2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
23 * Inode locking rules:
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_lru_lock
53 static unsigned int i_hash_mask __read_mostly
;
54 static unsigned int i_hash_shift __read_mostly
;
55 static struct hlist_head
*inode_hashtable __read_mostly
;
56 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
58 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned int, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static int get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline int get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 int get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
124 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
126 static const struct inode_operations empty_iops
;
127 static const struct file_operations empty_fops
;
128 struct address_space
*const mapping
= &inode
->i_data
;
131 inode
->i_blkbits
= sb
->s_blocksize_bits
;
133 atomic_set(&inode
->i_count
, 1);
134 inode
->i_op
= &empty_iops
;
135 inode
->i_fop
= &empty_fops
;
136 inode
->__i_nlink
= 1;
137 inode
->i_opflags
= 0;
138 i_uid_write(inode
, 0);
139 i_gid_write(inode
, 0);
140 atomic_set(&inode
->i_writecount
, 0);
144 inode
->i_generation
= 0;
146 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
148 inode
->i_pipe
= NULL
;
149 inode
->i_bdev
= NULL
;
150 inode
->i_cdev
= NULL
;
152 inode
->dirtied_when
= 0;
154 if (security_inode_alloc(inode
))
156 spin_lock_init(&inode
->i_lock
);
157 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
159 mutex_init(&inode
->i_mutex
);
160 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
162 atomic_set(&inode
->i_dio_count
, 0);
164 mapping
->a_ops
= &empty_aops
;
165 mapping
->host
= inode
;
167 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
168 mapping
->private_data
= NULL
;
169 mapping
->backing_dev_info
= &default_backing_dev_info
;
170 mapping
->writeback_index
= 0;
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
178 struct backing_dev_info
*bdi
;
180 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
181 mapping
->backing_dev_info
= bdi
;
183 inode
->i_private
= NULL
;
184 inode
->i_mapping
= mapping
;
185 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
190 #ifdef CONFIG_FSNOTIFY
191 inode
->i_fsnotify_mask
= 0;
194 this_cpu_inc(nr_inodes
);
200 EXPORT_SYMBOL(inode_init_always
);
202 static struct inode
*alloc_inode(struct super_block
*sb
)
206 if (sb
->s_op
->alloc_inode
)
207 inode
= sb
->s_op
->alloc_inode(sb
);
209 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
214 if (unlikely(inode_init_always(sb
, inode
))) {
215 if (inode
->i_sb
->s_op
->destroy_inode
)
216 inode
->i_sb
->s_op
->destroy_inode(inode
);
218 kmem_cache_free(inode_cachep
, inode
);
225 void free_inode_nonrcu(struct inode
*inode
)
227 kmem_cache_free(inode_cachep
, inode
);
229 EXPORT_SYMBOL(free_inode_nonrcu
);
231 void __destroy_inode(struct inode
*inode
)
233 BUG_ON(inode_has_buffers(inode
));
234 security_inode_free(inode
);
235 fsnotify_inode_delete(inode
);
236 if (!inode
->i_nlink
) {
237 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
238 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
243 posix_acl_release(inode
->i_acl
);
244 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
245 posix_acl_release(inode
->i_default_acl
);
247 this_cpu_dec(nr_inodes
);
249 EXPORT_SYMBOL(__destroy_inode
);
251 static void i_callback(struct rcu_head
*head
)
253 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
254 kmem_cache_free(inode_cachep
, inode
);
257 static void destroy_inode(struct inode
*inode
)
259 BUG_ON(!list_empty(&inode
->i_lru
));
260 __destroy_inode(inode
);
261 if (inode
->i_sb
->s_op
->destroy_inode
)
262 inode
->i_sb
->s_op
->destroy_inode(inode
);
264 call_rcu(&inode
->i_rcu
, i_callback
);
268 * drop_nlink - directly drop an inode's link count
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
278 void drop_nlink(struct inode
*inode
)
280 WARN_ON(inode
->i_nlink
== 0);
283 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
285 EXPORT_SYMBOL(drop_nlink
);
288 * clear_nlink - directly zero an inode's link count
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode
*inode
)
297 if (inode
->i_nlink
) {
298 inode
->__i_nlink
= 0;
299 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
302 EXPORT_SYMBOL(clear_nlink
);
305 * set_nlink - directly set an inode's link count
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode
*inode
, unsigned int nlink
)
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode
->i_nlink
== 0)
319 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
321 inode
->__i_nlink
= nlink
;
324 EXPORT_SYMBOL(set_nlink
);
327 * inc_nlink - directly increment an inode's link count
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode
*inode
)
336 if (WARN_ON(inode
->i_nlink
== 0))
337 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
341 EXPORT_SYMBOL(inc_nlink
);
343 void address_space_init_once(struct address_space
*mapping
)
345 memset(mapping
, 0, sizeof(*mapping
));
346 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
347 spin_lock_init(&mapping
->tree_lock
);
348 mutex_init(&mapping
->i_mmap_mutex
);
349 INIT_LIST_HEAD(&mapping
->private_list
);
350 spin_lock_init(&mapping
->private_lock
);
351 mapping
->i_mmap
= RB_ROOT
;
352 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
354 EXPORT_SYMBOL(address_space_init_once
);
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
361 void inode_init_once(struct inode
*inode
)
363 memset(inode
, 0, sizeof(*inode
));
364 INIT_HLIST_NODE(&inode
->i_hash
);
365 INIT_LIST_HEAD(&inode
->i_devices
);
366 INIT_LIST_HEAD(&inode
->i_wb_list
);
367 INIT_LIST_HEAD(&inode
->i_lru
);
368 address_space_init_once(&inode
->i_data
);
369 i_size_ordered_init(inode
);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
374 EXPORT_SYMBOL(inode_init_once
);
376 static void init_once(void *foo
)
378 struct inode
*inode
= (struct inode
*) foo
;
380 inode_init_once(inode
);
384 * inode->i_lock must be held
386 void __iget(struct inode
*inode
)
388 atomic_inc(&inode
->i_count
);
392 * get additional reference to inode; caller must already hold one.
394 void ihold(struct inode
*inode
)
396 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
398 EXPORT_SYMBOL(ihold
);
400 static void inode_lru_list_add(struct inode
*inode
)
402 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
403 if (list_empty(&inode
->i_lru
)) {
404 list_add(&inode
->i_lru
, &inode
->i_sb
->s_inode_lru
);
405 inode
->i_sb
->s_nr_inodes_unused
++;
406 this_cpu_inc(nr_unused
);
408 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
412 * Add inode to LRU if needed (inode is unused and clean).
414 * Needs inode->i_lock held.
416 void inode_add_lru(struct inode
*inode
)
418 if (!(inode
->i_state
& (I_DIRTY
| I_SYNC
| I_FREEING
| I_WILL_FREE
)) &&
419 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
420 inode_lru_list_add(inode
);
424 static void inode_lru_list_del(struct inode
*inode
)
426 spin_lock(&inode
->i_sb
->s_inode_lru_lock
);
427 if (!list_empty(&inode
->i_lru
)) {
428 list_del_init(&inode
->i_lru
);
429 inode
->i_sb
->s_nr_inodes_unused
--;
430 this_cpu_dec(nr_unused
);
432 spin_unlock(&inode
->i_sb
->s_inode_lru_lock
);
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
439 void inode_sb_list_add(struct inode
*inode
)
441 spin_lock(&inode_sb_list_lock
);
442 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
443 spin_unlock(&inode_sb_list_lock
);
445 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
447 static inline void inode_sb_list_del(struct inode
*inode
)
449 if (!list_empty(&inode
->i_sb_list
)) {
450 spin_lock(&inode_sb_list_lock
);
451 list_del_init(&inode
->i_sb_list
);
452 spin_unlock(&inode_sb_list_lock
);
456 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
460 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
462 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
463 return tmp
& i_hash_mask
;
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
472 * Add an inode to the inode hash for this superblock.
474 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
476 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
478 spin_lock(&inode_hash_lock
);
479 spin_lock(&inode
->i_lock
);
480 hlist_add_head(&inode
->i_hash
, b
);
481 spin_unlock(&inode
->i_lock
);
482 spin_unlock(&inode_hash_lock
);
484 EXPORT_SYMBOL(__insert_inode_hash
);
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
490 * Remove an inode from the superblock.
492 void __remove_inode_hash(struct inode
*inode
)
494 spin_lock(&inode_hash_lock
);
495 spin_lock(&inode
->i_lock
);
496 hlist_del_init(&inode
->i_hash
);
497 spin_unlock(&inode
->i_lock
);
498 spin_unlock(&inode_hash_lock
);
500 EXPORT_SYMBOL(__remove_inode_hash
);
502 void clear_inode(struct inode
*inode
)
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
510 spin_lock_irq(&inode
->i_data
.tree_lock
);
511 BUG_ON(inode
->i_data
.nrpages
);
512 spin_unlock_irq(&inode
->i_data
.tree_lock
);
513 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
514 BUG_ON(!(inode
->i_state
& I_FREEING
));
515 BUG_ON(inode
->i_state
& I_CLEAR
);
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode
->i_state
= I_FREEING
| I_CLEAR
;
519 EXPORT_SYMBOL(clear_inode
);
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
534 static void evict(struct inode
*inode
)
536 const struct super_operations
*op
= inode
->i_sb
->s_op
;
538 BUG_ON(!(inode
->i_state
& I_FREEING
));
539 BUG_ON(!list_empty(&inode
->i_lru
));
541 if (!list_empty(&inode
->i_wb_list
))
542 inode_wb_list_del(inode
);
544 inode_sb_list_del(inode
);
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
552 inode_wait_for_writeback(inode
);
554 if (op
->evict_inode
) {
555 op
->evict_inode(inode
);
557 if (inode
->i_data
.nrpages
)
558 truncate_inode_pages(&inode
->i_data
, 0);
561 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
563 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
566 remove_inode_hash(inode
);
568 spin_lock(&inode
->i_lock
);
569 wake_up_bit(&inode
->i_state
, __I_NEW
);
570 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
571 spin_unlock(&inode
->i_lock
);
573 destroy_inode(inode
);
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
583 static void dispose_list(struct list_head
*head
)
585 while (!list_empty(head
)) {
588 inode
= list_first_entry(head
, struct inode
, i_lru
);
589 list_del_init(&inode
->i_lru
);
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
604 void evict_inodes(struct super_block
*sb
)
606 struct inode
*inode
, *next
;
609 spin_lock(&inode_sb_list_lock
);
610 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
611 if (atomic_read(&inode
->i_count
))
614 spin_lock(&inode
->i_lock
);
615 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
616 spin_unlock(&inode
->i_lock
);
620 inode
->i_state
|= I_FREEING
;
621 inode_lru_list_del(inode
);
622 spin_unlock(&inode
->i_lock
);
623 list_add(&inode
->i_lru
, &dispose
);
625 spin_unlock(&inode_sb_list_lock
);
627 dispose_list(&dispose
);
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
640 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
643 struct inode
*inode
, *next
;
646 spin_lock(&inode_sb_list_lock
);
647 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
648 spin_lock(&inode
->i_lock
);
649 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
650 spin_unlock(&inode
->i_lock
);
653 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
654 spin_unlock(&inode
->i_lock
);
658 if (atomic_read(&inode
->i_count
)) {
659 spin_unlock(&inode
->i_lock
);
664 inode
->i_state
|= I_FREEING
;
665 inode_lru_list_del(inode
);
666 spin_unlock(&inode
->i_lock
);
667 list_add(&inode
->i_lru
, &dispose
);
669 spin_unlock(&inode_sb_list_lock
);
671 dispose_list(&dispose
);
676 static int can_unuse(struct inode
*inode
)
678 if (inode
->i_state
& ~I_REFERENCED
)
680 if (inode_has_buffers(inode
))
682 if (atomic_read(&inode
->i_count
))
684 if (inode
->i_data
.nrpages
)
690 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691 * This is called from the superblock shrinker function with a number of inodes
692 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693 * then are freed outside inode_lock by dispose_list().
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
707 void prune_icache_sb(struct super_block
*sb
, int nr_to_scan
)
711 unsigned long reap
= 0;
713 spin_lock(&sb
->s_inode_lru_lock
);
714 for (nr_scanned
= nr_to_scan
; nr_scanned
>= 0; nr_scanned
--) {
717 if (list_empty(&sb
->s_inode_lru
))
720 inode
= list_entry(sb
->s_inode_lru
.prev
, struct inode
, i_lru
);
723 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 * so use a trylock. If we fail to get the lock, just move the
725 * inode to the back of the list so we don't spin on it.
727 if (!spin_trylock(&inode
->i_lock
)) {
728 list_move_tail(&inode
->i_lru
, &sb
->s_inode_lru
);
733 * Referenced or dirty inodes are still in use. Give them
734 * another pass through the LRU as we canot reclaim them now.
736 if (atomic_read(&inode
->i_count
) ||
737 (inode
->i_state
& ~I_REFERENCED
)) {
738 list_del_init(&inode
->i_lru
);
739 spin_unlock(&inode
->i_lock
);
740 sb
->s_nr_inodes_unused
--;
741 this_cpu_dec(nr_unused
);
745 /* recently referenced inodes get one more pass */
746 if (inode
->i_state
& I_REFERENCED
) {
747 inode
->i_state
&= ~I_REFERENCED
;
748 list_move(&inode
->i_lru
, &sb
->s_inode_lru
);
749 spin_unlock(&inode
->i_lock
);
752 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
754 spin_unlock(&inode
->i_lock
);
755 spin_unlock(&sb
->s_inode_lru_lock
);
756 if (remove_inode_buffers(inode
))
757 reap
+= invalidate_mapping_pages(&inode
->i_data
,
760 spin_lock(&sb
->s_inode_lru_lock
);
762 if (inode
!= list_entry(sb
->s_inode_lru
.next
,
763 struct inode
, i_lru
))
764 continue; /* wrong inode or list_empty */
765 /* avoid lock inversions with trylock */
766 if (!spin_trylock(&inode
->i_lock
))
768 if (!can_unuse(inode
)) {
769 spin_unlock(&inode
->i_lock
);
773 WARN_ON(inode
->i_state
& I_NEW
);
774 inode
->i_state
|= I_FREEING
;
775 spin_unlock(&inode
->i_lock
);
777 list_move(&inode
->i_lru
, &freeable
);
778 sb
->s_nr_inodes_unused
--;
779 this_cpu_dec(nr_unused
);
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
784 __count_vm_events(PGINODESTEAL
, reap
);
785 spin_unlock(&sb
->s_inode_lru_lock
);
786 if (current
->reclaim_state
)
787 current
->reclaim_state
->reclaimed_slab
+= reap
;
789 dispose_list(&freeable
);
792 static void __wait_on_freeing_inode(struct inode
*inode
);
794 * Called with the inode lock held.
796 static struct inode
*find_inode(struct super_block
*sb
,
797 struct hlist_head
*head
,
798 int (*test
)(struct inode
*, void *),
801 struct inode
*inode
= NULL
;
804 hlist_for_each_entry(inode
, head
, i_hash
) {
805 spin_lock(&inode
->i_lock
);
806 if (inode
->i_sb
!= sb
) {
807 spin_unlock(&inode
->i_lock
);
810 if (!test(inode
, data
)) {
811 spin_unlock(&inode
->i_lock
);
814 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
815 __wait_on_freeing_inode(inode
);
819 spin_unlock(&inode
->i_lock
);
826 * find_inode_fast is the fast path version of find_inode, see the comment at
827 * iget_locked for details.
829 static struct inode
*find_inode_fast(struct super_block
*sb
,
830 struct hlist_head
*head
, unsigned long ino
)
832 struct inode
*inode
= NULL
;
835 hlist_for_each_entry(inode
, head
, i_hash
) {
836 spin_lock(&inode
->i_lock
);
837 if (inode
->i_ino
!= ino
) {
838 spin_unlock(&inode
->i_lock
);
841 if (inode
->i_sb
!= sb
) {
842 spin_unlock(&inode
->i_lock
);
845 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
846 __wait_on_freeing_inode(inode
);
850 spin_unlock(&inode
->i_lock
);
857 * Each cpu owns a range of LAST_INO_BATCH numbers.
858 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
859 * to renew the exhausted range.
861 * This does not significantly increase overflow rate because every CPU can
862 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
863 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
864 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
865 * overflow rate by 2x, which does not seem too significant.
867 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
868 * error if st_ino won't fit in target struct field. Use 32bit counter
869 * here to attempt to avoid that.
871 #define LAST_INO_BATCH 1024
872 static DEFINE_PER_CPU(unsigned int, last_ino
);
874 unsigned int get_next_ino(void)
876 unsigned int *p
= &get_cpu_var(last_ino
);
877 unsigned int res
= *p
;
880 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
881 static atomic_t shared_last_ino
;
882 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
884 res
= next
- LAST_INO_BATCH
;
889 put_cpu_var(last_ino
);
892 EXPORT_SYMBOL(get_next_ino
);
895 * new_inode_pseudo - obtain an inode
898 * Allocates a new inode for given superblock.
899 * Inode wont be chained in superblock s_inodes list
901 * - fs can't be unmount
902 * - quotas, fsnotify, writeback can't work
904 struct inode
*new_inode_pseudo(struct super_block
*sb
)
906 struct inode
*inode
= alloc_inode(sb
);
909 spin_lock(&inode
->i_lock
);
911 spin_unlock(&inode
->i_lock
);
912 INIT_LIST_HEAD(&inode
->i_sb_list
);
918 * new_inode - obtain an inode
921 * Allocates a new inode for given superblock. The default gfp_mask
922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
923 * If HIGHMEM pages are unsuitable or it is known that pages allocated
924 * for the page cache are not reclaimable or migratable,
925 * mapping_set_gfp_mask() must be called with suitable flags on the
926 * newly created inode's mapping
929 struct inode
*new_inode(struct super_block
*sb
)
933 spin_lock_prefetch(&inode_sb_list_lock
);
935 inode
= new_inode_pseudo(sb
);
937 inode_sb_list_add(inode
);
940 EXPORT_SYMBOL(new_inode
);
942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
943 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
945 if (S_ISDIR(inode
->i_mode
)) {
946 struct file_system_type
*type
= inode
->i_sb
->s_type
;
948 /* Set new key only if filesystem hasn't already changed it */
949 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
951 * ensure nobody is actually holding i_mutex
953 mutex_destroy(&inode
->i_mutex
);
954 mutex_init(&inode
->i_mutex
);
955 lockdep_set_class(&inode
->i_mutex
,
956 &type
->i_mutex_dir_key
);
960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
964 * unlock_new_inode - clear the I_NEW state and wake up any waiters
965 * @inode: new inode to unlock
967 * Called when the inode is fully initialised to clear the new state of the
968 * inode and wake up anyone waiting for the inode to finish initialisation.
970 void unlock_new_inode(struct inode
*inode
)
972 lockdep_annotate_inode_mutex_key(inode
);
973 spin_lock(&inode
->i_lock
);
974 WARN_ON(!(inode
->i_state
& I_NEW
));
975 inode
->i_state
&= ~I_NEW
;
977 wake_up_bit(&inode
->i_state
, __I_NEW
);
978 spin_unlock(&inode
->i_lock
);
980 EXPORT_SYMBOL(unlock_new_inode
);
983 * iget5_locked - obtain an inode from a mounted file system
984 * @sb: super block of file system
985 * @hashval: hash value (usually inode number) to get
986 * @test: callback used for comparisons between inodes
987 * @set: callback used to initialize a new struct inode
988 * @data: opaque data pointer to pass to @test and @set
990 * Search for the inode specified by @hashval and @data in the inode cache,
991 * and if present it is return it with an increased reference count. This is
992 * a generalized version of iget_locked() for file systems where the inode
993 * number is not sufficient for unique identification of an inode.
995 * If the inode is not in cache, allocate a new inode and return it locked,
996 * hashed, and with the I_NEW flag set. The file system gets to fill it in
997 * before unlocking it via unlock_new_inode().
999 * Note both @test and @set are called with the inode_hash_lock held, so can't
1002 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1003 int (*test
)(struct inode
*, void *),
1004 int (*set
)(struct inode
*, void *), void *data
)
1006 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1007 struct inode
*inode
;
1009 spin_lock(&inode_hash_lock
);
1010 inode
= find_inode(sb
, head
, test
, data
);
1011 spin_unlock(&inode_hash_lock
);
1014 wait_on_inode(inode
);
1018 inode
= alloc_inode(sb
);
1022 spin_lock(&inode_hash_lock
);
1023 /* We released the lock, so.. */
1024 old
= find_inode(sb
, head
, test
, data
);
1026 if (set(inode
, data
))
1029 spin_lock(&inode
->i_lock
);
1030 inode
->i_state
= I_NEW
;
1031 hlist_add_head(&inode
->i_hash
, head
);
1032 spin_unlock(&inode
->i_lock
);
1033 inode_sb_list_add(inode
);
1034 spin_unlock(&inode_hash_lock
);
1036 /* Return the locked inode with I_NEW set, the
1037 * caller is responsible for filling in the contents
1043 * Uhhuh, somebody else created the same inode under
1044 * us. Use the old inode instead of the one we just
1047 spin_unlock(&inode_hash_lock
);
1048 destroy_inode(inode
);
1050 wait_on_inode(inode
);
1055 spin_unlock(&inode_hash_lock
);
1056 destroy_inode(inode
);
1059 EXPORT_SYMBOL(iget5_locked
);
1062 * iget_locked - obtain an inode from a mounted file system
1063 * @sb: super block of file system
1064 * @ino: inode number to get
1066 * Search for the inode specified by @ino in the inode cache and if present
1067 * return it with an increased reference count. This is for file systems
1068 * where the inode number is sufficient for unique identification of an inode.
1070 * If the inode is not in cache, allocate a new inode and return it locked,
1071 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1072 * before unlocking it via unlock_new_inode().
1074 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1076 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1077 struct inode
*inode
;
1079 spin_lock(&inode_hash_lock
);
1080 inode
= find_inode_fast(sb
, head
, ino
);
1081 spin_unlock(&inode_hash_lock
);
1083 wait_on_inode(inode
);
1087 inode
= alloc_inode(sb
);
1091 spin_lock(&inode_hash_lock
);
1092 /* We released the lock, so.. */
1093 old
= find_inode_fast(sb
, head
, ino
);
1096 spin_lock(&inode
->i_lock
);
1097 inode
->i_state
= I_NEW
;
1098 hlist_add_head(&inode
->i_hash
, head
);
1099 spin_unlock(&inode
->i_lock
);
1100 inode_sb_list_add(inode
);
1101 spin_unlock(&inode_hash_lock
);
1103 /* Return the locked inode with I_NEW set, the
1104 * caller is responsible for filling in the contents
1110 * Uhhuh, somebody else created the same inode under
1111 * us. Use the old inode instead of the one we just
1114 spin_unlock(&inode_hash_lock
);
1115 destroy_inode(inode
);
1117 wait_on_inode(inode
);
1121 EXPORT_SYMBOL(iget_locked
);
1124 * search the inode cache for a matching inode number.
1125 * If we find one, then the inode number we are trying to
1126 * allocate is not unique and so we should not use it.
1128 * Returns 1 if the inode number is unique, 0 if it is not.
1130 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1132 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1133 struct inode
*inode
;
1135 spin_lock(&inode_hash_lock
);
1136 hlist_for_each_entry(inode
, b
, i_hash
) {
1137 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1138 spin_unlock(&inode_hash_lock
);
1142 spin_unlock(&inode_hash_lock
);
1148 * iunique - get a unique inode number
1150 * @max_reserved: highest reserved inode number
1152 * Obtain an inode number that is unique on the system for a given
1153 * superblock. This is used by file systems that have no natural
1154 * permanent inode numbering system. An inode number is returned that
1155 * is higher than the reserved limit but unique.
1158 * With a large number of inodes live on the file system this function
1159 * currently becomes quite slow.
1161 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1164 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1165 * error if st_ino won't fit in target struct field. Use 32bit counter
1166 * here to attempt to avoid that.
1168 static DEFINE_SPINLOCK(iunique_lock
);
1169 static unsigned int counter
;
1172 spin_lock(&iunique_lock
);
1174 if (counter
<= max_reserved
)
1175 counter
= max_reserved
+ 1;
1177 } while (!test_inode_iunique(sb
, res
));
1178 spin_unlock(&iunique_lock
);
1182 EXPORT_SYMBOL(iunique
);
1184 struct inode
*igrab(struct inode
*inode
)
1186 spin_lock(&inode
->i_lock
);
1187 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1189 spin_unlock(&inode
->i_lock
);
1191 spin_unlock(&inode
->i_lock
);
1193 * Handle the case where s_op->clear_inode is not been
1194 * called yet, and somebody is calling igrab
1195 * while the inode is getting freed.
1201 EXPORT_SYMBOL(igrab
);
1204 * ilookup5_nowait - search for an inode in the inode cache
1205 * @sb: super block of file system to search
1206 * @hashval: hash value (usually inode number) to search for
1207 * @test: callback used for comparisons between inodes
1208 * @data: opaque data pointer to pass to @test
1210 * Search for the inode specified by @hashval and @data in the inode cache.
1211 * If the inode is in the cache, the inode is returned with an incremented
1214 * Note: I_NEW is not waited upon so you have to be very careful what you do
1215 * with the returned inode. You probably should be using ilookup5() instead.
1217 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1220 int (*test
)(struct inode
*, void *), void *data
)
1222 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1223 struct inode
*inode
;
1225 spin_lock(&inode_hash_lock
);
1226 inode
= find_inode(sb
, head
, test
, data
);
1227 spin_unlock(&inode_hash_lock
);
1231 EXPORT_SYMBOL(ilookup5_nowait
);
1234 * ilookup5 - search for an inode in the inode cache
1235 * @sb: super block of file system to search
1236 * @hashval: hash value (usually inode number) to search for
1237 * @test: callback used for comparisons between inodes
1238 * @data: opaque data pointer to pass to @test
1240 * Search for the inode specified by @hashval and @data in the inode cache,
1241 * and if the inode is in the cache, return the inode with an incremented
1242 * reference count. Waits on I_NEW before returning the inode.
1243 * returned with an incremented reference count.
1245 * This is a generalized version of ilookup() for file systems where the
1246 * inode number is not sufficient for unique identification of an inode.
1248 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1251 int (*test
)(struct inode
*, void *), void *data
)
1253 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1256 wait_on_inode(inode
);
1259 EXPORT_SYMBOL(ilookup5
);
1262 * ilookup - search for an inode in the inode cache
1263 * @sb: super block of file system to search
1264 * @ino: inode number to search for
1266 * Search for the inode @ino in the inode cache, and if the inode is in the
1267 * cache, the inode is returned with an incremented reference count.
1269 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1271 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1272 struct inode
*inode
;
1274 spin_lock(&inode_hash_lock
);
1275 inode
= find_inode_fast(sb
, head
, ino
);
1276 spin_unlock(&inode_hash_lock
);
1279 wait_on_inode(inode
);
1282 EXPORT_SYMBOL(ilookup
);
1284 int insert_inode_locked(struct inode
*inode
)
1286 struct super_block
*sb
= inode
->i_sb
;
1287 ino_t ino
= inode
->i_ino
;
1288 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1291 struct inode
*old
= NULL
;
1292 spin_lock(&inode_hash_lock
);
1293 hlist_for_each_entry(old
, head
, i_hash
) {
1294 if (old
->i_ino
!= ino
)
1296 if (old
->i_sb
!= sb
)
1298 spin_lock(&old
->i_lock
);
1299 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1300 spin_unlock(&old
->i_lock
);
1306 spin_lock(&inode
->i_lock
);
1307 inode
->i_state
|= I_NEW
;
1308 hlist_add_head(&inode
->i_hash
, head
);
1309 spin_unlock(&inode
->i_lock
);
1310 spin_unlock(&inode_hash_lock
);
1314 spin_unlock(&old
->i_lock
);
1315 spin_unlock(&inode_hash_lock
);
1317 if (unlikely(!inode_unhashed(old
))) {
1324 EXPORT_SYMBOL(insert_inode_locked
);
1326 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1327 int (*test
)(struct inode
*, void *), void *data
)
1329 struct super_block
*sb
= inode
->i_sb
;
1330 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1333 struct inode
*old
= NULL
;
1335 spin_lock(&inode_hash_lock
);
1336 hlist_for_each_entry(old
, head
, i_hash
) {
1337 if (old
->i_sb
!= sb
)
1339 if (!test(old
, data
))
1341 spin_lock(&old
->i_lock
);
1342 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1343 spin_unlock(&old
->i_lock
);
1349 spin_lock(&inode
->i_lock
);
1350 inode
->i_state
|= I_NEW
;
1351 hlist_add_head(&inode
->i_hash
, head
);
1352 spin_unlock(&inode
->i_lock
);
1353 spin_unlock(&inode_hash_lock
);
1357 spin_unlock(&old
->i_lock
);
1358 spin_unlock(&inode_hash_lock
);
1360 if (unlikely(!inode_unhashed(old
))) {
1367 EXPORT_SYMBOL(insert_inode_locked4
);
1370 int generic_delete_inode(struct inode
*inode
)
1374 EXPORT_SYMBOL(generic_delete_inode
);
1377 * Called when we're dropping the last reference
1380 * Call the FS "drop_inode()" function, defaulting to
1381 * the legacy UNIX filesystem behaviour. If it tells
1382 * us to evict inode, do so. Otherwise, retain inode
1383 * in cache if fs is alive, sync and evict if fs is
1386 static void iput_final(struct inode
*inode
)
1388 struct super_block
*sb
= inode
->i_sb
;
1389 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1392 WARN_ON(inode
->i_state
& I_NEW
);
1395 drop
= op
->drop_inode(inode
);
1397 drop
= generic_drop_inode(inode
);
1399 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1400 inode
->i_state
|= I_REFERENCED
;
1401 inode_add_lru(inode
);
1402 spin_unlock(&inode
->i_lock
);
1407 inode
->i_state
|= I_WILL_FREE
;
1408 spin_unlock(&inode
->i_lock
);
1409 write_inode_now(inode
, 1);
1410 spin_lock(&inode
->i_lock
);
1411 WARN_ON(inode
->i_state
& I_NEW
);
1412 inode
->i_state
&= ~I_WILL_FREE
;
1415 inode
->i_state
|= I_FREEING
;
1416 if (!list_empty(&inode
->i_lru
))
1417 inode_lru_list_del(inode
);
1418 spin_unlock(&inode
->i_lock
);
1424 * iput - put an inode
1425 * @inode: inode to put
1427 * Puts an inode, dropping its usage count. If the inode use count hits
1428 * zero, the inode is then freed and may also be destroyed.
1430 * Consequently, iput() can sleep.
1432 void iput(struct inode
*inode
)
1435 BUG_ON(inode
->i_state
& I_CLEAR
);
1437 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1441 EXPORT_SYMBOL(iput
);
1444 * bmap - find a block number in a file
1445 * @inode: inode of file
1446 * @block: block to find
1448 * Returns the block number on the device holding the inode that
1449 * is the disk block number for the block of the file requested.
1450 * That is, asked for block 4 of inode 1 the function will return the
1451 * disk block relative to the disk start that holds that block of the
1454 sector_t
bmap(struct inode
*inode
, sector_t block
)
1457 if (inode
->i_mapping
->a_ops
->bmap
)
1458 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1461 EXPORT_SYMBOL(bmap
);
1464 * With relative atime, only update atime if the previous atime is
1465 * earlier than either the ctime or mtime or if at least a day has
1466 * passed since the last atime update.
1468 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1469 struct timespec now
)
1472 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1475 * Is mtime younger than atime? If yes, update atime:
1477 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1480 * Is ctime younger than atime? If yes, update atime:
1482 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1486 * Is the previous atime value older than a day? If yes,
1489 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1492 * Good, we can skip the atime update:
1498 * This does the actual work of updating an inodes time or version. Must have
1499 * had called mnt_want_write() before calling this.
1501 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1503 if (inode
->i_op
->update_time
)
1504 return inode
->i_op
->update_time(inode
, time
, flags
);
1506 if (flags
& S_ATIME
)
1507 inode
->i_atime
= *time
;
1508 if (flags
& S_VERSION
)
1509 inode_inc_iversion(inode
);
1510 if (flags
& S_CTIME
)
1511 inode
->i_ctime
= *time
;
1512 if (flags
& S_MTIME
)
1513 inode
->i_mtime
= *time
;
1514 mark_inode_dirty_sync(inode
);
1519 * touch_atime - update the access time
1520 * @path: the &struct path to update
1522 * Update the accessed time on an inode and mark it for writeback.
1523 * This function automatically handles read only file systems and media,
1524 * as well as the "noatime" flag and inode specific "noatime" markers.
1526 void touch_atime(struct path
*path
)
1528 struct vfsmount
*mnt
= path
->mnt
;
1529 struct inode
*inode
= path
->dentry
->d_inode
;
1530 struct timespec now
;
1532 if (inode
->i_flags
& S_NOATIME
)
1534 if (IS_NOATIME(inode
))
1536 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1539 if (mnt
->mnt_flags
& MNT_NOATIME
)
1541 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1544 now
= current_fs_time(inode
->i_sb
);
1546 if (!relatime_need_update(mnt
, inode
, now
))
1549 if (timespec_equal(&inode
->i_atime
, &now
))
1552 if (!sb_start_write_trylock(inode
->i_sb
))
1555 if (__mnt_want_write(mnt
))
1558 * File systems can error out when updating inodes if they need to
1559 * allocate new space to modify an inode (such is the case for
1560 * Btrfs), but since we touch atime while walking down the path we
1561 * really don't care if we failed to update the atime of the file,
1562 * so just ignore the return value.
1563 * We may also fail on filesystems that have the ability to make parts
1564 * of the fs read only, e.g. subvolumes in Btrfs.
1566 update_time(inode
, &now
, S_ATIME
);
1567 __mnt_drop_write(mnt
);
1569 sb_end_write(inode
->i_sb
);
1571 EXPORT_SYMBOL(touch_atime
);
1574 * The logic we want is
1576 * if suid or (sgid and xgrp)
1579 int should_remove_suid(struct dentry
*dentry
)
1581 umode_t mode
= dentry
->d_inode
->i_mode
;
1584 /* suid always must be killed */
1585 if (unlikely(mode
& S_ISUID
))
1586 kill
= ATTR_KILL_SUID
;
1589 * sgid without any exec bits is just a mandatory locking mark; leave
1590 * it alone. If some exec bits are set, it's a real sgid; kill it.
1592 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1593 kill
|= ATTR_KILL_SGID
;
1595 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1600 EXPORT_SYMBOL(should_remove_suid
);
1602 static int __remove_suid(struct dentry
*dentry
, int kill
)
1604 struct iattr newattrs
;
1606 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1607 return notify_change(dentry
, &newattrs
);
1610 int file_remove_suid(struct file
*file
)
1612 struct dentry
*dentry
= file
->f_path
.dentry
;
1613 struct inode
*inode
= dentry
->d_inode
;
1618 /* Fast path for nothing security related */
1619 if (IS_NOSEC(inode
))
1622 killsuid
= should_remove_suid(dentry
);
1623 killpriv
= security_inode_need_killpriv(dentry
);
1628 error
= security_inode_killpriv(dentry
);
1629 if (!error
&& killsuid
)
1630 error
= __remove_suid(dentry
, killsuid
);
1631 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
1632 inode
->i_flags
|= S_NOSEC
;
1636 EXPORT_SYMBOL(file_remove_suid
);
1639 * file_update_time - update mtime and ctime time
1640 * @file: file accessed
1642 * Update the mtime and ctime members of an inode and mark the inode
1643 * for writeback. Note that this function is meant exclusively for
1644 * usage in the file write path of filesystems, and filesystems may
1645 * choose to explicitly ignore update via this function with the
1646 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1647 * timestamps are handled by the server. This can return an error for
1648 * file systems who need to allocate space in order to update an inode.
1651 int file_update_time(struct file
*file
)
1653 struct inode
*inode
= file_inode(file
);
1654 struct timespec now
;
1658 /* First try to exhaust all avenues to not sync */
1659 if (IS_NOCMTIME(inode
))
1662 now
= current_fs_time(inode
->i_sb
);
1663 if (!timespec_equal(&inode
->i_mtime
, &now
))
1666 if (!timespec_equal(&inode
->i_ctime
, &now
))
1669 if (IS_I_VERSION(inode
))
1670 sync_it
|= S_VERSION
;
1675 /* Finally allowed to write? Takes lock. */
1676 if (__mnt_want_write_file(file
))
1679 ret
= update_time(inode
, &now
, sync_it
);
1680 __mnt_drop_write_file(file
);
1684 EXPORT_SYMBOL(file_update_time
);
1686 int inode_needs_sync(struct inode
*inode
)
1690 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1694 EXPORT_SYMBOL(inode_needs_sync
);
1696 int inode_wait(void *word
)
1701 EXPORT_SYMBOL(inode_wait
);
1704 * If we try to find an inode in the inode hash while it is being
1705 * deleted, we have to wait until the filesystem completes its
1706 * deletion before reporting that it isn't found. This function waits
1707 * until the deletion _might_ have completed. Callers are responsible
1708 * to recheck inode state.
1710 * It doesn't matter if I_NEW is not set initially, a call to
1711 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1714 static void __wait_on_freeing_inode(struct inode
*inode
)
1716 wait_queue_head_t
*wq
;
1717 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1718 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1719 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1720 spin_unlock(&inode
->i_lock
);
1721 spin_unlock(&inode_hash_lock
);
1723 finish_wait(wq
, &wait
.wait
);
1724 spin_lock(&inode_hash_lock
);
1727 static __initdata
unsigned long ihash_entries
;
1728 static int __init
set_ihash_entries(char *str
)
1732 ihash_entries
= simple_strtoul(str
, &str
, 0);
1735 __setup("ihash_entries=", set_ihash_entries
);
1738 * Initialize the waitqueues and inode hash table.
1740 void __init
inode_init_early(void)
1744 /* If hashes are distributed across NUMA nodes, defer
1745 * hash allocation until vmalloc space is available.
1751 alloc_large_system_hash("Inode-cache",
1752 sizeof(struct hlist_head
),
1761 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1762 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1765 void __init
inode_init(void)
1769 /* inode slab cache */
1770 inode_cachep
= kmem_cache_create("inode_cache",
1771 sizeof(struct inode
),
1773 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1777 /* Hash may have been set up in inode_init_early */
1782 alloc_large_system_hash("Inode-cache",
1783 sizeof(struct hlist_head
),
1792 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1793 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1796 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1798 inode
->i_mode
= mode
;
1799 if (S_ISCHR(mode
)) {
1800 inode
->i_fop
= &def_chr_fops
;
1801 inode
->i_rdev
= rdev
;
1802 } else if (S_ISBLK(mode
)) {
1803 inode
->i_fop
= &def_blk_fops
;
1804 inode
->i_rdev
= rdev
;
1805 } else if (S_ISFIFO(mode
))
1806 inode
->i_fop
= &def_fifo_fops
;
1807 else if (S_ISSOCK(mode
))
1808 inode
->i_fop
= &bad_sock_fops
;
1810 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1811 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1814 EXPORT_SYMBOL(init_special_inode
);
1817 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1819 * @dir: Directory inode
1820 * @mode: mode of the new inode
1822 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1825 inode
->i_uid
= current_fsuid();
1826 if (dir
&& dir
->i_mode
& S_ISGID
) {
1827 inode
->i_gid
= dir
->i_gid
;
1831 inode
->i_gid
= current_fsgid();
1832 inode
->i_mode
= mode
;
1834 EXPORT_SYMBOL(inode_init_owner
);
1837 * inode_owner_or_capable - check current task permissions to inode
1838 * @inode: inode being checked
1840 * Return true if current either has CAP_FOWNER to the inode, or
1843 bool inode_owner_or_capable(const struct inode
*inode
)
1845 if (uid_eq(current_fsuid(), inode
->i_uid
))
1847 if (inode_capable(inode
, CAP_FOWNER
))
1851 EXPORT_SYMBOL(inode_owner_or_capable
);
1854 * Direct i/o helper functions
1856 static void __inode_dio_wait(struct inode
*inode
)
1858 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1859 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1862 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1863 if (atomic_read(&inode
->i_dio_count
))
1865 } while (atomic_read(&inode
->i_dio_count
));
1866 finish_wait(wq
, &q
.wait
);
1870 * inode_dio_wait - wait for outstanding DIO requests to finish
1871 * @inode: inode to wait for
1873 * Waits for all pending direct I/O requests to finish so that we can
1874 * proceed with a truncate or equivalent operation.
1876 * Must be called under a lock that serializes taking new references
1877 * to i_dio_count, usually by inode->i_mutex.
1879 void inode_dio_wait(struct inode
*inode
)
1881 if (atomic_read(&inode
->i_dio_count
))
1882 __inode_dio_wait(inode
);
1884 EXPORT_SYMBOL(inode_dio_wait
);
1887 * inode_dio_done - signal finish of a direct I/O requests
1888 * @inode: inode the direct I/O happens on
1890 * This is called once we've finished processing a direct I/O request,
1891 * and is used to wake up callers waiting for direct I/O to be quiesced.
1893 void inode_dio_done(struct inode
*inode
)
1895 if (atomic_dec_and_test(&inode
->i_dio_count
))
1896 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
1898 EXPORT_SYMBOL(inode_dio_done
);