4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
40 /* How many pages do we try to swap or page in/out together? */
43 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
44 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
45 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
51 static void __page_cache_release(struct page
*page
)
54 struct zone
*zone
= page_zone(page
);
55 struct lruvec
*lruvec
;
58 spin_lock_irqsave(&zone
->lru_lock
, flags
);
59 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
60 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
62 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
63 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
67 static void __put_single_page(struct page
*page
)
69 __page_cache_release(page
);
70 free_hot_cold_page(page
, false);
73 static void __put_compound_page(struct page
*page
)
75 compound_page_dtor
*dtor
;
77 __page_cache_release(page
);
78 dtor
= get_compound_page_dtor(page
);
83 * Two special cases here: we could avoid taking compound_lock_irqsave
84 * and could skip the tail refcounting(in _mapcount).
88 * PageHeadHuge will remain true until the compound page
89 * is released and enters the buddy allocator, and it could
90 * not be split by __split_huge_page_refcount().
92 * So if we see PageHeadHuge set, and we have the tail page pin,
93 * then we could safely put head page.
97 * PG_slab is cleared before the slab frees the head page, and
98 * tail pin cannot be the last reference left on the head page,
99 * because the slab code is free to reuse the compound page
100 * after a kfree/kmem_cache_free without having to check if
101 * there's any tail pin left. In turn all tail pinsmust be always
102 * released while the head is still pinned by the slab code
103 * and so we know PG_slab will be still set too.
105 * So if we see PageSlab set, and we have the tail page pin,
106 * then we could safely put head page.
108 static __always_inline
109 void put_unrefcounted_compound_page(struct page
*page_head
, struct page
*page
)
112 * If @page is a THP tail, we must read the tail page
113 * flags after the head page flags. The
114 * __split_huge_page_refcount side enforces write memory barriers
115 * between clearing PageTail and before the head page
116 * can be freed and reallocated.
119 if (likely(PageTail(page
))) {
121 * __split_huge_page_refcount cannot race
122 * here, see the comment above this function.
124 VM_BUG_ON_PAGE(!PageHead(page_head
), page_head
);
125 VM_BUG_ON_PAGE(page_mapcount(page
) != 0, page
);
126 if (put_page_testzero(page_head
)) {
128 * If this is the tail of a slab THP page,
129 * the tail pin must not be the last reference
130 * held on the page, because the PG_slab cannot
131 * be cleared before all tail pins (which skips
132 * the _mapcount tail refcounting) have been
135 * If this is the tail of a hugetlbfs page,
136 * the tail pin may be the last reference on
137 * the page instead, because PageHeadHuge will
138 * not go away until the compound page enters
139 * the buddy allocator.
141 VM_BUG_ON_PAGE(PageSlab(page_head
), page_head
);
142 __put_compound_page(page_head
);
146 * __split_huge_page_refcount run before us,
147 * @page was a THP tail. The split @page_head
148 * has been freed and reallocated as slab or
149 * hugetlbfs page of smaller order (only
150 * possible if reallocated as slab on x86).
152 if (put_page_testzero(page
))
153 __put_single_page(page
);
156 static __always_inline
157 void put_refcounted_compound_page(struct page
*page_head
, struct page
*page
)
159 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
163 * @page_head wasn't a dangling pointer but it may not
164 * be a head page anymore by the time we obtain the
165 * lock. That is ok as long as it can't be freed from
168 flags
= compound_lock_irqsave(page_head
);
169 if (unlikely(!PageTail(page
))) {
170 /* __split_huge_page_refcount run before us */
171 compound_unlock_irqrestore(page_head
, flags
);
172 if (put_page_testzero(page_head
)) {
174 * The @page_head may have been freed
175 * and reallocated as a compound page
176 * of smaller order and then freed
177 * again. All we know is that it
178 * cannot have become: a THP page, a
179 * compound page of higher order, a
180 * tail page. That is because we
181 * still hold the refcount of the
182 * split THP tail and page_head was
183 * the THP head before the split.
185 if (PageHead(page_head
))
186 __put_compound_page(page_head
);
188 __put_single_page(page_head
);
191 if (put_page_testzero(page
))
192 __put_single_page(page
);
195 VM_BUG_ON_PAGE(page_head
!= page
->first_page
, page
);
197 * We can release the refcount taken by
198 * get_page_unless_zero() now that
199 * __split_huge_page_refcount() is blocked on the
202 if (put_page_testzero(page_head
))
203 VM_BUG_ON_PAGE(1, page_head
);
204 /* __split_huge_page_refcount will wait now */
205 VM_BUG_ON_PAGE(page_mapcount(page
) <= 0, page
);
206 atomic_dec(&page
->_mapcount
);
207 VM_BUG_ON_PAGE(atomic_read(&page_head
->_count
) <= 0, page_head
);
208 VM_BUG_ON_PAGE(atomic_read(&page
->_count
) != 0, page
);
209 compound_unlock_irqrestore(page_head
, flags
);
211 if (put_page_testzero(page_head
)) {
212 if (PageHead(page_head
))
213 __put_compound_page(page_head
);
215 __put_single_page(page_head
);
218 /* @page_head is a dangling pointer */
219 VM_BUG_ON_PAGE(PageTail(page
), page
);
224 static void put_compound_page(struct page
*page
)
226 struct page
*page_head
;
229 * We see the PageCompound set and PageTail not set, so @page maybe:
230 * 1. hugetlbfs head page, or
233 if (likely(!PageTail(page
))) {
234 if (put_page_testzero(page
)) {
236 * By the time all refcounts have been released
237 * split_huge_page cannot run anymore from under us.
240 __put_compound_page(page
);
242 __put_single_page(page
);
248 * We see the PageCompound set and PageTail set, so @page maybe:
249 * 1. a tail hugetlbfs page, or
250 * 2. a tail THP page, or
251 * 3. a split THP page.
253 * Case 3 is possible, as we may race with
254 * __split_huge_page_refcount tearing down a THP page.
256 page_head
= compound_head_by_tail(page
);
257 if (!__compound_tail_refcounted(page_head
))
258 put_unrefcounted_compound_page(page_head
, page
);
260 put_refcounted_compound_page(page_head
, page
);
263 void put_page(struct page
*page
)
265 if (unlikely(PageCompound(page
)))
266 put_compound_page(page
);
267 else if (put_page_testzero(page
))
268 __put_single_page(page
);
270 EXPORT_SYMBOL(put_page
);
273 * This function is exported but must not be called by anything other
274 * than get_page(). It implements the slow path of get_page().
276 bool __get_page_tail(struct page
*page
)
279 * This takes care of get_page() if run on a tail page
280 * returned by one of the get_user_pages/follow_page variants.
281 * get_user_pages/follow_page itself doesn't need the compound
282 * lock because it runs __get_page_tail_foll() under the
283 * proper PT lock that already serializes against
288 struct page
*page_head
= compound_head(page
);
290 /* Ref to put_compound_page() comment. */
291 if (!__compound_tail_refcounted(page_head
)) {
293 if (likely(PageTail(page
))) {
295 * This is a hugetlbfs page or a slab
296 * page. __split_huge_page_refcount
299 VM_BUG_ON_PAGE(!PageHead(page_head
), page_head
);
300 __get_page_tail_foll(page
, true);
304 * __split_huge_page_refcount run
305 * before us, "page" was a THP
306 * tail. The split page_head has been
307 * freed and reallocated as slab or
308 * hugetlbfs page of smaller order
309 * (only possible if reallocated as
317 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
319 * page_head wasn't a dangling pointer but it
320 * may not be a head page anymore by the time
321 * we obtain the lock. That is ok as long as it
322 * can't be freed from under us.
324 flags
= compound_lock_irqsave(page_head
);
325 /* here __split_huge_page_refcount won't run anymore */
326 if (likely(PageTail(page
))) {
327 __get_page_tail_foll(page
, false);
330 compound_unlock_irqrestore(page_head
, flags
);
336 EXPORT_SYMBOL(__get_page_tail
);
339 * put_pages_list() - release a list of pages
340 * @pages: list of pages threaded on page->lru
342 * Release a list of pages which are strung together on page.lru. Currently
343 * used by read_cache_pages() and related error recovery code.
345 void put_pages_list(struct list_head
*pages
)
347 while (!list_empty(pages
)) {
350 victim
= list_entry(pages
->prev
, struct page
, lru
);
351 list_del(&victim
->lru
);
352 page_cache_release(victim
);
355 EXPORT_SYMBOL(put_pages_list
);
358 * get_kernel_pages() - pin kernel pages in memory
359 * @kiov: An array of struct kvec structures
360 * @nr_segs: number of segments to pin
361 * @write: pinning for read/write, currently ignored
362 * @pages: array that receives pointers to the pages pinned.
363 * Should be at least nr_segs long.
365 * Returns number of pages pinned. This may be fewer than the number
366 * requested. If nr_pages is 0 or negative, returns 0. If no pages
367 * were pinned, returns -errno. Each page returned must be released
368 * with a put_page() call when it is finished with.
370 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
375 for (seg
= 0; seg
< nr_segs
; seg
++) {
376 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
379 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
380 page_cache_get(pages
[seg
]);
385 EXPORT_SYMBOL_GPL(get_kernel_pages
);
388 * get_kernel_page() - pin a kernel page in memory
389 * @start: starting kernel address
390 * @write: pinning for read/write, currently ignored
391 * @pages: array that receives pointer to the page pinned.
392 * Must be at least nr_segs long.
394 * Returns 1 if page is pinned. If the page was not pinned, returns
395 * -errno. The page returned must be released with a put_page() call
396 * when it is finished with.
398 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
400 const struct kvec kiov
= {
401 .iov_base
= (void *)start
,
405 return get_kernel_pages(&kiov
, 1, write
, pages
);
407 EXPORT_SYMBOL_GPL(get_kernel_page
);
409 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
410 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
414 struct zone
*zone
= NULL
;
415 struct lruvec
*lruvec
;
416 unsigned long flags
= 0;
418 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
419 struct page
*page
= pvec
->pages
[i
];
420 struct zone
*pagezone
= page_zone(page
);
422 if (pagezone
!= zone
) {
424 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
426 spin_lock_irqsave(&zone
->lru_lock
, flags
);
429 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
430 (*move_fn
)(page
, lruvec
, arg
);
433 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
434 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
435 pagevec_reinit(pvec
);
438 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
443 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
444 enum lru_list lru
= page_lru_base_type(page
);
445 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
451 * pagevec_move_tail() must be called with IRQ disabled.
452 * Otherwise this may cause nasty races.
454 static void pagevec_move_tail(struct pagevec
*pvec
)
458 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
459 __count_vm_events(PGROTATED
, pgmoved
);
463 * Writeback is about to end against a page which has been marked for immediate
464 * reclaim. If it still appears to be reclaimable, move it to the tail of the
467 void rotate_reclaimable_page(struct page
*page
)
469 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
470 !PageUnevictable(page
) && PageLRU(page
)) {
471 struct pagevec
*pvec
;
474 page_cache_get(page
);
475 local_irq_save(flags
);
476 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
477 if (!pagevec_add(pvec
, page
))
478 pagevec_move_tail(pvec
);
479 local_irq_restore(flags
);
483 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
484 int file
, int rotated
)
486 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
488 reclaim_stat
->recent_scanned
[file
]++;
490 reclaim_stat
->recent_rotated
[file
]++;
493 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
496 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
497 int file
= page_is_file_cache(page
);
498 int lru
= page_lru_base_type(page
);
500 del_page_from_lru_list(page
, lruvec
, lru
);
503 add_page_to_lru_list(page
, lruvec
, lru
);
504 trace_mm_lru_activate(page
, page_to_pfn(page
));
506 __count_vm_event(PGACTIVATE
);
507 update_page_reclaim_stat(lruvec
, file
, 1);
512 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
514 static void activate_page_drain(int cpu
)
516 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
518 if (pagevec_count(pvec
))
519 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
522 static bool need_activate_page_drain(int cpu
)
524 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
527 void activate_page(struct page
*page
)
529 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
530 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
532 page_cache_get(page
);
533 if (!pagevec_add(pvec
, page
))
534 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
535 put_cpu_var(activate_page_pvecs
);
540 static inline void activate_page_drain(int cpu
)
544 static bool need_activate_page_drain(int cpu
)
549 void activate_page(struct page
*page
)
551 struct zone
*zone
= page_zone(page
);
553 spin_lock_irq(&zone
->lru_lock
);
554 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
555 spin_unlock_irq(&zone
->lru_lock
);
559 static void __lru_cache_activate_page(struct page
*page
)
561 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
565 * Search backwards on the optimistic assumption that the page being
566 * activated has just been added to this pagevec. Note that only
567 * the local pagevec is examined as a !PageLRU page could be in the
568 * process of being released, reclaimed, migrated or on a remote
569 * pagevec that is currently being drained. Furthermore, marking
570 * a remote pagevec's page PageActive potentially hits a race where
571 * a page is marked PageActive just after it is added to the inactive
572 * list causing accounting errors and BUG_ON checks to trigger.
574 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
575 struct page
*pagevec_page
= pvec
->pages
[i
];
577 if (pagevec_page
== page
) {
583 put_cpu_var(lru_add_pvec
);
587 * Mark a page as having seen activity.
589 * inactive,unreferenced -> inactive,referenced
590 * inactive,referenced -> active,unreferenced
591 * active,unreferenced -> active,referenced
593 void mark_page_accessed(struct page
*page
)
595 if (!PageActive(page
) && !PageUnevictable(page
) &&
596 PageReferenced(page
)) {
599 * If the page is on the LRU, queue it for activation via
600 * activate_page_pvecs. Otherwise, assume the page is on a
601 * pagevec, mark it active and it'll be moved to the active
602 * LRU on the next drain.
607 __lru_cache_activate_page(page
);
608 ClearPageReferenced(page
);
609 if (page_is_file_cache(page
))
610 workingset_activation(page
);
611 } else if (!PageReferenced(page
)) {
612 SetPageReferenced(page
);
615 EXPORT_SYMBOL(mark_page_accessed
);
618 * Used to mark_page_accessed(page) that is not visible yet and when it is
619 * still safe to use non-atomic ops
621 void init_page_accessed(struct page
*page
)
623 if (!PageReferenced(page
))
624 __SetPageReferenced(page
);
626 EXPORT_SYMBOL(init_page_accessed
);
628 static void __lru_cache_add(struct page
*page
)
630 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
632 page_cache_get(page
);
633 if (!pagevec_space(pvec
))
634 __pagevec_lru_add(pvec
);
635 pagevec_add(pvec
, page
);
636 put_cpu_var(lru_add_pvec
);
640 * lru_cache_add: add a page to the page lists
641 * @page: the page to add
643 void lru_cache_add_anon(struct page
*page
)
645 if (PageActive(page
))
646 ClearPageActive(page
);
647 __lru_cache_add(page
);
650 void lru_cache_add_file(struct page
*page
)
652 if (PageActive(page
))
653 ClearPageActive(page
);
654 __lru_cache_add(page
);
656 EXPORT_SYMBOL(lru_cache_add_file
);
659 * lru_cache_add - add a page to a page list
660 * @page: the page to be added to the LRU.
662 * Queue the page for addition to the LRU via pagevec. The decision on whether
663 * to add the page to the [in]active [file|anon] list is deferred until the
664 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
665 * have the page added to the active list using mark_page_accessed().
667 void lru_cache_add(struct page
*page
)
669 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
670 VM_BUG_ON_PAGE(PageLRU(page
), page
);
671 __lru_cache_add(page
);
675 * add_page_to_unevictable_list - add a page to the unevictable list
676 * @page: the page to be added to the unevictable list
678 * Add page directly to its zone's unevictable list. To avoid races with
679 * tasks that might be making the page evictable, through eg. munlock,
680 * munmap or exit, while it's not on the lru, we want to add the page
681 * while it's locked or otherwise "invisible" to other tasks. This is
682 * difficult to do when using the pagevec cache, so bypass that.
684 void add_page_to_unevictable_list(struct page
*page
)
686 struct zone
*zone
= page_zone(page
);
687 struct lruvec
*lruvec
;
689 spin_lock_irq(&zone
->lru_lock
);
690 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
691 ClearPageActive(page
);
692 SetPageUnevictable(page
);
694 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
695 spin_unlock_irq(&zone
->lru_lock
);
699 * If the page can not be invalidated, it is moved to the
700 * inactive list to speed up its reclaim. It is moved to the
701 * head of the list, rather than the tail, to give the flusher
702 * threads some time to write it out, as this is much more
703 * effective than the single-page writeout from reclaim.
705 * If the page isn't page_mapped and dirty/writeback, the page
706 * could reclaim asap using PG_reclaim.
708 * 1. active, mapped page -> none
709 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
710 * 3. inactive, mapped page -> none
711 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
712 * 5. inactive, clean -> inactive, tail
715 * In 4, why it moves inactive's head, the VM expects the page would
716 * be write it out by flusher threads as this is much more effective
717 * than the single-page writeout from reclaim.
719 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
728 if (PageUnevictable(page
))
731 /* Some processes are using the page */
732 if (page_mapped(page
))
735 active
= PageActive(page
);
736 file
= page_is_file_cache(page
);
737 lru
= page_lru_base_type(page
);
739 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
740 ClearPageActive(page
);
741 ClearPageReferenced(page
);
742 add_page_to_lru_list(page
, lruvec
, lru
);
744 if (PageWriteback(page
) || PageDirty(page
)) {
746 * PG_reclaim could be raced with end_page_writeback
747 * It can make readahead confusing. But race window
748 * is _really_ small and it's non-critical problem.
750 SetPageReclaim(page
);
753 * The page's writeback ends up during pagevec
754 * We moves tha page into tail of inactive.
756 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
757 __count_vm_event(PGROTATED
);
761 __count_vm_event(PGDEACTIVATE
);
762 update_page_reclaim_stat(lruvec
, file
, 0);
766 * Drain pages out of the cpu's pagevecs.
767 * Either "cpu" is the current CPU, and preemption has already been
768 * disabled; or "cpu" is being hot-unplugged, and is already dead.
770 void lru_add_drain_cpu(int cpu
)
772 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
774 if (pagevec_count(pvec
))
775 __pagevec_lru_add(pvec
);
777 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
778 if (pagevec_count(pvec
)) {
781 /* No harm done if a racing interrupt already did this */
782 local_irq_save(flags
);
783 pagevec_move_tail(pvec
);
784 local_irq_restore(flags
);
787 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
788 if (pagevec_count(pvec
))
789 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
791 activate_page_drain(cpu
);
795 * deactivate_page - forcefully deactivate a page
796 * @page: page to deactivate
798 * This function hints the VM that @page is a good reclaim candidate,
799 * for example if its invalidation fails due to the page being dirty
800 * or under writeback.
802 void deactivate_page(struct page
*page
)
805 * In a workload with many unevictable page such as mprotect, unevictable
806 * page deactivation for accelerating reclaim is pointless.
808 if (PageUnevictable(page
))
811 if (likely(get_page_unless_zero(page
))) {
812 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
814 if (!pagevec_add(pvec
, page
))
815 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
816 put_cpu_var(lru_deactivate_pvecs
);
820 void lru_add_drain(void)
822 lru_add_drain_cpu(get_cpu());
826 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
831 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
833 void lru_add_drain_all(void)
835 static DEFINE_MUTEX(lock
);
836 static struct cpumask has_work
;
841 cpumask_clear(&has_work
);
843 for_each_online_cpu(cpu
) {
844 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
846 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
847 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
848 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
849 need_activate_page_drain(cpu
)) {
850 INIT_WORK(work
, lru_add_drain_per_cpu
);
851 schedule_work_on(cpu
, work
);
852 cpumask_set_cpu(cpu
, &has_work
);
856 for_each_cpu(cpu
, &has_work
)
857 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
864 * Batched page_cache_release(). Decrement the reference count on all the
865 * passed pages. If it fell to zero then remove the page from the LRU and
868 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
869 * for the remainder of the operation.
871 * The locking in this function is against shrink_inactive_list(): we recheck
872 * the page count inside the lock to see whether shrink_inactive_list()
873 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
876 void release_pages(struct page
**pages
, int nr
, bool cold
)
879 LIST_HEAD(pages_to_free
);
880 struct zone
*zone
= NULL
;
881 struct lruvec
*lruvec
;
882 unsigned long uninitialized_var(flags
);
884 for (i
= 0; i
< nr
; i
++) {
885 struct page
*page
= pages
[i
];
887 if (unlikely(PageCompound(page
))) {
889 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
892 put_compound_page(page
);
896 if (!put_page_testzero(page
))
900 struct zone
*pagezone
= page_zone(page
);
902 if (pagezone
!= zone
) {
904 spin_unlock_irqrestore(&zone
->lru_lock
,
907 spin_lock_irqsave(&zone
->lru_lock
, flags
);
910 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
911 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
912 __ClearPageLRU(page
);
913 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
916 /* Clear Active bit in case of parallel mark_page_accessed */
917 __ClearPageActive(page
);
919 list_add(&page
->lru
, &pages_to_free
);
922 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
924 free_hot_cold_page_list(&pages_to_free
, cold
);
926 EXPORT_SYMBOL(release_pages
);
929 * The pages which we're about to release may be in the deferred lru-addition
930 * queues. That would prevent them from really being freed right now. That's
931 * OK from a correctness point of view but is inefficient - those pages may be
932 * cache-warm and we want to give them back to the page allocator ASAP.
934 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
935 * and __pagevec_lru_add_active() call release_pages() directly to avoid
938 void __pagevec_release(struct pagevec
*pvec
)
941 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
942 pagevec_reinit(pvec
);
944 EXPORT_SYMBOL(__pagevec_release
);
946 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
947 /* used by __split_huge_page_refcount() */
948 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
949 struct lruvec
*lruvec
, struct list_head
*list
)
953 VM_BUG_ON_PAGE(!PageHead(page
), page
);
954 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
955 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
956 VM_BUG_ON(NR_CPUS
!= 1 &&
957 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
960 SetPageLRU(page_tail
);
962 if (likely(PageLRU(page
)))
963 list_add_tail(&page_tail
->lru
, &page
->lru
);
965 /* page reclaim is reclaiming a huge page */
967 list_add_tail(&page_tail
->lru
, list
);
969 struct list_head
*list_head
;
971 * Head page has not yet been counted, as an hpage,
972 * so we must account for each subpage individually.
974 * Use the standard add function to put page_tail on the list,
975 * but then correct its position so they all end up in order.
977 add_page_to_lru_list(page_tail
, lruvec
, page_lru(page_tail
));
978 list_head
= page_tail
->lru
.prev
;
979 list_move_tail(&page_tail
->lru
, list_head
);
982 if (!PageUnevictable(page
))
983 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
987 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
990 int file
= page_is_file_cache(page
);
991 int active
= PageActive(page
);
992 enum lru_list lru
= page_lru(page
);
994 VM_BUG_ON_PAGE(PageLRU(page
), page
);
997 add_page_to_lru_list(page
, lruvec
, lru
);
998 update_page_reclaim_stat(lruvec
, file
, active
);
999 trace_mm_lru_insertion(page
, page_to_pfn(page
), lru
, trace_pagemap_flags(page
));
1003 * Add the passed pages to the LRU, then drop the caller's refcount
1004 * on them. Reinitialises the caller's pagevec.
1006 void __pagevec_lru_add(struct pagevec
*pvec
)
1008 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
1010 EXPORT_SYMBOL(__pagevec_lru_add
);
1013 * pagevec_lookup_entries - gang pagecache lookup
1014 * @pvec: Where the resulting entries are placed
1015 * @mapping: The address_space to search
1016 * @start: The starting entry index
1017 * @nr_entries: The maximum number of entries
1018 * @indices: The cache indices corresponding to the entries in @pvec
1020 * pagevec_lookup_entries() will search for and return a group of up
1021 * to @nr_entries pages and shadow entries in the mapping. All
1022 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1023 * reference against actual pages in @pvec.
1025 * The search returns a group of mapping-contiguous entries with
1026 * ascending indexes. There may be holes in the indices due to
1027 * not-present entries.
1029 * pagevec_lookup_entries() returns the number of entries which were
1032 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
1033 struct address_space
*mapping
,
1034 pgoff_t start
, unsigned nr_pages
,
1037 pvec
->nr
= find_get_entries(mapping
, start
, nr_pages
,
1038 pvec
->pages
, indices
);
1039 return pagevec_count(pvec
);
1043 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1044 * @pvec: The pagevec to prune
1046 * pagevec_lookup_entries() fills both pages and exceptional radix
1047 * tree entries into the pagevec. This function prunes all
1048 * exceptionals from @pvec without leaving holes, so that it can be
1049 * passed on to page-only pagevec operations.
1051 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
1055 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
1056 struct page
*page
= pvec
->pages
[i
];
1057 if (!radix_tree_exceptional_entry(page
))
1058 pvec
->pages
[j
++] = page
;
1064 * pagevec_lookup - gang pagecache lookup
1065 * @pvec: Where the resulting pages are placed
1066 * @mapping: The address_space to search
1067 * @start: The starting page index
1068 * @nr_pages: The maximum number of pages
1070 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1071 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1072 * reference against the pages in @pvec.
1074 * The search returns a group of mapping-contiguous pages with ascending
1075 * indexes. There may be holes in the indices due to not-present pages.
1077 * pagevec_lookup() returns the number of pages which were found.
1079 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
1080 pgoff_t start
, unsigned nr_pages
)
1082 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
1083 return pagevec_count(pvec
);
1085 EXPORT_SYMBOL(pagevec_lookup
);
1087 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
1088 pgoff_t
*index
, int tag
, unsigned nr_pages
)
1090 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
1091 nr_pages
, pvec
->pages
);
1092 return pagevec_count(pvec
);
1094 EXPORT_SYMBOL(pagevec_lookup_tag
);
1097 * Perform any setup for the swap system
1099 void __init
swap_setup(void)
1101 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
1105 if (bdi_init(swapper_spaces
[0].backing_dev_info
))
1106 panic("Failed to init swap bdi");
1107 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
1108 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
1109 INIT_LIST_HEAD(&swapper_spaces
[i
].i_mmap_nonlinear
);
1113 /* Use a smaller cluster for small-memory machines */
1119 * Right now other parts of the system means that we
1120 * _really_ don't want to cluster much more