2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
34 static int ext3_writepage_trans_blocks(struct inode
*inode
);
35 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
);
38 * Test whether an inode is a fast symlink.
40 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
42 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
43 (inode
->i_sb
->s_blocksize
>> 9) : 0;
45 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
49 * The ext3 forget function must perform a revoke if we are freeing data
50 * which has been journaled. Metadata (eg. indirect blocks) must be
51 * revoked in all cases.
53 * "bh" may be NULL: a metadata block may have been freed from memory
54 * but there may still be a record of it in the journal, and that record
55 * still needs to be revoked.
57 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
58 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
64 trace_ext3_forget(inode
, is_metadata
, blocknr
);
65 BUFFER_TRACE(bh
, "enter");
67 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
69 bh
, is_metadata
, inode
->i_mode
,
70 test_opt(inode
->i_sb
, DATA_FLAGS
));
72 /* Never use the revoke function if we are doing full data
73 * journaling: there is no need to, and a V1 superblock won't
74 * support it. Otherwise, only skip the revoke on un-journaled
77 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
78 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
80 BUFFER_TRACE(bh
, "call journal_forget");
81 return ext3_journal_forget(handle
, bh
);
87 * data!=journal && (is_metadata || should_journal_data(inode))
89 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
90 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
92 ext3_abort(inode
->i_sb
, __func__
,
93 "error %d when attempting revoke", err
);
94 BUFFER_TRACE(bh
, "exit");
99 * Work out how many blocks we need to proceed with the next chunk of a
100 * truncate transaction.
102 static unsigned long blocks_for_truncate(struct inode
*inode
)
104 unsigned long needed
;
106 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
108 /* Give ourselves just enough room to cope with inodes in which
109 * i_blocks is corrupt: we've seen disk corruptions in the past
110 * which resulted in random data in an inode which looked enough
111 * like a regular file for ext3 to try to delete it. Things
112 * will go a bit crazy if that happens, but at least we should
113 * try not to panic the whole kernel. */
117 /* But we need to bound the transaction so we don't overflow the
119 if (needed
> EXT3_MAX_TRANS_DATA
)
120 needed
= EXT3_MAX_TRANS_DATA
;
122 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
126 * Truncate transactions can be complex and absolutely huge. So we need to
127 * be able to restart the transaction at a conventient checkpoint to make
128 * sure we don't overflow the journal.
130 * start_transaction gets us a new handle for a truncate transaction,
131 * and extend_transaction tries to extend the existing one a bit. If
132 * extend fails, we need to propagate the failure up and restart the
133 * transaction in the top-level truncate loop. --sct
135 static handle_t
*start_transaction(struct inode
*inode
)
139 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
143 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
148 * Try to extend this transaction for the purposes of truncation.
150 * Returns 0 if we managed to create more room. If we can't create more
151 * room, and the transaction must be restarted we return 1.
153 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
155 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
157 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
163 * Restart the transaction associated with *handle. This does a commit,
164 * so before we call here everything must be consistently dirtied against
167 static int truncate_restart_transaction(handle_t
*handle
, struct inode
*inode
)
171 jbd_debug(2, "restarting handle %p\n", handle
);
173 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174 * At this moment, get_block can be called only for blocks inside
175 * i_size since page cache has been already dropped and writes are
176 * blocked by i_mutex. So we can safely drop the truncate_mutex.
178 mutex_unlock(&EXT3_I(inode
)->truncate_mutex
);
179 ret
= ext3_journal_restart(handle
, blocks_for_truncate(inode
));
180 mutex_lock(&EXT3_I(inode
)->truncate_mutex
);
185 * Called at inode eviction from icache
187 void ext3_evict_inode (struct inode
*inode
)
189 struct ext3_inode_info
*ei
= EXT3_I(inode
);
190 struct ext3_block_alloc_info
*rsv
;
194 trace_ext3_evict_inode(inode
);
195 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
196 dquot_initialize(inode
);
201 * When journalling data dirty buffers are tracked only in the journal.
202 * So although mm thinks everything is clean and ready for reaping the
203 * inode might still have some pages to write in the running
204 * transaction or waiting to be checkpointed. Thus calling
205 * journal_invalidatepage() (via truncate_inode_pages()) to discard
206 * these buffers can cause data loss. Also even if we did not discard
207 * these buffers, we would have no way to find them after the inode
208 * is reaped and thus user could see stale data if he tries to read
209 * them before the transaction is checkpointed. So be careful and
210 * force everything to disk here... We use ei->i_datasync_tid to
211 * store the newest transaction containing inode's data.
213 * Note that directories do not have this problem because they don't
216 * The s_journal check handles the case when ext3_get_journal() fails
217 * and puts the journal inode.
219 if (inode
->i_nlink
&& ext3_should_journal_data(inode
) &&
220 EXT3_SB(inode
->i_sb
)->s_journal
&&
221 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
222 inode
->i_ino
!= EXT3_JOURNAL_INO
) {
223 tid_t commit_tid
= atomic_read(&ei
->i_datasync_tid
);
224 journal_t
*journal
= EXT3_SB(inode
->i_sb
)->s_journal
;
226 log_start_commit(journal
, commit_tid
);
227 log_wait_commit(journal
, commit_tid
);
228 filemap_write_and_wait(&inode
->i_data
);
230 truncate_inode_pages(&inode
->i_data
, 0);
232 ext3_discard_reservation(inode
);
233 rsv
= ei
->i_block_alloc_info
;
234 ei
->i_block_alloc_info
= NULL
;
241 handle
= start_transaction(inode
);
242 if (IS_ERR(handle
)) {
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext3_orphan_del(NULL
, inode
);
256 ext3_truncate(inode
);
258 * Kill off the orphan record created when the inode lost the last
259 * link. Note that ext3_orphan_del() has to be able to cope with the
260 * deletion of a non-existent orphan - ext3_truncate() could
261 * have removed the record.
263 ext3_orphan_del(handle
, inode
);
264 ei
->i_dtime
= get_seconds();
267 * One subtle ordering requirement: if anything has gone wrong
268 * (transaction abort, IO errors, whatever), then we can still
269 * do these next steps (the fs will already have been marked as
270 * having errors), but we can't free the inode if the mark_dirty
273 if (ext3_mark_inode_dirty(handle
, inode
)) {
274 /* If that failed, just dquot_drop() and be done with that */
276 end_writeback(inode
);
278 ext3_xattr_delete_inode(handle
, inode
);
279 dquot_free_inode(inode
);
281 end_writeback(inode
);
282 ext3_free_inode(handle
, inode
);
284 ext3_journal_stop(handle
);
287 end_writeback(inode
);
294 struct buffer_head
*bh
;
297 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
299 p
->key
= *(p
->p
= v
);
303 static int verify_chain(Indirect
*from
, Indirect
*to
)
305 while (from
<= to
&& from
->key
== *from
->p
)
311 * ext3_block_to_path - parse the block number into array of offsets
312 * @inode: inode in question (we are only interested in its superblock)
313 * @i_block: block number to be parsed
314 * @offsets: array to store the offsets in
315 * @boundary: set this non-zero if the referred-to block is likely to be
316 * followed (on disk) by an indirect block.
318 * To store the locations of file's data ext3 uses a data structure common
319 * for UNIX filesystems - tree of pointers anchored in the inode, with
320 * data blocks at leaves and indirect blocks in intermediate nodes.
321 * This function translates the block number into path in that tree -
322 * return value is the path length and @offsets[n] is the offset of
323 * pointer to (n+1)th node in the nth one. If @block is out of range
324 * (negative or too large) warning is printed and zero returned.
326 * Note: function doesn't find node addresses, so no IO is needed. All
327 * we need to know is the capacity of indirect blocks (taken from the
332 * Portability note: the last comparison (check that we fit into triple
333 * indirect block) is spelled differently, because otherwise on an
334 * architecture with 32-bit longs and 8Kb pages we might get into trouble
335 * if our filesystem had 8Kb blocks. We might use long long, but that would
336 * kill us on x86. Oh, well, at least the sign propagation does not matter -
337 * i_block would have to be negative in the very beginning, so we would not
341 static int ext3_block_to_path(struct inode
*inode
,
342 long i_block
, int offsets
[4], int *boundary
)
344 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
345 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
346 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
347 indirect_blocks
= ptrs
,
348 double_blocks
= (1 << (ptrs_bits
* 2));
353 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
354 } else if (i_block
< direct_blocks
) {
355 offsets
[n
++] = i_block
;
356 final
= direct_blocks
;
357 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
358 offsets
[n
++] = EXT3_IND_BLOCK
;
359 offsets
[n
++] = i_block
;
361 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
362 offsets
[n
++] = EXT3_DIND_BLOCK
;
363 offsets
[n
++] = i_block
>> ptrs_bits
;
364 offsets
[n
++] = i_block
& (ptrs
- 1);
366 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
367 offsets
[n
++] = EXT3_TIND_BLOCK
;
368 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
369 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
370 offsets
[n
++] = i_block
& (ptrs
- 1);
373 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
376 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
381 * ext3_get_branch - read the chain of indirect blocks leading to data
382 * @inode: inode in question
383 * @depth: depth of the chain (1 - direct pointer, etc.)
384 * @offsets: offsets of pointers in inode/indirect blocks
385 * @chain: place to store the result
386 * @err: here we store the error value
388 * Function fills the array of triples <key, p, bh> and returns %NULL
389 * if everything went OK or the pointer to the last filled triple
390 * (incomplete one) otherwise. Upon the return chain[i].key contains
391 * the number of (i+1)-th block in the chain (as it is stored in memory,
392 * i.e. little-endian 32-bit), chain[i].p contains the address of that
393 * number (it points into struct inode for i==0 and into the bh->b_data
394 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395 * block for i>0 and NULL for i==0. In other words, it holds the block
396 * numbers of the chain, addresses they were taken from (and where we can
397 * verify that chain did not change) and buffer_heads hosting these
400 * Function stops when it stumbles upon zero pointer (absent block)
401 * (pointer to last triple returned, *@err == 0)
402 * or when it gets an IO error reading an indirect block
403 * (ditto, *@err == -EIO)
404 * or when it notices that chain had been changed while it was reading
405 * (ditto, *@err == -EAGAIN)
406 * or when it reads all @depth-1 indirect blocks successfully and finds
407 * the whole chain, all way to the data (returns %NULL, *err == 0).
409 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
410 Indirect chain
[4], int *err
)
412 struct super_block
*sb
= inode
->i_sb
;
414 struct buffer_head
*bh
;
417 /* i_data is not going away, no lock needed */
418 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
422 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
425 /* Reader: pointers */
426 if (!verify_chain(chain
, p
))
428 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
446 * ext3_find_near - find a place for allocation with sufficient locality
448 * @ind: descriptor of indirect block.
450 * This function returns the preferred place for block allocation.
451 * It is used when heuristic for sequential allocation fails.
453 * + if there is a block to the left of our position - allocate near it.
454 * + if pointer will live in indirect block - allocate near that block.
455 * + if pointer will live in inode - allocate in the same
458 * In the latter case we colour the starting block by the callers PID to
459 * prevent it from clashing with concurrent allocations for a different inode
460 * in the same block group. The PID is used here so that functionally related
461 * files will be close-by on-disk.
463 * Caller must make sure that @ind is valid and will stay that way.
465 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
467 struct ext3_inode_info
*ei
= EXT3_I(inode
);
468 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
470 ext3_fsblk_t bg_start
;
471 ext3_grpblk_t colour
;
473 /* Try to find previous block */
474 for (p
= ind
->p
- 1; p
>= start
; p
--) {
476 return le32_to_cpu(*p
);
479 /* No such thing, so let's try location of indirect block */
481 return ind
->bh
->b_blocknr
;
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
487 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
488 colour
= (current
->pid
% 16) *
489 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
490 return bg_start
+ colour
;
494 * ext3_find_goal - find a preferred place for allocation.
496 * @block: block we want
497 * @partial: pointer to the last triple within a chain
499 * Normally this function find the preferred place for block allocation,
503 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
506 struct ext3_block_alloc_info
*block_i
;
508 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
511 * try the heuristic for sequential allocation,
512 * failing that at least try to get decent locality.
514 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
515 && (block_i
->last_alloc_physical_block
!= 0)) {
516 return block_i
->last_alloc_physical_block
+ 1;
519 return ext3_find_near(inode
, partial
);
523 * ext3_blks_to_allocate - Look up the block map and count the number
524 * of direct blocks need to be allocated for the given branch.
526 * @branch: chain of indirect blocks
527 * @k: number of blocks need for indirect blocks
528 * @blks: number of data blocks to be mapped.
529 * @blocks_to_boundary: the offset in the indirect block
531 * return the total number of blocks to be allocate, including the
532 * direct and indirect blocks.
534 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
535 int blocks_to_boundary
)
537 unsigned long count
= 0;
540 * Simple case, [t,d]Indirect block(s) has not allocated yet
541 * then it's clear blocks on that path have not allocated
544 /* right now we don't handle cross boundary allocation */
545 if (blks
< blocks_to_boundary
+ 1)
548 count
+= blocks_to_boundary
+ 1;
553 while (count
< blks
&& count
<= blocks_to_boundary
&&
554 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
561 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
562 * @handle: handle for this transaction
564 * @goal: preferred place for allocation
565 * @indirect_blks: the number of blocks need to allocate for indirect
567 * @blks: number of blocks need to allocated for direct blocks
568 * @new_blocks: on return it will store the new block numbers for
569 * the indirect blocks(if needed) and the first direct block,
570 * @err: here we store the error value
572 * return the number of direct blocks allocated
574 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
575 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
576 ext3_fsblk_t new_blocks
[4], int *err
)
579 unsigned long count
= 0;
581 ext3_fsblk_t current_block
= 0;
585 * Here we try to allocate the requested multiple blocks at once,
586 * on a best-effort basis.
587 * To build a branch, we should allocate blocks for
588 * the indirect blocks(if not allocated yet), and at least
589 * the first direct block of this branch. That's the
590 * minimum number of blocks need to allocate(required)
592 target
= blks
+ indirect_blks
;
596 /* allocating blocks for indirect blocks and direct blocks */
597 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
602 /* allocate blocks for indirect blocks */
603 while (index
< indirect_blks
&& count
) {
604 new_blocks
[index
++] = current_block
++;
612 /* save the new block number for the first direct block */
613 new_blocks
[index
] = current_block
;
615 /* total number of blocks allocated for direct blocks */
620 for (i
= 0; i
<index
; i
++)
621 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
626 * ext3_alloc_branch - allocate and set up a chain of blocks.
627 * @handle: handle for this transaction
629 * @indirect_blks: number of allocated indirect blocks
630 * @blks: number of allocated direct blocks
631 * @goal: preferred place for allocation
632 * @offsets: offsets (in the blocks) to store the pointers to next.
633 * @branch: place to store the chain in.
635 * This function allocates blocks, zeroes out all but the last one,
636 * links them into chain and (if we are synchronous) writes them to disk.
637 * In other words, it prepares a branch that can be spliced onto the
638 * inode. It stores the information about that chain in the branch[], in
639 * the same format as ext3_get_branch() would do. We are calling it after
640 * we had read the existing part of chain and partial points to the last
641 * triple of that (one with zero ->key). Upon the exit we have the same
642 * picture as after the successful ext3_get_block(), except that in one
643 * place chain is disconnected - *branch->p is still zero (we did not
644 * set the last link), but branch->key contains the number that should
645 * be placed into *branch->p to fill that gap.
647 * If allocation fails we free all blocks we've allocated (and forget
648 * their buffer_heads) and return the error value the from failed
649 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
650 * as described above and return 0.
652 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
653 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
654 int *offsets
, Indirect
*branch
)
656 int blocksize
= inode
->i_sb
->s_blocksize
;
659 struct buffer_head
*bh
;
661 ext3_fsblk_t new_blocks
[4];
662 ext3_fsblk_t current_block
;
664 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
665 *blks
, new_blocks
, &err
);
669 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
671 * metadata blocks and data blocks are allocated.
673 for (n
= 1; n
<= indirect_blks
; n
++) {
675 * Get buffer_head for parent block, zero it out
676 * and set the pointer to new one, then send
679 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
682 BUFFER_TRACE(bh
, "call get_create_access");
683 err
= ext3_journal_get_create_access(handle
, bh
);
690 memset(bh
->b_data
, 0, blocksize
);
691 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
692 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
693 *branch
[n
].p
= branch
[n
].key
;
694 if ( n
== indirect_blks
) {
695 current_block
= new_blocks
[n
];
697 * End of chain, update the last new metablock of
698 * the chain to point to the new allocated
699 * data blocks numbers
701 for (i
=1; i
< num
; i
++)
702 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
704 BUFFER_TRACE(bh
, "marking uptodate");
705 set_buffer_uptodate(bh
);
708 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
709 err
= ext3_journal_dirty_metadata(handle
, bh
);
716 /* Allocation failed, free what we already allocated */
717 for (i
= 1; i
<= n
; i
++) {
718 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
719 ext3_journal_forget(handle
, branch
[i
].bh
);
721 for (i
= 0; i
<indirect_blks
; i
++)
722 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
724 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
730 * ext3_splice_branch - splice the allocated branch onto inode.
731 * @handle: handle for this transaction
733 * @block: (logical) number of block we are adding
734 * @where: location of missing link
735 * @num: number of indirect blocks we are adding
736 * @blks: number of direct blocks we are adding
738 * This function fills the missing link and does all housekeeping needed in
739 * inode (->i_blocks, etc.). In case of success we end up with the full
740 * chain to new block and return 0.
742 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
743 long block
, Indirect
*where
, int num
, int blks
)
747 struct ext3_block_alloc_info
*block_i
;
748 ext3_fsblk_t current_block
;
749 struct ext3_inode_info
*ei
= EXT3_I(inode
);
752 block_i
= ei
->i_block_alloc_info
;
754 * If we're splicing into a [td]indirect block (as opposed to the
755 * inode) then we need to get write access to the [td]indirect block
759 BUFFER_TRACE(where
->bh
, "get_write_access");
760 err
= ext3_journal_get_write_access(handle
, where
->bh
);
766 *where
->p
= where
->key
;
769 * Update the host buffer_head or inode to point to more just allocated
770 * direct blocks blocks
772 if (num
== 0 && blks
> 1) {
773 current_block
= le32_to_cpu(where
->key
) + 1;
774 for (i
= 1; i
< blks
; i
++)
775 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
779 * update the most recently allocated logical & physical block
780 * in i_block_alloc_info, to assist find the proper goal block for next
784 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
785 block_i
->last_alloc_physical_block
=
786 le32_to_cpu(where
[num
].key
) + blks
- 1;
789 /* We are done with atomic stuff, now do the rest of housekeeping */
790 now
= CURRENT_TIME_SEC
;
791 if (!timespec_equal(&inode
->i_ctime
, &now
) || !where
->bh
) {
792 inode
->i_ctime
= now
;
793 ext3_mark_inode_dirty(handle
, inode
);
795 /* ext3_mark_inode_dirty already updated i_sync_tid */
796 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
798 /* had we spliced it onto indirect block? */
801 * If we spliced it onto an indirect block, we haven't
802 * altered the inode. Note however that if it is being spliced
803 * onto an indirect block at the very end of the file (the
804 * file is growing) then we *will* alter the inode to reflect
805 * the new i_size. But that is not done here - it is done in
806 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
808 jbd_debug(5, "splicing indirect only\n");
809 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
810 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
815 * OK, we spliced it into the inode itself on a direct block.
816 * Inode was dirtied above.
818 jbd_debug(5, "splicing direct\n");
823 for (i
= 1; i
<= num
; i
++) {
824 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
825 ext3_journal_forget(handle
, where
[i
].bh
);
826 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
828 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
834 * Allocation strategy is simple: if we have to allocate something, we will
835 * have to go the whole way to leaf. So let's do it before attaching anything
836 * to tree, set linkage between the newborn blocks, write them if sync is
837 * required, recheck the path, free and repeat if check fails, otherwise
838 * set the last missing link (that will protect us from any truncate-generated
839 * removals - all blocks on the path are immune now) and possibly force the
840 * write on the parent block.
841 * That has a nice additional property: no special recovery from the failed
842 * allocations is needed - we simply release blocks and do not touch anything
843 * reachable from inode.
845 * `handle' can be NULL if create == 0.
847 * The BKL may not be held on entry here. Be sure to take it early.
848 * return > 0, # of blocks mapped or allocated.
849 * return = 0, if plain lookup failed.
850 * return < 0, error case.
852 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
853 sector_t iblock
, unsigned long maxblocks
,
854 struct buffer_head
*bh_result
,
863 int blocks_to_boundary
= 0;
865 struct ext3_inode_info
*ei
= EXT3_I(inode
);
867 ext3_fsblk_t first_block
= 0;
870 trace_ext3_get_blocks_enter(inode
, iblock
, maxblocks
, create
);
871 J_ASSERT(handle
!= NULL
|| create
== 0);
872 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
877 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
879 /* Simplest case - block found, no allocation needed */
881 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
882 clear_buffer_new(bh_result
);
885 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
888 if (!verify_chain(chain
, chain
+ depth
- 1)) {
890 * Indirect block might be removed by
891 * truncate while we were reading it.
892 * Handling of that case: forget what we've
893 * got now. Flag the err as EAGAIN, so it
900 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
902 if (blk
== first_block
+ count
)
911 /* Next simple case - plain lookup or failed read of indirect block */
912 if (!create
|| err
== -EIO
)
916 * Block out ext3_truncate while we alter the tree
918 mutex_lock(&ei
->truncate_mutex
);
921 * If the indirect block is missing while we are reading
922 * the chain(ext3_get_branch() returns -EAGAIN err), or
923 * if the chain has been changed after we grab the semaphore,
924 * (either because another process truncated this branch, or
925 * another get_block allocated this branch) re-grab the chain to see if
926 * the request block has been allocated or not.
928 * Since we already block the truncate/other get_block
929 * at this point, we will have the current copy of the chain when we
930 * splice the branch into the tree.
932 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
933 while (partial
> chain
) {
937 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
940 mutex_unlock(&ei
->truncate_mutex
);
943 clear_buffer_new(bh_result
);
949 * Okay, we need to do block allocation. Lazily initialize the block
950 * allocation info here if necessary
952 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
953 ext3_init_block_alloc_info(inode
);
955 goal
= ext3_find_goal(inode
, iblock
, partial
);
957 /* the number of blocks need to allocate for [d,t]indirect blocks */
958 indirect_blks
= (chain
+ depth
) - partial
- 1;
961 * Next look up the indirect map to count the totoal number of
962 * direct blocks to allocate for this branch.
964 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
965 maxblocks
, blocks_to_boundary
);
966 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
967 offsets
+ (partial
- chain
), partial
);
970 * The ext3_splice_branch call will free and forget any buffers
971 * on the new chain if there is a failure, but that risks using
972 * up transaction credits, especially for bitmaps where the
973 * credits cannot be returned. Can we handle this somehow? We
974 * may need to return -EAGAIN upwards in the worst case. --sct
977 err
= ext3_splice_branch(handle
, inode
, iblock
,
978 partial
, indirect_blks
, count
);
979 mutex_unlock(&ei
->truncate_mutex
);
983 set_buffer_new(bh_result
);
985 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
986 if (count
> blocks_to_boundary
)
987 set_buffer_boundary(bh_result
);
989 /* Clean up and exit */
990 partial
= chain
+ depth
- 1; /* the whole chain */
992 while (partial
> chain
) {
993 BUFFER_TRACE(partial
->bh
, "call brelse");
997 BUFFER_TRACE(bh_result
, "returned");
999 trace_ext3_get_blocks_exit(inode
, iblock
,
1000 depth
? le32_to_cpu(chain
[depth
-1].key
) : 0,
1005 /* Maximum number of blocks we map for direct IO at once. */
1006 #define DIO_MAX_BLOCKS 4096
1008 * Number of credits we need for writing DIO_MAX_BLOCKS:
1009 * We need sb + group descriptor + bitmap + inode -> 4
1010 * For B blocks with A block pointers per block we need:
1011 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1012 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1014 #define DIO_CREDITS 25
1016 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
1017 struct buffer_head
*bh_result
, int create
)
1019 handle_t
*handle
= ext3_journal_current_handle();
1020 int ret
= 0, started
= 0;
1021 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1023 if (create
&& !handle
) { /* Direct IO write... */
1024 if (max_blocks
> DIO_MAX_BLOCKS
)
1025 max_blocks
= DIO_MAX_BLOCKS
;
1026 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
1027 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
));
1028 if (IS_ERR(handle
)) {
1029 ret
= PTR_ERR(handle
);
1035 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
1036 max_blocks
, bh_result
, create
);
1038 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1042 ext3_journal_stop(handle
);
1047 int ext3_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
1050 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
1055 * `handle' can be NULL if create is zero
1057 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
1058 long block
, int create
, int *errp
)
1060 struct buffer_head dummy
;
1063 J_ASSERT(handle
!= NULL
|| create
== 0);
1066 dummy
.b_blocknr
= -1000;
1067 buffer_trace_init(&dummy
.b_history
);
1068 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1071 * ext3_get_blocks_handle() returns number of blocks
1072 * mapped. 0 in case of a HOLE.
1080 if (!err
&& buffer_mapped(&dummy
)) {
1081 struct buffer_head
*bh
;
1082 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1087 if (buffer_new(&dummy
)) {
1088 J_ASSERT(create
!= 0);
1089 J_ASSERT(handle
!= NULL
);
1092 * Now that we do not always journal data, we should
1093 * keep in mind whether this should always journal the
1094 * new buffer as metadata. For now, regular file
1095 * writes use ext3_get_block instead, so it's not a
1099 BUFFER_TRACE(bh
, "call get_create_access");
1100 fatal
= ext3_journal_get_create_access(handle
, bh
);
1101 if (!fatal
&& !buffer_uptodate(bh
)) {
1102 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1103 set_buffer_uptodate(bh
);
1106 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1107 err
= ext3_journal_dirty_metadata(handle
, bh
);
1111 BUFFER_TRACE(bh
, "not a new buffer");
1124 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1125 int block
, int create
, int *err
)
1127 struct buffer_head
* bh
;
1129 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1132 if (bh_uptodate_or_lock(bh
))
1135 bh
->b_end_io
= end_buffer_read_sync
;
1136 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
1138 if (buffer_uptodate(bh
))
1145 static int walk_page_buffers( handle_t
*handle
,
1146 struct buffer_head
*head
,
1150 int (*fn
)( handle_t
*handle
,
1151 struct buffer_head
*bh
))
1153 struct buffer_head
*bh
;
1154 unsigned block_start
, block_end
;
1155 unsigned blocksize
= head
->b_size
;
1157 struct buffer_head
*next
;
1159 for ( bh
= head
, block_start
= 0;
1160 ret
== 0 && (bh
!= head
|| !block_start
);
1161 block_start
= block_end
, bh
= next
)
1163 next
= bh
->b_this_page
;
1164 block_end
= block_start
+ blocksize
;
1165 if (block_end
<= from
|| block_start
>= to
) {
1166 if (partial
&& !buffer_uptodate(bh
))
1170 err
= (*fn
)(handle
, bh
);
1178 * To preserve ordering, it is essential that the hole instantiation and
1179 * the data write be encapsulated in a single transaction. We cannot
1180 * close off a transaction and start a new one between the ext3_get_block()
1181 * and the commit_write(). So doing the journal_start at the start of
1182 * prepare_write() is the right place.
1184 * Also, this function can nest inside ext3_writepage() ->
1185 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1186 * has generated enough buffer credits to do the whole page. So we won't
1187 * block on the journal in that case, which is good, because the caller may
1190 * By accident, ext3 can be reentered when a transaction is open via
1191 * quota file writes. If we were to commit the transaction while thus
1192 * reentered, there can be a deadlock - we would be holding a quota
1193 * lock, and the commit would never complete if another thread had a
1194 * transaction open and was blocking on the quota lock - a ranking
1197 * So what we do is to rely on the fact that journal_stop/journal_start
1198 * will _not_ run commit under these circumstances because handle->h_ref
1199 * is elevated. We'll still have enough credits for the tiny quotafile
1202 static int do_journal_get_write_access(handle_t
*handle
,
1203 struct buffer_head
*bh
)
1205 int dirty
= buffer_dirty(bh
);
1208 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1211 * __block_prepare_write() could have dirtied some buffers. Clean
1212 * the dirty bit as jbd2_journal_get_write_access() could complain
1213 * otherwise about fs integrity issues. Setting of the dirty bit
1214 * by __block_prepare_write() isn't a real problem here as we clear
1215 * the bit before releasing a page lock and thus writeback cannot
1216 * ever write the buffer.
1219 clear_buffer_dirty(bh
);
1220 ret
= ext3_journal_get_write_access(handle
, bh
);
1222 ret
= ext3_journal_dirty_metadata(handle
, bh
);
1227 * Truncate blocks that were not used by write. We have to truncate the
1228 * pagecache as well so that corresponding buffers get properly unmapped.
1230 static void ext3_truncate_failed_write(struct inode
*inode
)
1232 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1233 ext3_truncate(inode
);
1237 * Truncate blocks that were not used by direct IO write. We have to zero out
1238 * the last file block as well because direct IO might have written to it.
1240 static void ext3_truncate_failed_direct_write(struct inode
*inode
)
1242 ext3_block_truncate_page(inode
, inode
->i_size
);
1243 ext3_truncate(inode
);
1246 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1247 loff_t pos
, unsigned len
, unsigned flags
,
1248 struct page
**pagep
, void **fsdata
)
1250 struct inode
*inode
= mapping
->host
;
1257 /* Reserve one block more for addition to orphan list in case
1258 * we allocate blocks but write fails for some reason */
1259 int needed_blocks
= ext3_writepage_trans_blocks(inode
) + 1;
1261 trace_ext3_write_begin(inode
, pos
, len
, flags
);
1263 index
= pos
>> PAGE_CACHE_SHIFT
;
1264 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1268 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1273 handle
= ext3_journal_start(inode
, needed_blocks
);
1274 if (IS_ERR(handle
)) {
1276 page_cache_release(page
);
1277 ret
= PTR_ERR(handle
);
1280 ret
= __block_write_begin(page
, pos
, len
, ext3_get_block
);
1282 goto write_begin_failed
;
1284 if (ext3_should_journal_data(inode
)) {
1285 ret
= walk_page_buffers(handle
, page_buffers(page
),
1286 from
, to
, NULL
, do_journal_get_write_access
);
1291 * block_write_begin may have instantiated a few blocks
1292 * outside i_size. Trim these off again. Don't need
1293 * i_size_read because we hold i_mutex.
1295 * Add inode to orphan list in case we crash before truncate
1296 * finishes. Do this only if ext3_can_truncate() agrees so
1297 * that orphan processing code is happy.
1299 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1300 ext3_orphan_add(handle
, inode
);
1301 ext3_journal_stop(handle
);
1303 page_cache_release(page
);
1304 if (pos
+ len
> inode
->i_size
)
1305 ext3_truncate_failed_write(inode
);
1307 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1314 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1316 int err
= journal_dirty_data(handle
, bh
);
1318 ext3_journal_abort_handle(__func__
, __func__
,
1323 /* For ordered writepage and write_end functions */
1324 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1327 * Write could have mapped the buffer but it didn't copy the data in
1328 * yet. So avoid filing such buffer into a transaction.
1330 if (buffer_mapped(bh
) && buffer_uptodate(bh
))
1331 return ext3_journal_dirty_data(handle
, bh
);
1335 /* For write_end() in data=journal mode */
1336 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1338 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1340 set_buffer_uptodate(bh
);
1341 return ext3_journal_dirty_metadata(handle
, bh
);
1345 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1346 * for the whole page but later we failed to copy the data in. Update inode
1347 * size according to what we managed to copy. The rest is going to be
1348 * truncated in write_end function.
1350 static void update_file_sizes(struct inode
*inode
, loff_t pos
, unsigned copied
)
1352 /* What matters to us is i_disksize. We don't write i_size anywhere */
1353 if (pos
+ copied
> inode
->i_size
)
1354 i_size_write(inode
, pos
+ copied
);
1355 if (pos
+ copied
> EXT3_I(inode
)->i_disksize
) {
1356 EXT3_I(inode
)->i_disksize
= pos
+ copied
;
1357 mark_inode_dirty(inode
);
1362 * We need to pick up the new inode size which generic_commit_write gave us
1363 * `file' can be NULL - eg, when called from page_symlink().
1365 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1366 * buffers are managed internally.
1368 static int ext3_ordered_write_end(struct file
*file
,
1369 struct address_space
*mapping
,
1370 loff_t pos
, unsigned len
, unsigned copied
,
1371 struct page
*page
, void *fsdata
)
1373 handle_t
*handle
= ext3_journal_current_handle();
1374 struct inode
*inode
= file
->f_mapping
->host
;
1378 trace_ext3_ordered_write_end(inode
, pos
, len
, copied
);
1379 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1381 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1383 ret
= walk_page_buffers(handle
, page_buffers(page
),
1384 from
, to
, NULL
, journal_dirty_data_fn
);
1387 update_file_sizes(inode
, pos
, copied
);
1389 * There may be allocated blocks outside of i_size because
1390 * we failed to copy some data. Prepare for truncate.
1392 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1393 ext3_orphan_add(handle
, inode
);
1394 ret2
= ext3_journal_stop(handle
);
1398 page_cache_release(page
);
1400 if (pos
+ len
> inode
->i_size
)
1401 ext3_truncate_failed_write(inode
);
1402 return ret
? ret
: copied
;
1405 static int ext3_writeback_write_end(struct file
*file
,
1406 struct address_space
*mapping
,
1407 loff_t pos
, unsigned len
, unsigned copied
,
1408 struct page
*page
, void *fsdata
)
1410 handle_t
*handle
= ext3_journal_current_handle();
1411 struct inode
*inode
= file
->f_mapping
->host
;
1414 trace_ext3_writeback_write_end(inode
, pos
, len
, copied
);
1415 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1416 update_file_sizes(inode
, pos
, copied
);
1418 * There may be allocated blocks outside of i_size because
1419 * we failed to copy some data. Prepare for truncate.
1421 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1422 ext3_orphan_add(handle
, inode
);
1423 ret
= ext3_journal_stop(handle
);
1425 page_cache_release(page
);
1427 if (pos
+ len
> inode
->i_size
)
1428 ext3_truncate_failed_write(inode
);
1429 return ret
? ret
: copied
;
1432 static int ext3_journalled_write_end(struct file
*file
,
1433 struct address_space
*mapping
,
1434 loff_t pos
, unsigned len
, unsigned copied
,
1435 struct page
*page
, void *fsdata
)
1437 handle_t
*handle
= ext3_journal_current_handle();
1438 struct inode
*inode
= mapping
->host
;
1439 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1444 trace_ext3_journalled_write_end(inode
, pos
, len
, copied
);
1445 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1449 if (!PageUptodate(page
))
1451 page_zero_new_buffers(page
, from
+ copied
, to
);
1455 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1456 to
, &partial
, write_end_fn
);
1458 SetPageUptodate(page
);
1460 if (pos
+ copied
> inode
->i_size
)
1461 i_size_write(inode
, pos
+ copied
);
1463 * There may be allocated blocks outside of i_size because
1464 * we failed to copy some data. Prepare for truncate.
1466 if (pos
+ len
> inode
->i_size
&& ext3_can_truncate(inode
))
1467 ext3_orphan_add(handle
, inode
);
1468 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1469 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
1470 if (inode
->i_size
> ei
->i_disksize
) {
1471 ei
->i_disksize
= inode
->i_size
;
1472 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1477 ret2
= ext3_journal_stop(handle
);
1481 page_cache_release(page
);
1483 if (pos
+ len
> inode
->i_size
)
1484 ext3_truncate_failed_write(inode
);
1485 return ret
? ret
: copied
;
1489 * bmap() is special. It gets used by applications such as lilo and by
1490 * the swapper to find the on-disk block of a specific piece of data.
1492 * Naturally, this is dangerous if the block concerned is still in the
1493 * journal. If somebody makes a swapfile on an ext3 data-journaling
1494 * filesystem and enables swap, then they may get a nasty shock when the
1495 * data getting swapped to that swapfile suddenly gets overwritten by
1496 * the original zero's written out previously to the journal and
1497 * awaiting writeback in the kernel's buffer cache.
1499 * So, if we see any bmap calls here on a modified, data-journaled file,
1500 * take extra steps to flush any blocks which might be in the cache.
1502 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1504 struct inode
*inode
= mapping
->host
;
1508 if (ext3_test_inode_state(inode
, EXT3_STATE_JDATA
)) {
1510 * This is a REALLY heavyweight approach, but the use of
1511 * bmap on dirty files is expected to be extremely rare:
1512 * only if we run lilo or swapon on a freshly made file
1513 * do we expect this to happen.
1515 * (bmap requires CAP_SYS_RAWIO so this does not
1516 * represent an unprivileged user DOS attack --- we'd be
1517 * in trouble if mortal users could trigger this path at
1520 * NB. EXT3_STATE_JDATA is not set on files other than
1521 * regular files. If somebody wants to bmap a directory
1522 * or symlink and gets confused because the buffer
1523 * hasn't yet been flushed to disk, they deserve
1524 * everything they get.
1527 ext3_clear_inode_state(inode
, EXT3_STATE_JDATA
);
1528 journal
= EXT3_JOURNAL(inode
);
1529 journal_lock_updates(journal
);
1530 err
= journal_flush(journal
);
1531 journal_unlock_updates(journal
);
1537 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1540 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1546 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1552 static int buffer_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
1554 return !buffer_mapped(bh
);
1558 * Note that we always start a transaction even if we're not journalling
1559 * data. This is to preserve ordering: any hole instantiation within
1560 * __block_write_full_page -> ext3_get_block() should be journalled
1561 * along with the data so we don't crash and then get metadata which
1562 * refers to old data.
1564 * In all journalling modes block_write_full_page() will start the I/O.
1568 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1573 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1575 * Same applies to ext3_get_block(). We will deadlock on various things like
1576 * lock_journal and i_truncate_mutex.
1578 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1581 * 16May01: If we're reentered then journal_current_handle() will be
1582 * non-zero. We simply *return*.
1584 * 1 July 2001: @@@ FIXME:
1585 * In journalled data mode, a data buffer may be metadata against the
1586 * current transaction. But the same file is part of a shared mapping
1587 * and someone does a writepage() on it.
1589 * We will move the buffer onto the async_data list, but *after* it has
1590 * been dirtied. So there's a small window where we have dirty data on
1593 * Note that this only applies to the last partial page in the file. The
1594 * bit which block_write_full_page() uses prepare/commit for. (That's
1595 * broken code anyway: it's wrong for msync()).
1597 * It's a rare case: affects the final partial page, for journalled data
1598 * where the file is subject to bith write() and writepage() in the same
1599 * transction. To fix it we'll need a custom block_write_full_page().
1600 * We'll probably need that anyway for journalling writepage() output.
1602 * We don't honour synchronous mounts for writepage(). That would be
1603 * disastrous. Any write() or metadata operation will sync the fs for
1606 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1607 * we don't need to open a transaction here.
1609 static int ext3_ordered_writepage(struct page
*page
,
1610 struct writeback_control
*wbc
)
1612 struct inode
*inode
= page
->mapping
->host
;
1613 struct buffer_head
*page_bufs
;
1614 handle_t
*handle
= NULL
;
1618 J_ASSERT(PageLocked(page
));
1620 * We don't want to warn for emergency remount. The condition is
1621 * ordered to avoid dereferencing inode->i_sb in non-error case to
1624 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1625 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1628 * We give up here if we're reentered, because it might be for a
1629 * different filesystem.
1631 if (ext3_journal_current_handle())
1634 trace_ext3_ordered_writepage(page
);
1635 if (!page_has_buffers(page
)) {
1636 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1637 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1638 page_bufs
= page_buffers(page
);
1640 page_bufs
= page_buffers(page
);
1641 if (!walk_page_buffers(NULL
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1642 NULL
, buffer_unmapped
)) {
1643 /* Provide NULL get_block() to catch bugs if buffers
1644 * weren't really mapped */
1645 return block_write_full_page(page
, NULL
, wbc
);
1648 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1650 if (IS_ERR(handle
)) {
1651 ret
= PTR_ERR(handle
);
1655 walk_page_buffers(handle
, page_bufs
, 0,
1656 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1658 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1661 * The page can become unlocked at any point now, and
1662 * truncate can then come in and change things. So we
1663 * can't touch *page from now on. But *page_bufs is
1664 * safe due to elevated refcount.
1668 * And attach them to the current transaction. But only if
1669 * block_write_full_page() succeeded. Otherwise they are unmapped,
1670 * and generally junk.
1673 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1674 NULL
, journal_dirty_data_fn
);
1678 walk_page_buffers(handle
, page_bufs
, 0,
1679 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1680 err
= ext3_journal_stop(handle
);
1686 redirty_page_for_writepage(wbc
, page
);
1691 static int ext3_writeback_writepage(struct page
*page
,
1692 struct writeback_control
*wbc
)
1694 struct inode
*inode
= page
->mapping
->host
;
1695 handle_t
*handle
= NULL
;
1699 J_ASSERT(PageLocked(page
));
1701 * We don't want to warn for emergency remount. The condition is
1702 * ordered to avoid dereferencing inode->i_sb in non-error case to
1705 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1706 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1708 if (ext3_journal_current_handle())
1711 trace_ext3_writeback_writepage(page
);
1712 if (page_has_buffers(page
)) {
1713 if (!walk_page_buffers(NULL
, page_buffers(page
), 0,
1714 PAGE_CACHE_SIZE
, NULL
, buffer_unmapped
)) {
1715 /* Provide NULL get_block() to catch bugs if buffers
1716 * weren't really mapped */
1717 return block_write_full_page(page
, NULL
, wbc
);
1721 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1722 if (IS_ERR(handle
)) {
1723 ret
= PTR_ERR(handle
);
1727 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1729 err
= ext3_journal_stop(handle
);
1735 redirty_page_for_writepage(wbc
, page
);
1740 static int ext3_journalled_writepage(struct page
*page
,
1741 struct writeback_control
*wbc
)
1743 struct inode
*inode
= page
->mapping
->host
;
1744 handle_t
*handle
= NULL
;
1748 J_ASSERT(PageLocked(page
));
1750 * We don't want to warn for emergency remount. The condition is
1751 * ordered to avoid dereferencing inode->i_sb in non-error case to
1754 WARN_ON_ONCE(IS_RDONLY(inode
) &&
1755 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ERROR_FS
));
1757 if (ext3_journal_current_handle())
1760 trace_ext3_journalled_writepage(page
);
1761 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1762 if (IS_ERR(handle
)) {
1763 ret
= PTR_ERR(handle
);
1767 if (!page_has_buffers(page
) || PageChecked(page
)) {
1769 * It's mmapped pagecache. Add buffers and journal it. There
1770 * doesn't seem much point in redirtying the page here.
1772 ClearPageChecked(page
);
1773 ret
= __block_write_begin(page
, 0, PAGE_CACHE_SIZE
,
1776 ext3_journal_stop(handle
);
1779 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1780 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1782 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1783 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1786 ext3_set_inode_state(inode
, EXT3_STATE_JDATA
);
1787 atomic_set(&EXT3_I(inode
)->i_datasync_tid
,
1788 handle
->h_transaction
->t_tid
);
1792 * It may be a page full of checkpoint-mode buffers. We don't
1793 * really know unless we go poke around in the buffer_heads.
1794 * But block_write_full_page will do the right thing.
1796 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1798 err
= ext3_journal_stop(handle
);
1805 redirty_page_for_writepage(wbc
, page
);
1811 static int ext3_readpage(struct file
*file
, struct page
*page
)
1813 trace_ext3_readpage(page
);
1814 return mpage_readpage(page
, ext3_get_block
);
1818 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1819 struct list_head
*pages
, unsigned nr_pages
)
1821 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1824 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1826 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1828 trace_ext3_invalidatepage(page
, offset
);
1831 * If it's a full truncate we just forget about the pending dirtying
1834 ClearPageChecked(page
);
1836 journal_invalidatepage(journal
, page
, offset
);
1839 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1841 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1843 trace_ext3_releasepage(page
);
1844 WARN_ON(PageChecked(page
));
1845 if (!page_has_buffers(page
))
1847 return journal_try_to_free_buffers(journal
, page
, wait
);
1851 * If the O_DIRECT write will extend the file then add this inode to the
1852 * orphan list. So recovery will truncate it back to the original size
1853 * if the machine crashes during the write.
1855 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1856 * crashes then stale disk data _may_ be exposed inside the file. But current
1857 * VFS code falls back into buffered path in that case so we are safe.
1859 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1860 const struct iovec
*iov
, loff_t offset
,
1861 unsigned long nr_segs
)
1863 struct file
*file
= iocb
->ki_filp
;
1864 struct inode
*inode
= file
->f_mapping
->host
;
1865 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1869 size_t count
= iov_length(iov
, nr_segs
);
1872 trace_ext3_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
1875 loff_t final_size
= offset
+ count
;
1877 if (final_size
> inode
->i_size
) {
1878 /* Credits for sb + inode write */
1879 handle
= ext3_journal_start(inode
, 2);
1880 if (IS_ERR(handle
)) {
1881 ret
= PTR_ERR(handle
);
1884 ret
= ext3_orphan_add(handle
, inode
);
1886 ext3_journal_stop(handle
);
1890 ei
->i_disksize
= inode
->i_size
;
1891 ext3_journal_stop(handle
);
1896 ret
= blockdev_direct_IO(rw
, iocb
, inode
, iov
, offset
, nr_segs
,
1899 * In case of error extending write may have instantiated a few
1900 * blocks outside i_size. Trim these off again.
1902 if (unlikely((rw
& WRITE
) && ret
< 0)) {
1903 loff_t isize
= i_size_read(inode
);
1904 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
1907 ext3_truncate_failed_direct_write(inode
);
1909 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1915 /* Credits for sb + inode write */
1916 handle
= ext3_journal_start(inode
, 2);
1917 if (IS_ERR(handle
)) {
1918 /* This is really bad luck. We've written the data
1919 * but cannot extend i_size. Truncate allocated blocks
1920 * and pretend the write failed... */
1921 ext3_truncate_failed_direct_write(inode
);
1922 ret
= PTR_ERR(handle
);
1926 ext3_orphan_del(handle
, inode
);
1928 loff_t end
= offset
+ ret
;
1929 if (end
> inode
->i_size
) {
1930 ei
->i_disksize
= end
;
1931 i_size_write(inode
, end
);
1933 * We're going to return a positive `ret'
1934 * here due to non-zero-length I/O, so there's
1935 * no way of reporting error returns from
1936 * ext3_mark_inode_dirty() to userspace. So
1939 ext3_mark_inode_dirty(handle
, inode
);
1942 err
= ext3_journal_stop(handle
);
1947 trace_ext3_direct_IO_exit(inode
, offset
,
1948 iov_length(iov
, nr_segs
), rw
, ret
);
1953 * Pages can be marked dirty completely asynchronously from ext3's journalling
1954 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1955 * much here because ->set_page_dirty is called under VFS locks. The page is
1956 * not necessarily locked.
1958 * We cannot just dirty the page and leave attached buffers clean, because the
1959 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1960 * or jbddirty because all the journalling code will explode.
1962 * So what we do is to mark the page "pending dirty" and next time writepage
1963 * is called, propagate that into the buffers appropriately.
1965 static int ext3_journalled_set_page_dirty(struct page
*page
)
1967 SetPageChecked(page
);
1968 return __set_page_dirty_nobuffers(page
);
1971 static const struct address_space_operations ext3_ordered_aops
= {
1972 .readpage
= ext3_readpage
,
1973 .readpages
= ext3_readpages
,
1974 .writepage
= ext3_ordered_writepage
,
1975 .write_begin
= ext3_write_begin
,
1976 .write_end
= ext3_ordered_write_end
,
1978 .invalidatepage
= ext3_invalidatepage
,
1979 .releasepage
= ext3_releasepage
,
1980 .direct_IO
= ext3_direct_IO
,
1981 .migratepage
= buffer_migrate_page
,
1982 .is_partially_uptodate
= block_is_partially_uptodate
,
1983 .error_remove_page
= generic_error_remove_page
,
1986 static const struct address_space_operations ext3_writeback_aops
= {
1987 .readpage
= ext3_readpage
,
1988 .readpages
= ext3_readpages
,
1989 .writepage
= ext3_writeback_writepage
,
1990 .write_begin
= ext3_write_begin
,
1991 .write_end
= ext3_writeback_write_end
,
1993 .invalidatepage
= ext3_invalidatepage
,
1994 .releasepage
= ext3_releasepage
,
1995 .direct_IO
= ext3_direct_IO
,
1996 .migratepage
= buffer_migrate_page
,
1997 .is_partially_uptodate
= block_is_partially_uptodate
,
1998 .error_remove_page
= generic_error_remove_page
,
2001 static const struct address_space_operations ext3_journalled_aops
= {
2002 .readpage
= ext3_readpage
,
2003 .readpages
= ext3_readpages
,
2004 .writepage
= ext3_journalled_writepage
,
2005 .write_begin
= ext3_write_begin
,
2006 .write_end
= ext3_journalled_write_end
,
2007 .set_page_dirty
= ext3_journalled_set_page_dirty
,
2009 .invalidatepage
= ext3_invalidatepage
,
2010 .releasepage
= ext3_releasepage
,
2011 .is_partially_uptodate
= block_is_partially_uptodate
,
2012 .error_remove_page
= generic_error_remove_page
,
2015 void ext3_set_aops(struct inode
*inode
)
2017 if (ext3_should_order_data(inode
))
2018 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
2019 else if (ext3_should_writeback_data(inode
))
2020 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
2022 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
2026 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2027 * up to the end of the block which corresponds to `from'.
2028 * This required during truncate. We need to physically zero the tail end
2029 * of that block so it doesn't yield old data if the file is later grown.
2031 static int ext3_block_truncate_page(struct inode
*inode
, loff_t from
)
2033 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2034 unsigned offset
= from
& (PAGE_CACHE_SIZE
- 1);
2035 unsigned blocksize
, iblock
, length
, pos
;
2037 handle_t
*handle
= NULL
;
2038 struct buffer_head
*bh
;
2041 /* Truncated on block boundary - nothing to do */
2042 blocksize
= inode
->i_sb
->s_blocksize
;
2043 if ((from
& (blocksize
- 1)) == 0)
2046 page
= grab_cache_page(inode
->i_mapping
, index
);
2049 length
= blocksize
- (offset
& (blocksize
- 1));
2050 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2052 if (!page_has_buffers(page
))
2053 create_empty_buffers(page
, blocksize
, 0);
2055 /* Find the buffer that contains "offset" */
2056 bh
= page_buffers(page
);
2058 while (offset
>= pos
) {
2059 bh
= bh
->b_this_page
;
2065 if (buffer_freed(bh
)) {
2066 BUFFER_TRACE(bh
, "freed: skip");
2070 if (!buffer_mapped(bh
)) {
2071 BUFFER_TRACE(bh
, "unmapped");
2072 ext3_get_block(inode
, iblock
, bh
, 0);
2073 /* unmapped? It's a hole - nothing to do */
2074 if (!buffer_mapped(bh
)) {
2075 BUFFER_TRACE(bh
, "still unmapped");
2080 /* Ok, it's mapped. Make sure it's up-to-date */
2081 if (PageUptodate(page
))
2082 set_buffer_uptodate(bh
);
2084 if (!bh_uptodate_or_lock(bh
)) {
2085 err
= bh_submit_read(bh
);
2086 /* Uhhuh. Read error. Complain and punt. */
2091 /* data=writeback mode doesn't need transaction to zero-out data */
2092 if (!ext3_should_writeback_data(inode
)) {
2093 /* We journal at most one block */
2094 handle
= ext3_journal_start(inode
, 1);
2095 if (IS_ERR(handle
)) {
2096 clear_highpage(page
);
2097 flush_dcache_page(page
);
2098 err
= PTR_ERR(handle
);
2103 if (ext3_should_journal_data(inode
)) {
2104 BUFFER_TRACE(bh
, "get write access");
2105 err
= ext3_journal_get_write_access(handle
, bh
);
2110 zero_user(page
, offset
, length
);
2111 BUFFER_TRACE(bh
, "zeroed end of block");
2114 if (ext3_should_journal_data(inode
)) {
2115 err
= ext3_journal_dirty_metadata(handle
, bh
);
2117 if (ext3_should_order_data(inode
))
2118 err
= ext3_journal_dirty_data(handle
, bh
);
2119 mark_buffer_dirty(bh
);
2123 ext3_journal_stop(handle
);
2127 page_cache_release(page
);
2132 * Probably it should be a library function... search for first non-zero word
2133 * or memcmp with zero_page, whatever is better for particular architecture.
2136 static inline int all_zeroes(__le32
*p
, __le32
*q
)
2145 * ext3_find_shared - find the indirect blocks for partial truncation.
2146 * @inode: inode in question
2147 * @depth: depth of the affected branch
2148 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2149 * @chain: place to store the pointers to partial indirect blocks
2150 * @top: place to the (detached) top of branch
2152 * This is a helper function used by ext3_truncate().
2154 * When we do truncate() we may have to clean the ends of several
2155 * indirect blocks but leave the blocks themselves alive. Block is
2156 * partially truncated if some data below the new i_size is referred
2157 * from it (and it is on the path to the first completely truncated
2158 * data block, indeed). We have to free the top of that path along
2159 * with everything to the right of the path. Since no allocation
2160 * past the truncation point is possible until ext3_truncate()
2161 * finishes, we may safely do the latter, but top of branch may
2162 * require special attention - pageout below the truncation point
2163 * might try to populate it.
2165 * We atomically detach the top of branch from the tree, store the
2166 * block number of its root in *@top, pointers to buffer_heads of
2167 * partially truncated blocks - in @chain[].bh and pointers to
2168 * their last elements that should not be removed - in
2169 * @chain[].p. Return value is the pointer to last filled element
2172 * The work left to caller to do the actual freeing of subtrees:
2173 * a) free the subtree starting from *@top
2174 * b) free the subtrees whose roots are stored in
2175 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2176 * c) free the subtrees growing from the inode past the @chain[0].
2177 * (no partially truncated stuff there). */
2179 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
2180 int offsets
[4], Indirect chain
[4], __le32
*top
)
2182 Indirect
*partial
, *p
;
2186 /* Make k index the deepest non-null offset + 1 */
2187 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
2189 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
2190 /* Writer: pointers */
2192 partial
= chain
+ k
-1;
2194 * If the branch acquired continuation since we've looked at it -
2195 * fine, it should all survive and (new) top doesn't belong to us.
2197 if (!partial
->key
&& *partial
->p
)
2200 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
2203 * OK, we've found the last block that must survive. The rest of our
2204 * branch should be detached before unlocking. However, if that rest
2205 * of branch is all ours and does not grow immediately from the inode
2206 * it's easier to cheat and just decrement partial->p.
2208 if (p
== chain
+ k
- 1 && p
> chain
) {
2212 /* Nope, don't do this in ext3. Must leave the tree intact */
2219 while(partial
> p
) {
2220 brelse(partial
->bh
);
2228 * Zero a number of block pointers in either an inode or an indirect block.
2229 * If we restart the transaction we must again get write access to the
2230 * indirect block for further modification.
2232 * We release `count' blocks on disk, but (last - first) may be greater
2233 * than `count' because there can be holes in there.
2235 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2236 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2237 unsigned long count
, __le32
*first
, __le32
*last
)
2240 if (try_to_extend_transaction(handle
, inode
)) {
2242 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2243 if (ext3_journal_dirty_metadata(handle
, bh
))
2246 ext3_mark_inode_dirty(handle
, inode
);
2247 truncate_restart_transaction(handle
, inode
);
2249 BUFFER_TRACE(bh
, "retaking write access");
2250 if (ext3_journal_get_write_access(handle
, bh
))
2256 * Any buffers which are on the journal will be in memory. We find
2257 * them on the hash table so journal_revoke() will run journal_forget()
2258 * on them. We've already detached each block from the file, so
2259 * bforget() in journal_forget() should be safe.
2261 * AKPM: turn on bforget in journal_forget()!!!
2263 for (p
= first
; p
< last
; p
++) {
2264 u32 nr
= le32_to_cpu(*p
);
2266 struct buffer_head
*bh
;
2269 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2270 ext3_forget(handle
, 0, inode
, bh
, nr
);
2274 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2278 * ext3_free_data - free a list of data blocks
2279 * @handle: handle for this transaction
2280 * @inode: inode we are dealing with
2281 * @this_bh: indirect buffer_head which contains *@first and *@last
2282 * @first: array of block numbers
2283 * @last: points immediately past the end of array
2285 * We are freeing all blocks referred from that array (numbers are stored as
2286 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2288 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2289 * blocks are contiguous then releasing them at one time will only affect one
2290 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2291 * actually use a lot of journal space.
2293 * @this_bh will be %NULL if @first and @last point into the inode's direct
2296 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2297 struct buffer_head
*this_bh
,
2298 __le32
*first
, __le32
*last
)
2300 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2301 unsigned long count
= 0; /* Number of blocks in the run */
2302 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2305 ext3_fsblk_t nr
; /* Current block # */
2306 __le32
*p
; /* Pointer into inode/ind
2307 for current block */
2310 if (this_bh
) { /* For indirect block */
2311 BUFFER_TRACE(this_bh
, "get_write_access");
2312 err
= ext3_journal_get_write_access(handle
, this_bh
);
2313 /* Important: if we can't update the indirect pointers
2314 * to the blocks, we can't free them. */
2319 for (p
= first
; p
< last
; p
++) {
2320 nr
= le32_to_cpu(*p
);
2322 /* accumulate blocks to free if they're contiguous */
2325 block_to_free_p
= p
;
2327 } else if (nr
== block_to_free
+ count
) {
2330 ext3_clear_blocks(handle
, inode
, this_bh
,
2332 count
, block_to_free_p
, p
);
2334 block_to_free_p
= p
;
2341 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2342 count
, block_to_free_p
, p
);
2345 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2348 * The buffer head should have an attached journal head at this
2349 * point. However, if the data is corrupted and an indirect
2350 * block pointed to itself, it would have been detached when
2351 * the block was cleared. Check for this instead of OOPSing.
2354 ext3_journal_dirty_metadata(handle
, this_bh
);
2356 ext3_error(inode
->i_sb
, "ext3_free_data",
2357 "circular indirect block detected, "
2358 "inode=%lu, block=%llu",
2360 (unsigned long long)this_bh
->b_blocknr
);
2365 * ext3_free_branches - free an array of branches
2366 * @handle: JBD handle for this transaction
2367 * @inode: inode we are dealing with
2368 * @parent_bh: the buffer_head which contains *@first and *@last
2369 * @first: array of block numbers
2370 * @last: pointer immediately past the end of array
2371 * @depth: depth of the branches to free
2373 * We are freeing all blocks referred from these branches (numbers are
2374 * stored as little-endian 32-bit) and updating @inode->i_blocks
2377 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2378 struct buffer_head
*parent_bh
,
2379 __le32
*first
, __le32
*last
, int depth
)
2384 if (is_handle_aborted(handle
))
2388 struct buffer_head
*bh
;
2389 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2391 while (--p
>= first
) {
2392 nr
= le32_to_cpu(*p
);
2394 continue; /* A hole */
2396 /* Go read the buffer for the next level down */
2397 bh
= sb_bread(inode
->i_sb
, nr
);
2400 * A read failure? Report error and clear slot
2404 ext3_error(inode
->i_sb
, "ext3_free_branches",
2405 "Read failure, inode=%lu, block="E3FSBLK
,
2410 /* This zaps the entire block. Bottom up. */
2411 BUFFER_TRACE(bh
, "free child branches");
2412 ext3_free_branches(handle
, inode
, bh
,
2413 (__le32
*)bh
->b_data
,
2414 (__le32
*)bh
->b_data
+ addr_per_block
,
2418 * Everything below this this pointer has been
2419 * released. Now let this top-of-subtree go.
2421 * We want the freeing of this indirect block to be
2422 * atomic in the journal with the updating of the
2423 * bitmap block which owns it. So make some room in
2426 * We zero the parent pointer *after* freeing its
2427 * pointee in the bitmaps, so if extend_transaction()
2428 * for some reason fails to put the bitmap changes and
2429 * the release into the same transaction, recovery
2430 * will merely complain about releasing a free block,
2431 * rather than leaking blocks.
2433 if (is_handle_aborted(handle
))
2435 if (try_to_extend_transaction(handle
, inode
)) {
2436 ext3_mark_inode_dirty(handle
, inode
);
2437 truncate_restart_transaction(handle
, inode
);
2441 * We've probably journalled the indirect block several
2442 * times during the truncate. But it's no longer
2443 * needed and we now drop it from the transaction via
2446 * That's easy if it's exclusively part of this
2447 * transaction. But if it's part of the committing
2448 * transaction then journal_forget() will simply
2449 * brelse() it. That means that if the underlying
2450 * block is reallocated in ext3_get_block(),
2451 * unmap_underlying_metadata() will find this block
2452 * and will try to get rid of it. damn, damn. Thus
2453 * we don't allow a block to be reallocated until
2454 * a transaction freeing it has fully committed.
2456 * We also have to make sure journal replay after a
2457 * crash does not overwrite non-journaled data blocks
2458 * with old metadata when the block got reallocated for
2459 * data. Thus we have to store a revoke record for a
2460 * block in the same transaction in which we free the
2463 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2465 ext3_free_blocks(handle
, inode
, nr
, 1);
2469 * The block which we have just freed is
2470 * pointed to by an indirect block: journal it
2472 BUFFER_TRACE(parent_bh
, "get_write_access");
2473 if (!ext3_journal_get_write_access(handle
,
2476 BUFFER_TRACE(parent_bh
,
2477 "call ext3_journal_dirty_metadata");
2478 ext3_journal_dirty_metadata(handle
,
2484 /* We have reached the bottom of the tree. */
2485 BUFFER_TRACE(parent_bh
, "free data blocks");
2486 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2490 int ext3_can_truncate(struct inode
*inode
)
2492 if (S_ISREG(inode
->i_mode
))
2494 if (S_ISDIR(inode
->i_mode
))
2496 if (S_ISLNK(inode
->i_mode
))
2497 return !ext3_inode_is_fast_symlink(inode
);
2504 * We block out ext3_get_block() block instantiations across the entire
2505 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2506 * simultaneously on behalf of the same inode.
2508 * As we work through the truncate and commit bits of it to the journal there
2509 * is one core, guiding principle: the file's tree must always be consistent on
2510 * disk. We must be able to restart the truncate after a crash.
2512 * The file's tree may be transiently inconsistent in memory (although it
2513 * probably isn't), but whenever we close off and commit a journal transaction,
2514 * the contents of (the filesystem + the journal) must be consistent and
2515 * restartable. It's pretty simple, really: bottom up, right to left (although
2516 * left-to-right works OK too).
2518 * Note that at recovery time, journal replay occurs *before* the restart of
2519 * truncate against the orphan inode list.
2521 * The committed inode has the new, desired i_size (which is the same as
2522 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2523 * that this inode's truncate did not complete and it will again call
2524 * ext3_truncate() to have another go. So there will be instantiated blocks
2525 * to the right of the truncation point in a crashed ext3 filesystem. But
2526 * that's fine - as long as they are linked from the inode, the post-crash
2527 * ext3_truncate() run will find them and release them.
2529 void ext3_truncate(struct inode
*inode
)
2532 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2533 __le32
*i_data
= ei
->i_data
;
2534 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2541 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2543 trace_ext3_truncate_enter(inode
);
2545 if (!ext3_can_truncate(inode
))
2548 if (inode
->i_size
== 0 && ext3_should_writeback_data(inode
))
2549 ext3_set_inode_state(inode
, EXT3_STATE_FLUSH_ON_CLOSE
);
2551 handle
= start_transaction(inode
);
2555 last_block
= (inode
->i_size
+ blocksize
-1)
2556 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2557 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2559 goto out_stop
; /* error */
2562 * OK. This truncate is going to happen. We add the inode to the
2563 * orphan list, so that if this truncate spans multiple transactions,
2564 * and we crash, we will resume the truncate when the filesystem
2565 * recovers. It also marks the inode dirty, to catch the new size.
2567 * Implication: the file must always be in a sane, consistent
2568 * truncatable state while each transaction commits.
2570 if (ext3_orphan_add(handle
, inode
))
2574 * The orphan list entry will now protect us from any crash which
2575 * occurs before the truncate completes, so it is now safe to propagate
2576 * the new, shorter inode size (held for now in i_size) into the
2577 * on-disk inode. We do this via i_disksize, which is the value which
2578 * ext3 *really* writes onto the disk inode.
2580 ei
->i_disksize
= inode
->i_size
;
2583 * From here we block out all ext3_get_block() callers who want to
2584 * modify the block allocation tree.
2586 mutex_lock(&ei
->truncate_mutex
);
2588 if (n
== 1) { /* direct blocks */
2589 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2590 i_data
+ EXT3_NDIR_BLOCKS
);
2594 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2595 /* Kill the top of shared branch (not detached) */
2597 if (partial
== chain
) {
2598 /* Shared branch grows from the inode */
2599 ext3_free_branches(handle
, inode
, NULL
,
2600 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2603 * We mark the inode dirty prior to restart,
2604 * and prior to stop. No need for it here.
2607 /* Shared branch grows from an indirect block */
2608 ext3_free_branches(handle
, inode
, partial
->bh
,
2610 partial
->p
+1, (chain
+n
-1) - partial
);
2613 /* Clear the ends of indirect blocks on the shared branch */
2614 while (partial
> chain
) {
2615 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2616 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2617 (chain
+n
-1) - partial
);
2618 BUFFER_TRACE(partial
->bh
, "call brelse");
2619 brelse (partial
->bh
);
2623 /* Kill the remaining (whole) subtrees */
2624 switch (offsets
[0]) {
2626 nr
= i_data
[EXT3_IND_BLOCK
];
2628 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2629 i_data
[EXT3_IND_BLOCK
] = 0;
2631 case EXT3_IND_BLOCK
:
2632 nr
= i_data
[EXT3_DIND_BLOCK
];
2634 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2635 i_data
[EXT3_DIND_BLOCK
] = 0;
2637 case EXT3_DIND_BLOCK
:
2638 nr
= i_data
[EXT3_TIND_BLOCK
];
2640 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2641 i_data
[EXT3_TIND_BLOCK
] = 0;
2643 case EXT3_TIND_BLOCK
:
2647 ext3_discard_reservation(inode
);
2649 mutex_unlock(&ei
->truncate_mutex
);
2650 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2651 ext3_mark_inode_dirty(handle
, inode
);
2654 * In a multi-transaction truncate, we only make the final transaction
2661 * If this was a simple ftruncate(), and the file will remain alive
2662 * then we need to clear up the orphan record which we created above.
2663 * However, if this was a real unlink then we were called by
2664 * ext3_evict_inode(), and we allow that function to clean up the
2665 * orphan info for us.
2668 ext3_orphan_del(handle
, inode
);
2670 ext3_journal_stop(handle
);
2671 trace_ext3_truncate_exit(inode
);
2675 * Delete the inode from orphan list so that it doesn't stay there
2676 * forever and trigger assertion on umount.
2679 ext3_orphan_del(NULL
, inode
);
2680 trace_ext3_truncate_exit(inode
);
2683 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2684 unsigned long ino
, struct ext3_iloc
*iloc
)
2686 unsigned long block_group
;
2687 unsigned long offset
;
2689 struct ext3_group_desc
*gdp
;
2691 if (!ext3_valid_inum(sb
, ino
)) {
2693 * This error is already checked for in namei.c unless we are
2694 * looking at an NFS filehandle, in which case no error
2700 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2701 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2705 * Figure out the offset within the block group inode table
2707 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2708 EXT3_INODE_SIZE(sb
);
2709 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2710 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2712 iloc
->block_group
= block_group
;
2713 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2718 * ext3_get_inode_loc returns with an extra refcount against the inode's
2719 * underlying buffer_head on success. If 'in_mem' is true, we have all
2720 * data in memory that is needed to recreate the on-disk version of this
2723 static int __ext3_get_inode_loc(struct inode
*inode
,
2724 struct ext3_iloc
*iloc
, int in_mem
)
2727 struct buffer_head
*bh
;
2729 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2733 bh
= sb_getblk(inode
->i_sb
, block
);
2735 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2736 "unable to read inode block - "
2737 "inode=%lu, block="E3FSBLK
,
2738 inode
->i_ino
, block
);
2741 if (!buffer_uptodate(bh
)) {
2745 * If the buffer has the write error flag, we have failed
2746 * to write out another inode in the same block. In this
2747 * case, we don't have to read the block because we may
2748 * read the old inode data successfully.
2750 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
2751 set_buffer_uptodate(bh
);
2753 if (buffer_uptodate(bh
)) {
2754 /* someone brought it uptodate while we waited */
2760 * If we have all information of the inode in memory and this
2761 * is the only valid inode in the block, we need not read the
2765 struct buffer_head
*bitmap_bh
;
2766 struct ext3_group_desc
*desc
;
2767 int inodes_per_buffer
;
2768 int inode_offset
, i
;
2772 block_group
= (inode
->i_ino
- 1) /
2773 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2774 inodes_per_buffer
= bh
->b_size
/
2775 EXT3_INODE_SIZE(inode
->i_sb
);
2776 inode_offset
= ((inode
->i_ino
- 1) %
2777 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2778 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2780 /* Is the inode bitmap in cache? */
2781 desc
= ext3_get_group_desc(inode
->i_sb
,
2786 bitmap_bh
= sb_getblk(inode
->i_sb
,
2787 le32_to_cpu(desc
->bg_inode_bitmap
));
2792 * If the inode bitmap isn't in cache then the
2793 * optimisation may end up performing two reads instead
2794 * of one, so skip it.
2796 if (!buffer_uptodate(bitmap_bh
)) {
2800 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2801 if (i
== inode_offset
)
2803 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2807 if (i
== start
+ inodes_per_buffer
) {
2808 /* all other inodes are free, so skip I/O */
2809 memset(bh
->b_data
, 0, bh
->b_size
);
2810 set_buffer_uptodate(bh
);
2818 * There are other valid inodes in the buffer, this inode
2819 * has in-inode xattrs, or we don't have this inode in memory.
2820 * Read the block from disk.
2822 trace_ext3_load_inode(inode
);
2824 bh
->b_end_io
= end_buffer_read_sync
;
2825 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
2827 if (!buffer_uptodate(bh
)) {
2828 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2829 "unable to read inode block - "
2830 "inode=%lu, block="E3FSBLK
,
2831 inode
->i_ino
, block
);
2841 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2843 /* We have all inode data except xattrs in memory here. */
2844 return __ext3_get_inode_loc(inode
, iloc
,
2845 !ext3_test_inode_state(inode
, EXT3_STATE_XATTR
));
2848 void ext3_set_inode_flags(struct inode
*inode
)
2850 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2852 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2853 if (flags
& EXT3_SYNC_FL
)
2854 inode
->i_flags
|= S_SYNC
;
2855 if (flags
& EXT3_APPEND_FL
)
2856 inode
->i_flags
|= S_APPEND
;
2857 if (flags
& EXT3_IMMUTABLE_FL
)
2858 inode
->i_flags
|= S_IMMUTABLE
;
2859 if (flags
& EXT3_NOATIME_FL
)
2860 inode
->i_flags
|= S_NOATIME
;
2861 if (flags
& EXT3_DIRSYNC_FL
)
2862 inode
->i_flags
|= S_DIRSYNC
;
2865 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2866 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2868 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2870 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2871 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2873 ei
->i_flags
|= EXT3_SYNC_FL
;
2874 if (flags
& S_APPEND
)
2875 ei
->i_flags
|= EXT3_APPEND_FL
;
2876 if (flags
& S_IMMUTABLE
)
2877 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2878 if (flags
& S_NOATIME
)
2879 ei
->i_flags
|= EXT3_NOATIME_FL
;
2880 if (flags
& S_DIRSYNC
)
2881 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2884 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2886 struct ext3_iloc iloc
;
2887 struct ext3_inode
*raw_inode
;
2888 struct ext3_inode_info
*ei
;
2889 struct buffer_head
*bh
;
2890 struct inode
*inode
;
2891 journal_t
*journal
= EXT3_SB(sb
)->s_journal
;
2892 transaction_t
*transaction
;
2896 inode
= iget_locked(sb
, ino
);
2898 return ERR_PTR(-ENOMEM
);
2899 if (!(inode
->i_state
& I_NEW
))
2903 ei
->i_block_alloc_info
= NULL
;
2905 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2909 raw_inode
= ext3_raw_inode(&iloc
);
2910 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2911 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2912 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2913 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2914 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2915 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2917 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
2918 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2919 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2920 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2921 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2922 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2924 ei
->i_state_flags
= 0;
2925 ei
->i_dir_start_lookup
= 0;
2926 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2927 /* We now have enough fields to check if the inode was active or not.
2928 * This is needed because nfsd might try to access dead inodes
2929 * the test is that same one that e2fsck uses
2930 * NeilBrown 1999oct15
2932 if (inode
->i_nlink
== 0) {
2933 if (inode
->i_mode
== 0 ||
2934 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2935 /* this inode is deleted */
2940 /* The only unlinked inodes we let through here have
2941 * valid i_mode and are being read by the orphan
2942 * recovery code: that's fine, we're about to complete
2943 * the process of deleting those. */
2945 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2946 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2947 #ifdef EXT3_FRAGMENTS
2948 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2949 ei
->i_frag_no
= raw_inode
->i_frag
;
2950 ei
->i_frag_size
= raw_inode
->i_fsize
;
2952 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2953 if (!S_ISREG(inode
->i_mode
)) {
2954 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2957 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2959 ei
->i_disksize
= inode
->i_size
;
2960 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2961 ei
->i_block_group
= iloc
.block_group
;
2963 * NOTE! The in-memory inode i_data array is in little-endian order
2964 * even on big-endian machines: we do NOT byteswap the block numbers!
2966 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2967 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2968 INIT_LIST_HEAD(&ei
->i_orphan
);
2971 * Set transaction id's of transactions that have to be committed
2972 * to finish f[data]sync. We set them to currently running transaction
2973 * as we cannot be sure that the inode or some of its metadata isn't
2974 * part of the transaction - the inode could have been reclaimed and
2975 * now it is reread from disk.
2980 spin_lock(&journal
->j_state_lock
);
2981 if (journal
->j_running_transaction
)
2982 transaction
= journal
->j_running_transaction
;
2984 transaction
= journal
->j_committing_transaction
;
2986 tid
= transaction
->t_tid
;
2988 tid
= journal
->j_commit_sequence
;
2989 spin_unlock(&journal
->j_state_lock
);
2990 atomic_set(&ei
->i_sync_tid
, tid
);
2991 atomic_set(&ei
->i_datasync_tid
, tid
);
2994 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2995 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2997 * When mke2fs creates big inodes it does not zero out
2998 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2999 * so ignore those first few inodes.
3001 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3002 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3003 EXT3_INODE_SIZE(inode
->i_sb
)) {
3008 if (ei
->i_extra_isize
== 0) {
3009 /* The extra space is currently unused. Use it. */
3010 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
3011 EXT3_GOOD_OLD_INODE_SIZE
;
3013 __le32
*magic
= (void *)raw_inode
+
3014 EXT3_GOOD_OLD_INODE_SIZE
+
3016 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
3017 ext3_set_inode_state(inode
, EXT3_STATE_XATTR
);
3020 ei
->i_extra_isize
= 0;
3022 if (S_ISREG(inode
->i_mode
)) {
3023 inode
->i_op
= &ext3_file_inode_operations
;
3024 inode
->i_fop
= &ext3_file_operations
;
3025 ext3_set_aops(inode
);
3026 } else if (S_ISDIR(inode
->i_mode
)) {
3027 inode
->i_op
= &ext3_dir_inode_operations
;
3028 inode
->i_fop
= &ext3_dir_operations
;
3029 } else if (S_ISLNK(inode
->i_mode
)) {
3030 if (ext3_inode_is_fast_symlink(inode
)) {
3031 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
3032 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3033 sizeof(ei
->i_data
) - 1);
3035 inode
->i_op
= &ext3_symlink_inode_operations
;
3036 ext3_set_aops(inode
);
3039 inode
->i_op
= &ext3_special_inode_operations
;
3040 if (raw_inode
->i_block
[0])
3041 init_special_inode(inode
, inode
->i_mode
,
3042 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3044 init_special_inode(inode
, inode
->i_mode
,
3045 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3048 ext3_set_inode_flags(inode
);
3049 unlock_new_inode(inode
);
3054 return ERR_PTR(ret
);
3058 * Post the struct inode info into an on-disk inode location in the
3059 * buffer-cache. This gobbles the caller's reference to the
3060 * buffer_head in the inode location struct.
3062 * The caller must have write access to iloc->bh.
3064 static int ext3_do_update_inode(handle_t
*handle
,
3065 struct inode
*inode
,
3066 struct ext3_iloc
*iloc
)
3068 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
3069 struct ext3_inode_info
*ei
= EXT3_I(inode
);
3070 struct buffer_head
*bh
= iloc
->bh
;
3071 int err
= 0, rc
, block
;
3072 int need_datasync
= 0;
3076 /* we can't allow multiple procs in here at once, its a bit racey */
3079 /* For fields not not tracking in the in-memory inode,
3080 * initialise them to zero for new inodes. */
3081 if (ext3_test_inode_state(inode
, EXT3_STATE_NEW
))
3082 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
3084 ext3_get_inode_flags(ei
);
3085 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3086 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
3087 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3088 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3090 * Fix up interoperability with old kernels. Otherwise, old inodes get
3091 * re-used with the upper 16 bits of the uid/gid intact
3094 raw_inode
->i_uid_high
=
3095 cpu_to_le16(high_16_bits(inode
->i_uid
));
3096 raw_inode
->i_gid_high
=
3097 cpu_to_le16(high_16_bits(inode
->i_gid
));
3099 raw_inode
->i_uid_high
= 0;
3100 raw_inode
->i_gid_high
= 0;
3103 raw_inode
->i_uid_low
=
3104 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3105 raw_inode
->i_gid_low
=
3106 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3107 raw_inode
->i_uid_high
= 0;
3108 raw_inode
->i_gid_high
= 0;
3110 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3111 disksize
= cpu_to_le32(ei
->i_disksize
);
3112 if (disksize
!= raw_inode
->i_size
) {
3114 raw_inode
->i_size
= disksize
;
3116 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
3117 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
3118 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
3119 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
3120 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3121 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
3122 #ifdef EXT3_FRAGMENTS
3123 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
3124 raw_inode
->i_frag
= ei
->i_frag_no
;
3125 raw_inode
->i_fsize
= ei
->i_frag_size
;
3127 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
3128 if (!S_ISREG(inode
->i_mode
)) {
3129 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
3131 disksize
= cpu_to_le32(ei
->i_disksize
>> 32);
3132 if (disksize
!= raw_inode
->i_size_high
) {
3133 raw_inode
->i_size_high
= disksize
;
3136 if (ei
->i_disksize
> 0x7fffffffULL
) {
3137 struct super_block
*sb
= inode
->i_sb
;
3138 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
3139 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3140 EXT3_SB(sb
)->s_es
->s_rev_level
==
3141 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
3142 /* If this is the first large file
3143 * created, add a flag to the superblock.
3146 err
= ext3_journal_get_write_access(handle
,
3147 EXT3_SB(sb
)->s_sbh
);
3151 ext3_update_dynamic_rev(sb
);
3152 EXT3_SET_RO_COMPAT_FEATURE(sb
,
3153 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
3155 err
= ext3_journal_dirty_metadata(handle
,
3156 EXT3_SB(sb
)->s_sbh
);
3157 /* get our lock and start over */
3162 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3163 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3164 if (old_valid_dev(inode
->i_rdev
)) {
3165 raw_inode
->i_block
[0] =
3166 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3167 raw_inode
->i_block
[1] = 0;
3169 raw_inode
->i_block
[0] = 0;
3170 raw_inode
->i_block
[1] =
3171 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3172 raw_inode
->i_block
[2] = 0;
3174 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
3175 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3177 if (ei
->i_extra_isize
)
3178 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3180 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
3182 rc
= ext3_journal_dirty_metadata(handle
, bh
);
3185 ext3_clear_inode_state(inode
, EXT3_STATE_NEW
);
3187 atomic_set(&ei
->i_sync_tid
, handle
->h_transaction
->t_tid
);
3189 atomic_set(&ei
->i_datasync_tid
, handle
->h_transaction
->t_tid
);
3192 ext3_std_error(inode
->i_sb
, err
);
3197 * ext3_write_inode()
3199 * We are called from a few places:
3201 * - Within generic_file_write() for O_SYNC files.
3202 * Here, there will be no transaction running. We wait for any running
3203 * trasnaction to commit.
3205 * - Within sys_sync(), kupdate and such.
3206 * We wait on commit, if tol to.
3208 * - Within prune_icache() (PF_MEMALLOC == true)
3209 * Here we simply return. We can't afford to block kswapd on the
3212 * In all cases it is actually safe for us to return without doing anything,
3213 * because the inode has been copied into a raw inode buffer in
3214 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3217 * Note that we are absolutely dependent upon all inode dirtiers doing the
3218 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3219 * which we are interested.
3221 * It would be a bug for them to not do this. The code:
3223 * mark_inode_dirty(inode)
3225 * inode->i_size = expr;
3227 * is in error because a kswapd-driven write_inode() could occur while
3228 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3229 * will no longer be on the superblock's dirty inode list.
3231 int ext3_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3233 if (current
->flags
& PF_MEMALLOC
)
3236 if (ext3_journal_current_handle()) {
3237 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3242 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3245 return ext3_force_commit(inode
->i_sb
);
3251 * Called from notify_change.
3253 * We want to trap VFS attempts to truncate the file as soon as
3254 * possible. In particular, we want to make sure that when the VFS
3255 * shrinks i_size, we put the inode on the orphan list and modify
3256 * i_disksize immediately, so that during the subsequent flushing of
3257 * dirty pages and freeing of disk blocks, we can guarantee that any
3258 * commit will leave the blocks being flushed in an unused state on
3259 * disk. (On recovery, the inode will get truncated and the blocks will
3260 * be freed, so we have a strong guarantee that no future commit will
3261 * leave these blocks visible to the user.)
3263 * Called with inode->sem down.
3265 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3267 struct inode
*inode
= dentry
->d_inode
;
3269 const unsigned int ia_valid
= attr
->ia_valid
;
3271 error
= inode_change_ok(inode
, attr
);
3275 if (is_quota_modification(inode
, attr
))
3276 dquot_initialize(inode
);
3277 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3278 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3281 /* (user+group)*(old+new) structure, inode write (sb,
3282 * inode block, ? - but truncate inode update has it) */
3283 handle
= ext3_journal_start(inode
, EXT3_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3284 EXT3_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)+3);
3285 if (IS_ERR(handle
)) {
3286 error
= PTR_ERR(handle
);
3289 error
= dquot_transfer(inode
, attr
);
3291 ext3_journal_stop(handle
);
3294 /* Update corresponding info in inode so that everything is in
3295 * one transaction */
3296 if (attr
->ia_valid
& ATTR_UID
)
3297 inode
->i_uid
= attr
->ia_uid
;
3298 if (attr
->ia_valid
& ATTR_GID
)
3299 inode
->i_gid
= attr
->ia_gid
;
3300 error
= ext3_mark_inode_dirty(handle
, inode
);
3301 ext3_journal_stop(handle
);
3304 if (attr
->ia_valid
& ATTR_SIZE
)
3305 inode_dio_wait(inode
);
3307 if (S_ISREG(inode
->i_mode
) &&
3308 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3311 handle
= ext3_journal_start(inode
, 3);
3312 if (IS_ERR(handle
)) {
3313 error
= PTR_ERR(handle
);
3317 error
= ext3_orphan_add(handle
, inode
);
3319 ext3_journal_stop(handle
);
3322 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3323 error
= ext3_mark_inode_dirty(handle
, inode
);
3324 ext3_journal_stop(handle
);
3326 /* Some hard fs error must have happened. Bail out. */
3327 ext3_orphan_del(NULL
, inode
);
3330 rc
= ext3_block_truncate_page(inode
, attr
->ia_size
);
3332 /* Cleanup orphan list and exit */
3333 handle
= ext3_journal_start(inode
, 3);
3334 if (IS_ERR(handle
)) {
3335 ext3_orphan_del(NULL
, inode
);
3338 ext3_orphan_del(handle
, inode
);
3339 ext3_journal_stop(handle
);
3344 if ((attr
->ia_valid
& ATTR_SIZE
) &&
3345 attr
->ia_size
!= i_size_read(inode
)) {
3346 truncate_setsize(inode
, attr
->ia_size
);
3347 ext3_truncate(inode
);
3350 setattr_copy(inode
, attr
);
3351 mark_inode_dirty(inode
);
3353 if (ia_valid
& ATTR_MODE
)
3354 rc
= ext3_acl_chmod(inode
);
3357 ext3_std_error(inode
->i_sb
, error
);
3365 * How many blocks doth make a writepage()?
3367 * With N blocks per page, it may be:
3372 * N+5 bitmap blocks (from the above)
3373 * N+5 group descriptor summary blocks
3376 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3378 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3380 * With ordered or writeback data it's the same, less the N data blocks.
3382 * If the inode's direct blocks can hold an integral number of pages then a
3383 * page cannot straddle two indirect blocks, and we can only touch one indirect
3384 * and dindirect block, and the "5" above becomes "3".
3386 * This still overestimates under most circumstances. If we were to pass the
3387 * start and end offsets in here as well we could do block_to_path() on each
3388 * block and work out the exact number of indirects which are touched. Pah.
3391 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3393 int bpp
= ext3_journal_blocks_per_page(inode
);
3394 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3397 if (ext3_should_journal_data(inode
))
3398 ret
= 3 * (bpp
+ indirects
) + 2;
3400 ret
= 2 * (bpp
+ indirects
) + indirects
+ 2;
3403 /* We know that structure was already allocated during dquot_initialize so
3404 * we will be updating only the data blocks + inodes */
3405 ret
+= EXT3_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
3412 * The caller must have previously called ext3_reserve_inode_write().
3413 * Give this, we know that the caller already has write access to iloc->bh.
3415 int ext3_mark_iloc_dirty(handle_t
*handle
,
3416 struct inode
*inode
, struct ext3_iloc
*iloc
)
3420 /* the do_update_inode consumes one bh->b_count */
3423 /* ext3_do_update_inode() does journal_dirty_metadata */
3424 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3430 * On success, We end up with an outstanding reference count against
3431 * iloc->bh. This _must_ be cleaned up later.
3435 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3436 struct ext3_iloc
*iloc
)
3440 err
= ext3_get_inode_loc(inode
, iloc
);
3442 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3443 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3450 ext3_std_error(inode
->i_sb
, err
);
3455 * What we do here is to mark the in-core inode as clean with respect to inode
3456 * dirtiness (it may still be data-dirty).
3457 * This means that the in-core inode may be reaped by prune_icache
3458 * without having to perform any I/O. This is a very good thing,
3459 * because *any* task may call prune_icache - even ones which
3460 * have a transaction open against a different journal.
3462 * Is this cheating? Not really. Sure, we haven't written the
3463 * inode out, but prune_icache isn't a user-visible syncing function.
3464 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3465 * we start and wait on commits.
3467 * Is this efficient/effective? Well, we're being nice to the system
3468 * by cleaning up our inodes proactively so they can be reaped
3469 * without I/O. But we are potentially leaving up to five seconds'
3470 * worth of inodes floating about which prune_icache wants us to
3471 * write out. One way to fix that would be to get prune_icache()
3472 * to do a write_super() to free up some memory. It has the desired
3475 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3477 struct ext3_iloc iloc
;
3481 trace_ext3_mark_inode_dirty(inode
, _RET_IP_
);
3482 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3484 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3489 * ext3_dirty_inode() is called from __mark_inode_dirty()
3491 * We're really interested in the case where a file is being extended.
3492 * i_size has been changed by generic_commit_write() and we thus need
3493 * to include the updated inode in the current transaction.
3495 * Also, dquot_alloc_space() will always dirty the inode when blocks
3496 * are allocated to the file.
3498 * If the inode is marked synchronous, we don't honour that here - doing
3499 * so would cause a commit on atime updates, which we don't bother doing.
3500 * We handle synchronous inodes at the highest possible level.
3502 void ext3_dirty_inode(struct inode
*inode
, int flags
)
3504 handle_t
*current_handle
= ext3_journal_current_handle();
3507 handle
= ext3_journal_start(inode
, 2);
3510 if (current_handle
&&
3511 current_handle
->h_transaction
!= handle
->h_transaction
) {
3512 /* This task has a transaction open against a different fs */
3513 printk(KERN_EMERG
"%s: transactions do not match!\n",
3516 jbd_debug(5, "marking dirty. outer handle=%p\n",
3518 ext3_mark_inode_dirty(handle
, inode
);
3520 ext3_journal_stop(handle
);
3527 * Bind an inode's backing buffer_head into this transaction, to prevent
3528 * it from being flushed to disk early. Unlike
3529 * ext3_reserve_inode_write, this leaves behind no bh reference and
3530 * returns no iloc structure, so the caller needs to repeat the iloc
3531 * lookup to mark the inode dirty later.
3533 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3535 struct ext3_iloc iloc
;
3539 err
= ext3_get_inode_loc(inode
, &iloc
);
3541 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3542 err
= journal_get_write_access(handle
, iloc
.bh
);
3544 err
= ext3_journal_dirty_metadata(handle
,
3549 ext3_std_error(inode
->i_sb
, err
);
3554 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3561 * We have to be very careful here: changing a data block's
3562 * journaling status dynamically is dangerous. If we write a
3563 * data block to the journal, change the status and then delete
3564 * that block, we risk forgetting to revoke the old log record
3565 * from the journal and so a subsequent replay can corrupt data.
3566 * So, first we make sure that the journal is empty and that
3567 * nobody is changing anything.
3570 journal
= EXT3_JOURNAL(inode
);
3571 if (is_journal_aborted(journal
))
3574 journal_lock_updates(journal
);
3575 journal_flush(journal
);
3578 * OK, there are no updates running now, and all cached data is
3579 * synced to disk. We are now in a completely consistent state
3580 * which doesn't have anything in the journal, and we know that
3581 * no filesystem updates are running, so it is safe to modify
3582 * the inode's in-core data-journaling state flag now.
3586 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3588 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3589 ext3_set_aops(inode
);
3591 journal_unlock_updates(journal
);
3593 /* Finally we can mark the inode as dirty. */
3595 handle
= ext3_journal_start(inode
, 1);
3597 return PTR_ERR(handle
);
3599 err
= ext3_mark_inode_dirty(handle
, inode
);
3601 ext3_journal_stop(handle
);
3602 ext3_std_error(inode
->i_sb
, err
);