalled_aops = {
2002 .readpage = ext3_readpage,
2003 .readpages = ext3_readpages,
2004 .writepage = ext3_journalled_writepage,
2005 .write_begin = ext3_write_begin,
2006 .write_end = ext3_journalled_write_end,
2007 .set_page_dirty = ext3_journalled_set_page_dirty,
2008 .bmap = ext3_bmap,
2009 .invalidatepage = ext3_invalidatepage,
2010 .releasepage = ext3_releasepage,
2011 .is_partially_uptodate = block_is_partially_uptodate,
2012 .error_remove_page = generic_error_remove_page,
2015 void ext3_set_aops(struct inode *inode)
2017 if (ext3_should_order_data(inode))
2018 inode->i_mapping->a_ops = &ext3_ordered_aops;
2019 else if (ext3_should_writeback_data(inode))
2020 inode->i_mapping->a_ops = &ext3_writeback_aops;
2021 else
2022 inode->i_mapping->a_ops = &ext3_journalled_aops;
2026 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2027 * up to the end of the block which corresponds to `from'.
2028 * This required during truncate. We need to physically zero the tail end
2029 * of that block so it doesn't yield old data if the file is later grown.
2031 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2033 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2034 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2035 unsigned blocksize, iblock, length, pos;
2036 struct page *page;
2037 handle_t *handle = NULL;
2038 struct buffer_head *bh;
2039 int err = 0;
2041 /* Truncated on block boundary - nothing to do */
2042 blocksize = inode->i_sb->s_blocksize;
2043 if ((from & (blocksize - 1)) == 0)
2044 return 0;
2046 page = grab_cache_page(inode->i_mapping, index);
2047 if (!page)
2048 return -ENOMEM;
2049 length = blocksize - (offset & (blocksize - 1));
2050 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2052 if (!page_has_buffers(page))
2053 create_empty_buffers(page, blocksize, 0);
2055 /* Find the buffer that contains "offset" */
2056 bh = page_buffers(page);
2057 pos = blocksize;
2058 while (offset >= pos) {
2059 bh = bh->b_this_page;
2060 iblock++;
2061 pos += blocksize;
2064 err = 0;
2065 if (buffer_freed(bh)) {
2066 BUFFER_TRACE(bh, "freed: skip");
2067 goto unlock;
2070 if (!buffer_mapped(bh)) {
2071 BUFFER_TRACE(bh, "unmapped");
2072 ext3_get_block(inode, iblock, bh, 0);
2073 /* unmapped? It's a hole - nothing to do */
2074 if (!buffer_mapped(bh)) {
2075 BUFFER_TRACE(bh, "still unmapped");
2076 goto unlock;
2080 /* Ok, it's mapped. Make sure it's up-to-date */
2081 if (PageUptodate(page))
2082 set_buffer_uptodate(bh);
2084 if (!bh_uptodate_or_lock(bh)) {
2085 err = bh_submit_read(bh);
2086 /* Uhhuh. Read error. Complain and punt. */
2087 if (err)
2088 goto unlock;
2091 /* data=writeback mode doesn't need transaction to zero-out data */
2092 if (!ext3_should_writeback_data(inode)) {
2093 /* We journal at most one block */
2094 handle = ext3_journal_start(inode, 1);
2095 if (IS_ERR(handle)) {
2096 clear_highpage(page);
2097 flush_dcache_page(page);
2098 err = PTR_ERR(handle);
2099 goto unlock;
2103 if (ext3_should_journal_data(inode)) {
2104 BUFFER_TRACE(bh, "get write access");
2105 err = ext3_journal_get_write_access(handle, bh);
2106 if (err)
2107 goto stop;
2110 zero_user(page, offset, length);
2111 BUFFER_TRACE(bh, "zeroed end of block");
2113 err = 0;
2114 if (ext3_should_journal_data(inode)) {
2115 err = ext3_journal_dirty_metadata(handle, bh);
2116 } else {
2117 if (ext3_should_order_data(inode))
2118 err = ext3_journal_dirty_data(handle, bh);
2119 mark_buffer_dirty(bh);
2121 stop:
2122 if (handle)
2123 ext3_journal_stop(handle);
2125 unlock:
2126 unlock_page(page);
2127 page_cache_release(page);
2128 return err;
2132 * Probably it should be a library function... search for first non-zero word
2133 * or memcmp with zero_page, whatever is better for particular architecture.
2134 * Linus?
2136 static inline int all_zeroes(__le32 *p, __le32 *q)
2138 while (p < q)
2139 if (*p++)
2140 return 0;
2141 return 1;
2145 * ext3_find_shared - find the indirect blocks for partial truncation.
2146 * @inode: inode in question
2147 * @depth: depth of the affected branch
2148 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2149 * @chain: place to store the pointers to partial indirect blocks
2150 * @top: place to the (detached) top of branch
2152 * This is a helper function used by ext3_truncate().
2154 * When we do truncate() we may have to clean the ends of several
2155 * indirect blocks but leave the blocks themselves alive. Block is
2156 * partially truncated if some data below the new i_size is referred
2157 * from it (and it is on the path to the first completely truncated
2158 * data block, indeed). We have to free the top of that path along
2159 * with everything to the right of the path. Since no allocation
2160 * past the truncation point is possible until ext3_truncate()
2161 * finishes, we may safely do the latter, but top of branch may
2162 * require special attention - pageout below the truncation point
2163 * might try to populate it.
2165 * We atomically detach the top of branch from the tree, store the
2166 * block number of its root in *@top, pointers to buffer_heads of
2167 * partially truncated blocks - in @chain[].bh and pointers to
2168 * their last elements that should not be removed - in
2169 * @chain[].p. Return value is the pointer to last filled element
2170 * of @chain.
2172 * The work left to caller to do the actual freeing of subtrees:
2173 * a) free the subtree starting from *@top
2174 * b) free the subtrees whose roots are stored in
2175 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2176 * c) free the subtrees growing from the inode past the @chain[0].
2177 * (no partially truncated stuff there). */
2179 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2180 int offsets[4], Indirect chain[4], __le32 *top)
2182 Indirect *partial, *p;
2183 int k, err;
2185 *top = 0;
2186 /* Make k index the deepest non-null offset + 1 */
2187 for (k = depth; k > 1 && !offsets[k-1]; k--)
2189 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2190 /* Writer: pointers */
2191 if (!partial)
2192 partial = chain + k-1;
2194 * If the branch acquired continuation since we've looked at it -
2195 * fine, it should all survive and (new) top doesn't belong to us.
2197 if (!partial->key && *partial->p)
2198 /* Writer: end */
2199 goto no_top;
2200 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2203 * OK, we've found the last block that must survive. The rest of our
2204 * branch should be detached before unlocking. However, if that rest
2205 * of branch is all ours and does not grow immediately from the inode
2206 * it's easier to cheat and just decrement partial->p.
2208 if (p == chain + k - 1 && p > chain) {
2209 p->p--;
2210 } else {
2211 *top = *p->p;
2212 /* Nope, don't do this in ext3. Must leave the tree intact */
2213 #if 0
2214 *p->p = 0;
2215 #endif
2217 /* Writer: end */
2219 while(partial > p) {
2220 brelse(partial->bh);
2221 partial--;
2223 no_top:
2224 return partial;
2228 * Zero a number of block pointers in either an inode or an indirect block.
2229 * If we restart the transaction we must again get write access to the
2230 * indirect block for further modification.
2232 * We release `count' blocks on disk, but (last - first) may be greater
2233 * than `count' because there can be holes in there.
2235 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2236 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2237 unsigned long count, __le32 *first, __le32 *last)
2239 __le32 *p;
2240 if (try_to_extend_transaction(handle, inode)) {
2241 if (bh) {
2242 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2243 if (ext3_journal_dirty_metadata(handle, bh))
2244 return;
2246 ext3_mark_inode_dirty(handle, inode);
2247 truncate_restart_transaction(handle, inode);
2248 if (bh) {
2249 BUFFER_TRACE(bh, "retaking write access");
2250 if (ext3_journal_get_write_access(handle, bh))
2251 return;
2256 * Any buffers which are on the journal will be in memory. We find
2257 * them on the hash table so journal_revoke() will run journal_forget()
2258 * on them. We've already detached each block from the file, so
2259 * bforget() in journal_forget() should be safe.
2261 * AKPM: turn on bforget in journal_forget()!!!
2263 for (p = first; p < last; p++) {
2264 u32 nr = le32_to_cpu(*p);
2265 if (nr) {
2266 struct buffer_head *bh;
2268 *p = 0;
2269 bh = sb_find_get_block(inode->i_sb, nr);
2270 ext3_forget(handle, 0, inode, bh, nr);
2274 ext3_free_blocks(handle, inode, block_to_free, count);
2278 * ext3_free_data - free a list of data blocks
2279 * @handle: handle for this transaction
2280 * @inode: inode we are dealing with
2281 * @this_bh: indirect buffer_head which contains *@first and *@last
2282 * @first: array of block numbers
2283 * @last: points immediately past the end of array
2285 * We are freeing all blocks referred from that array (numbers are stored as
2286 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2288 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2289 * blocks are contiguous then releasing them at one time will only affect one
2290 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2291 * actually use a lot of journal space.
2293 * @this_bh will be %NULL if @first and @last point into the inode's direct
2294 * block pointers.
2296 static void ext3_free_data(handle_t *handle, struct inode *inode,
2297 struct buffer_head *this_bh,
2298 __le32 *first, __le32 *last)
2300 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2301 unsigned long count = 0; /* Number of blocks in the run */
2302 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2303 corresponding to
2304 block_to_free */
2305 ext3_fsblk_t nr; /* Current block # */
2306 __le32 *p; /* Pointer into inode/ind
2307 for current block */
2308 int err;
2310 if (this_bh) { /* For indirect block */
2311 BUFFER_TRACE(this_bh, "get_write_access");
2312 err = ext3_journal_get_write_access(handle, this_bh);
2313 /* Important: if we can't update the indirect pointers
2314 * to the blocks, we can't free them. */
2315 if (err)
2316 return;
2319 for (p = first; p < last; p++) {
2320 nr = le32_to_cpu(*p);
2321 if (nr) {
2322 /* accumulate blocks to free if they're contiguous */
2323 if (count == 0) {
2324 block_to_free = nr;
2325 block_to_free_p = p;
2326 count = 1;
2327 } else if (nr == block_to_free + count) {
2328 count++;
2329 } else {
2330 ext3_clear_blocks(handle, inode, this_bh,
2331 block_to_free,
2332 count, block_to_free_p, p);
2333 block_to_free = nr;
2334 block_to_free_p = p;
2335 count = 1;
2340 if (count > 0)
2341 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2342 count, block_to_free_p, p);
2344 if (this_bh) {
2345 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2348 * The buffer head should have an attached journal head at this
2349 * point. However, if the data is corrupted and an indirect
2350 * block pointed to itself, it would have been detached when
2351 * the block was cleared. Check for this instead of OOPSing.
2353 if (bh2jh(this_bh))
2354 ext3_journal_dirty_metadata(handle, this_bh);
2355 else
2356 ext3_error(inode->i_sb, "ext3_free_data",
2357 "circular indirect block detected, "
2358 "inode=%lu, block=%llu",
2359 inode->i_ino,
2360 (unsigned long long)this_bh->b_blocknr);
2365 * ext3_free_branches - free an array of branches
2366 * @handle: JBD handle for this transaction
2367 * @inode: inode we are dealing with
2368 * @parent_bh: the buffer_head which contains *@first and *@last
2369 * @first: array of block numbers
2370 * @last: pointer immediately past the end of array
2371 * @depth: depth of the branches to free
2373 * We are freeing all blocks referred from these branches (numbers are
2374 * stored as little-endian 32-bit) and updating @inode->i_blocks
2375 * appropriately.
2377 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2378 struct buffer_head *parent_bh,
2379 __le32 *first, __le32 *last, int depth)
2381 ext3_fsblk_t nr;
2382 __le32 *p;
2384 if (is_handle_aborted(handle))
2385 return;
2387 if (depth--) {
2388 struct buffer_head *bh;
2389 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2390 p = last;
2391 while (--p >= first) {
2392 nr = le32_to_cpu(*p);
2393 if (!nr)
2394 continue; /* A hole */
2396 /* Go read the buffer for the next level down */
2397 bh = sb_bread(inode->i_sb, nr);
2400 * A read failure? Report error and clear slot
2401 * (should be rare).
2403 if (!bh) {
2404 ext3_error(inode->i_sb, "ext3_free_branches",
2405 "Read failure, inode=%lu, block="E3FSBLK,
2406 inode->i_ino, nr);
2407 continue;
2410 /* This zaps the entire block. Bottom up. */
2411 BUFFER_TRACE(bh, "free child branches");
2412 ext3_free_branches(handle, inode, bh,
2413 (__le32*)bh->b_data,
2414 (__le32*)bh->b_data + addr_per_block,
2415 depth);
2418 * Everything below this this pointer has been
2419 * released. Now let this top-of-subtree go.
2421 * We want the freeing of this indirect block to be
2422 * atomic in the journal with the updating of the
2423 * bitmap block which owns it. So make some room in
2424 * the journal.
2426 * We zero the parent pointer *after* freeing its
2427 * pointee in the bitmaps, so if extend_transaction()
2428 * for some reason fails to put the bitmap changes and
2429 * the release into the same transaction, recovery
2430 * will merely complain about releasing a free block,
2431 * rather than leaking blocks.
2433 if (is_handle_aborted(handle))
2434 return;
2435 if (try_to_extend_transaction(handle, inode)) {
2436 ext3_mark_inode_dirty(handle, inode);
2437 truncate_restart_transaction(handle, inode);
2441 * We've probably journalled the indirect block several
2442 * times during the truncate. But it's no longer
2443 * needed and we now drop it from the transaction via
2444 * journal_revoke().
2446 * That's easy if it's exclusively part of this
2447 * transaction. But if it's part of the committing
2448 * transaction then journal_forget() will simply
2449 * brelse() it. That means that if the underlying
2450 * block is reallocated in ext3_get_block(),
2451 * unmap_underlying_metadata() will find this block
2452 * and will try to get rid of it. damn, damn. Thus
2453 * we don't allow a block to be reallocated until
2454 * a transaction freeing it has fully committed.
2456 * We also have to make sure journal replay after a
2457 * crash does not overwrite non-journaled data blocks
2458 * with old metadata when the block got reallocated for
2459 * data. Thus we have to store a revoke record for a
2460 * block in the same transaction in which we free the
2461 * block.
2463 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2465 ext3_free_blocks(handle, inode, nr, 1);
2467 if (parent_bh) {
2469 * The block which we have just freed is
2470 * pointed to by an indirect block: journal it
2472 BUFFER_TRACE(parent_bh, "get_write_access");
2473 if (!ext3_journal_get_write_access(handle,
2474 parent_bh)){
2475 *p = 0;
2476 BUFFER_TRACE(parent_bh,
2477 "call ext3_journal_dirty_metadata");
2478 ext3_journal_dirty_metadata(handle,
2479 parent_bh);
2483 } else {
2484 /* We have reached the bottom of the tree. */
2485 BUFFER_TRACE(parent_bh, "free data blocks");
2486 ext3_free_data(handle, inode, parent_bh, first, last);
2490 int ext3_can_truncate(struct inode *inode)
2492 if (S_ISREG(inode->i_mode))
2493 return 1;
2494 if (S_ISDIR(inode->i_mode))
2495 return 1;
2496 if (S_ISLNK(inode->i_mode))
2497 return !ext3_inode_is_fast_symlink(inode);
2498 return 0;
2502 * ext3_truncate()
2504 * We block out ext3_get_block() block instantiations across the entire
2505 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2506 * simultaneously on behalf of the same inode.
2508 * As we work through the truncate and commit bits of it to the journal there
2509 * is one core, guiding principle: the file's tree must always be consistent on
2510 * disk. We must be able to restart the truncate after a crash.
2512 * The file's tree may be transiently inconsistent in memory (although it
2513 * probably isn't), but whenever we close off and commit a journal transaction,
2514 * the contents of (the filesystem + the journal) must be consistent and
2515 * restartable. It's pretty simple, really: bottom up, right to left (although
2516 * left-to-right works OK too).
2518 * Note that at recovery time, journal replay occurs *before* the restart of
2519 * truncate against the orphan inode list.
2521 * The committed inode has the new, desired i_size (which is the same as
2522 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2523 * that this inode's truncate did not complete and it will again call
2524 * ext3_truncate() to have another go. So there will be instantiated blocks
2525 * to the right of the truncation point in a crashed ext3 filesystem. But
2526 * that's fine - as long as they are linked from the inode, the post-crash
2527 * ext3_truncate() run will find them and release them.
2529 void ext3_truncate(struct inode *inode)
2531 handle_t *handle;
2532 struct ext3_inode_info *ei = EXT3_I(inode);
2533 __le32 *i_data = ei->i_data;
2534 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2535 int offsets[4];
2536 Indirect chain[4];
2537 Indirect *partial;
2538 __le32 nr = 0;
2539 int n;
2540 long last_block;
2541 unsigned blocksize = inode->i_sb->s_blocksize;
2543 trace_ext3_truncate_enter(inode);
2545 if (!ext3_can_truncate(inode))
2546 goto out_notrans;
2548 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2549 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2551 handle = start_transaction(inode);
2552 if (IS_ERR(handle))
2553 goto out_notrans;
2555 last_block = (inode->i_size + blocksize-1)
2556 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2557 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2558 if (n == 0)
2559 goto out_stop; /* error */
2562 * OK. This truncate is going to happen. We add the inode to the
2563 * orphan list, so that if this truncate spans multiple transactions,
2564 * and we crash, we will resume the truncate when the filesystem
2565 * recovers. It also marks the inode dirty, to catch the new size.
2567 * Implication: the file must always be in a sane, consistent
2568 * truncatable state while each transaction commits.
2570 if (ext3_orphan_add(handle, inode))
2571 goto out_stop;
2574 * The orphan list entry will now protect us from any crash which
2575 * occurs before the truncate completes, so it is now safe to propagate
2576 * the new, shorter inode size (held for now in i_size) into the
2577 * on-disk inode. We do this via i_disksize, which is the value which
2578 * ext3 *really* writes onto the disk inode.
2580 ei->i_disksize = inode->i_size;
2583 * From here we block out all ext3_get_block() callers who want to
2584 * modify the block allocation tree.
2586 mutex_lock(&ei->truncate_mutex);
2588 if (n == 1) { /* direct blocks */
2589 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2590 i_data + EXT3_NDIR_BLOCKS);
2591 goto do_indirects;
2594 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2595 /* Kill the top of shared branch (not detached) */
2596 if (nr) {
2597 if (partial == chain) {
2598 /* Shared branch grows from the inode */
2599 ext3_free_branches(handle, inode, NULL,
2600 &nr, &nr+1, (chain+n-1) - partial);
2601 *partial->p = 0;
2603 * We mark the inode dirty prior to restart,
2604 * and prior to stop. No need for it here.
2606 } else {
2607 /* Shared branch grows from an indirect block */
2608 ext3_free_branches(handle, inode, partial->bh,
2609 partial->p,
2610 partial->p+1, (chain+n-1) - partial);
2613 /* Clear the ends of indirect blocks on the shared branch */
2614 while (partial > chain) {
2615 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2616 (__le32*)partial->bh->b_data+addr_per_block,
2617 (chain+n-1) - partial);
2618 BUFFER_TRACE(partial->bh, "call brelse");
2619 brelse (partial->bh);
2620 partial--;
2622 do_indirects:
2623 /* Kill the remaining (whole) subtrees */
2624 switch (offsets[0]) {
2625 default:
2626 nr = i_data[EXT3_IND_BLOCK];
2627 if (nr) {
2628 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2629 i_data[EXT3_IND_BLOCK] = 0;
2631 case EXT3_IND_BLOCK:
2632 nr = i_data[EXT3_DIND_BLOCK];
2633 if (nr) {
2634 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2635 i_data[EXT3_DIND_BLOCK] = 0;
2637 case EXT3_DIND_BLOCK:
2638 nr = i_data[EXT3_TIND_BLOCK];
2639 if (nr) {
2640 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2641 i_data[EXT3_TIND_BLOCK] = 0;
2643 case EXT3_TIND_BLOCK:
2647 ext3_discard_reservation(inode);
2649 mutex_unlock(&ei->truncate_mutex);
2650 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2651 ext3_mark_inode_dirty(handle, inode);
2654 * In a multi-transaction truncate, we only make the final transaction
2655 * synchronous
2657 if (IS_SYNC(inode))
2658 handle->h_sync = 1;
2659 out_stop:
2661 * If this was a simple ftruncate(), and the file will remain alive
2662 * then we need to clear up the orphan record which we created above.
2663 * However, if this was a real unlink then we were called by
2664 * ext3_evict_inode(), and we allow that function to clean up the
2665 * orphan info for us.
2667 if (inode->i_nlink)
2668 ext3_orphan_del(handle, inode);
2670 ext3_journal_stop(handle);
2671 trace_ext3_truncate_exit(inode);
2672 return;
2673 out_notrans:
2675 * Delete the inode from orphan list so that it doesn't stay there
2676 * forever and trigger assertion on umount.
2678 if (inode->i_nlink)
2679 ext3_orphan_del(NULL, inode);
2680 trace_ext3_truncate_exit(inode);
2683 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2684 unsigned long ino, struct ext3_iloc *iloc)
2686 unsigned long block_group;
2687 unsigned long offset;
2688 ext3_fsblk_t block;
2689 struct ext3_group_desc *gdp;
2691 if (!ext3_valid_inum(sb, ino)) {
2693 * This error is already checked for in namei.c unless we are
2694 * looking at an NFS filehandle, in which case no error
2695 * report is needed
2697 return 0;
2700 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2701 gdp = ext3_get_group_desc(sb, block_group, NULL);
2702 if (!gdp)
2703 return 0;
2705 * Figure out the offset within the block group inode table
2707 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2708 EXT3_INODE_SIZE(sb);
2709 block = le32_to_cpu(gdp->bg_inode_table) +
2710 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2712 iloc->block_group = block_group;
2713 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2714 return block;
2718 * ext3_get_inode_loc returns with an extra refcount against the inode's
2719 * underlying buffer_head on success. If 'in_mem' is true, we have all
2720 * data in memory that is needed to recreate the on-disk version of this
2721 * inode.
2723 static int __ext3_get_inode_loc(struct inode *inode,
2724 struct ext3_iloc *iloc, int in_mem)
2726 ext3_fsblk_t block;
2727 struct buffer_head *bh;
2729 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2730 if (!block)
2731 return -EIO;
2733 bh = sb_getblk(inode->i_sb, block);
2734 if (!bh) {
2735 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2736 "unable to read inode block - "
2737 "inode=%lu, block="E3FSBLK,
2738 inode->i_ino, block);
2739 return -EIO;
2741 if (!buffer_uptodate(bh)) {
2742 lock_buffer(bh);
2745 * If the buffer has the write error flag, we have failed
2746 * to write out another inode in the same block. In this
2747 * case, we don't have to read the block because we may
2748 * read the old inode data successfully.
2750 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2751 set_buffer_uptodate(bh);
2753 if (buffer_uptodate(bh)) {
2754 /* someone brought it uptodate while we waited */
2755 unlock_buffer(bh);
2756 goto has_buffer;
2760 * If we have all information of the inode in memory and this
2761 * is the only valid inode in the block, we need not read the
2762 * block.
2764 if (in_mem) {
2765 struct buffer_head *bitmap_bh;
2766 struct ext3_group_desc *desc;
2767 int inodes_per_buffer;
2768 int inode_offset, i;
2769 int block_group;
2770 int start;
2772 block_group = (inode->i_ino - 1) /
2773 EXT3_INODES_PER_GROUP(inode->i_sb);
2774 inodes_per_buffer = bh->b_size /
2775 EXT3_INODE_SIZE(inode->i_sb);
2776 inode_offset = ((inode->i_ino - 1) %
2777 EXT3_INODES_PER_GROUP(inode->i_sb));
2778 start = inode_offset & ~(inodes_per_buffer - 1);
2780 /* Is the inode bitmap in cache? */
2781 desc = ext3_get_group_desc(inode->i_sb,
2782 block_group, NULL);
2783 if (!desc)
2784 goto make_io;
2786 bitmap_bh = sb_getblk(inode->i_sb,
2787 le32_to_cpu(desc->bg_inode_bitmap));
2788 if (!bitmap_bh)
2789 goto make_io;
2792 * If the inode bitmap isn't in cache then the
2793 * optimisation may end up performing two reads instead
2794 * of one, so skip it.
2796 if (!buffer_uptodate(bitmap_bh)) {
2797 brelse(bitmap_bh);
2798 goto make_io;
2800 for (i = start; i < start + inodes_per_buffer; i++) {
2801 if (i == inode_offset)
2802 continue;
2803 if (ext3_test_bit(i, bitmap_bh->b_data))
2804 break;
2806 brelse(bitmap_bh);
2807 if (i == start + inodes_per_buffer) {
2808 /* all other inodes are free, so skip I/O */
2809 memset(bh->b_data, 0, bh->b_size);
2810 set_buffer_uptodate(bh);
2811 unlock_buffer(bh);
2812 goto has_buffer;
2816 make_io:
2818 * There are other valid inodes in the buffer, this inode
2819 * has in-inode xattrs, or we don't have this inode in memory.
2820 * Read the block from disk.
2822 trace_ext3_load_inode(inode);
2823 get_bh(bh);
2824 bh->b_end_io = end_buffer_read_sync;
2825 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2826 wait_on_buffer(bh);
2827 if (!buffer_uptodate(bh)) {
2828 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2829 "unable to read inode block - "
2830 "inode=%lu, block="E3FSBLK,
2831 inode->i_ino, block);
2832 brelse(bh);
2833 return -EIO;
2836 has_buffer:
2837 iloc->bh = bh;
2838 return 0;
2841 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2843 /* We have all inode data except xattrs in memory here. */
2844 return __ext3_get_inode_loc(inode, iloc,
2845 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2848 void ext3_set_inode_flags(struct inode *inode)
2850 unsigned int flags = EXT3_I(inode)->i_flags;
2852 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2853 if (flags & EXT3_SYNC_FL)
2854 inode->i_flags |= S_SYNC;
2855 if (flags & EXT3_APPEND_FL)
2856 inode->i_flags |= S_APPEND;
2857 if (flags & EXT3_IMMUTABLE_FL)
2858 inode->i_flags |= S_IMMUTABLE;
2859 if (flags & EXT3_NOATIME_FL)
2860 inode->i_flags |= S_NOATIME;
2861 if (flags & EXT3_DIRSYNC_FL)
2862 inode->i_flags |= S_DIRSYNC;
2865 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2866 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2868 unsigned int flags = ei->vfs_inode.i_flags;
2870 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2871 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2872 if (flags & S_SYNC)
2873 ei->i_flags |= EXT3_SYNC_FL;
2874 if (flags & S_APPEND)
2875 ei->i_flags |= EXT3_APPEND_FL;
2876 if (flags & S_IMMUTABLE)
2877 ei->i_flags |= EXT3_IMMUTABLE_FL;
2878 if (flags & S_NOATIME)
2879 ei->i_flags |= EXT3_NOATIME_FL;
2880 if (flags & S_DIRSYNC)
2881 ei->i_flags |= EXT3_DIRSYNC_FL;
2884 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2886 struct ext3_iloc iloc;
2887 struct ext3_inode *raw_inode;
2888 struct ext3_inode_info *ei;
2889 struct buffer_head *bh;
2890 struct inode *inode;
2891 journal_t *journal = EXT3_SB(sb)->s_journal;
2892 transaction_t *transaction;
2893 long ret;
2894 int block;
2896 inode = iget_locked(sb, ino);
2897 if (!inode)
2898 return ERR_PTR(-ENOMEM);
2899 if (!(inode->i_state & I_NEW))
2900 return inode;
2902 ei = EXT3_I(inode);
2903 ei->i_block_alloc_info = NULL;
2905 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2906 if (ret < 0)
2907 goto bad_inode;
2908 bh = iloc.bh;
2909 raw_inode = ext3_raw_inode(&iloc);
2910 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2911 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2912 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2913 if(!(test_opt (inode->i_sb, NO_UID32))) {
2914 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2915 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2917 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2918 inode->i_size = le32_to_cpu(raw_inode->i_size);
2919 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2920 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2921 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2922 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2924 ei->i_state_flags = 0;
2925 ei->i_dir_start_lookup = 0;
2926 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2927 /* We now have enough fields to check if the inode was active or not.
2928 * This is needed because nfsd might try to access dead inodes
2929 * the test is that same one that e2fsck uses
2930 * NeilBrown 1999oct15
2932 if (inode->i_nlink == 0) {
2933 if (inode->i_mode == 0 ||
2934 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2935 /* this inode is deleted */
2936 brelse (bh);
2937 ret = -ESTALE;
2938 goto bad_inode;
2940 /* The only unlinked inodes we let through here have
2941 * valid i_mode and are being read by the orphan
2942 * recovery code: that's fine, we're about to complete
2943 * the process of deleting those. */
2945 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2946 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2947 #ifdef EXT3_FRAGMENTS
2948 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2949 ei->i_frag_no = raw_inode->i_frag;
2950 ei->i_frag_size = raw_inode->i_fsize;
2951 #endif
2952 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2953 if (!S_ISREG(inode->i_mode)) {
2954 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2955 } else {
2956 inode->i_size |=
2957 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2959 ei->i_disksize = inode->i_size;
2960 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2961 ei->i_block_group = iloc.block_group;
2963 * NOTE! The in-memory inode i_data array is in little-endian order
2964 * even on big-endian machines: we do NOT byteswap the block numbers!
2966 for (block = 0; block < EXT3_N_BLOCKS; block++)
2967 ei->i_data[block] = raw_inode->i_block[block];
2968 INIT_LIST_HEAD(&ei->i_orphan);
2971 * Set transaction id's of transactions that have to be committed
2972 * to finish f[data]sync. We set them to currently running transaction
2973 * as we cannot be sure that the inode or some of its metadata isn't
2974 * part of the transaction - the inode could have been reclaimed and
2975 * now it is reread from disk.
2977 if (journal) {
2978 tid_t tid;
2980 spin_lock(&journal->j_state_lock);
2981 if (journal->j_running_transaction)
2982 transaction = journal->j_running_transaction;
2983 else
2984 transaction = journal->j_committing_transaction;
2985 if (transaction)
2986 tid = transaction->t_tid;
2987 else
2988 tid = journal->j_commit_sequence;
2989 spin_unlock(&journal->j_state_lock);
2990 atomic_set(&ei->i_sync_tid, tid);
2991 atomic_set(&ei->i_datasync_tid, tid);
2994 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2995 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2997 * When mke2fs creates big inodes it does not zero out
2998 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2999 * so ignore those first few inodes.
3001 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3002 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3003 EXT3_INODE_SIZE(inode->i_sb)) {
3004 brelse (bh);
3005 ret = -EIO;
3006 goto bad_inode;
3008 if (ei->i_extra_isize == 0) {
3009 /* The extra space is currently unused. Use it. */
3010 ei->i_extra_isize = sizeof(struct ext3_inode) -
3011 EXT3_GOOD_OLD_INODE_SIZE;
3012 } else {
3013 __le32 *magic = (void *)raw_inode +
3014 EXT3_GOOD_OLD_INODE_SIZE +
3015 ei->i_extra_isize;
3016 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3017 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3019 } else
3020 ei->i_extra_isize = 0;
3022 if (S_ISREG(inode->i_mode)) {
3023 inode->i_op = &ext3_file_inode_operations;
3024 inode->i_fop = &ext3_file_operations;
3025 ext3_set_aops(inode);
3026 } else if (S_ISDIR(inode->i_mode)) {
3027 inode->i_op = &ext3_dir_inode_operations;
3028 inode->i_fop = &ext3_dir_operations;
3029 } else if (S_ISLNK(inode->i_mode)) {
3030 if (ext3_inode_is_fast_symlink(inode)) {
3031 inode->i_op = &ext3_fast_symlink_inode_operations;
3032 nd_terminate_link(ei->i_data, inode->i_size,
3033 sizeof(ei->i_data) - 1);
3034 } else {
3035 inode->i_op = &ext3_symlink_inode_operations;
3036 ext3_set_aops(inode);
3038 } else {
3039 inode->i_op = &ext3_special_inode_operations;
3040 if (raw_inode->i_block[0])
3041 init_special_inode(inode, inode->i_mode,
3042 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3043 else
3044 init_special_inode(inode, inode->i_mode,
3045 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3047 brelse (iloc.bh);
3048 ext3_set_inode_flags(inode);
3049 unlock_new_inode(inode);
3050 return inode;
3052 bad_inode:
3053 iget_failed(inode);
3054 return ERR_PTR(ret);
3058 * Post the struct inode info into an on-disk inode location in the
3059 * buffer-cache. This gobbles the caller's reference to the
3060 * buffer_head in the inode location struct.
3062 * The caller must have write access to iloc->bh.
3064 static int ext3_do_update_inode(handle_t *handle,
3065 struct inode *inode,
3066 struct ext3_iloc *iloc)
3068 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3069 struct ext3_inode_info *ei = EXT3_I(inode);
3070 struct buffer_head *bh = iloc->bh;
3071 int err = 0, rc, block;
3072 int need_datasync = 0;
3073 __le32 disksize;
3075 again:
3076 /* we can't allow multiple procs in here at once, its a bit racey */
3077 lock_buffer(bh);
3079 /* For fields not not tracking in the in-memory inode,
3080 * initialise them to zero for new inodes. */
3081 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3082 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3084 ext3_get_inode_flags(ei);
3085 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3086 if(!(test_opt(inode->i_sb, NO_UID32))) {
3087 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3088 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3090 * Fix up interoperability with old kernels. Otherwise, old inodes get
3091 * re-used with the upper 16 bits of the uid/gid intact
3093 if(!ei->i_dtime) {
3094 raw_inode->i_uid_high =
3095 cpu_to_le16(high_16_bits(inode->i_uid));
3096 raw_inode->i_gid_high =
3097 cpu_to_le16(high_16_bits(inode->i_gid));
3098 } else {
3099 raw_inode->i_uid_high = 0;
3100 raw_inode->i_gid_high = 0;
3102 } else {
3103 raw_inode->i_uid_low =
3104 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3105 raw_inode->i_gid_low =
3106 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3107 raw_inode->i_uid_high = 0;
3108 raw_inode->i_gid_high = 0;
3110 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3111 disksize = cpu_to_le32(ei->i_disksize);
3112 if (disksize != raw_inode->i_size) {
3113 need_datasync = 1;
3114 raw_inode->i_size = disksize;
3116 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3117 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3118 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3119 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3120 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3121 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3122 #ifdef EXT3_FRAGMENTS
3123 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3124 raw_inode->i_frag = ei->i_frag_no;
3125 raw_inode->i_fsize = ei->i_frag_size;
3126 #endif
3127 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3128 if (!S_ISREG(inode->i_mode)) {
3129 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3130 } else {
3131 disksize = cpu_to_le32(ei->i_disksize >> 32);
3132 if (disksize != raw_inode->i_size_high) {
3133 raw_inode->i_size_high = disksize;
3134 need_datasync = 1;
3136 if (ei->i_disksize > 0x7fffffffULL) {
3137 struct super_block *sb = inode->i_sb;
3138 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3139 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3140 EXT3_SB(sb)->s_es->s_rev_level ==
3141 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3142 /* If this is the first large file
3143 * created, add a flag to the superblock.
3145 unlock_buffer(bh);
3146 err = ext3_journal_get_write_access(handle,
3147 EXT3_SB(sb)->s_sbh);
3148 if (err)
3149 goto out_brelse;
3151 ext3_update_dynamic_rev(sb);
3152 EXT3_SET_RO_COMPAT_FEATURE(sb,
3153 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3154 handle->h_sync = 1;
3155 err = ext3_journal_dirty_metadata(handle,
3156 EXT3_SB(sb)->s_sbh);
3157 /* get our lock and start over */
3158 goto again;
3162 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3163 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3164 if (old_valid_dev(inode->i_rdev)) {
3165 raw_inode->i_block[0] =
3166 cpu_to_le32(old_encode_dev(inode->i_rdev));
3167 raw_inode->i_block[1] = 0;
3168 } else {
3169 raw_inode->i_block[0] = 0;
3170 raw_inode->i_block[1] =
3171 cpu_to_le32(new_encode_dev(inode->i_rdev));
3172 raw_inode->i_block[2] = 0;
3174 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3175 raw_inode->i_block[block] = ei->i_data[block];
3177 if (ei->i_extra_isize)
3178 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3180 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3181 unlock_buffer(bh);
3182 rc = ext3_journal_dirty_metadata(handle, bh);
3183 if (!err)
3184 err = rc;
3185 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3187 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3188 if (need_datasync)
3189 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3190 out_brelse:
3191 brelse (bh);
3192 ext3_std_error(inode->i_sb, err);
3193 return err;
3197 * ext3_write_inode()
3199 * We are called from a few places:
3201 * - Within generic_file_write() for O_SYNC files.
3202 * Here, there will be no transaction running. We wait for any running
3203 * trasnaction to commit.
3205 * - Within sys_sync(), kupdate and such.
3206 * We wait on commit, if tol to.
3208 * - Within prune_icache() (PF_MEMALLOC == true)
3209 * Here we simply return. We can't afford to block kswapd on the
3210 * journal commit.
3212 * In all cases it is actually safe for us to return without doing anything,
3213 * because the inode has been copied into a raw inode buffer in
3214 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3215 * knfsd.
3217 * Note that we are absolutely dependent upon all inode dirtiers doing the
3218 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3219 * which we are interested.
3221 * It would be a bug for them to not do this. The code:
3223 * mark_inode_dirty(inode)
3224 * stuff();
3225 * inode->i_size = expr;
3227 * is in error because a kswapd-driven write_inode() could occur while
3228 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3229 * will no longer be on the superblock's dirty inode list.
3231 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3233 if (current->flags & PF_MEMALLOC)
3234 return 0;
3236 if (ext3_journal_current_handle()) {
3237 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3238 dump_stack();
3239 return -EIO;
3242 if (wbc->sync_mode != WB_SYNC_ALL)
3243 return 0;
3245 return ext3_force_commit(inode->i_sb);
3249 * ext3_setattr()
3251 * Called from notify_change.
3253 * We want to trap VFS attempts to truncate the file as soon as
3254 * possible. In particular, we want to make sure that when the VFS
3255 * shrinks i_size, we put the inode on the orphan list and modify
3256 * i_disksize immediately, so that during the subsequent flushing of
3257 * dirty pages and freeing of disk blocks, we can guarantee that any
3258 * commit will leave the blocks being flushed in an unused state on
3259 * disk. (On recovery, the inode will get truncated and the blocks will
3260 * be freed, so we have a strong guarantee that no future commit will
3261 * leave these blocks visible to the user.)
3263 * Called with inode->sem down.
3265 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3267 struct inode *inode = dentry->d_inode;
3268 int error, rc = 0;
3269 const unsigned int ia_valid = attr->ia_valid;
3271 error = inode_change_ok(inode, attr);
3272 if (error)
3273 return error;
3275 if (is_quota_modification(inode, attr))
3276 dquot_initialize(inode);
3277 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3278 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3279 handle_t *handle;
3281 /* (user+group)*(old+new) structure, inode write (sb,
3282 * inode block, ? - but truncate inode update has it) */
3283 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3284 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3285 if (IS_ERR(handle)) {
3286 error = PTR_ERR(handle);
3287 goto err_out;
3289 error = dquot_transfer(inode, attr);
3290 if (error) {
3291 ext3_journal_stop(handle);
3292 return error;
3294 /* Update corresponding info in inode so that everything is in
3295 * one transaction */
3296 if (attr->ia_valid & ATTR_UID)
3297 inode->i_uid = attr->ia_uid;
3298 if (attr->ia_valid & ATTR_GID)
3299 inode->i_gid = attr->ia_gid;
3300 error = ext3_mark_inode_dirty(handle, inode);
3301 ext3_journal_stop(handle);
3304 if (attr->ia_valid & ATTR_SIZE)
3305 inode_dio_wait(inode);
3307 if (S_ISREG(inode->i_mode) &&
3308 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3309 handle_t *handle;
3311 handle = ext3_journal_start(inode, 3);
3312 if (IS_ERR(handle)) {
3313 error = PTR_ERR(handle);
3314 goto err_out;
3317 error = ext3_orphan_add(handle, inode);
3318 if (error) {
3319 ext3_journal_stop(handle);
3320 goto err_out;
3322 EXT3_I(inode)->i_disksize = attr->ia_size;
3323 error = ext3_mark_inode_dirty(handle, inode);
3324 ext3_journal_stop(handle);
3325 if (error) {
3326 /* Some hard fs error must have happened. Bail out. */
3327 ext3_orphan_del(NULL, inode);
3328 goto err_out;
3330 rc = ext3_block_truncate_page(inode, attr->ia_size);
3331 if (rc) {
3332 /* Cleanup orphan list and exit */
3333 handle = ext3_journal_start(inode, 3);
3334 if (IS_ERR(handle)) {
3335 ext3_orphan_del(NULL, inode);
3336 goto err_out;
3338 ext3_orphan_del(handle, inode);
3339 ext3_journal_stop(handle);
3340 goto err_out;
3344 if ((attr->ia_valid & ATTR_SIZE) &&
3345 attr->ia_size != i_size_read(inode)) {
3346 truncate_setsize(inode, attr->ia_size);
3347 ext3_truncate(inode);
3350 setattr_copy(inode, attr);
3351 mark_inode_dirty(inode);
3353 if (ia_valid & ATTR_MODE)
3354 rc = ext3_acl_chmod(inode);
3356 err_out:
3357 ext3_std_error(inode->i_sb, error);
3358 if (!error)
3359 error = rc;
3360 return error;
3365 * How many blocks doth make a writepage()?
3367 * With N blocks per page, it may be:
3368 * N data blocks
3369 * 2 indirect block
3370 * 2 dindirect
3371 * 1 tindirect
3372 * N+5 bitmap blocks (from the above)
3373 * N+5 group descriptor summary blocks
3374 * 1 inode block
3375 * 1 superblock.
3376 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3378 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3380 * With ordered or writeback data it's the same, less the N data blocks.
3382 * If the inode's direct blocks can hold an integral number of pages then a
3383 * page cannot straddle two indirect blocks, and we can only touch one indirect
3384 * and dindirect block, and the "5" above becomes "3".
3386 * This still overestimates under most circumstances. If we were to pass the
3387 * start and end offsets in here as well we could do block_to_path() on each
3388 * block and work out the exact number of indirects which are touched. Pah.
3391 static int ext3_writepage_trans_blocks(struct inode *inode)
3393 int bpp = ext3_journal_blocks_per_page(inode);
3394 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3395 int ret;
3397 if (ext3_should_journal_data(inode))
3398 ret = 3 * (bpp + indirects) + 2;
3399 else
3400 ret = 2 * (bpp + indirects) + indirects + 2;
3402 #ifdef CONFIG_QUOTA
3403 /* We know that structure was already allocated during dquot_initialize so
3404 * we will be updating only the data blocks + inodes */
3405 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3406 #endif
3408 return ret;
3412 * The caller must have previously called ext3_reserve_inode_write().
3413 * Give this, we know that the caller already has write access to iloc->bh.
3415 int ext3_mark_iloc_dirty(handle_t *handle,
3416 struct inode *inode, struct ext3_iloc *iloc)
3418 int err = 0;
3420 /* the do_update_inode consumes one bh->b_count */
3421 get_bh(iloc->bh);
3423 /* ext3_do_update_inode() does journal_dirty_metadata */
3424 err = ext3_do_update_inode(handle, inode, iloc);
3425 put_bh(iloc->bh);
3426 return err;
3430 * On success, We end up with an outstanding reference count against
3431 * iloc->bh. This _must_ be cleaned up later.
3435 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3436 struct ext3_iloc *iloc)
3438 int err = 0;
3439 if (handle) {
3440 err = ext3_get_inode_loc(inode, iloc);
3441 if (!err) {
3442 BUFFER_TRACE(iloc->bh, "get_write_access");
3443 err = ext3_journal_get_write_access(handle, iloc->bh);
3444 if (err) {
3445 brelse(iloc->bh);
3446 iloc->bh = NULL;
3450 ext3_std_error(inode->i_sb, err);
3451 return err;
3455 * What we do here is to mark the in-core inode as clean with respect to inode
3456 * dirtiness (it may still be data-dirty).
3457 * This means that the in-core inode may be reaped by prune_icache
3458 * without having to perform any I/O. This is a very good thing,
3459 * because *any* task may call prune_icache - even ones which
3460 * have a transaction open against a different journal.
3462 * Is this cheating? Not really. Sure, we haven't written the
3463 * inode out, but prune_icache isn't a user-visible syncing function.
3464 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3465 * we start and wait on commits.
3467 * Is this efficient/effective? Well, we're being nice to the system
3468 * by cleaning up our inodes proactively so they can be reaped
3469 * without I/O. But we are potentially leaving up to five seconds'
3470 * worth of inodes floating about which prune_icache wants us to
3471 * write out. One way to fix that would be to get prune_icache()
3472 * to do a write_super() to free up some memory. It has the desired
3473 * effect.
3475 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3477 struct ext3_iloc iloc;
3478 int err;
3480 might_sleep();
3481 trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3482 err = ext3_reserve_inode_write(handle, inode, &iloc);
3483 if (!err)
3484 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3485 return err;
3489 * ext3_dirty_inode() is called from __mark_inode_dirty()
3491 * We're really interested in the case where a file is being extended.
3492 * i_size has been changed by generic_commit_write() and we thus need
3493 * to include the updated inode in the current transaction.
3495 * Also, dquot_alloc_space() will always dirty the inode when blocks
3496 * are allocated to the file.
3498 * If the inode is marked synchronous, we don't honour that here - doing
3499 * so would cause a commit on atime updates, which we don't bother doing.
3500 * We handle synchronous inodes at the highest possible level.
3502 void ext3_dirty_inode(struct inode *inode, int flags)
3504 handle_t *current_handle = ext3_journal_current_handle();
3505 handle_t *handle;
3507 handle = ext3_journal_start(inode, 2);
3508 if (IS_ERR(handle))
3509 goto out;
3510 if (current_handle &&
3511 current_handle->h_transaction != handle->h_transaction) {
3512 /* This task has a transaction open against a different fs */
3513 printk(KERN_EMERG "%s: transactions do not match!\n",
3514 __func__);
3515 } else {
3516 jbd_debug(5, "marking dirty. outer handle=%p\n",
3517 current_handle);
3518 ext3_mark_inode_dirty(handle, inode);
3520 ext3_journal_stop(handle);
3521 out:
3522 return;
3525 #if 0
3527 * Bind an inode's backing buffer_head into this transaction, to prevent
3528 * it from being flushed to disk early. Unlike
3529 * ext3_reserve_inode_write, this leaves behind no bh reference and
3530 * returns no iloc structure, so the caller needs to repeat the iloc
3531 * lookup to mark the inode dirty later.
3533 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3535 struct ext3_iloc iloc;
3537 int err = 0;
3538 if (handle) {
3539 err = ext3_get_inode_loc(inode, &iloc);
3540 if (!err) {
3541 BUFFER_TRACE(iloc.bh, "get_write_access");
3542 err = journal_get_write_access(handle, iloc.bh);
3543 if (!err)
3544 err = ext3_journal_dirty_metadata(handle,
3545 iloc.bh);
3546 brelse(iloc.bh);
3549 ext3_std_error(inode->i_sb, err);
3550 return err;
3552 #endif
3554 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3556 journal_t *journal;
3557 handle_t *handle;
3558 int err;
3561 * We have to be very careful here: changing a data block's
3562 * journaling status dynamically is dangerous. If we write a
3563 * data block to the journal, change the status and then delete
3564 * that block, we risk forgetting to revoke the old log record
3565 * from the journal and so a subsequent replay can corrupt data.
3566 * So, first we make sure that the journal is empty and that
3567 * nobody is changing anything.
3570 journal = EXT3_JOURNAL(inode);
3571 if (is_journal_aborted(journal))
3572 return -EROFS;
3574 journal_lock_updates(journal);
3575 journal_flush(journal);
3578 * OK, there are no updates running now, and all cached data is
3579 * synced to disk. We are now in a completely consistent state
3580 * which doesn't have anything in the journal, and we know that
3581 * no filesystem updates are running, so it is safe to modify
3582 * the inode's in-core data-journaling state flag now.
3585 if (val)
3586 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3587 else
3588 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3589 ext3_set_aops(inode);
3591 journal_unlock_updates(journal);
3593 /* Finally we can mark the inode as dirty. */
3595 handle = ext3_journal_start(inode, 1);
3596 if (IS_ERR(handle))
3597 return PTR_ERR(handle);
3599 err = ext3_mark_inode_dirty(handle, inode);
3600 handle->h_sync = 1;
3601 ext3_journal_stop(handle);
3602 ext3_std_error(inode->i_sb, err);
3604 return err;