2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
39 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
41 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
54 struct xfs_log_item
*lip
)
56 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
57 struct xfs_inode
*ip
= iip
->ili_inode
;
60 switch (ip
->i_d
.di_format
) {
61 case XFS_DINODE_FMT_EXTENTS
:
62 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
63 ip
->i_d
.di_nextents
> 0 &&
64 ip
->i_df
.if_bytes
> 0)
68 case XFS_DINODE_FMT_BTREE
:
69 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
70 ip
->i_df
.if_broot_bytes
> 0)
74 case XFS_DINODE_FMT_LOCAL
:
75 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
76 ip
->i_df
.if_bytes
> 0)
80 case XFS_DINODE_FMT_DEV
:
81 case XFS_DINODE_FMT_UUID
:
94 * Log any necessary attribute data.
96 switch (ip
->i_d
.di_aformat
) {
97 case XFS_DINODE_FMT_EXTENTS
:
98 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
99 ip
->i_d
.di_anextents
> 0 &&
100 ip
->i_afp
->if_bytes
> 0)
104 case XFS_DINODE_FMT_BTREE
:
105 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
106 ip
->i_afp
->if_broot_bytes
> 0)
110 case XFS_DINODE_FMT_LOCAL
:
111 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
112 ip
->i_afp
->if_bytes
> 0)
125 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
127 * For either the data or attr fork in extent format, we need to endian convert
128 * the in-core extent as we place them into the on-disk inode. In this case, we
129 * need to do this conversion before we write the extents into the log. Because
130 * we don't have the disk inode to write into here, we allocate a buffer and
131 * format the extents into it via xfs_iextents_copy(). We free the buffer in
132 * the unlock routine after the copy for the log has been made.
134 * In the case of the data fork, the in-core and on-disk fork sizes can be
135 * different due to delayed allocation extents. We only log on-disk extents
136 * here, so always use the physical fork size to determine the size of the
137 * buffer we need to allocate.
140 xfs_inode_item_format_extents(
141 struct xfs_inode
*ip
,
142 struct xfs_log_iovec
*vecp
,
146 xfs_bmbt_rec_t
*ext_buffer
;
148 ext_buffer
= kmem_alloc(XFS_IFORK_SIZE(ip
, whichfork
), KM_SLEEP
);
149 if (whichfork
== XFS_DATA_FORK
)
150 ip
->i_itemp
->ili_extents_buf
= ext_buffer
;
152 ip
->i_itemp
->ili_aextents_buf
= ext_buffer
;
154 vecp
->i_addr
= ext_buffer
;
155 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
, whichfork
);
160 * This is called to fill in the vector of log iovecs for the
161 * given inode log item. It fills the first item with an inode
162 * log format structure, the second with the on-disk inode structure,
163 * and a possible third and/or fourth with the inode data/extents/b-tree
164 * root and inode attributes data/extents/b-tree root.
167 xfs_inode_item_format(
168 struct xfs_log_item
*lip
,
169 struct xfs_log_iovec
*vecp
)
171 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
172 struct xfs_inode
*ip
= iip
->ili_inode
;
177 vecp
->i_addr
= &iip
->ili_format
;
178 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
179 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
183 vecp
->i_addr
= &ip
->i_d
;
184 vecp
->i_len
= sizeof(struct xfs_icdinode
);
185 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
190 * If this is really an old format inode, then we need to
191 * log it as such. This means that we have to copy the link
192 * count from the new field to the old. We don't have to worry
193 * about the new fields, because nothing trusts them as long as
194 * the old inode version number is there. If the superblock already
195 * has a new version number, then we don't bother converting back.
198 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
199 if (ip
->i_d
.di_version
== 1) {
200 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
204 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
205 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
208 * The superblock version has already been bumped,
209 * so just make the conversion to the new inode
212 ip
->i_d
.di_version
= 2;
213 ip
->i_d
.di_onlink
= 0;
214 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
218 switch (ip
->i_d
.di_format
) {
219 case XFS_DINODE_FMT_EXTENTS
:
221 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
222 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
224 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
225 ip
->i_d
.di_nextents
> 0 &&
226 ip
->i_df
.if_bytes
> 0) {
227 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
228 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
229 ASSERT(iip
->ili_extents_buf
== NULL
);
231 #ifdef XFS_NATIVE_HOST
232 if (ip
->i_d
.di_nextents
== ip
->i_df
.if_bytes
/
233 (uint
)sizeof(xfs_bmbt_rec_t
)) {
235 * There are no delayed allocation
236 * extents, so just point to the
237 * real extents array.
239 vecp
->i_addr
= ip
->i_df
.if_u1
.if_extents
;
240 vecp
->i_len
= ip
->i_df
.if_bytes
;
241 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
245 xfs_inode_item_format_extents(ip
, vecp
,
246 XFS_DATA_FORK
, XLOG_REG_TYPE_IEXT
);
248 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
249 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
253 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
257 case XFS_DINODE_FMT_BTREE
:
259 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
260 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
262 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
263 ip
->i_df
.if_broot_bytes
> 0) {
264 ASSERT(ip
->i_df
.if_broot
!= NULL
);
265 vecp
->i_addr
= ip
->i_df
.if_broot
;
266 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
267 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
270 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
272 ASSERT(!(iip
->ili_fields
&
274 #ifdef XFS_TRANS_DEBUG
275 if (iip
->ili_root_size
> 0) {
276 ASSERT(iip
->ili_root_size
==
277 ip
->i_df
.if_broot_bytes
);
278 ASSERT(memcmp(iip
->ili_orig_root
,
280 iip
->ili_root_size
) == 0);
282 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
285 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
289 case XFS_DINODE_FMT_LOCAL
:
291 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
292 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
293 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
294 ip
->i_df
.if_bytes
> 0) {
295 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
296 ASSERT(ip
->i_d
.di_size
> 0);
298 vecp
->i_addr
= ip
->i_df
.if_u1
.if_data
;
300 * Round i_bytes up to a word boundary.
301 * The underlying memory is guaranteed to
302 * to be there by xfs_idata_realloc().
304 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
305 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
306 (ip
->i_df
.if_real_bytes
== data_bytes
));
307 vecp
->i_len
= (int)data_bytes
;
308 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
311 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
313 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
317 case XFS_DINODE_FMT_DEV
:
319 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
320 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
321 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
322 iip
->ili_format
.ilf_u
.ilfu_rdev
=
323 ip
->i_df
.if_u2
.if_rdev
;
327 case XFS_DINODE_FMT_UUID
:
329 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
330 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
331 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
332 iip
->ili_format
.ilf_u
.ilfu_uuid
=
333 ip
->i_df
.if_u2
.if_uuid
;
343 * If there are no attributes associated with the file, then we're done.
345 if (!XFS_IFORK_Q(ip
)) {
347 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
351 switch (ip
->i_d
.di_aformat
) {
352 case XFS_DINODE_FMT_EXTENTS
:
354 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
356 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
357 ip
->i_d
.di_anextents
> 0 &&
358 ip
->i_afp
->if_bytes
> 0) {
359 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
360 ip
->i_d
.di_anextents
);
361 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
362 #ifdef XFS_NATIVE_HOST
364 * There are not delayed allocation extents
365 * for attributes, so just point at the array.
367 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_extents
;
368 vecp
->i_len
= ip
->i_afp
->if_bytes
;
369 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
371 ASSERT(iip
->ili_aextents_buf
== NULL
);
372 xfs_inode_item_format_extents(ip
, vecp
,
373 XFS_ATTR_FORK
, XLOG_REG_TYPE_IATTR_EXT
);
375 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
379 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
383 case XFS_DINODE_FMT_BTREE
:
385 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
387 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
388 ip
->i_afp
->if_broot_bytes
> 0) {
389 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
391 vecp
->i_addr
= ip
->i_afp
->if_broot
;
392 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
393 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
396 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
398 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
402 case XFS_DINODE_FMT_LOCAL
:
404 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
406 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
407 ip
->i_afp
->if_bytes
> 0) {
408 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
410 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_data
;
412 * Round i_bytes up to a word boundary.
413 * The underlying memory is guaranteed to
414 * to be there by xfs_idata_realloc().
416 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
417 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
418 (ip
->i_afp
->if_real_bytes
== data_bytes
));
419 vecp
->i_len
= (int)data_bytes
;
420 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
423 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
425 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
436 * Now update the log format that goes out to disk from the in-core
437 * values. We always write the inode core to make the arithmetic
438 * games in recovery easier, which isn't a big deal as just about any
439 * transaction would dirty it anyway.
441 iip
->ili_format
.ilf_fields
= XFS_ILOG_CORE
|
442 (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
443 iip
->ili_format
.ilf_size
= nvecs
;
448 * This is called to pin the inode associated with the inode log
449 * item in memory so it cannot be written out.
453 struct xfs_log_item
*lip
)
455 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
457 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
459 trace_xfs_inode_pin(ip
, _RET_IP_
);
460 atomic_inc(&ip
->i_pincount
);
465 * This is called to unpin the inode associated with the inode log
466 * item which was previously pinned with a call to xfs_inode_item_pin().
468 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
471 xfs_inode_item_unpin(
472 struct xfs_log_item
*lip
,
475 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
477 trace_xfs_inode_unpin(ip
, _RET_IP_
);
478 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
479 if (atomic_dec_and_test(&ip
->i_pincount
))
480 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
484 * This is called to attempt to lock the inode associated with this
485 * inode log item, in preparation for the push routine which does the actual
486 * iflush. Don't sleep on the inode lock or the flush lock.
488 * If the flush lock is already held, indicating that the inode has
489 * been or is in the process of being flushed, then (ideally) we'd like to
490 * see if the inode's buffer is still incore, and if so give it a nudge.
491 * We delay doing so until the pushbuf routine, though, to avoid holding
492 * the AIL lock across a call to the blackhole which is the buffer cache.
493 * Also we don't want to sleep in any device strategy routines, which can happen
494 * if we do the subsequent bawrite in here.
497 xfs_inode_item_trylock(
498 struct xfs_log_item
*lip
)
500 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
501 struct xfs_inode
*ip
= iip
->ili_inode
;
503 if (xfs_ipincount(ip
) > 0)
504 return XFS_ITEM_PINNED
;
506 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
507 return XFS_ITEM_LOCKED
;
509 if (!xfs_iflock_nowait(ip
)) {
511 * inode has already been flushed to the backing buffer,
512 * leave it locked in shared mode, pushbuf routine will
515 return XFS_ITEM_PUSHBUF
;
518 /* Stale items should force out the iclog */
519 if (ip
->i_flags
& XFS_ISTALE
) {
521 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
522 return XFS_ITEM_PINNED
;
526 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
527 ASSERT(iip
->ili_fields
!= 0);
528 ASSERT(iip
->ili_logged
== 0);
529 ASSERT(lip
->li_flags
& XFS_LI_IN_AIL
);
532 return XFS_ITEM_SUCCESS
;
536 * Unlock the inode associated with the inode log item.
537 * Clear the fields of the inode and inode log item that
538 * are specific to the current transaction. If the
539 * hold flags is set, do not unlock the inode.
542 xfs_inode_item_unlock(
543 struct xfs_log_item
*lip
)
545 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
546 struct xfs_inode
*ip
= iip
->ili_inode
;
547 unsigned short lock_flags
;
549 ASSERT(ip
->i_itemp
!= NULL
);
550 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
553 * If the inode needed a separate buffer with which to log
554 * its extents, then free it now.
556 if (iip
->ili_extents_buf
!= NULL
) {
557 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
558 ASSERT(ip
->i_d
.di_nextents
> 0);
559 ASSERT(iip
->ili_fields
& XFS_ILOG_DEXT
);
560 ASSERT(ip
->i_df
.if_bytes
> 0);
561 kmem_free(iip
->ili_extents_buf
);
562 iip
->ili_extents_buf
= NULL
;
564 if (iip
->ili_aextents_buf
!= NULL
) {
565 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
566 ASSERT(ip
->i_d
.di_anextents
> 0);
567 ASSERT(iip
->ili_fields
& XFS_ILOG_AEXT
);
568 ASSERT(ip
->i_afp
->if_bytes
> 0);
569 kmem_free(iip
->ili_aextents_buf
);
570 iip
->ili_aextents_buf
= NULL
;
573 lock_flags
= iip
->ili_lock_flags
;
574 iip
->ili_lock_flags
= 0;
576 xfs_iunlock(ip
, lock_flags
);
580 * This is called to find out where the oldest active copy of the inode log
581 * item in the on disk log resides now that the last log write of it completed
582 * at the given lsn. Since we always re-log all dirty data in an inode, the
583 * latest copy in the on disk log is the only one that matters. Therefore,
584 * simply return the given lsn.
586 * If the inode has been marked stale because the cluster is being freed, we
587 * don't want to (re-)insert this inode into the AIL. There is a race condition
588 * where the cluster buffer may be unpinned before the inode is inserted into
589 * the AIL during transaction committed processing. If the buffer is unpinned
590 * before the inode item has been committed and inserted, then it is possible
591 * for the buffer to be written and IO completes before the inode is inserted
592 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
593 * AIL which will never get removed. It will, however, get reclaimed which
594 * triggers an assert in xfs_inode_free() complaining about freein an inode
597 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
598 * transaction committed code knows that it does not need to do any further
599 * processing on the item.
602 xfs_inode_item_committed(
603 struct xfs_log_item
*lip
,
606 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
607 struct xfs_inode
*ip
= iip
->ili_inode
;
609 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
610 xfs_inode_item_unpin(lip
, 0);
617 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
618 * failed to get the inode flush lock but did get the inode locked SHARED.
619 * Here we're trying to see if the inode buffer is incore, and if so whether it's
620 * marked delayed write. If that's the case, we'll promote it and that will
621 * allow the caller to write the buffer by triggering the xfsbufd to run.
624 xfs_inode_item_pushbuf(
625 struct xfs_log_item
*lip
)
627 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
628 struct xfs_inode
*ip
= iip
->ili_inode
;
632 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
635 * If a flush is not in progress anymore, chances are that the
636 * inode was taken off the AIL. So, just get out.
638 if (!xfs_isiflocked(ip
) ||
639 !(lip
->li_flags
& XFS_LI_IN_AIL
)) {
640 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
644 bp
= xfs_incore(ip
->i_mount
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
645 iip
->ili_format
.ilf_len
, XBF_TRYLOCK
);
647 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
650 if (XFS_BUF_ISDELAYWRITE(bp
))
651 xfs_buf_delwri_promote(bp
);
652 if (xfs_buf_ispinned(bp
))
659 * This is called to asynchronously write the inode associated with this
660 * inode log item out to disk. The inode will already have been locked by
661 * a successful call to xfs_inode_item_trylock().
665 struct xfs_log_item
*lip
)
667 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
668 struct xfs_inode
*ip
= iip
->ili_inode
;
670 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
671 ASSERT(xfs_isiflocked(ip
));
674 * Since we were able to lock the inode's flush lock and
675 * we found it on the AIL, the inode must be dirty. This
676 * is because the inode is removed from the AIL while still
677 * holding the flush lock in xfs_iflush_done(). Thus, if
678 * we found it in the AIL and were able to obtain the flush
679 * lock without sleeping, then there must not have been
680 * anyone in the process of flushing the inode.
682 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) || iip
->ili_fields
!= 0);
685 * Push the inode to it's backing buffer. This will not remove the
686 * inode from the AIL - a further push will be required to trigger a
687 * buffer push. However, this allows all the dirty inodes to be pushed
688 * to the buffer before it is pushed to disk. The buffer IO completion
689 * will pull the inode from the AIL, mark it clean and unlock the flush
692 (void) xfs_iflush(ip
, SYNC_TRYLOCK
);
693 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
697 * XXX rcc - this one really has to do something. Probably needs
698 * to stamp in a new field in the incore inode.
701 xfs_inode_item_committing(
702 struct xfs_log_item
*lip
,
705 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
709 * This is the ops vector shared by all buf log items.
711 static const struct xfs_item_ops xfs_inode_item_ops
= {
712 .iop_size
= xfs_inode_item_size
,
713 .iop_format
= xfs_inode_item_format
,
714 .iop_pin
= xfs_inode_item_pin
,
715 .iop_unpin
= xfs_inode_item_unpin
,
716 .iop_trylock
= xfs_inode_item_trylock
,
717 .iop_unlock
= xfs_inode_item_unlock
,
718 .iop_committed
= xfs_inode_item_committed
,
719 .iop_push
= xfs_inode_item_push
,
720 .iop_pushbuf
= xfs_inode_item_pushbuf
,
721 .iop_committing
= xfs_inode_item_committing
726 * Initialize the inode log item for a newly allocated (in-core) inode.
730 struct xfs_inode
*ip
,
731 struct xfs_mount
*mp
)
733 struct xfs_inode_log_item
*iip
;
735 ASSERT(ip
->i_itemp
== NULL
);
736 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
739 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
740 &xfs_inode_item_ops
);
741 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
742 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
743 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
744 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
745 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
749 * Free the inode log item and any memory hanging off of it.
752 xfs_inode_item_destroy(
755 #ifdef XFS_TRANS_DEBUG
756 if (ip
->i_itemp
->ili_root_size
!= 0) {
757 kmem_free(ip
->i_itemp
->ili_orig_root
);
760 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
765 * This is the inode flushing I/O completion routine. It is called
766 * from interrupt level when the buffer containing the inode is
767 * flushed to disk. It is responsible for removing the inode item
768 * from the AIL if it has not been re-logged, and unlocking the inode's
771 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
772 * list for other inodes that will run this function. We remove them from the
773 * buffer list so we can process all the inode IO completions in one AIL lock
779 struct xfs_log_item
*lip
)
781 struct xfs_inode_log_item
*iip
;
782 struct xfs_log_item
*blip
;
783 struct xfs_log_item
*next
;
784 struct xfs_log_item
*prev
;
785 struct xfs_ail
*ailp
= lip
->li_ailp
;
789 * Scan the buffer IO completions for other inodes being completed and
790 * attach them to the current inode log item.
794 while (blip
!= NULL
) {
795 if (lip
->li_cb
!= xfs_iflush_done
) {
797 blip
= blip
->li_bio_list
;
801 /* remove from list */
802 next
= blip
->li_bio_list
;
806 prev
->li_bio_list
= next
;
809 /* add to current list */
810 blip
->li_bio_list
= lip
->li_bio_list
;
811 lip
->li_bio_list
= blip
;
814 * while we have the item, do the unlocked check for needing
817 iip
= INODE_ITEM(blip
);
818 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
824 /* make sure we capture the state of the initial inode. */
825 iip
= INODE_ITEM(lip
);
826 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
830 * We only want to pull the item from the AIL if it is
831 * actually there and its location in the log has not
832 * changed since we started the flush. Thus, we only bother
833 * if the ili_logged flag is set and the inode's lsn has not
834 * changed. First we check the lsn outside
835 * the lock since it's cheaper, and then we recheck while
836 * holding the lock before removing the inode from the AIL.
839 struct xfs_log_item
*log_items
[need_ail
];
841 spin_lock(&ailp
->xa_lock
);
842 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
843 iip
= INODE_ITEM(blip
);
844 if (iip
->ili_logged
&&
845 blip
->li_lsn
== iip
->ili_flush_lsn
) {
846 log_items
[i
++] = blip
;
848 ASSERT(i
<= need_ail
);
850 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
851 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
);
856 * clean up and unlock the flush lock now we are done. We can clear the
857 * ili_last_fields bits now that we know that the data corresponding to
858 * them is safely on disk.
860 for (blip
= lip
; blip
; blip
= next
) {
861 next
= blip
->li_bio_list
;
862 blip
->li_bio_list
= NULL
;
864 iip
= INODE_ITEM(blip
);
866 iip
->ili_last_fields
= 0;
867 xfs_ifunlock(iip
->ili_inode
);
872 * This is the inode flushing abort routine. It is called
873 * from xfs_iflush when the filesystem is shutting down to clean
874 * up the inode state.
875 * It is responsible for removing the inode item
876 * from the AIL if it has not been re-logged, and unlocking the inode's
883 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
886 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
887 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
888 spin_lock(&ailp
->xa_lock
);
889 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
890 /* xfs_trans_ail_delete() drops the AIL lock. */
891 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
893 spin_unlock(&ailp
->xa_lock
);
897 * Clear the ili_last_fields bits now that we know that the
898 * data corresponding to them is safely on disk.
900 iip
->ili_last_fields
= 0;
902 * Clear the inode logging fields so no more flushes are
908 * Release the inode's flush lock since we're done with it.
916 struct xfs_log_item
*lip
)
918 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
);
922 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
923 * (which can have different field alignments) to the native version
926 xfs_inode_item_format_convert(
927 xfs_log_iovec_t
*buf
,
928 xfs_inode_log_format_t
*in_f
)
930 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
931 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
933 in_f
->ilf_type
= in_f32
->ilf_type
;
934 in_f
->ilf_size
= in_f32
->ilf_size
;
935 in_f
->ilf_fields
= in_f32
->ilf_fields
;
936 in_f
->ilf_asize
= in_f32
->ilf_asize
;
937 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
938 in_f
->ilf_ino
= in_f32
->ilf_ino
;
939 /* copy biggest field of ilf_u */
940 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
941 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
943 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
944 in_f
->ilf_len
= in_f32
->ilf_len
;
945 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
947 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
948 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
950 in_f
->ilf_type
= in_f64
->ilf_type
;
951 in_f
->ilf_size
= in_f64
->ilf_size
;
952 in_f
->ilf_fields
= in_f64
->ilf_fields
;
953 in_f
->ilf_asize
= in_f64
->ilf_asize
;
954 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
955 in_f
->ilf_ino
= in_f64
->ilf_ino
;
956 /* copy biggest field of ilf_u */
957 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
958 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
960 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
961 in_f
->ilf_len
= in_f64
->ilf_len
;
962 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;