2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
50 kmem_zone_t
*xfs_ifork_zone
;
51 kmem_zone_t
*xfs_inode_zone
;
54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
55 * freed from a file in a single transaction.
57 #define XFS_ITRUNC_MAX_EXTENTS 2
59 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
60 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
61 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
62 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
66 * Make sure that the extents in the given memory buffer
76 xfs_bmbt_rec_host_t rec
;
79 for (i
= 0; i
< nrecs
; i
++) {
80 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
81 rec
.l0
= get_unaligned(&ep
->l0
);
82 rec
.l1
= get_unaligned(&ep
->l1
);
83 xfs_bmbt_get_all(&rec
, &irec
);
84 if (fmt
== XFS_EXTFMT_NOSTATE
)
85 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
89 #define xfs_validate_extents(ifp, nrecs, fmt)
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
106 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
108 for (i
= 0; i
< j
; i
++) {
109 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
110 i
* mp
->m_sb
.sb_inodesize
);
111 if (!dip
->di_next_unlinked
) {
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 ASSERT(dip
->di_next_unlinked
);
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
130 struct xfs_imap
*imap
,
140 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
141 (int)imap
->im_len
, buf_flags
, &bp
);
143 if (error
!= EAGAIN
) {
145 "%s: xfs_trans_read_buf() returned error %d.",
148 ASSERT(buf_flags
& XBF_TRYLOCK
);
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
159 #else /* usual case */
163 for (i
= 0; i
< ni
; i
++) {
167 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
168 (i
<< mp
->m_sb
.sb_inodelog
));
169 di_ok
= dip
->di_magic
== cpu_to_be16(XFS_DINODE_MAGIC
) &&
170 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
171 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
172 XFS_ERRTAG_ITOBP_INOTOBP
,
173 XFS_RANDOM_ITOBP_INOTOBP
))) {
174 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
175 xfs_trans_brelse(tp
, bp
);
176 return XFS_ERROR(EINVAL
);
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH
, mp
, dip
);
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 (unsigned long long)imap
->im_blkno
, i
,
184 be16_to_cpu(dip
->di_magic
));
187 xfs_trans_brelse(tp
, bp
);
188 return XFS_ERROR(EFSCORRUPTED
);
192 xfs_inobp_check(mp
, bp
);
198 * This routine is called to map an inode number within a file
199 * system to the buffer containing the on-disk version of the
200 * inode. It returns a pointer to the buffer containing the
201 * on-disk inode in the bpp parameter, and in the dip parameter
202 * it returns a pointer to the on-disk inode within that buffer.
204 * If a non-zero error is returned, then the contents of bpp and
205 * dipp are undefined.
207 * Use xfs_imap() to determine the size and location of the
208 * buffer to read from disk.
220 struct xfs_imap imap
;
225 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
229 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XBF_LOCK
, imap_flags
);
233 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
235 *offset
= imap
.im_boffset
;
241 * This routine is called to map an inode to the buffer containing
242 * the on-disk version of the inode. It returns a pointer to the
243 * buffer containing the on-disk inode in the bpp parameter, and in
244 * the dip parameter it returns a pointer to the on-disk inode within
247 * If a non-zero error is returned, then the contents of bpp and
248 * dipp are undefined.
250 * The inode is expected to already been mapped to its buffer and read
251 * in once, thus we can use the mapping information stored in the inode
252 * rather than calling xfs_imap(). This allows us to avoid the overhead
253 * of looking at the inode btree for small block file systems
268 ASSERT(ip
->i_imap
.im_blkno
!= 0);
270 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
275 ASSERT(buf_flags
& XBF_TRYLOCK
);
281 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
287 * Move inode type and inode format specific information from the
288 * on-disk inode to the in-core inode. For fifos, devs, and sockets
289 * this means set if_rdev to the proper value. For files, directories,
290 * and symlinks this means to bring in the in-line data or extent
291 * pointers. For a file in B-tree format, only the root is immediately
292 * brought in-core. The rest will be in-lined in if_extents when it
293 * is first referenced (see xfs_iread_extents()).
300 xfs_attr_shortform_t
*atp
;
305 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
306 be16_to_cpu(dip
->di_anextents
) >
307 be64_to_cpu(dip
->di_nblocks
))) {
308 xfs_warn(ip
->i_mount
,
309 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
310 (unsigned long long)ip
->i_ino
,
311 (int)(be32_to_cpu(dip
->di_nextents
) +
312 be16_to_cpu(dip
->di_anextents
)),
314 be64_to_cpu(dip
->di_nblocks
));
315 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
317 return XFS_ERROR(EFSCORRUPTED
);
320 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
321 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
322 (unsigned long long)ip
->i_ino
,
324 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
326 return XFS_ERROR(EFSCORRUPTED
);
329 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
330 !ip
->i_mount
->m_rtdev_targp
)) {
331 xfs_warn(ip
->i_mount
,
332 "corrupt dinode %Lu, has realtime flag set.",
334 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
335 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
336 return XFS_ERROR(EFSCORRUPTED
);
339 switch (ip
->i_d
.di_mode
& S_IFMT
) {
344 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
345 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
347 return XFS_ERROR(EFSCORRUPTED
);
350 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
356 switch (dip
->di_format
) {
357 case XFS_DINODE_FMT_LOCAL
:
359 * no local regular files yet
361 if (unlikely(S_ISREG(be16_to_cpu(dip
->di_mode
)))) {
362 xfs_warn(ip
->i_mount
,
363 "corrupt inode %Lu (local format for regular file).",
364 (unsigned long long) ip
->i_ino
);
365 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
368 return XFS_ERROR(EFSCORRUPTED
);
371 di_size
= be64_to_cpu(dip
->di_size
);
372 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
373 xfs_warn(ip
->i_mount
,
374 "corrupt inode %Lu (bad size %Ld for local inode).",
375 (unsigned long long) ip
->i_ino
,
376 (long long) di_size
);
377 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
380 return XFS_ERROR(EFSCORRUPTED
);
384 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
386 case XFS_DINODE_FMT_EXTENTS
:
387 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
389 case XFS_DINODE_FMT_BTREE
:
390 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
393 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
395 return XFS_ERROR(EFSCORRUPTED
);
400 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
401 return XFS_ERROR(EFSCORRUPTED
);
406 if (!XFS_DFORK_Q(dip
))
409 ASSERT(ip
->i_afp
== NULL
);
410 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
412 switch (dip
->di_aformat
) {
413 case XFS_DINODE_FMT_LOCAL
:
414 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
415 size
= be16_to_cpu(atp
->hdr
.totsize
);
417 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
418 xfs_warn(ip
->i_mount
,
419 "corrupt inode %Lu (bad attr fork size %Ld).",
420 (unsigned long long) ip
->i_ino
,
422 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
425 return XFS_ERROR(EFSCORRUPTED
);
428 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
430 case XFS_DINODE_FMT_EXTENTS
:
431 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
433 case XFS_DINODE_FMT_BTREE
:
434 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
437 error
= XFS_ERROR(EFSCORRUPTED
);
441 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
443 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
449 * The file is in-lined in the on-disk inode.
450 * If it fits into if_inline_data, then copy
451 * it there, otherwise allocate a buffer for it
452 * and copy the data there. Either way, set
453 * if_data to point at the data.
454 * If we allocate a buffer for the data, make
455 * sure that its size is a multiple of 4 and
456 * record the real size in i_real_bytes.
469 * If the size is unreasonable, then something
470 * is wrong and we just bail out rather than crash in
471 * kmem_alloc() or memcpy() below.
473 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
474 xfs_warn(ip
->i_mount
,
475 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
476 (unsigned long long) ip
->i_ino
, size
,
477 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
480 return XFS_ERROR(EFSCORRUPTED
);
482 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
485 ifp
->if_u1
.if_data
= NULL
;
486 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
487 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
489 real_size
= roundup(size
, 4);
490 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
492 ifp
->if_bytes
= size
;
493 ifp
->if_real_bytes
= real_size
;
495 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
496 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
497 ifp
->if_flags
|= XFS_IFINLINE
;
502 * The file consists of a set of extents all
503 * of which fit into the on-disk inode.
504 * If there are few enough extents to fit into
505 * the if_inline_ext, then copy them there.
506 * Otherwise allocate a buffer for them and copy
507 * them into it. Either way, set if_extents
508 * to point at the extents.
522 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
523 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
524 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
527 * If the number of extents is unreasonable, then something
528 * is wrong and we just bail out rather than crash in
529 * kmem_alloc() or memcpy() below.
531 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
532 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
533 (unsigned long long) ip
->i_ino
, nex
);
534 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
536 return XFS_ERROR(EFSCORRUPTED
);
539 ifp
->if_real_bytes
= 0;
541 ifp
->if_u1
.if_extents
= NULL
;
542 else if (nex
<= XFS_INLINE_EXTS
)
543 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
545 xfs_iext_add(ifp
, 0, nex
);
547 ifp
->if_bytes
= size
;
549 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
550 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
551 for (i
= 0; i
< nex
; i
++, dp
++) {
552 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
553 ep
->l0
= get_unaligned_be64(&dp
->l0
);
554 ep
->l1
= get_unaligned_be64(&dp
->l1
);
556 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
557 if (whichfork
!= XFS_DATA_FORK
||
558 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
559 if (unlikely(xfs_check_nostate_extents(
561 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
564 return XFS_ERROR(EFSCORRUPTED
);
567 ifp
->if_flags
|= XFS_IFEXTENTS
;
572 * The file has too many extents to fit into
573 * the inode, so they are in B-tree format.
574 * Allocate a buffer for the root of the B-tree
575 * and copy the root into it. The i_extents
576 * field will remain NULL until all of the
577 * extents are read in (when they are needed).
585 xfs_bmdr_block_t
*dfp
;
591 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
592 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
593 size
= XFS_BMAP_BROOT_SPACE(dfp
);
594 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
597 * blow out if -- fork has less extents than can fit in
598 * fork (fork shouldn't be a btree format), root btree
599 * block has more records than can fit into the fork,
600 * or the number of extents is greater than the number of
603 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <=
604 XFS_IFORK_MAXEXT(ip
, whichfork
) ||
605 XFS_BMDR_SPACE_CALC(nrecs
) >
606 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
) ||
607 XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
608 xfs_warn(ip
->i_mount
, "corrupt inode %Lu (btree).",
609 (unsigned long long) ip
->i_ino
);
610 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
612 return XFS_ERROR(EFSCORRUPTED
);
615 ifp
->if_broot_bytes
= size
;
616 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
617 ASSERT(ifp
->if_broot
!= NULL
);
619 * Copy and convert from the on-disk structure
620 * to the in-memory structure.
622 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
623 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
624 ifp
->if_broot
, size
);
625 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
626 ifp
->if_flags
|= XFS_IFBROOT
;
632 xfs_dinode_from_disk(
636 to
->di_magic
= be16_to_cpu(from
->di_magic
);
637 to
->di_mode
= be16_to_cpu(from
->di_mode
);
638 to
->di_version
= from
->di_version
;
639 to
->di_format
= from
->di_format
;
640 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
641 to
->di_uid
= be32_to_cpu(from
->di_uid
);
642 to
->di_gid
= be32_to_cpu(from
->di_gid
);
643 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
644 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
645 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
646 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
647 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
648 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
649 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
650 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
651 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
652 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
653 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
654 to
->di_size
= be64_to_cpu(from
->di_size
);
655 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
656 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
657 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
658 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
659 to
->di_forkoff
= from
->di_forkoff
;
660 to
->di_aformat
= from
->di_aformat
;
661 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
662 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
663 to
->di_flags
= be16_to_cpu(from
->di_flags
);
664 to
->di_gen
= be32_to_cpu(from
->di_gen
);
670 xfs_icdinode_t
*from
)
672 to
->di_magic
= cpu_to_be16(from
->di_magic
);
673 to
->di_mode
= cpu_to_be16(from
->di_mode
);
674 to
->di_version
= from
->di_version
;
675 to
->di_format
= from
->di_format
;
676 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
677 to
->di_uid
= cpu_to_be32(from
->di_uid
);
678 to
->di_gid
= cpu_to_be32(from
->di_gid
);
679 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
680 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
681 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
682 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
683 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
684 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
685 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
686 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
687 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
688 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
689 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
690 to
->di_size
= cpu_to_be64(from
->di_size
);
691 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
692 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
693 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
694 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
695 to
->di_forkoff
= from
->di_forkoff
;
696 to
->di_aformat
= from
->di_aformat
;
697 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
698 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
699 to
->di_flags
= cpu_to_be16(from
->di_flags
);
700 to
->di_gen
= cpu_to_be32(from
->di_gen
);
709 if (di_flags
& XFS_DIFLAG_ANY
) {
710 if (di_flags
& XFS_DIFLAG_REALTIME
)
711 flags
|= XFS_XFLAG_REALTIME
;
712 if (di_flags
& XFS_DIFLAG_PREALLOC
)
713 flags
|= XFS_XFLAG_PREALLOC
;
714 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
715 flags
|= XFS_XFLAG_IMMUTABLE
;
716 if (di_flags
& XFS_DIFLAG_APPEND
)
717 flags
|= XFS_XFLAG_APPEND
;
718 if (di_flags
& XFS_DIFLAG_SYNC
)
719 flags
|= XFS_XFLAG_SYNC
;
720 if (di_flags
& XFS_DIFLAG_NOATIME
)
721 flags
|= XFS_XFLAG_NOATIME
;
722 if (di_flags
& XFS_DIFLAG_NODUMP
)
723 flags
|= XFS_XFLAG_NODUMP
;
724 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
725 flags
|= XFS_XFLAG_RTINHERIT
;
726 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
727 flags
|= XFS_XFLAG_PROJINHERIT
;
728 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
729 flags
|= XFS_XFLAG_NOSYMLINKS
;
730 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
731 flags
|= XFS_XFLAG_EXTSIZE
;
732 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
733 flags
|= XFS_XFLAG_EXTSZINHERIT
;
734 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
735 flags
|= XFS_XFLAG_NODEFRAG
;
736 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
737 flags
|= XFS_XFLAG_FILESTREAM
;
747 xfs_icdinode_t
*dic
= &ip
->i_d
;
749 return _xfs_dic2xflags(dic
->di_flags
) |
750 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
757 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
758 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
762 * Read the disk inode attributes into the in-core inode structure.
776 * Fill in the location information in the in-core inode.
778 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
783 * Get pointers to the on-disk inode and the buffer containing it.
785 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
786 XBF_LOCK
, iget_flags
);
789 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
792 * If we got something that isn't an inode it means someone
793 * (nfs or dmi) has a stale handle.
795 if (dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
)) {
798 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
799 __func__
, be16_to_cpu(dip
->di_magic
), XFS_DINODE_MAGIC
);
801 error
= XFS_ERROR(EINVAL
);
806 * If the on-disk inode is already linked to a directory
807 * entry, copy all of the inode into the in-core inode.
808 * xfs_iformat() handles copying in the inode format
809 * specific information.
810 * Otherwise, just get the truly permanent information.
813 xfs_dinode_from_disk(&ip
->i_d
, dip
);
814 error
= xfs_iformat(ip
, dip
);
817 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
823 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
824 ip
->i_d
.di_version
= dip
->di_version
;
825 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
826 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
828 * Make sure to pull in the mode here as well in
829 * case the inode is released without being used.
830 * This ensures that xfs_inactive() will see that
831 * the inode is already free and not try to mess
832 * with the uninitialized part of it.
838 * The inode format changed when we moved the link count and
839 * made it 32 bits long. If this is an old format inode,
840 * convert it in memory to look like a new one. If it gets
841 * flushed to disk we will convert back before flushing or
842 * logging it. We zero out the new projid field and the old link
843 * count field. We'll handle clearing the pad field (the remains
844 * of the old uuid field) when we actually convert the inode to
845 * the new format. We don't change the version number so that we
846 * can distinguish this from a real new format inode.
848 if (ip
->i_d
.di_version
== 1) {
849 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
850 ip
->i_d
.di_onlink
= 0;
851 xfs_set_projid(ip
, 0);
854 ip
->i_delayed_blks
= 0;
857 * Mark the buffer containing the inode as something to keep
858 * around for a while. This helps to keep recently accessed
859 * meta-data in-core longer.
861 xfs_buf_set_ref(bp
, XFS_INO_REF
);
864 * Use xfs_trans_brelse() to release the buffer containing the
865 * on-disk inode, because it was acquired with xfs_trans_read_buf()
866 * in xfs_itobp() above. If tp is NULL, this is just a normal
867 * brelse(). If we're within a transaction, then xfs_trans_brelse()
868 * will only release the buffer if it is not dirty within the
869 * transaction. It will be OK to release the buffer in this case,
870 * because inodes on disk are never destroyed and we will be
871 * locking the new in-core inode before putting it in the hash
872 * table where other processes can find it. Thus we don't have
873 * to worry about the inode being changed just because we released
877 xfs_trans_brelse(tp
, bp
);
882 * Read in extents from a btree-format inode.
883 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
893 xfs_extnum_t nextents
;
895 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
896 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
898 return XFS_ERROR(EFSCORRUPTED
);
900 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
901 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
904 * We know that the size is valid (it's checked in iformat_btree)
906 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
907 ifp
->if_flags
|= XFS_IFEXTENTS
;
908 xfs_iext_add(ifp
, 0, nextents
);
909 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
911 xfs_iext_destroy(ifp
);
912 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
915 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
920 * Allocate an inode on disk and return a copy of its in-core version.
921 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
922 * appropriately within the inode. The uid and gid for the inode are
923 * set according to the contents of the given cred structure.
925 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
926 * has a free inode available, call xfs_iget()
927 * to obtain the in-core version of the allocated inode. Finally,
928 * fill in the inode and log its initial contents. In this case,
929 * ialloc_context would be set to NULL and call_again set to false.
931 * If xfs_dialloc() does not have an available inode,
932 * it will replenish its supply by doing an allocation. Since we can
933 * only do one allocation within a transaction without deadlocks, we
934 * must commit the current transaction before returning the inode itself.
935 * In this case, therefore, we will set call_again to true and return.
936 * The caller should then commit the current transaction, start a new
937 * transaction, and call xfs_ialloc() again to actually get the inode.
939 * To ensure that some other process does not grab the inode that
940 * was allocated during the first call to xfs_ialloc(), this routine
941 * also returns the [locked] bp pointing to the head of the freelist
942 * as ialloc_context. The caller should hold this buffer across
943 * the commit and pass it back into this routine on the second call.
945 * If we are allocating quota inodes, we do not have a parent inode
946 * to attach to or associate with (i.e. pip == NULL) because they
947 * are not linked into the directory structure - they are attached
948 * directly to the superblock - and so have no parent.
959 xfs_buf_t
**ialloc_context
,
960 boolean_t
*call_again
,
971 * Call the space management code to pick
972 * the on-disk inode to be allocated.
974 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
975 ialloc_context
, call_again
, &ino
);
978 if (*call_again
|| ino
== NULLFSINO
) {
982 ASSERT(*ialloc_context
== NULL
);
985 * Get the in-core inode with the lock held exclusively.
986 * This is because we're setting fields here we need
987 * to prevent others from looking at until we're done.
989 error
= xfs_iget(tp
->t_mountp
, tp
, ino
, XFS_IGET_CREATE
,
990 XFS_ILOCK_EXCL
, &ip
);
995 ip
->i_d
.di_mode
= mode
;
996 ip
->i_d
.di_onlink
= 0;
997 ip
->i_d
.di_nlink
= nlink
;
998 ASSERT(ip
->i_d
.di_nlink
== nlink
);
999 ip
->i_d
.di_uid
= current_fsuid();
1000 ip
->i_d
.di_gid
= current_fsgid();
1001 xfs_set_projid(ip
, prid
);
1002 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1005 * If the superblock version is up to where we support new format
1006 * inodes and this is currently an old format inode, then change
1007 * the inode version number now. This way we only do the conversion
1008 * here rather than here and in the flush/logging code.
1010 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1011 ip
->i_d
.di_version
== 1) {
1012 ip
->i_d
.di_version
= 2;
1014 * We've already zeroed the old link count, the projid field,
1015 * and the pad field.
1020 * Project ids won't be stored on disk if we are using a version 1 inode.
1022 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1023 xfs_bump_ino_vers2(tp
, ip
);
1025 if (pip
&& XFS_INHERIT_GID(pip
)) {
1026 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1027 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
1028 ip
->i_d
.di_mode
|= S_ISGID
;
1033 * If the group ID of the new file does not match the effective group
1034 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1035 * (and only if the irix_sgid_inherit compatibility variable is set).
1037 if ((irix_sgid_inherit
) &&
1038 (ip
->i_d
.di_mode
& S_ISGID
) &&
1039 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1040 ip
->i_d
.di_mode
&= ~S_ISGID
;
1043 ip
->i_d
.di_size
= 0;
1044 ip
->i_d
.di_nextents
= 0;
1045 ASSERT(ip
->i_d
.di_nblocks
== 0);
1048 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1049 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1050 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1051 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1054 * di_gen will have been taken care of in xfs_iread.
1056 ip
->i_d
.di_extsize
= 0;
1057 ip
->i_d
.di_dmevmask
= 0;
1058 ip
->i_d
.di_dmstate
= 0;
1059 ip
->i_d
.di_flags
= 0;
1060 flags
= XFS_ILOG_CORE
;
1061 switch (mode
& S_IFMT
) {
1066 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1067 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1068 ip
->i_df
.if_flags
= 0;
1069 flags
|= XFS_ILOG_DEV
;
1073 * we can't set up filestreams until after the VFS inode
1074 * is set up properly.
1076 if (pip
&& xfs_inode_is_filestream(pip
))
1080 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1083 if (S_ISDIR(mode
)) {
1084 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1085 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1086 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1087 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1088 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1090 } else if (S_ISREG(mode
)) {
1091 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1092 di_flags
|= XFS_DIFLAG_REALTIME
;
1093 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1094 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1095 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1098 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1099 xfs_inherit_noatime
)
1100 di_flags
|= XFS_DIFLAG_NOATIME
;
1101 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1103 di_flags
|= XFS_DIFLAG_NODUMP
;
1104 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1106 di_flags
|= XFS_DIFLAG_SYNC
;
1107 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1108 xfs_inherit_nosymlinks
)
1109 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1110 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1111 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1112 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1113 xfs_inherit_nodefrag
)
1114 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1115 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1116 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1117 ip
->i_d
.di_flags
|= di_flags
;
1121 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1122 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1123 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1124 ip
->i_df
.if_u1
.if_extents
= NULL
;
1130 * Attribute fork settings for new inode.
1132 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1133 ip
->i_d
.di_anextents
= 0;
1136 * Log the new values stuffed into the inode.
1138 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
1139 xfs_trans_log_inode(tp
, ip
, flags
);
1141 /* now that we have an i_mode we can setup inode ops and unlock */
1142 xfs_setup_inode(ip
);
1144 /* now we have set up the vfs inode we can associate the filestream */
1146 error
= xfs_filestream_associate(pip
, ip
);
1150 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1158 * Free up the underlying blocks past new_size. The new size must be smaller
1159 * than the current size. This routine can be used both for the attribute and
1160 * data fork, and does not modify the inode size, which is left to the caller.
1162 * The transaction passed to this routine must have made a permanent log
1163 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1164 * given transaction and start new ones, so make sure everything involved in
1165 * the transaction is tidy before calling here. Some transaction will be
1166 * returned to the caller to be committed. The incoming transaction must
1167 * already include the inode, and both inode locks must be held exclusively.
1168 * The inode must also be "held" within the transaction. On return the inode
1169 * will be "held" within the returned transaction. This routine does NOT
1170 * require any disk space to be reserved for it within the transaction.
1172 * If we get an error, we must return with the inode locked and linked into the
1173 * current transaction. This keeps things simple for the higher level code,
1174 * because it always knows that the inode is locked and held in the transaction
1175 * that returns to it whether errors occur or not. We don't mark the inode
1176 * dirty on error so that transactions can be easily aborted if possible.
1179 xfs_itruncate_extents(
1180 struct xfs_trans
**tpp
,
1181 struct xfs_inode
*ip
,
1183 xfs_fsize_t new_size
)
1185 struct xfs_mount
*mp
= ip
->i_mount
;
1186 struct xfs_trans
*tp
= *tpp
;
1187 struct xfs_trans
*ntp
;
1188 xfs_bmap_free_t free_list
;
1189 xfs_fsblock_t first_block
;
1190 xfs_fileoff_t first_unmap_block
;
1191 xfs_fileoff_t last_block
;
1192 xfs_filblks_t unmap_len
;
1197 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1198 ASSERT(new_size
<= XFS_ISIZE(ip
));
1199 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1200 ASSERT(ip
->i_itemp
!= NULL
);
1201 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1202 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1204 trace_xfs_itruncate_extents_start(ip
, new_size
);
1207 * Since it is possible for space to become allocated beyond
1208 * the end of the file (in a crash where the space is allocated
1209 * but the inode size is not yet updated), simply remove any
1210 * blocks which show up between the new EOF and the maximum
1211 * possible file size. If the first block to be removed is
1212 * beyond the maximum file size (ie it is the same as last_block),
1213 * then there is nothing to do.
1215 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1216 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1217 if (first_unmap_block
== last_block
)
1220 ASSERT(first_unmap_block
< last_block
);
1221 unmap_len
= last_block
- first_unmap_block
+ 1;
1223 xfs_bmap_init(&free_list
, &first_block
);
1224 error
= xfs_bunmapi(tp
, ip
,
1225 first_unmap_block
, unmap_len
,
1226 xfs_bmapi_aflag(whichfork
),
1227 XFS_ITRUNC_MAX_EXTENTS
,
1228 &first_block
, &free_list
,
1231 goto out_bmap_cancel
;
1234 * Duplicate the transaction that has the permanent
1235 * reservation and commit the old transaction.
1237 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1239 xfs_trans_ijoin(tp
, ip
, 0);
1241 goto out_bmap_cancel
;
1245 * Mark the inode dirty so it will be logged and
1246 * moved forward in the log as part of every commit.
1248 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1251 ntp
= xfs_trans_dup(tp
);
1252 error
= xfs_trans_commit(tp
, 0);
1255 xfs_trans_ijoin(tp
, ip
, 0);
1261 * Transaction commit worked ok so we can drop the extra ticket
1262 * reference that we gained in xfs_trans_dup()
1264 xfs_log_ticket_put(tp
->t_ticket
);
1265 error
= xfs_trans_reserve(tp
, 0,
1266 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1267 XFS_TRANS_PERM_LOG_RES
,
1268 XFS_ITRUNCATE_LOG_COUNT
);
1274 * Always re-log the inode so that our permanent transaction can keep
1275 * on rolling it forward in the log.
1277 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1279 trace_xfs_itruncate_extents_end(ip
, new_size
);
1286 * If the bunmapi call encounters an error, return to the caller where
1287 * the transaction can be properly aborted. We just need to make sure
1288 * we're not holding any resources that we were not when we came in.
1290 xfs_bmap_cancel(&free_list
);
1295 * This is called when the inode's link count goes to 0.
1296 * We place the on-disk inode on a list in the AGI. It
1297 * will be pulled from this list when the inode is freed.
1314 ASSERT(ip
->i_d
.di_nlink
== 0);
1315 ASSERT(ip
->i_d
.di_mode
!= 0);
1320 * Get the agi buffer first. It ensures lock ordering
1323 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1326 agi
= XFS_BUF_TO_AGI(agibp
);
1329 * Get the index into the agi hash table for the
1330 * list this inode will go on.
1332 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1334 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1335 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1336 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1338 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1340 * There is already another inode in the bucket we need
1341 * to add ourselves to. Add us at the front of the list.
1342 * Here we put the head pointer into our next pointer,
1343 * and then we fall through to point the head at us.
1345 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1349 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1350 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1351 offset
= ip
->i_imap
.im_boffset
+
1352 offsetof(xfs_dinode_t
, di_next_unlinked
);
1353 xfs_trans_inode_buf(tp
, ibp
);
1354 xfs_trans_log_buf(tp
, ibp
, offset
,
1355 (offset
+ sizeof(xfs_agino_t
) - 1));
1356 xfs_inobp_check(mp
, ibp
);
1360 * Point the bucket head pointer at the inode being inserted.
1363 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1364 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1365 (sizeof(xfs_agino_t
) * bucket_index
);
1366 xfs_trans_log_buf(tp
, agibp
, offset
,
1367 (offset
+ sizeof(xfs_agino_t
) - 1));
1372 * Pull the on-disk inode from the AGI unlinked list.
1385 xfs_agnumber_t agno
;
1387 xfs_agino_t next_agino
;
1388 xfs_buf_t
*last_ibp
;
1389 xfs_dinode_t
*last_dip
= NULL
;
1391 int offset
, last_offset
= 0;
1395 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1398 * Get the agi buffer first. It ensures lock ordering
1401 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1405 agi
= XFS_BUF_TO_AGI(agibp
);
1408 * Get the index into the agi hash table for the
1409 * list this inode will go on.
1411 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1413 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1414 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
1415 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1417 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1419 * We're at the head of the list. Get the inode's
1420 * on-disk buffer to see if there is anyone after us
1421 * on the list. Only modify our next pointer if it
1422 * is not already NULLAGINO. This saves us the overhead
1423 * of dealing with the buffer when there is no need to
1426 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1428 xfs_warn(mp
, "%s: xfs_itobp() returned error %d.",
1432 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1433 ASSERT(next_agino
!= 0);
1434 if (next_agino
!= NULLAGINO
) {
1435 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1436 offset
= ip
->i_imap
.im_boffset
+
1437 offsetof(xfs_dinode_t
, di_next_unlinked
);
1438 xfs_trans_inode_buf(tp
, ibp
);
1439 xfs_trans_log_buf(tp
, ibp
, offset
,
1440 (offset
+ sizeof(xfs_agino_t
) - 1));
1441 xfs_inobp_check(mp
, ibp
);
1443 xfs_trans_brelse(tp
, ibp
);
1446 * Point the bucket head pointer at the next inode.
1448 ASSERT(next_agino
!= 0);
1449 ASSERT(next_agino
!= agino
);
1450 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1451 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1452 (sizeof(xfs_agino_t
) * bucket_index
);
1453 xfs_trans_log_buf(tp
, agibp
, offset
,
1454 (offset
+ sizeof(xfs_agino_t
) - 1));
1457 * We need to search the list for the inode being freed.
1459 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1461 while (next_agino
!= agino
) {
1463 * If the last inode wasn't the one pointing to
1464 * us, then release its buffer since we're not
1465 * going to do anything with it.
1467 if (last_ibp
!= NULL
) {
1468 xfs_trans_brelse(tp
, last_ibp
);
1470 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1471 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1472 &last_ibp
, &last_offset
, 0);
1475 "%s: xfs_inotobp() returned error %d.",
1479 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1480 ASSERT(next_agino
!= NULLAGINO
);
1481 ASSERT(next_agino
!= 0);
1484 * Now last_ibp points to the buffer previous to us on
1485 * the unlinked list. Pull us from the list.
1487 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1489 xfs_warn(mp
, "%s: xfs_itobp(2) returned error %d.",
1493 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1494 ASSERT(next_agino
!= 0);
1495 ASSERT(next_agino
!= agino
);
1496 if (next_agino
!= NULLAGINO
) {
1497 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1498 offset
= ip
->i_imap
.im_boffset
+
1499 offsetof(xfs_dinode_t
, di_next_unlinked
);
1500 xfs_trans_inode_buf(tp
, ibp
);
1501 xfs_trans_log_buf(tp
, ibp
, offset
,
1502 (offset
+ sizeof(xfs_agino_t
) - 1));
1503 xfs_inobp_check(mp
, ibp
);
1505 xfs_trans_brelse(tp
, ibp
);
1508 * Point the previous inode on the list to the next inode.
1510 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1511 ASSERT(next_agino
!= 0);
1512 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1513 xfs_trans_inode_buf(tp
, last_ibp
);
1514 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1515 (offset
+ sizeof(xfs_agino_t
) - 1));
1516 xfs_inobp_check(mp
, last_ibp
);
1522 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1523 * inodes that are in memory - they all must be marked stale and attached to
1524 * the cluster buffer.
1528 xfs_inode_t
*free_ip
,
1532 xfs_mount_t
*mp
= free_ip
->i_mount
;
1533 int blks_per_cluster
;
1540 xfs_inode_log_item_t
*iip
;
1541 xfs_log_item_t
*lip
;
1542 struct xfs_perag
*pag
;
1544 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1545 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1546 blks_per_cluster
= 1;
1547 ninodes
= mp
->m_sb
.sb_inopblock
;
1548 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1550 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1551 mp
->m_sb
.sb_blocksize
;
1552 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1553 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1556 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1557 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1558 XFS_INO_TO_AGBNO(mp
, inum
));
1561 * We obtain and lock the backing buffer first in the process
1562 * here, as we have to ensure that any dirty inode that we
1563 * can't get the flush lock on is attached to the buffer.
1564 * If we scan the in-memory inodes first, then buffer IO can
1565 * complete before we get a lock on it, and hence we may fail
1566 * to mark all the active inodes on the buffer stale.
1568 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1569 mp
->m_bsize
* blks_per_cluster
,
1575 * Walk the inodes already attached to the buffer and mark them
1576 * stale. These will all have the flush locks held, so an
1577 * in-memory inode walk can't lock them. By marking them all
1578 * stale first, we will not attempt to lock them in the loop
1579 * below as the XFS_ISTALE flag will be set.
1583 if (lip
->li_type
== XFS_LI_INODE
) {
1584 iip
= (xfs_inode_log_item_t
*)lip
;
1585 ASSERT(iip
->ili_logged
== 1);
1586 lip
->li_cb
= xfs_istale_done
;
1587 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1588 &iip
->ili_flush_lsn
,
1589 &iip
->ili_item
.li_lsn
);
1590 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1592 lip
= lip
->li_bio_list
;
1597 * For each inode in memory attempt to add it to the inode
1598 * buffer and set it up for being staled on buffer IO
1599 * completion. This is safe as we've locked out tail pushing
1600 * and flushing by locking the buffer.
1602 * We have already marked every inode that was part of a
1603 * transaction stale above, which means there is no point in
1604 * even trying to lock them.
1606 for (i
= 0; i
< ninodes
; i
++) {
1609 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1610 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1612 /* Inode not in memory, nothing to do */
1619 * because this is an RCU protected lookup, we could
1620 * find a recently freed or even reallocated inode
1621 * during the lookup. We need to check under the
1622 * i_flags_lock for a valid inode here. Skip it if it
1623 * is not valid, the wrong inode or stale.
1625 spin_lock(&ip
->i_flags_lock
);
1626 if (ip
->i_ino
!= inum
+ i
||
1627 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
1628 spin_unlock(&ip
->i_flags_lock
);
1632 spin_unlock(&ip
->i_flags_lock
);
1635 * Don't try to lock/unlock the current inode, but we
1636 * _cannot_ skip the other inodes that we did not find
1637 * in the list attached to the buffer and are not
1638 * already marked stale. If we can't lock it, back off
1641 if (ip
!= free_ip
&&
1642 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
1650 xfs_iflags_set(ip
, XFS_ISTALE
);
1653 * we don't need to attach clean inodes or those only
1654 * with unlogged changes (which we throw away, anyway).
1657 if (!iip
|| xfs_inode_clean(ip
)) {
1658 ASSERT(ip
!= free_ip
);
1660 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1664 iip
->ili_last_fields
= iip
->ili_fields
;
1665 iip
->ili_fields
= 0;
1666 iip
->ili_logged
= 1;
1667 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
1668 &iip
->ili_item
.li_lsn
);
1670 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
1674 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1677 xfs_trans_stale_inode_buf(tp
, bp
);
1678 xfs_trans_binval(tp
, bp
);
1686 * This is called to return an inode to the inode free list.
1687 * The inode should already be truncated to 0 length and have
1688 * no pages associated with it. This routine also assumes that
1689 * the inode is already a part of the transaction.
1691 * The on-disk copy of the inode will have been added to the list
1692 * of unlinked inodes in the AGI. We need to remove the inode from
1693 * that list atomically with respect to freeing it here.
1699 xfs_bmap_free_t
*flist
)
1703 xfs_ino_t first_ino
;
1707 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1708 ASSERT(ip
->i_d
.di_nlink
== 0);
1709 ASSERT(ip
->i_d
.di_nextents
== 0);
1710 ASSERT(ip
->i_d
.di_anextents
== 0);
1711 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
1712 ASSERT(ip
->i_d
.di_nblocks
== 0);
1715 * Pull the on-disk inode from the AGI unlinked list.
1717 error
= xfs_iunlink_remove(tp
, ip
);
1722 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
1726 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
1727 ip
->i_d
.di_flags
= 0;
1728 ip
->i_d
.di_dmevmask
= 0;
1729 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
1730 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1731 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1733 * Bump the generation count so no one will be confused
1734 * by reincarnations of this inode.
1738 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1740 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XBF_LOCK
);
1745 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1746 * from picking up this inode when it is reclaimed (its incore state
1747 * initialzed but not flushed to disk yet). The in-core di_mode is
1748 * already cleared and a corresponding transaction logged.
1749 * The hack here just synchronizes the in-core to on-disk
1750 * di_mode value in advance before the actual inode sync to disk.
1751 * This is OK because the inode is already unlinked and would never
1752 * change its di_mode again for this inode generation.
1753 * This is a temporary hack that would require a proper fix
1759 error
= xfs_ifree_cluster(ip
, tp
, first_ino
);
1766 * Reallocate the space for if_broot based on the number of records
1767 * being added or deleted as indicated in rec_diff. Move the records
1768 * and pointers in if_broot to fit the new size. When shrinking this
1769 * will eliminate holes between the records and pointers created by
1770 * the caller. When growing this will create holes to be filled in
1773 * The caller must not request to add more records than would fit in
1774 * the on-disk inode root. If the if_broot is currently NULL, then
1775 * if we adding records one will be allocated. The caller must also
1776 * not request that the number of records go below zero, although
1777 * it can go to zero.
1779 * ip -- the inode whose if_broot area is changing
1780 * ext_diff -- the change in the number of records, positive or negative,
1781 * requested for the if_broot array.
1789 struct xfs_mount
*mp
= ip
->i_mount
;
1792 struct xfs_btree_block
*new_broot
;
1799 * Handle the degenerate case quietly.
1801 if (rec_diff
== 0) {
1805 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1808 * If there wasn't any memory allocated before, just
1809 * allocate it now and get out.
1811 if (ifp
->if_broot_bytes
== 0) {
1812 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
1813 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1814 ifp
->if_broot_bytes
= (int)new_size
;
1819 * If there is already an existing if_broot, then we need
1820 * to realloc() it and shift the pointers to their new
1821 * location. The records don't change location because
1822 * they are kept butted up against the btree block header.
1824 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1825 new_max
= cur_max
+ rec_diff
;
1826 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1827 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
1828 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
1829 KM_SLEEP
| KM_NOFS
);
1830 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1831 ifp
->if_broot_bytes
);
1832 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1834 ifp
->if_broot_bytes
= (int)new_size
;
1835 ASSERT(ifp
->if_broot_bytes
<=
1836 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
1837 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
1842 * rec_diff is less than 0. In this case, we are shrinking the
1843 * if_broot buffer. It must already exist. If we go to zero
1844 * records, just get rid of the root and clear the status bit.
1846 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
1847 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1848 new_max
= cur_max
+ rec_diff
;
1849 ASSERT(new_max
>= 0);
1851 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1855 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1857 * First copy over the btree block header.
1859 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
1862 ifp
->if_flags
&= ~XFS_IFBROOT
;
1866 * Only copy the records and pointers if there are any.
1870 * First copy the records.
1872 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
1873 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
1874 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
1877 * Then copy the pointers.
1879 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1880 ifp
->if_broot_bytes
);
1881 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
1883 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
1885 kmem_free(ifp
->if_broot
);
1886 ifp
->if_broot
= new_broot
;
1887 ifp
->if_broot_bytes
= (int)new_size
;
1888 ASSERT(ifp
->if_broot_bytes
<=
1889 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
1895 * This is called when the amount of space needed for if_data
1896 * is increased or decreased. The change in size is indicated by
1897 * the number of bytes that need to be added or deleted in the
1898 * byte_diff parameter.
1900 * If the amount of space needed has decreased below the size of the
1901 * inline buffer, then switch to using the inline buffer. Otherwise,
1902 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1903 * to what is needed.
1905 * ip -- the inode whose if_data area is changing
1906 * byte_diff -- the change in the number of bytes, positive or negative,
1907 * requested for the if_data array.
1919 if (byte_diff
== 0) {
1923 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1924 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
1925 ASSERT(new_size
>= 0);
1927 if (new_size
== 0) {
1928 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1929 kmem_free(ifp
->if_u1
.if_data
);
1931 ifp
->if_u1
.if_data
= NULL
;
1933 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
1935 * If the valid extents/data can fit in if_inline_ext/data,
1936 * copy them from the malloc'd vector and free it.
1938 if (ifp
->if_u1
.if_data
== NULL
) {
1939 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
1940 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1941 ASSERT(ifp
->if_real_bytes
!= 0);
1942 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
1944 kmem_free(ifp
->if_u1
.if_data
);
1945 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
1950 * Stuck with malloc/realloc.
1951 * For inline data, the underlying buffer must be
1952 * a multiple of 4 bytes in size so that it can be
1953 * logged and stay on word boundaries. We enforce
1956 real_size
= roundup(new_size
, 4);
1957 if (ifp
->if_u1
.if_data
== NULL
) {
1958 ASSERT(ifp
->if_real_bytes
== 0);
1959 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
1960 KM_SLEEP
| KM_NOFS
);
1961 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1963 * Only do the realloc if the underlying size
1964 * is really changing.
1966 if (ifp
->if_real_bytes
!= real_size
) {
1967 ifp
->if_u1
.if_data
=
1968 kmem_realloc(ifp
->if_u1
.if_data
,
1971 KM_SLEEP
| KM_NOFS
);
1974 ASSERT(ifp
->if_real_bytes
== 0);
1975 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
1976 KM_SLEEP
| KM_NOFS
);
1977 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
1981 ifp
->if_real_bytes
= real_size
;
1982 ifp
->if_bytes
= new_size
;
1983 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
1993 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1994 if (ifp
->if_broot
!= NULL
) {
1995 kmem_free(ifp
->if_broot
);
1996 ifp
->if_broot
= NULL
;
2000 * If the format is local, then we can't have an extents
2001 * array so just look for an inline data array. If we're
2002 * not local then we may or may not have an extents list,
2003 * so check and free it up if we do.
2005 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2006 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2007 (ifp
->if_u1
.if_data
!= NULL
)) {
2008 ASSERT(ifp
->if_real_bytes
!= 0);
2009 kmem_free(ifp
->if_u1
.if_data
);
2010 ifp
->if_u1
.if_data
= NULL
;
2011 ifp
->if_real_bytes
= 0;
2013 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2014 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2015 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2016 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2017 ASSERT(ifp
->if_real_bytes
!= 0);
2018 xfs_iext_destroy(ifp
);
2020 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2021 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2022 ASSERT(ifp
->if_real_bytes
== 0);
2023 if (whichfork
== XFS_ATTR_FORK
) {
2024 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2030 * This is called to unpin an inode. The caller must have the inode locked
2031 * in at least shared mode so that the buffer cannot be subsequently pinned
2032 * once someone is waiting for it to be unpinned.
2036 struct xfs_inode
*ip
)
2038 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2040 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2042 /* Give the log a push to start the unpinning I/O */
2043 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2049 struct xfs_inode
*ip
)
2051 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2052 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2057 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2058 if (xfs_ipincount(ip
))
2060 } while (xfs_ipincount(ip
));
2061 finish_wait(wq
, &wait
.wait
);
2066 struct xfs_inode
*ip
)
2068 if (xfs_ipincount(ip
))
2069 __xfs_iunpin_wait(ip
);
2073 * xfs_iextents_copy()
2075 * This is called to copy the REAL extents (as opposed to the delayed
2076 * allocation extents) from the inode into the given buffer. It
2077 * returns the number of bytes copied into the buffer.
2079 * If there are no delayed allocation extents, then we can just
2080 * memcpy() the extents into the buffer. Otherwise, we need to
2081 * examine each extent in turn and skip those which are delayed.
2093 xfs_fsblock_t start_block
;
2095 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2096 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2097 ASSERT(ifp
->if_bytes
> 0);
2099 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2100 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2104 * There are some delayed allocation extents in the
2105 * inode, so copy the extents one at a time and skip
2106 * the delayed ones. There must be at least one
2107 * non-delayed extent.
2110 for (i
= 0; i
< nrecs
; i
++) {
2111 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2112 start_block
= xfs_bmbt_get_startblock(ep
);
2113 if (isnullstartblock(start_block
)) {
2115 * It's a delayed allocation extent, so skip it.
2120 /* Translate to on disk format */
2121 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2122 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2126 ASSERT(copied
!= 0);
2127 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2129 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2133 * Each of the following cases stores data into the same region
2134 * of the on-disk inode, so only one of them can be valid at
2135 * any given time. While it is possible to have conflicting formats
2136 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2137 * in EXTENTS format, this can only happen when the fork has
2138 * changed formats after being modified but before being flushed.
2139 * In these cases, the format always takes precedence, because the
2140 * format indicates the current state of the fork.
2147 xfs_inode_log_item_t
*iip
,
2154 #ifdef XFS_TRANS_DEBUG
2157 static const short brootflag
[2] =
2158 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2159 static const short dataflag
[2] =
2160 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2161 static const short extflag
[2] =
2162 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2166 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2168 * This can happen if we gave up in iformat in an error path,
2169 * for the attribute fork.
2172 ASSERT(whichfork
== XFS_ATTR_FORK
);
2175 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2177 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2178 case XFS_DINODE_FMT_LOCAL
:
2179 if ((iip
->ili_fields
& dataflag
[whichfork
]) &&
2180 (ifp
->if_bytes
> 0)) {
2181 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2182 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2183 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2187 case XFS_DINODE_FMT_EXTENTS
:
2188 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2189 !(iip
->ili_fields
& extflag
[whichfork
]));
2190 if ((iip
->ili_fields
& extflag
[whichfork
]) &&
2191 (ifp
->if_bytes
> 0)) {
2192 ASSERT(xfs_iext_get_ext(ifp
, 0));
2193 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2194 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2199 case XFS_DINODE_FMT_BTREE
:
2200 if ((iip
->ili_fields
& brootflag
[whichfork
]) &&
2201 (ifp
->if_broot_bytes
> 0)) {
2202 ASSERT(ifp
->if_broot
!= NULL
);
2203 ASSERT(ifp
->if_broot_bytes
<=
2204 (XFS_IFORK_SIZE(ip
, whichfork
) +
2205 XFS_BROOT_SIZE_ADJ
));
2206 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2207 (xfs_bmdr_block_t
*)cp
,
2208 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2212 case XFS_DINODE_FMT_DEV
:
2213 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
2214 ASSERT(whichfork
== XFS_DATA_FORK
);
2215 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2219 case XFS_DINODE_FMT_UUID
:
2220 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
2221 ASSERT(whichfork
== XFS_DATA_FORK
);
2222 memcpy(XFS_DFORK_DPTR(dip
),
2223 &ip
->i_df
.if_u2
.if_uuid
,
2239 xfs_mount_t
*mp
= ip
->i_mount
;
2240 struct xfs_perag
*pag
;
2241 unsigned long first_index
, mask
;
2242 unsigned long inodes_per_cluster
;
2244 xfs_inode_t
**ilist
;
2251 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2253 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2254 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2255 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2259 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2260 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2262 /* really need a gang lookup range call here */
2263 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2264 first_index
, inodes_per_cluster
);
2268 for (i
= 0; i
< nr_found
; i
++) {
2274 * because this is an RCU protected lookup, we could find a
2275 * recently freed or even reallocated inode during the lookup.
2276 * We need to check under the i_flags_lock for a valid inode
2277 * here. Skip it if it is not valid or the wrong inode.
2279 spin_lock(&ip
->i_flags_lock
);
2281 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2282 spin_unlock(&ip
->i_flags_lock
);
2285 spin_unlock(&ip
->i_flags_lock
);
2288 * Do an un-protected check to see if the inode is dirty and
2289 * is a candidate for flushing. These checks will be repeated
2290 * later after the appropriate locks are acquired.
2292 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2296 * Try to get locks. If any are unavailable or it is pinned,
2297 * then this inode cannot be flushed and is skipped.
2300 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2302 if (!xfs_iflock_nowait(iq
)) {
2303 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2306 if (xfs_ipincount(iq
)) {
2308 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2313 * arriving here means that this inode can be flushed. First
2314 * re-check that it's dirty before flushing.
2316 if (!xfs_inode_clean(iq
)) {
2318 error
= xfs_iflush_int(iq
, bp
);
2320 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2321 goto cluster_corrupt_out
;
2327 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2331 XFS_STATS_INC(xs_icluster_flushcnt
);
2332 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2343 cluster_corrupt_out
:
2345 * Corruption detected in the clustering loop. Invalidate the
2346 * inode buffer and shut down the filesystem.
2350 * Clean up the buffer. If it was B_DELWRI, just release it --
2351 * brelse can handle it with no problems. If not, shut down the
2352 * filesystem before releasing the buffer.
2354 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2358 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2360 if (!bufwasdelwri
) {
2362 * Just like incore_relse: if we have b_iodone functions,
2363 * mark the buffer as an error and call them. Otherwise
2364 * mark it as stale and brelse.
2369 xfs_buf_ioerror(bp
, EIO
);
2370 xfs_buf_ioend(bp
, 0);
2378 * Unlocks the flush lock
2380 xfs_iflush_abort(iq
);
2383 return XFS_ERROR(EFSCORRUPTED
);
2387 * xfs_iflush() will write a modified inode's changes out to the
2388 * inode's on disk home. The caller must have the inode lock held
2389 * in at least shared mode and the inode flush completion must be
2390 * active as well. The inode lock will still be held upon return from
2391 * the call and the caller is free to unlock it.
2392 * The inode flush will be completed when the inode reaches the disk.
2393 * The flags indicate how the inode's buffer should be written out.
2400 xfs_inode_log_item_t
*iip
;
2406 XFS_STATS_INC(xs_iflush_count
);
2408 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2409 ASSERT(xfs_isiflocked(ip
));
2410 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2411 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2417 * We can't flush the inode until it is unpinned, so wait for it if we
2418 * are allowed to block. We know no one new can pin it, because we are
2419 * holding the inode lock shared and you need to hold it exclusively to
2422 * If we are not allowed to block, force the log out asynchronously so
2423 * that when we come back the inode will be unpinned. If other inodes
2424 * in the same cluster are dirty, they will probably write the inode
2425 * out for us if they occur after the log force completes.
2427 if (!(flags
& SYNC_WAIT
) && xfs_ipincount(ip
)) {
2432 xfs_iunpin_wait(ip
);
2435 * For stale inodes we cannot rely on the backing buffer remaining
2436 * stale in cache for the remaining life of the stale inode and so
2437 * xfs_itobp() below may give us a buffer that no longer contains
2438 * inodes below. We have to check this after ensuring the inode is
2439 * unpinned so that it is safe to reclaim the stale inode after the
2442 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2448 * This may have been unpinned because the filesystem is shutting
2449 * down forcibly. If that's the case we must not write this inode
2450 * to disk, because the log record didn't make it to disk!
2452 if (XFS_FORCED_SHUTDOWN(mp
)) {
2454 iip
->ili_fields
= 0;
2456 return XFS_ERROR(EIO
);
2460 * Get the buffer containing the on-disk inode.
2462 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2463 (flags
& SYNC_TRYLOCK
) ? XBF_TRYLOCK
: XBF_LOCK
);
2470 * First flush out the inode that xfs_iflush was called with.
2472 error
= xfs_iflush_int(ip
, bp
);
2477 * If the buffer is pinned then push on the log now so we won't
2478 * get stuck waiting in the write for too long.
2480 if (xfs_buf_ispinned(bp
))
2481 xfs_log_force(mp
, 0);
2485 * see if other inodes can be gathered into this write
2487 error
= xfs_iflush_cluster(ip
, bp
);
2489 goto cluster_corrupt_out
;
2491 if (flags
& SYNC_WAIT
)
2492 error
= xfs_bwrite(bp
);
2494 xfs_buf_delwri_queue(bp
);
2501 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2502 cluster_corrupt_out
:
2504 * Unlocks the flush lock
2506 xfs_iflush_abort(ip
);
2507 return XFS_ERROR(EFSCORRUPTED
);
2516 xfs_inode_log_item_t
*iip
;
2519 #ifdef XFS_TRANS_DEBUG
2523 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2524 ASSERT(xfs_isiflocked(ip
));
2525 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2526 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2531 /* set *dip = inode's place in the buffer */
2532 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2534 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
2535 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2536 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2537 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2538 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2541 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2542 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2543 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2544 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2545 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2548 if (S_ISREG(ip
->i_d
.di_mode
)) {
2550 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2551 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2552 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2553 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2554 "%s: Bad regular inode %Lu, ptr 0x%p",
2555 __func__
, ip
->i_ino
, ip
);
2558 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
2560 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2561 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2562 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2563 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2564 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2565 "%s: Bad directory inode %Lu, ptr 0x%p",
2566 __func__
, ip
->i_ino
, ip
);
2570 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2571 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2572 XFS_RANDOM_IFLUSH_5
)) {
2573 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2574 "%s: detected corrupt incore inode %Lu, "
2575 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2576 __func__
, ip
->i_ino
,
2577 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2578 ip
->i_d
.di_nblocks
, ip
);
2581 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2582 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2583 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2584 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2585 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2589 * bump the flush iteration count, used to detect flushes which
2590 * postdate a log record during recovery.
2593 ip
->i_d
.di_flushiter
++;
2596 * Copy the dirty parts of the inode into the on-disk
2597 * inode. We always copy out the core of the inode,
2598 * because if the inode is dirty at all the core must
2601 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2603 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2604 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2605 ip
->i_d
.di_flushiter
= 0;
2608 * If this is really an old format inode and the superblock version
2609 * has not been updated to support only new format inodes, then
2610 * convert back to the old inode format. If the superblock version
2611 * has been updated, then make the conversion permanent.
2613 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
2614 if (ip
->i_d
.di_version
== 1) {
2615 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
2619 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
2620 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
2623 * The superblock version has already been bumped,
2624 * so just make the conversion to the new inode
2627 ip
->i_d
.di_version
= 2;
2628 dip
->di_version
= 2;
2629 ip
->i_d
.di_onlink
= 0;
2631 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
2632 memset(&(dip
->di_pad
[0]), 0,
2633 sizeof(dip
->di_pad
));
2634 ASSERT(xfs_get_projid(ip
) == 0);
2638 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
2639 if (XFS_IFORK_Q(ip
))
2640 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
2641 xfs_inobp_check(mp
, bp
);
2644 * We've recorded everything logged in the inode, so we'd like to clear
2645 * the ili_fields bits so we don't log and flush things unnecessarily.
2646 * However, we can't stop logging all this information until the data
2647 * we've copied into the disk buffer is written to disk. If we did we
2648 * might overwrite the copy of the inode in the log with all the data
2649 * after re-logging only part of it, and in the face of a crash we
2650 * wouldn't have all the data we need to recover.
2652 * What we do is move the bits to the ili_last_fields field. When
2653 * logging the inode, these bits are moved back to the ili_fields field.
2654 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2655 * know that the information those bits represent is permanently on
2656 * disk. As long as the flush completes before the inode is logged
2657 * again, then both ili_fields and ili_last_fields will be cleared.
2659 * We can play with the ili_fields bits here, because the inode lock
2660 * must be held exclusively in order to set bits there and the flush
2661 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2662 * done routine can tell whether or not to look in the AIL. Also, store
2663 * the current LSN of the inode so that we can tell whether the item has
2664 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2665 * need the AIL lock, because it is a 64 bit value that cannot be read
2668 if (iip
!= NULL
&& iip
->ili_fields
!= 0) {
2669 iip
->ili_last_fields
= iip
->ili_fields
;
2670 iip
->ili_fields
= 0;
2671 iip
->ili_logged
= 1;
2673 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2674 &iip
->ili_item
.li_lsn
);
2677 * Attach the function xfs_iflush_done to the inode's
2678 * buffer. This will remove the inode from the AIL
2679 * and unlock the inode's flush lock when the inode is
2680 * completely written to disk.
2682 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
2684 ASSERT(bp
->b_fspriv
!= NULL
);
2685 ASSERT(bp
->b_iodone
!= NULL
);
2688 * We're flushing an inode which is not in the AIL and has
2689 * not been logged. For this case we can immediately drop
2690 * the inode flush lock because we can avoid the whole
2691 * AIL state thing. It's OK to drop the flush lock now,
2692 * because we've already locked the buffer and to do anything
2693 * you really need both.
2696 ASSERT(iip
->ili_logged
== 0);
2697 ASSERT(iip
->ili_last_fields
== 0);
2698 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
2706 return XFS_ERROR(EFSCORRUPTED
);
2711 struct xfs_inode
*ip
)
2715 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2717 bp
= xfs_incore(ip
->i_mount
->m_ddev_targp
, ip
->i_imap
.im_blkno
,
2718 ip
->i_imap
.im_len
, XBF_TRYLOCK
);
2722 if (XFS_BUF_ISDELAYWRITE(bp
)) {
2723 xfs_buf_delwri_promote(bp
);
2724 wake_up_process(ip
->i_mount
->m_ddev_targp
->bt_task
);
2731 * Return a pointer to the extent record at file index idx.
2733 xfs_bmbt_rec_host_t
*
2735 xfs_ifork_t
*ifp
, /* inode fork pointer */
2736 xfs_extnum_t idx
) /* index of target extent */
2739 ASSERT(idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
2741 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
2742 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
2743 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2744 xfs_ext_irec_t
*erp
; /* irec pointer */
2745 int erp_idx
= 0; /* irec index */
2746 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
2748 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
2749 return &erp
->er_extbuf
[page_idx
];
2750 } else if (ifp
->if_bytes
) {
2751 return &ifp
->if_u1
.if_extents
[idx
];
2758 * Insert new item(s) into the extent records for incore inode
2759 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2763 xfs_inode_t
*ip
, /* incore inode pointer */
2764 xfs_extnum_t idx
, /* starting index of new items */
2765 xfs_extnum_t count
, /* number of inserted items */
2766 xfs_bmbt_irec_t
*new, /* items to insert */
2767 int state
) /* type of extent conversion */
2769 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
2770 xfs_extnum_t i
; /* extent record index */
2772 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
2774 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
2775 xfs_iext_add(ifp
, idx
, count
);
2776 for (i
= idx
; i
< idx
+ count
; i
++, new++)
2777 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
2781 * This is called when the amount of space required for incore file
2782 * extents needs to be increased. The ext_diff parameter stores the
2783 * number of new extents being added and the idx parameter contains
2784 * the extent index where the new extents will be added. If the new
2785 * extents are being appended, then we just need to (re)allocate and
2786 * initialize the space. Otherwise, if the new extents are being
2787 * inserted into the middle of the existing entries, a bit more work
2788 * is required to make room for the new extents to be inserted. The
2789 * caller is responsible for filling in the new extent entries upon
2794 xfs_ifork_t
*ifp
, /* inode fork pointer */
2795 xfs_extnum_t idx
, /* index to begin adding exts */
2796 int ext_diff
) /* number of extents to add */
2798 int byte_diff
; /* new bytes being added */
2799 int new_size
; /* size of extents after adding */
2800 xfs_extnum_t nextents
; /* number of extents in file */
2802 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2803 ASSERT((idx
>= 0) && (idx
<= nextents
));
2804 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
2805 new_size
= ifp
->if_bytes
+ byte_diff
;
2807 * If the new number of extents (nextents + ext_diff)
2808 * fits inside the inode, then continue to use the inline
2811 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
2812 if (idx
< nextents
) {
2813 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
2814 &ifp
->if_u2
.if_inline_ext
[idx
],
2815 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2816 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
2818 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
2819 ifp
->if_real_bytes
= 0;
2822 * Otherwise use a linear (direct) extent list.
2823 * If the extents are currently inside the inode,
2824 * xfs_iext_realloc_direct will switch us from
2825 * inline to direct extent allocation mode.
2827 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2828 xfs_iext_realloc_direct(ifp
, new_size
);
2829 if (idx
< nextents
) {
2830 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
2831 &ifp
->if_u1
.if_extents
[idx
],
2832 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2833 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
2836 /* Indirection array */
2838 xfs_ext_irec_t
*erp
;
2842 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
2843 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2844 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
2846 xfs_iext_irec_init(ifp
);
2847 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
2848 erp
= ifp
->if_u1
.if_ext_irec
;
2850 /* Extents fit in target extent page */
2851 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2852 if (page_idx
< erp
->er_extcount
) {
2853 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
2854 &erp
->er_extbuf
[page_idx
],
2855 (erp
->er_extcount
- page_idx
) *
2856 sizeof(xfs_bmbt_rec_t
));
2857 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
2859 erp
->er_extcount
+= ext_diff
;
2860 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2862 /* Insert a new extent page */
2864 xfs_iext_add_indirect_multi(ifp
,
2865 erp_idx
, page_idx
, ext_diff
);
2868 * If extent(s) are being appended to the last page in
2869 * the indirection array and the new extent(s) don't fit
2870 * in the page, then erp is NULL and erp_idx is set to
2871 * the next index needed in the indirection array.
2874 int count
= ext_diff
;
2877 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2878 erp
->er_extcount
= count
;
2879 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
2886 ifp
->if_bytes
= new_size
;
2890 * This is called when incore extents are being added to the indirection
2891 * array and the new extents do not fit in the target extent list. The
2892 * erp_idx parameter contains the irec index for the target extent list
2893 * in the indirection array, and the idx parameter contains the extent
2894 * index within the list. The number of extents being added is stored
2895 * in the count parameter.
2897 * |-------| |-------|
2898 * | | | | idx - number of extents before idx
2900 * | | | | count - number of extents being inserted at idx
2901 * |-------| |-------|
2902 * | count | | nex2 | nex2 - number of extents after idx + count
2903 * |-------| |-------|
2906 xfs_iext_add_indirect_multi(
2907 xfs_ifork_t
*ifp
, /* inode fork pointer */
2908 int erp_idx
, /* target extent irec index */
2909 xfs_extnum_t idx
, /* index within target list */
2910 int count
) /* new extents being added */
2912 int byte_diff
; /* new bytes being added */
2913 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
2914 xfs_extnum_t ext_diff
; /* number of extents to add */
2915 xfs_extnum_t ext_cnt
; /* new extents still needed */
2916 xfs_extnum_t nex2
; /* extents after idx + count */
2917 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
2918 int nlists
; /* number of irec's (lists) */
2920 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
2921 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
2922 nex2
= erp
->er_extcount
- idx
;
2923 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
2926 * Save second part of target extent list
2927 * (all extents past */
2929 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
2930 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
2931 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
2932 erp
->er_extcount
-= nex2
;
2933 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
2934 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
2938 * Add the new extents to the end of the target
2939 * list, then allocate new irec record(s) and
2940 * extent buffer(s) as needed to store the rest
2941 * of the new extents.
2944 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
2946 erp
->er_extcount
+= ext_diff
;
2947 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2948 ext_cnt
-= ext_diff
;
2952 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2953 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
2954 erp
->er_extcount
= ext_diff
;
2955 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2956 ext_cnt
-= ext_diff
;
2959 /* Add nex2 extents back to indirection array */
2961 xfs_extnum_t ext_avail
;
2964 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
2965 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
2968 * If nex2 extents fit in the current page, append
2969 * nex2_ep after the new extents.
2971 if (nex2
<= ext_avail
) {
2972 i
= erp
->er_extcount
;
2975 * Otherwise, check if space is available in the
2978 else if ((erp_idx
< nlists
- 1) &&
2979 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
2980 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
2983 /* Create a hole for nex2 extents */
2984 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
2985 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
2988 * Final choice, create a new extent page for
2993 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2995 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
2997 erp
->er_extcount
+= nex2
;
2998 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3003 * This is called when the amount of space required for incore file
3004 * extents needs to be decreased. The ext_diff parameter stores the
3005 * number of extents to be removed and the idx parameter contains
3006 * the extent index where the extents will be removed from.
3008 * If the amount of space needed has decreased below the linear
3009 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3010 * extent array. Otherwise, use kmem_realloc() to adjust the
3011 * size to what is needed.
3015 xfs_inode_t
*ip
, /* incore inode pointer */
3016 xfs_extnum_t idx
, /* index to begin removing exts */
3017 int ext_diff
, /* number of extents to remove */
3018 int state
) /* type of extent conversion */
3020 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
3021 xfs_extnum_t nextents
; /* number of extents in file */
3022 int new_size
; /* size of extents after removal */
3024 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
3026 ASSERT(ext_diff
> 0);
3027 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3028 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3030 if (new_size
== 0) {
3031 xfs_iext_destroy(ifp
);
3032 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3033 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3034 } else if (ifp
->if_real_bytes
) {
3035 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3037 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3039 ifp
->if_bytes
= new_size
;
3043 * This removes ext_diff extents from the inline buffer, beginning
3044 * at extent index idx.
3047 xfs_iext_remove_inline(
3048 xfs_ifork_t
*ifp
, /* inode fork pointer */
3049 xfs_extnum_t idx
, /* index to begin removing exts */
3050 int ext_diff
) /* number of extents to remove */
3052 int nextents
; /* number of extents in file */
3054 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3055 ASSERT(idx
< XFS_INLINE_EXTS
);
3056 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3057 ASSERT(((nextents
- ext_diff
) > 0) &&
3058 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3060 if (idx
+ ext_diff
< nextents
) {
3061 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3062 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3063 (nextents
- (idx
+ ext_diff
)) *
3064 sizeof(xfs_bmbt_rec_t
));
3065 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3066 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3068 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3069 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3074 * This removes ext_diff extents from a linear (direct) extent list,
3075 * beginning at extent index idx. If the extents are being removed
3076 * from the end of the list (ie. truncate) then we just need to re-
3077 * allocate the list to remove the extra space. Otherwise, if the
3078 * extents are being removed from the middle of the existing extent
3079 * entries, then we first need to move the extent records beginning
3080 * at idx + ext_diff up in the list to overwrite the records being
3081 * removed, then remove the extra space via kmem_realloc.
3084 xfs_iext_remove_direct(
3085 xfs_ifork_t
*ifp
, /* inode fork pointer */
3086 xfs_extnum_t idx
, /* index to begin removing exts */
3087 int ext_diff
) /* number of extents to remove */
3089 xfs_extnum_t nextents
; /* number of extents in file */
3090 int new_size
; /* size of extents after removal */
3092 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3093 new_size
= ifp
->if_bytes
-
3094 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3095 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3097 if (new_size
== 0) {
3098 xfs_iext_destroy(ifp
);
3101 /* Move extents up in the list (if needed) */
3102 if (idx
+ ext_diff
< nextents
) {
3103 memmove(&ifp
->if_u1
.if_extents
[idx
],
3104 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3105 (nextents
- (idx
+ ext_diff
)) *
3106 sizeof(xfs_bmbt_rec_t
));
3108 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3109 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3111 * Reallocate the direct extent list. If the extents
3112 * will fit inside the inode then xfs_iext_realloc_direct
3113 * will switch from direct to inline extent allocation
3116 xfs_iext_realloc_direct(ifp
, new_size
);
3117 ifp
->if_bytes
= new_size
;
3121 * This is called when incore extents are being removed from the
3122 * indirection array and the extents being removed span multiple extent
3123 * buffers. The idx parameter contains the file extent index where we
3124 * want to begin removing extents, and the count parameter contains
3125 * how many extents need to be removed.
3127 * |-------| |-------|
3128 * | nex1 | | | nex1 - number of extents before idx
3129 * |-------| | count |
3130 * | | | | count - number of extents being removed at idx
3131 * | count | |-------|
3132 * | | | nex2 | nex2 - number of extents after idx + count
3133 * |-------| |-------|
3136 xfs_iext_remove_indirect(
3137 xfs_ifork_t
*ifp
, /* inode fork pointer */
3138 xfs_extnum_t idx
, /* index to begin removing extents */
3139 int count
) /* number of extents to remove */
3141 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3142 int erp_idx
= 0; /* indirection array index */
3143 xfs_extnum_t ext_cnt
; /* extents left to remove */
3144 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3145 xfs_extnum_t nex1
; /* number of extents before idx */
3146 xfs_extnum_t nex2
; /* extents after idx + count */
3147 int page_idx
= idx
; /* index in target extent list */
3149 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3150 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3151 ASSERT(erp
!= NULL
);
3155 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3156 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3158 * Check for deletion of entire list;
3159 * xfs_iext_irec_remove() updates extent offsets.
3161 if (ext_diff
== erp
->er_extcount
) {
3162 xfs_iext_irec_remove(ifp
, erp_idx
);
3163 ext_cnt
-= ext_diff
;
3166 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3168 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3175 /* Move extents up (if needed) */
3177 memmove(&erp
->er_extbuf
[nex1
],
3178 &erp
->er_extbuf
[nex1
+ ext_diff
],
3179 nex2
* sizeof(xfs_bmbt_rec_t
));
3181 /* Zero out rest of page */
3182 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3183 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3184 /* Update remaining counters */
3185 erp
->er_extcount
-= ext_diff
;
3186 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3187 ext_cnt
-= ext_diff
;
3192 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3193 xfs_iext_irec_compact(ifp
);
3197 * Create, destroy, or resize a linear (direct) block of extents.
3200 xfs_iext_realloc_direct(
3201 xfs_ifork_t
*ifp
, /* inode fork pointer */
3202 int new_size
) /* new size of extents */
3204 int rnew_size
; /* real new size of extents */
3206 rnew_size
= new_size
;
3208 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3209 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3210 (new_size
!= ifp
->if_real_bytes
)));
3212 /* Free extent records */
3213 if (new_size
== 0) {
3214 xfs_iext_destroy(ifp
);
3216 /* Resize direct extent list and zero any new bytes */
3217 else if (ifp
->if_real_bytes
) {
3218 /* Check if extents will fit inside the inode */
3219 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3220 xfs_iext_direct_to_inline(ifp
, new_size
/
3221 (uint
)sizeof(xfs_bmbt_rec_t
));
3222 ifp
->if_bytes
= new_size
;
3225 if (!is_power_of_2(new_size
)){
3226 rnew_size
= roundup_pow_of_two(new_size
);
3228 if (rnew_size
!= ifp
->if_real_bytes
) {
3229 ifp
->if_u1
.if_extents
=
3230 kmem_realloc(ifp
->if_u1
.if_extents
,
3232 ifp
->if_real_bytes
, KM_NOFS
);
3234 if (rnew_size
> ifp
->if_real_bytes
) {
3235 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3236 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3237 rnew_size
- ifp
->if_real_bytes
);
3241 * Switch from the inline extent buffer to a direct
3242 * extent list. Be sure to include the inline extent
3243 * bytes in new_size.
3246 new_size
+= ifp
->if_bytes
;
3247 if (!is_power_of_2(new_size
)) {
3248 rnew_size
= roundup_pow_of_two(new_size
);
3250 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3252 ifp
->if_real_bytes
= rnew_size
;
3253 ifp
->if_bytes
= new_size
;
3257 * Switch from linear (direct) extent records to inline buffer.
3260 xfs_iext_direct_to_inline(
3261 xfs_ifork_t
*ifp
, /* inode fork pointer */
3262 xfs_extnum_t nextents
) /* number of extents in file */
3264 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3265 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3267 * The inline buffer was zeroed when we switched
3268 * from inline to direct extent allocation mode,
3269 * so we don't need to clear it here.
3271 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3272 nextents
* sizeof(xfs_bmbt_rec_t
));
3273 kmem_free(ifp
->if_u1
.if_extents
);
3274 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3275 ifp
->if_real_bytes
= 0;
3279 * Switch from inline buffer to linear (direct) extent records.
3280 * new_size should already be rounded up to the next power of 2
3281 * by the caller (when appropriate), so use new_size as it is.
3282 * However, since new_size may be rounded up, we can't update
3283 * if_bytes here. It is the caller's responsibility to update
3284 * if_bytes upon return.
3287 xfs_iext_inline_to_direct(
3288 xfs_ifork_t
*ifp
, /* inode fork pointer */
3289 int new_size
) /* number of extents in file */
3291 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3292 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3293 if (ifp
->if_bytes
) {
3294 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3296 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3297 sizeof(xfs_bmbt_rec_t
));
3299 ifp
->if_real_bytes
= new_size
;
3303 * Resize an extent indirection array to new_size bytes.
3306 xfs_iext_realloc_indirect(
3307 xfs_ifork_t
*ifp
, /* inode fork pointer */
3308 int new_size
) /* new indirection array size */
3310 int nlists
; /* number of irec's (ex lists) */
3311 int size
; /* current indirection array size */
3313 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3314 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3315 size
= nlists
* sizeof(xfs_ext_irec_t
);
3316 ASSERT(ifp
->if_real_bytes
);
3317 ASSERT((new_size
>= 0) && (new_size
!= size
));
3318 if (new_size
== 0) {
3319 xfs_iext_destroy(ifp
);
3321 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3322 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3323 new_size
, size
, KM_NOFS
);
3328 * Switch from indirection array to linear (direct) extent allocations.
3331 xfs_iext_indirect_to_direct(
3332 xfs_ifork_t
*ifp
) /* inode fork pointer */
3334 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3335 xfs_extnum_t nextents
; /* number of extents in file */
3336 int size
; /* size of file extents */
3338 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3339 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3340 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3341 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3343 xfs_iext_irec_compact_pages(ifp
);
3344 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3346 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3347 kmem_free(ifp
->if_u1
.if_ext_irec
);
3348 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3349 ifp
->if_u1
.if_extents
= ep
;
3350 ifp
->if_bytes
= size
;
3351 if (nextents
< XFS_LINEAR_EXTS
) {
3352 xfs_iext_realloc_direct(ifp
, size
);
3357 * Free incore file extents.
3361 xfs_ifork_t
*ifp
) /* inode fork pointer */
3363 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3367 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3368 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3369 xfs_iext_irec_remove(ifp
, erp_idx
);
3371 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3372 } else if (ifp
->if_real_bytes
) {
3373 kmem_free(ifp
->if_u1
.if_extents
);
3374 } else if (ifp
->if_bytes
) {
3375 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3376 sizeof(xfs_bmbt_rec_t
));
3378 ifp
->if_u1
.if_extents
= NULL
;
3379 ifp
->if_real_bytes
= 0;
3384 * Return a pointer to the extent record for file system block bno.
3386 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3387 xfs_iext_bno_to_ext(
3388 xfs_ifork_t
*ifp
, /* inode fork pointer */
3389 xfs_fileoff_t bno
, /* block number to search for */
3390 xfs_extnum_t
*idxp
) /* index of target extent */
3392 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3393 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3394 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3395 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3396 int high
; /* upper boundary in search */
3397 xfs_extnum_t idx
= 0; /* index of target extent */
3398 int low
; /* lower boundary in search */
3399 xfs_extnum_t nextents
; /* number of file extents */
3400 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3402 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3403 if (nextents
== 0) {
3408 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3409 /* Find target extent list */
3411 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3412 base
= erp
->er_extbuf
;
3413 high
= erp
->er_extcount
- 1;
3415 base
= ifp
->if_u1
.if_extents
;
3416 high
= nextents
- 1;
3418 /* Binary search extent records */
3419 while (low
<= high
) {
3420 idx
= (low
+ high
) >> 1;
3422 startoff
= xfs_bmbt_get_startoff(ep
);
3423 blockcount
= xfs_bmbt_get_blockcount(ep
);
3424 if (bno
< startoff
) {
3426 } else if (bno
>= startoff
+ blockcount
) {
3429 /* Convert back to file-based extent index */
3430 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3431 idx
+= erp
->er_extoff
;
3437 /* Convert back to file-based extent index */
3438 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3439 idx
+= erp
->er_extoff
;
3441 if (bno
>= startoff
+ blockcount
) {
3442 if (++idx
== nextents
) {
3445 ep
= xfs_iext_get_ext(ifp
, idx
);
3453 * Return a pointer to the indirection array entry containing the
3454 * extent record for filesystem block bno. Store the index of the
3455 * target irec in *erp_idxp.
3457 xfs_ext_irec_t
* /* pointer to found extent record */
3458 xfs_iext_bno_to_irec(
3459 xfs_ifork_t
*ifp
, /* inode fork pointer */
3460 xfs_fileoff_t bno
, /* block number to search for */
3461 int *erp_idxp
) /* irec index of target ext list */
3463 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3464 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3465 int erp_idx
; /* indirection array index */
3466 int nlists
; /* number of extent irec's (lists) */
3467 int high
; /* binary search upper limit */
3468 int low
; /* binary search lower limit */
3470 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3471 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3475 while (low
<= high
) {
3476 erp_idx
= (low
+ high
) >> 1;
3477 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3478 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3479 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3481 } else if (erp_next
&& bno
>=
3482 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3488 *erp_idxp
= erp_idx
;
3493 * Return a pointer to the indirection array entry containing the
3494 * extent record at file extent index *idxp. Store the index of the
3495 * target irec in *erp_idxp and store the page index of the target
3496 * extent record in *idxp.
3499 xfs_iext_idx_to_irec(
3500 xfs_ifork_t
*ifp
, /* inode fork pointer */
3501 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3502 int *erp_idxp
, /* pointer to target irec */
3503 int realloc
) /* new bytes were just added */
3505 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3506 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3507 int erp_idx
; /* indirection array index */
3508 int nlists
; /* number of irec's (ex lists) */
3509 int high
; /* binary search upper limit */
3510 int low
; /* binary search lower limit */
3511 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3513 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3514 ASSERT(page_idx
>= 0);
3515 ASSERT(page_idx
<= ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3516 ASSERT(page_idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) || realloc
);
3518 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3523 /* Binary search extent irec's */
3524 while (low
<= high
) {
3525 erp_idx
= (low
+ high
) >> 1;
3526 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3527 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3528 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3529 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3531 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3532 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3535 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3536 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3540 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3543 page_idx
-= erp
->er_extoff
;
3548 *erp_idxp
= erp_idx
;
3553 * Allocate and initialize an indirection array once the space needed
3554 * for incore extents increases above XFS_IEXT_BUFSZ.
3558 xfs_ifork_t
*ifp
) /* inode fork pointer */
3560 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3561 xfs_extnum_t nextents
; /* number of extents in file */
3563 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3564 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3565 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3567 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3569 if (nextents
== 0) {
3570 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3571 } else if (!ifp
->if_real_bytes
) {
3572 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3573 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3574 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3576 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3577 erp
->er_extcount
= nextents
;
3580 ifp
->if_flags
|= XFS_IFEXTIREC
;
3581 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3582 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3583 ifp
->if_u1
.if_ext_irec
= erp
;
3589 * Allocate and initialize a new entry in the indirection array.
3593 xfs_ifork_t
*ifp
, /* inode fork pointer */
3594 int erp_idx
) /* index for new irec */
3596 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3597 int i
; /* loop counter */
3598 int nlists
; /* number of irec's (ex lists) */
3600 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3601 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3603 /* Resize indirection array */
3604 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3605 sizeof(xfs_ext_irec_t
));
3607 * Move records down in the array so the
3608 * new page can use erp_idx.
3610 erp
= ifp
->if_u1
.if_ext_irec
;
3611 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3612 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3614 ASSERT(i
== erp_idx
);
3616 /* Initialize new extent record */
3617 erp
= ifp
->if_u1
.if_ext_irec
;
3618 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3619 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3620 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3621 erp
[erp_idx
].er_extcount
= 0;
3622 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3623 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3624 return (&erp
[erp_idx
]);
3628 * Remove a record from the indirection array.
3631 xfs_iext_irec_remove(
3632 xfs_ifork_t
*ifp
, /* inode fork pointer */
3633 int erp_idx
) /* irec index to remove */
3635 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3636 int i
; /* loop counter */
3637 int nlists
; /* number of irec's (ex lists) */
3639 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3640 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3641 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3642 if (erp
->er_extbuf
) {
3643 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
3645 kmem_free(erp
->er_extbuf
);
3647 /* Compact extent records */
3648 erp
= ifp
->if_u1
.if_ext_irec
;
3649 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
3650 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
3653 * Manually free the last extent record from the indirection
3654 * array. A call to xfs_iext_realloc_indirect() with a size
3655 * of zero would result in a call to xfs_iext_destroy() which
3656 * would in turn call this function again, creating a nasty
3660 xfs_iext_realloc_indirect(ifp
,
3661 nlists
* sizeof(xfs_ext_irec_t
));
3663 kmem_free(ifp
->if_u1
.if_ext_irec
);
3665 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3669 * This is called to clean up large amounts of unused memory allocated
3670 * by the indirection array. Before compacting anything though, verify
3671 * that the indirection array is still needed and switch back to the
3672 * linear extent list (or even the inline buffer) if possible. The
3673 * compaction policy is as follows:
3675 * Full Compaction: Extents fit into a single page (or inline buffer)
3676 * Partial Compaction: Extents occupy less than 50% of allocated space
3677 * No Compaction: Extents occupy at least 50% of allocated space
3680 xfs_iext_irec_compact(
3681 xfs_ifork_t
*ifp
) /* inode fork pointer */
3683 xfs_extnum_t nextents
; /* number of extents in file */
3684 int nlists
; /* number of irec's (ex lists) */
3686 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3687 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3688 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3690 if (nextents
== 0) {
3691 xfs_iext_destroy(ifp
);
3692 } else if (nextents
<= XFS_INLINE_EXTS
) {
3693 xfs_iext_indirect_to_direct(ifp
);
3694 xfs_iext_direct_to_inline(ifp
, nextents
);
3695 } else if (nextents
<= XFS_LINEAR_EXTS
) {
3696 xfs_iext_indirect_to_direct(ifp
);
3697 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
3698 xfs_iext_irec_compact_pages(ifp
);
3703 * Combine extents from neighboring extent pages.
3706 xfs_iext_irec_compact_pages(
3707 xfs_ifork_t
*ifp
) /* inode fork pointer */
3709 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
3710 int erp_idx
= 0; /* indirection array index */
3711 int nlists
; /* number of irec's (ex lists) */
3713 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3714 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3715 while (erp_idx
< nlists
- 1) {
3716 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3718 if (erp_next
->er_extcount
<=
3719 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
3720 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
3721 erp_next
->er_extbuf
, erp_next
->er_extcount
*
3722 sizeof(xfs_bmbt_rec_t
));
3723 erp
->er_extcount
+= erp_next
->er_extcount
;
3725 * Free page before removing extent record
3726 * so er_extoffs don't get modified in
3727 * xfs_iext_irec_remove.
3729 kmem_free(erp_next
->er_extbuf
);
3730 erp_next
->er_extbuf
= NULL
;
3731 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
3732 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3740 * This is called to update the er_extoff field in the indirection
3741 * array when extents have been added or removed from one of the
3742 * extent lists. erp_idx contains the irec index to begin updating
3743 * at and ext_diff contains the number of extents that were added
3747 xfs_iext_irec_update_extoffs(
3748 xfs_ifork_t
*ifp
, /* inode fork pointer */
3749 int erp_idx
, /* irec index to update */
3750 int ext_diff
) /* number of new extents */
3752 int i
; /* loop counter */
3753 int nlists
; /* number of irec's (ex lists */
3755 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3756 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3757 for (i
= erp_idx
; i
< nlists
; i
++) {
3758 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;