ALSA: hda - Fix a wrong FIXUP for alc289 on Dell machines
[linux/fpc-iii.git] / kernel / cpuset.c
blob511b1dd8ff0923b83304f5c414b0e06a80232a4a
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/time64.h>
55 #include <linux/backing-dev.h>
56 #include <linux/sort.h>
58 #include <asm/uaccess.h>
59 #include <linux/atomic.h>
60 #include <linux/mutex.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
65 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
67 /* See "Frequency meter" comments, below. */
69 struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
72 time64_t time; /* clock (secs) when val computed */
73 spinlock_t lock; /* guards read or write of above */
76 struct cpuset {
77 struct cgroup_subsys_state css;
79 unsigned long flags; /* "unsigned long" so bitops work */
82 * On default hierarchy:
84 * The user-configured masks can only be changed by writing to
85 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 * parent masks.
88 * The effective masks is the real masks that apply to the tasks
89 * in the cpuset. They may be changed if the configured masks are
90 * changed or hotplug happens.
92 * effective_mask == configured_mask & parent's effective_mask,
93 * and if it ends up empty, it will inherit the parent's mask.
96 * On legacy hierachy:
98 * The user-configured masks are always the same with effective masks.
101 /* user-configured CPUs and Memory Nodes allow to tasks */
102 cpumask_var_t cpus_allowed;
103 nodemask_t mems_allowed;
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
110 * This is old Memory Nodes tasks took on.
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
119 nodemask_t old_mems_allowed;
121 struct fmeter fmeter; /* memory_pressure filter */
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
127 int attach_in_progress;
129 /* partition number for rebuild_sched_domains() */
130 int pn;
132 /* for custom sched domain */
133 int relax_domain_level;
136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138 return css ? container_of(css, struct cpuset, css) : NULL;
141 /* Retrieve the cpuset for a task */
142 static inline struct cpuset *task_cs(struct task_struct *task)
144 return css_cs(task_css(task, cpuset_cgrp_id));
147 static inline struct cpuset *parent_cs(struct cpuset *cs)
149 return css_cs(cs->css.parent);
152 #ifdef CONFIG_NUMA
153 static inline bool task_has_mempolicy(struct task_struct *task)
155 return task->mempolicy;
157 #else
158 static inline bool task_has_mempolicy(struct task_struct *task)
160 return false;
162 #endif
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 CS_ONLINE,
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
170 CS_MEM_HARDWALL,
171 CS_MEMORY_MIGRATE,
172 CS_SCHED_LOAD_BALANCE,
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
177 /* convenient tests for these bits */
178 static inline bool is_cpuset_online(struct cpuset *cs)
180 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
183 static inline int is_cpu_exclusive(const struct cpuset *cs)
185 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
188 static inline int is_mem_exclusive(const struct cpuset *cs)
190 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
193 static inline int is_mem_hardwall(const struct cpuset *cs)
195 return test_bit(CS_MEM_HARDWALL, &cs->flags);
198 static inline int is_sched_load_balance(const struct cpuset *cs)
200 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
203 static inline int is_memory_migrate(const struct cpuset *cs)
205 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
208 static inline int is_spread_page(const struct cpuset *cs)
210 return test_bit(CS_SPREAD_PAGE, &cs->flags);
213 static inline int is_spread_slab(const struct cpuset *cs)
215 return test_bit(CS_SPREAD_SLAB, &cs->flags);
218 static struct cpuset top_cpuset = {
219 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 (1 << CS_MEM_EXCLUSIVE)),
224 * cpuset_for_each_child - traverse online children of a cpuset
225 * @child_cs: loop cursor pointing to the current child
226 * @pos_css: used for iteration
227 * @parent_cs: target cpuset to walk children of
229 * Walk @child_cs through the online children of @parent_cs. Must be used
230 * with RCU read locked.
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
233 css_for_each_child((pos_css), &(parent_cs)->css) \
234 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
237 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238 * @des_cs: loop cursor pointing to the current descendant
239 * @pos_css: used for iteration
240 * @root_cs: target cpuset to walk ancestor of
242 * Walk @des_cs through the online descendants of @root_cs. Must be used
243 * with RCU read locked. The caller may modify @pos_css by calling
244 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
245 * iteration and the first node to be visited.
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
248 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
249 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
252 * There are two global locks guarding cpuset structures - cpuset_mutex and
253 * callback_lock. We also require taking task_lock() when dereferencing a
254 * task's cpuset pointer. See "The task_lock() exception", at the end of this
255 * comment.
257 * A task must hold both locks to modify cpusets. If a task holds
258 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259 * is the only task able to also acquire callback_lock and be able to
260 * modify cpusets. It can perform various checks on the cpuset structure
261 * first, knowing nothing will change. It can also allocate memory while
262 * just holding cpuset_mutex. While it is performing these checks, various
263 * callback routines can briefly acquire callback_lock to query cpusets.
264 * Once it is ready to make the changes, it takes callback_lock, blocking
265 * everyone else.
267 * Calls to the kernel memory allocator can not be made while holding
268 * callback_lock, as that would risk double tripping on callback_lock
269 * from one of the callbacks into the cpuset code from within
270 * __alloc_pages().
272 * If a task is only holding callback_lock, then it has read-only
273 * access to cpusets.
275 * Now, the task_struct fields mems_allowed and mempolicy may be changed
276 * by other task, we use alloc_lock in the task_struct fields to protect
277 * them.
279 * The cpuset_common_file_read() handlers only hold callback_lock across
280 * small pieces of code, such as when reading out possibly multi-word
281 * cpumasks and nodemasks.
283 * Accessing a task's cpuset should be done in accordance with the
284 * guidelines for accessing subsystem state in kernel/cgroup.c
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_SPINLOCK(callback_lock);
290 static struct workqueue_struct *cpuset_migrate_mm_wq;
293 * CPU / memory hotplug is handled asynchronously.
295 static void cpuset_hotplug_workfn(struct work_struct *work);
296 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
298 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
301 * This is ugly, but preserves the userspace API for existing cpuset
302 * users. If someone tries to mount the "cpuset" filesystem, we
303 * silently switch it to mount "cgroup" instead
305 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
306 int flags, const char *unused_dev_name, void *data)
308 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
309 struct dentry *ret = ERR_PTR(-ENODEV);
310 if (cgroup_fs) {
311 char mountopts[] =
312 "cpuset,noprefix,"
313 "release_agent=/sbin/cpuset_release_agent";
314 ret = cgroup_fs->mount(cgroup_fs, flags,
315 unused_dev_name, mountopts);
316 put_filesystem(cgroup_fs);
318 return ret;
321 static struct file_system_type cpuset_fs_type = {
322 .name = "cpuset",
323 .mount = cpuset_mount,
327 * Return in pmask the portion of a cpusets's cpus_allowed that
328 * are online. If none are online, walk up the cpuset hierarchy
329 * until we find one that does have some online cpus.
331 * One way or another, we guarantee to return some non-empty subset
332 * of cpu_online_mask.
334 * Call with callback_lock or cpuset_mutex held.
336 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
338 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
339 cs = parent_cs(cs);
340 if (unlikely(!cs)) {
342 * The top cpuset doesn't have any online cpu as a
343 * consequence of a race between cpuset_hotplug_work
344 * and cpu hotplug notifier. But we know the top
345 * cpuset's effective_cpus is on its way to to be
346 * identical to cpu_online_mask.
348 cpumask_copy(pmask, cpu_online_mask);
349 return;
352 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
356 * Return in *pmask the portion of a cpusets's mems_allowed that
357 * are online, with memory. If none are online with memory, walk
358 * up the cpuset hierarchy until we find one that does have some
359 * online mems. The top cpuset always has some mems online.
361 * One way or another, we guarantee to return some non-empty subset
362 * of node_states[N_MEMORY].
364 * Call with callback_lock or cpuset_mutex held.
366 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
368 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
369 cs = parent_cs(cs);
370 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
374 * update task's spread flag if cpuset's page/slab spread flag is set
376 * Call with callback_lock or cpuset_mutex held.
378 static void cpuset_update_task_spread_flag(struct cpuset *cs,
379 struct task_struct *tsk)
381 if (is_spread_page(cs))
382 task_set_spread_page(tsk);
383 else
384 task_clear_spread_page(tsk);
386 if (is_spread_slab(cs))
387 task_set_spread_slab(tsk);
388 else
389 task_clear_spread_slab(tsk);
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
397 * are only set if the other's are set. Call holding cpuset_mutex.
400 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
402 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
409 * alloc_trial_cpuset - allocate a trial cpuset
410 * @cs: the cpuset that the trial cpuset duplicates
412 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
414 struct cpuset *trial;
416 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
417 if (!trial)
418 return NULL;
420 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
421 goto free_cs;
422 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
423 goto free_cpus;
425 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
426 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
427 return trial;
429 free_cpus:
430 free_cpumask_var(trial->cpus_allowed);
431 free_cs:
432 kfree(trial);
433 return NULL;
437 * free_trial_cpuset - free the trial cpuset
438 * @trial: the trial cpuset to be freed
440 static void free_trial_cpuset(struct cpuset *trial)
442 free_cpumask_var(trial->effective_cpus);
443 free_cpumask_var(trial->cpus_allowed);
444 kfree(trial);
448 * validate_change() - Used to validate that any proposed cpuset change
449 * follows the structural rules for cpusets.
451 * If we replaced the flag and mask values of the current cpuset
452 * (cur) with those values in the trial cpuset (trial), would
453 * our various subset and exclusive rules still be valid? Presumes
454 * cpuset_mutex held.
456 * 'cur' is the address of an actual, in-use cpuset. Operations
457 * such as list traversal that depend on the actual address of the
458 * cpuset in the list must use cur below, not trial.
460 * 'trial' is the address of bulk structure copy of cur, with
461 * perhaps one or more of the fields cpus_allowed, mems_allowed,
462 * or flags changed to new, trial values.
464 * Return 0 if valid, -errno if not.
467 static int validate_change(struct cpuset *cur, struct cpuset *trial)
469 struct cgroup_subsys_state *css;
470 struct cpuset *c, *par;
471 int ret;
473 rcu_read_lock();
475 /* Each of our child cpusets must be a subset of us */
476 ret = -EBUSY;
477 cpuset_for_each_child(c, css, cur)
478 if (!is_cpuset_subset(c, trial))
479 goto out;
481 /* Remaining checks don't apply to root cpuset */
482 ret = 0;
483 if (cur == &top_cpuset)
484 goto out;
486 par = parent_cs(cur);
488 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
489 ret = -EACCES;
490 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
491 !is_cpuset_subset(trial, par))
492 goto out;
495 * If either I or some sibling (!= me) is exclusive, we can't
496 * overlap
498 ret = -EINVAL;
499 cpuset_for_each_child(c, css, par) {
500 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
501 c != cur &&
502 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
503 goto out;
504 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
505 c != cur &&
506 nodes_intersects(trial->mems_allowed, c->mems_allowed))
507 goto out;
511 * Cpusets with tasks - existing or newly being attached - can't
512 * be changed to have empty cpus_allowed or mems_allowed.
514 ret = -ENOSPC;
515 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
516 if (!cpumask_empty(cur->cpus_allowed) &&
517 cpumask_empty(trial->cpus_allowed))
518 goto out;
519 if (!nodes_empty(cur->mems_allowed) &&
520 nodes_empty(trial->mems_allowed))
521 goto out;
525 * We can't shrink if we won't have enough room for SCHED_DEADLINE
526 * tasks.
528 ret = -EBUSY;
529 if (is_cpu_exclusive(cur) &&
530 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
531 trial->cpus_allowed))
532 goto out;
534 ret = 0;
535 out:
536 rcu_read_unlock();
537 return ret;
540 #ifdef CONFIG_SMP
542 * Helper routine for generate_sched_domains().
543 * Do cpusets a, b have overlapping effective cpus_allowed masks?
545 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
547 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
550 static void
551 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
553 if (dattr->relax_domain_level < c->relax_domain_level)
554 dattr->relax_domain_level = c->relax_domain_level;
555 return;
558 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
559 struct cpuset *root_cs)
561 struct cpuset *cp;
562 struct cgroup_subsys_state *pos_css;
564 rcu_read_lock();
565 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
566 /* skip the whole subtree if @cp doesn't have any CPU */
567 if (cpumask_empty(cp->cpus_allowed)) {
568 pos_css = css_rightmost_descendant(pos_css);
569 continue;
572 if (is_sched_load_balance(cp))
573 update_domain_attr(dattr, cp);
575 rcu_read_unlock();
579 * generate_sched_domains()
581 * This function builds a partial partition of the systems CPUs
582 * A 'partial partition' is a set of non-overlapping subsets whose
583 * union is a subset of that set.
584 * The output of this function needs to be passed to kernel/sched/core.c
585 * partition_sched_domains() routine, which will rebuild the scheduler's
586 * load balancing domains (sched domains) as specified by that partial
587 * partition.
589 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
590 * for a background explanation of this.
592 * Does not return errors, on the theory that the callers of this
593 * routine would rather not worry about failures to rebuild sched
594 * domains when operating in the severe memory shortage situations
595 * that could cause allocation failures below.
597 * Must be called with cpuset_mutex held.
599 * The three key local variables below are:
600 * q - a linked-list queue of cpuset pointers, used to implement a
601 * top-down scan of all cpusets. This scan loads a pointer
602 * to each cpuset marked is_sched_load_balance into the
603 * array 'csa'. For our purposes, rebuilding the schedulers
604 * sched domains, we can ignore !is_sched_load_balance cpusets.
605 * csa - (for CpuSet Array) Array of pointers to all the cpusets
606 * that need to be load balanced, for convenient iterative
607 * access by the subsequent code that finds the best partition,
608 * i.e the set of domains (subsets) of CPUs such that the
609 * cpus_allowed of every cpuset marked is_sched_load_balance
610 * is a subset of one of these domains, while there are as
611 * many such domains as possible, each as small as possible.
612 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
613 * the kernel/sched/core.c routine partition_sched_domains() in a
614 * convenient format, that can be easily compared to the prior
615 * value to determine what partition elements (sched domains)
616 * were changed (added or removed.)
618 * Finding the best partition (set of domains):
619 * The triple nested loops below over i, j, k scan over the
620 * load balanced cpusets (using the array of cpuset pointers in
621 * csa[]) looking for pairs of cpusets that have overlapping
622 * cpus_allowed, but which don't have the same 'pn' partition
623 * number and gives them in the same partition number. It keeps
624 * looping on the 'restart' label until it can no longer find
625 * any such pairs.
627 * The union of the cpus_allowed masks from the set of
628 * all cpusets having the same 'pn' value then form the one
629 * element of the partition (one sched domain) to be passed to
630 * partition_sched_domains().
632 static int generate_sched_domains(cpumask_var_t **domains,
633 struct sched_domain_attr **attributes)
635 struct cpuset *cp; /* scans q */
636 struct cpuset **csa; /* array of all cpuset ptrs */
637 int csn; /* how many cpuset ptrs in csa so far */
638 int i, j, k; /* indices for partition finding loops */
639 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
640 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
641 struct sched_domain_attr *dattr; /* attributes for custom domains */
642 int ndoms = 0; /* number of sched domains in result */
643 int nslot; /* next empty doms[] struct cpumask slot */
644 struct cgroup_subsys_state *pos_css;
646 doms = NULL;
647 dattr = NULL;
648 csa = NULL;
650 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
651 goto done;
652 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
654 /* Special case for the 99% of systems with one, full, sched domain */
655 if (is_sched_load_balance(&top_cpuset)) {
656 ndoms = 1;
657 doms = alloc_sched_domains(ndoms);
658 if (!doms)
659 goto done;
661 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
662 if (dattr) {
663 *dattr = SD_ATTR_INIT;
664 update_domain_attr_tree(dattr, &top_cpuset);
666 cpumask_and(doms[0], top_cpuset.effective_cpus,
667 non_isolated_cpus);
669 goto done;
672 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
673 if (!csa)
674 goto done;
675 csn = 0;
677 rcu_read_lock();
678 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
679 if (cp == &top_cpuset)
680 continue;
682 * Continue traversing beyond @cp iff @cp has some CPUs and
683 * isn't load balancing. The former is obvious. The
684 * latter: All child cpusets contain a subset of the
685 * parent's cpus, so just skip them, and then we call
686 * update_domain_attr_tree() to calc relax_domain_level of
687 * the corresponding sched domain.
689 if (!cpumask_empty(cp->cpus_allowed) &&
690 !(is_sched_load_balance(cp) &&
691 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
692 continue;
694 if (is_sched_load_balance(cp))
695 csa[csn++] = cp;
697 /* skip @cp's subtree */
698 pos_css = css_rightmost_descendant(pos_css);
700 rcu_read_unlock();
702 for (i = 0; i < csn; i++)
703 csa[i]->pn = i;
704 ndoms = csn;
706 restart:
707 /* Find the best partition (set of sched domains) */
708 for (i = 0; i < csn; i++) {
709 struct cpuset *a = csa[i];
710 int apn = a->pn;
712 for (j = 0; j < csn; j++) {
713 struct cpuset *b = csa[j];
714 int bpn = b->pn;
716 if (apn != bpn && cpusets_overlap(a, b)) {
717 for (k = 0; k < csn; k++) {
718 struct cpuset *c = csa[k];
720 if (c->pn == bpn)
721 c->pn = apn;
723 ndoms--; /* one less element */
724 goto restart;
730 * Now we know how many domains to create.
731 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
733 doms = alloc_sched_domains(ndoms);
734 if (!doms)
735 goto done;
738 * The rest of the code, including the scheduler, can deal with
739 * dattr==NULL case. No need to abort if alloc fails.
741 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
743 for (nslot = 0, i = 0; i < csn; i++) {
744 struct cpuset *a = csa[i];
745 struct cpumask *dp;
746 int apn = a->pn;
748 if (apn < 0) {
749 /* Skip completed partitions */
750 continue;
753 dp = doms[nslot];
755 if (nslot == ndoms) {
756 static int warnings = 10;
757 if (warnings) {
758 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
759 nslot, ndoms, csn, i, apn);
760 warnings--;
762 continue;
765 cpumask_clear(dp);
766 if (dattr)
767 *(dattr + nslot) = SD_ATTR_INIT;
768 for (j = i; j < csn; j++) {
769 struct cpuset *b = csa[j];
771 if (apn == b->pn) {
772 cpumask_or(dp, dp, b->effective_cpus);
773 cpumask_and(dp, dp, non_isolated_cpus);
774 if (dattr)
775 update_domain_attr_tree(dattr + nslot, b);
777 /* Done with this partition */
778 b->pn = -1;
781 nslot++;
783 BUG_ON(nslot != ndoms);
785 done:
786 free_cpumask_var(non_isolated_cpus);
787 kfree(csa);
790 * Fallback to the default domain if kmalloc() failed.
791 * See comments in partition_sched_domains().
793 if (doms == NULL)
794 ndoms = 1;
796 *domains = doms;
797 *attributes = dattr;
798 return ndoms;
802 * Rebuild scheduler domains.
804 * If the flag 'sched_load_balance' of any cpuset with non-empty
805 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
806 * which has that flag enabled, or if any cpuset with a non-empty
807 * 'cpus' is removed, then call this routine to rebuild the
808 * scheduler's dynamic sched domains.
810 * Call with cpuset_mutex held. Takes get_online_cpus().
812 static void rebuild_sched_domains_locked(void)
814 struct sched_domain_attr *attr;
815 cpumask_var_t *doms;
816 int ndoms;
818 lockdep_assert_held(&cpuset_mutex);
819 get_online_cpus();
822 * We have raced with CPU hotplug. Don't do anything to avoid
823 * passing doms with offlined cpu to partition_sched_domains().
824 * Anyways, hotplug work item will rebuild sched domains.
826 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
827 goto out;
829 /* Generate domain masks and attrs */
830 ndoms = generate_sched_domains(&doms, &attr);
832 /* Have scheduler rebuild the domains */
833 partition_sched_domains(ndoms, doms, attr);
834 out:
835 put_online_cpus();
837 #else /* !CONFIG_SMP */
838 static void rebuild_sched_domains_locked(void)
841 #endif /* CONFIG_SMP */
843 void rebuild_sched_domains(void)
845 mutex_lock(&cpuset_mutex);
846 rebuild_sched_domains_locked();
847 mutex_unlock(&cpuset_mutex);
851 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
854 * Iterate through each task of @cs updating its cpus_allowed to the
855 * effective cpuset's. As this function is called with cpuset_mutex held,
856 * cpuset membership stays stable.
858 static void update_tasks_cpumask(struct cpuset *cs)
860 struct css_task_iter it;
861 struct task_struct *task;
863 css_task_iter_start(&cs->css, &it);
864 while ((task = css_task_iter_next(&it)))
865 set_cpus_allowed_ptr(task, cs->effective_cpus);
866 css_task_iter_end(&it);
870 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
871 * @cs: the cpuset to consider
872 * @new_cpus: temp variable for calculating new effective_cpus
874 * When congifured cpumask is changed, the effective cpumasks of this cpuset
875 * and all its descendants need to be updated.
877 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
879 * Called with cpuset_mutex held
881 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
883 struct cpuset *cp;
884 struct cgroup_subsys_state *pos_css;
885 bool need_rebuild_sched_domains = false;
887 rcu_read_lock();
888 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
889 struct cpuset *parent = parent_cs(cp);
891 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
894 * If it becomes empty, inherit the effective mask of the
895 * parent, which is guaranteed to have some CPUs.
897 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
898 cpumask_empty(new_cpus))
899 cpumask_copy(new_cpus, parent->effective_cpus);
901 /* Skip the whole subtree if the cpumask remains the same. */
902 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
903 pos_css = css_rightmost_descendant(pos_css);
904 continue;
907 if (!css_tryget_online(&cp->css))
908 continue;
909 rcu_read_unlock();
911 spin_lock_irq(&callback_lock);
912 cpumask_copy(cp->effective_cpus, new_cpus);
913 spin_unlock_irq(&callback_lock);
915 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
916 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
918 update_tasks_cpumask(cp);
921 * If the effective cpumask of any non-empty cpuset is changed,
922 * we need to rebuild sched domains.
924 if (!cpumask_empty(cp->cpus_allowed) &&
925 is_sched_load_balance(cp))
926 need_rebuild_sched_domains = true;
928 rcu_read_lock();
929 css_put(&cp->css);
931 rcu_read_unlock();
933 if (need_rebuild_sched_domains)
934 rebuild_sched_domains_locked();
938 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
939 * @cs: the cpuset to consider
940 * @trialcs: trial cpuset
941 * @buf: buffer of cpu numbers written to this cpuset
943 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
944 const char *buf)
946 int retval;
948 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
949 if (cs == &top_cpuset)
950 return -EACCES;
953 * An empty cpus_allowed is ok only if the cpuset has no tasks.
954 * Since cpulist_parse() fails on an empty mask, we special case
955 * that parsing. The validate_change() call ensures that cpusets
956 * with tasks have cpus.
958 if (!*buf) {
959 cpumask_clear(trialcs->cpus_allowed);
960 } else {
961 retval = cpulist_parse(buf, trialcs->cpus_allowed);
962 if (retval < 0)
963 return retval;
965 if (!cpumask_subset(trialcs->cpus_allowed,
966 top_cpuset.cpus_allowed))
967 return -EINVAL;
970 /* Nothing to do if the cpus didn't change */
971 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
972 return 0;
974 retval = validate_change(cs, trialcs);
975 if (retval < 0)
976 return retval;
978 spin_lock_irq(&callback_lock);
979 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
980 spin_unlock_irq(&callback_lock);
982 /* use trialcs->cpus_allowed as a temp variable */
983 update_cpumasks_hier(cs, trialcs->cpus_allowed);
984 return 0;
988 * Migrate memory region from one set of nodes to another. This is
989 * performed asynchronously as it can be called from process migration path
990 * holding locks involved in process management. All mm migrations are
991 * performed in the queued order and can be waited for by flushing
992 * cpuset_migrate_mm_wq.
995 struct cpuset_migrate_mm_work {
996 struct work_struct work;
997 struct mm_struct *mm;
998 nodemask_t from;
999 nodemask_t to;
1002 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1004 struct cpuset_migrate_mm_work *mwork =
1005 container_of(work, struct cpuset_migrate_mm_work, work);
1007 /* on a wq worker, no need to worry about %current's mems_allowed */
1008 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1009 mmput(mwork->mm);
1010 kfree(mwork);
1013 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1014 const nodemask_t *to)
1016 struct cpuset_migrate_mm_work *mwork;
1018 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1019 if (mwork) {
1020 mwork->mm = mm;
1021 mwork->from = *from;
1022 mwork->to = *to;
1023 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1024 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1025 } else {
1026 mmput(mm);
1030 static void cpuset_post_attach(void)
1032 flush_workqueue(cpuset_migrate_mm_wq);
1036 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1037 * @tsk: the task to change
1038 * @newmems: new nodes that the task will be set
1040 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1041 * we structure updates as setting all new allowed nodes, then clearing newly
1042 * disallowed ones.
1044 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1045 nodemask_t *newmems)
1047 bool need_loop;
1049 task_lock(tsk);
1051 * Determine if a loop is necessary if another thread is doing
1052 * read_mems_allowed_begin(). If at least one node remains unchanged and
1053 * tsk does not have a mempolicy, then an empty nodemask will not be
1054 * possible when mems_allowed is larger than a word.
1056 need_loop = task_has_mempolicy(tsk) ||
1057 !nodes_intersects(*newmems, tsk->mems_allowed);
1059 if (need_loop) {
1060 local_irq_disable();
1061 write_seqcount_begin(&tsk->mems_allowed_seq);
1064 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1065 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1067 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1068 tsk->mems_allowed = *newmems;
1070 if (need_loop) {
1071 write_seqcount_end(&tsk->mems_allowed_seq);
1072 local_irq_enable();
1075 task_unlock(tsk);
1078 static void *cpuset_being_rebound;
1081 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1082 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1084 * Iterate through each task of @cs updating its mems_allowed to the
1085 * effective cpuset's. As this function is called with cpuset_mutex held,
1086 * cpuset membership stays stable.
1088 static void update_tasks_nodemask(struct cpuset *cs)
1090 static nodemask_t newmems; /* protected by cpuset_mutex */
1091 struct css_task_iter it;
1092 struct task_struct *task;
1094 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1096 guarantee_online_mems(cs, &newmems);
1099 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1100 * take while holding tasklist_lock. Forks can happen - the
1101 * mpol_dup() cpuset_being_rebound check will catch such forks,
1102 * and rebind their vma mempolicies too. Because we still hold
1103 * the global cpuset_mutex, we know that no other rebind effort
1104 * will be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 * is idempotent. Also migrate pages in each mm to new nodes.
1108 css_task_iter_start(&cs->css, &it);
1109 while ((task = css_task_iter_next(&it))) {
1110 struct mm_struct *mm;
1111 bool migrate;
1113 cpuset_change_task_nodemask(task, &newmems);
1115 mm = get_task_mm(task);
1116 if (!mm)
1117 continue;
1119 migrate = is_memory_migrate(cs);
1121 mpol_rebind_mm(mm, &cs->mems_allowed);
1122 if (migrate)
1123 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1124 else
1125 mmput(mm);
1127 css_task_iter_end(&it);
1130 * All the tasks' nodemasks have been updated, update
1131 * cs->old_mems_allowed.
1133 cs->old_mems_allowed = newmems;
1135 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1136 cpuset_being_rebound = NULL;
1140 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1141 * @cs: the cpuset to consider
1142 * @new_mems: a temp variable for calculating new effective_mems
1144 * When configured nodemask is changed, the effective nodemasks of this cpuset
1145 * and all its descendants need to be updated.
1147 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1149 * Called with cpuset_mutex held
1151 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1153 struct cpuset *cp;
1154 struct cgroup_subsys_state *pos_css;
1156 rcu_read_lock();
1157 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1158 struct cpuset *parent = parent_cs(cp);
1160 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1163 * If it becomes empty, inherit the effective mask of the
1164 * parent, which is guaranteed to have some MEMs.
1166 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1167 nodes_empty(*new_mems))
1168 *new_mems = parent->effective_mems;
1170 /* Skip the whole subtree if the nodemask remains the same. */
1171 if (nodes_equal(*new_mems, cp->effective_mems)) {
1172 pos_css = css_rightmost_descendant(pos_css);
1173 continue;
1176 if (!css_tryget_online(&cp->css))
1177 continue;
1178 rcu_read_unlock();
1180 spin_lock_irq(&callback_lock);
1181 cp->effective_mems = *new_mems;
1182 spin_unlock_irq(&callback_lock);
1184 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1185 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1187 update_tasks_nodemask(cp);
1189 rcu_read_lock();
1190 css_put(&cp->css);
1192 rcu_read_unlock();
1196 * Handle user request to change the 'mems' memory placement
1197 * of a cpuset. Needs to validate the request, update the
1198 * cpusets mems_allowed, and for each task in the cpuset,
1199 * update mems_allowed and rebind task's mempolicy and any vma
1200 * mempolicies and if the cpuset is marked 'memory_migrate',
1201 * migrate the tasks pages to the new memory.
1203 * Call with cpuset_mutex held. May take callback_lock during call.
1204 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1205 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1206 * their mempolicies to the cpusets new mems_allowed.
1208 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1209 const char *buf)
1211 int retval;
1214 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1215 * it's read-only
1217 if (cs == &top_cpuset) {
1218 retval = -EACCES;
1219 goto done;
1223 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1224 * Since nodelist_parse() fails on an empty mask, we special case
1225 * that parsing. The validate_change() call ensures that cpusets
1226 * with tasks have memory.
1228 if (!*buf) {
1229 nodes_clear(trialcs->mems_allowed);
1230 } else {
1231 retval = nodelist_parse(buf, trialcs->mems_allowed);
1232 if (retval < 0)
1233 goto done;
1235 if (!nodes_subset(trialcs->mems_allowed,
1236 top_cpuset.mems_allowed)) {
1237 retval = -EINVAL;
1238 goto done;
1242 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1243 retval = 0; /* Too easy - nothing to do */
1244 goto done;
1246 retval = validate_change(cs, trialcs);
1247 if (retval < 0)
1248 goto done;
1250 spin_lock_irq(&callback_lock);
1251 cs->mems_allowed = trialcs->mems_allowed;
1252 spin_unlock_irq(&callback_lock);
1254 /* use trialcs->mems_allowed as a temp variable */
1255 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1256 done:
1257 return retval;
1260 int current_cpuset_is_being_rebound(void)
1262 int ret;
1264 rcu_read_lock();
1265 ret = task_cs(current) == cpuset_being_rebound;
1266 rcu_read_unlock();
1268 return ret;
1271 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1273 #ifdef CONFIG_SMP
1274 if (val < -1 || val >= sched_domain_level_max)
1275 return -EINVAL;
1276 #endif
1278 if (val != cs->relax_domain_level) {
1279 cs->relax_domain_level = val;
1280 if (!cpumask_empty(cs->cpus_allowed) &&
1281 is_sched_load_balance(cs))
1282 rebuild_sched_domains_locked();
1285 return 0;
1289 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1290 * @cs: the cpuset in which each task's spread flags needs to be changed
1292 * Iterate through each task of @cs updating its spread flags. As this
1293 * function is called with cpuset_mutex held, cpuset membership stays
1294 * stable.
1296 static void update_tasks_flags(struct cpuset *cs)
1298 struct css_task_iter it;
1299 struct task_struct *task;
1301 css_task_iter_start(&cs->css, &it);
1302 while ((task = css_task_iter_next(&it)))
1303 cpuset_update_task_spread_flag(cs, task);
1304 css_task_iter_end(&it);
1308 * update_flag - read a 0 or a 1 in a file and update associated flag
1309 * bit: the bit to update (see cpuset_flagbits_t)
1310 * cs: the cpuset to update
1311 * turning_on: whether the flag is being set or cleared
1313 * Call with cpuset_mutex held.
1316 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1317 int turning_on)
1319 struct cpuset *trialcs;
1320 int balance_flag_changed;
1321 int spread_flag_changed;
1322 int err;
1324 trialcs = alloc_trial_cpuset(cs);
1325 if (!trialcs)
1326 return -ENOMEM;
1328 if (turning_on)
1329 set_bit(bit, &trialcs->flags);
1330 else
1331 clear_bit(bit, &trialcs->flags);
1333 err = validate_change(cs, trialcs);
1334 if (err < 0)
1335 goto out;
1337 balance_flag_changed = (is_sched_load_balance(cs) !=
1338 is_sched_load_balance(trialcs));
1340 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1341 || (is_spread_page(cs) != is_spread_page(trialcs)));
1343 spin_lock_irq(&callback_lock);
1344 cs->flags = trialcs->flags;
1345 spin_unlock_irq(&callback_lock);
1347 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1348 rebuild_sched_domains_locked();
1350 if (spread_flag_changed)
1351 update_tasks_flags(cs);
1352 out:
1353 free_trial_cpuset(trialcs);
1354 return err;
1358 * Frequency meter - How fast is some event occurring?
1360 * These routines manage a digitally filtered, constant time based,
1361 * event frequency meter. There are four routines:
1362 * fmeter_init() - initialize a frequency meter.
1363 * fmeter_markevent() - called each time the event happens.
1364 * fmeter_getrate() - returns the recent rate of such events.
1365 * fmeter_update() - internal routine used to update fmeter.
1367 * A common data structure is passed to each of these routines,
1368 * which is used to keep track of the state required to manage the
1369 * frequency meter and its digital filter.
1371 * The filter works on the number of events marked per unit time.
1372 * The filter is single-pole low-pass recursive (IIR). The time unit
1373 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1374 * simulate 3 decimal digits of precision (multiplied by 1000).
1376 * With an FM_COEF of 933, and a time base of 1 second, the filter
1377 * has a half-life of 10 seconds, meaning that if the events quit
1378 * happening, then the rate returned from the fmeter_getrate()
1379 * will be cut in half each 10 seconds, until it converges to zero.
1381 * It is not worth doing a real infinitely recursive filter. If more
1382 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1383 * just compute FM_MAXTICKS ticks worth, by which point the level
1384 * will be stable.
1386 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1387 * arithmetic overflow in the fmeter_update() routine.
1389 * Given the simple 32 bit integer arithmetic used, this meter works
1390 * best for reporting rates between one per millisecond (msec) and
1391 * one per 32 (approx) seconds. At constant rates faster than one
1392 * per msec it maxes out at values just under 1,000,000. At constant
1393 * rates between one per msec, and one per second it will stabilize
1394 * to a value N*1000, where N is the rate of events per second.
1395 * At constant rates between one per second and one per 32 seconds,
1396 * it will be choppy, moving up on the seconds that have an event,
1397 * and then decaying until the next event. At rates slower than
1398 * about one in 32 seconds, it decays all the way back to zero between
1399 * each event.
1402 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1403 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1404 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1405 #define FM_SCALE 1000 /* faux fixed point scale */
1407 /* Initialize a frequency meter */
1408 static void fmeter_init(struct fmeter *fmp)
1410 fmp->cnt = 0;
1411 fmp->val = 0;
1412 fmp->time = 0;
1413 spin_lock_init(&fmp->lock);
1416 /* Internal meter update - process cnt events and update value */
1417 static void fmeter_update(struct fmeter *fmp)
1419 time64_t now;
1420 u32 ticks;
1422 now = ktime_get_seconds();
1423 ticks = now - fmp->time;
1425 if (ticks == 0)
1426 return;
1428 ticks = min(FM_MAXTICKS, ticks);
1429 while (ticks-- > 0)
1430 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1431 fmp->time = now;
1433 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1434 fmp->cnt = 0;
1437 /* Process any previous ticks, then bump cnt by one (times scale). */
1438 static void fmeter_markevent(struct fmeter *fmp)
1440 spin_lock(&fmp->lock);
1441 fmeter_update(fmp);
1442 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1443 spin_unlock(&fmp->lock);
1446 /* Process any previous ticks, then return current value. */
1447 static int fmeter_getrate(struct fmeter *fmp)
1449 int val;
1451 spin_lock(&fmp->lock);
1452 fmeter_update(fmp);
1453 val = fmp->val;
1454 spin_unlock(&fmp->lock);
1455 return val;
1458 static struct cpuset *cpuset_attach_old_cs;
1460 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1461 static int cpuset_can_attach(struct cgroup_taskset *tset)
1463 struct cgroup_subsys_state *css;
1464 struct cpuset *cs;
1465 struct task_struct *task;
1466 int ret;
1468 /* used later by cpuset_attach() */
1469 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1470 cs = css_cs(css);
1472 mutex_lock(&cpuset_mutex);
1474 /* allow moving tasks into an empty cpuset if on default hierarchy */
1475 ret = -ENOSPC;
1476 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1477 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1478 goto out_unlock;
1480 cgroup_taskset_for_each(task, css, tset) {
1481 ret = task_can_attach(task, cs->cpus_allowed);
1482 if (ret)
1483 goto out_unlock;
1484 ret = security_task_setscheduler(task);
1485 if (ret)
1486 goto out_unlock;
1490 * Mark attach is in progress. This makes validate_change() fail
1491 * changes which zero cpus/mems_allowed.
1493 cs->attach_in_progress++;
1494 ret = 0;
1495 out_unlock:
1496 mutex_unlock(&cpuset_mutex);
1497 return ret;
1500 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1502 struct cgroup_subsys_state *css;
1503 struct cpuset *cs;
1505 cgroup_taskset_first(tset, &css);
1506 cs = css_cs(css);
1508 mutex_lock(&cpuset_mutex);
1509 css_cs(css)->attach_in_progress--;
1510 mutex_unlock(&cpuset_mutex);
1514 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1515 * but we can't allocate it dynamically there. Define it global and
1516 * allocate from cpuset_init().
1518 static cpumask_var_t cpus_attach;
1520 static void cpuset_attach(struct cgroup_taskset *tset)
1522 /* static buf protected by cpuset_mutex */
1523 static nodemask_t cpuset_attach_nodemask_to;
1524 struct task_struct *task;
1525 struct task_struct *leader;
1526 struct cgroup_subsys_state *css;
1527 struct cpuset *cs;
1528 struct cpuset *oldcs = cpuset_attach_old_cs;
1530 cgroup_taskset_first(tset, &css);
1531 cs = css_cs(css);
1533 mutex_lock(&cpuset_mutex);
1535 /* prepare for attach */
1536 if (cs == &top_cpuset)
1537 cpumask_copy(cpus_attach, cpu_possible_mask);
1538 else
1539 guarantee_online_cpus(cs, cpus_attach);
1541 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1543 cgroup_taskset_for_each(task, css, tset) {
1545 * can_attach beforehand should guarantee that this doesn't
1546 * fail. TODO: have a better way to handle failure here
1548 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1550 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1551 cpuset_update_task_spread_flag(cs, task);
1555 * Change mm for all threadgroup leaders. This is expensive and may
1556 * sleep and should be moved outside migration path proper.
1558 cpuset_attach_nodemask_to = cs->effective_mems;
1559 cgroup_taskset_for_each_leader(leader, css, tset) {
1560 struct mm_struct *mm = get_task_mm(leader);
1562 if (mm) {
1563 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1566 * old_mems_allowed is the same with mems_allowed
1567 * here, except if this task is being moved
1568 * automatically due to hotplug. In that case
1569 * @mems_allowed has been updated and is empty, so
1570 * @old_mems_allowed is the right nodesets that we
1571 * migrate mm from.
1573 if (is_memory_migrate(cs))
1574 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1575 &cpuset_attach_nodemask_to);
1576 else
1577 mmput(mm);
1581 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1583 cs->attach_in_progress--;
1584 if (!cs->attach_in_progress)
1585 wake_up(&cpuset_attach_wq);
1587 mutex_unlock(&cpuset_mutex);
1590 /* The various types of files and directories in a cpuset file system */
1592 typedef enum {
1593 FILE_MEMORY_MIGRATE,
1594 FILE_CPULIST,
1595 FILE_MEMLIST,
1596 FILE_EFFECTIVE_CPULIST,
1597 FILE_EFFECTIVE_MEMLIST,
1598 FILE_CPU_EXCLUSIVE,
1599 FILE_MEM_EXCLUSIVE,
1600 FILE_MEM_HARDWALL,
1601 FILE_SCHED_LOAD_BALANCE,
1602 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1603 FILE_MEMORY_PRESSURE_ENABLED,
1604 FILE_MEMORY_PRESSURE,
1605 FILE_SPREAD_PAGE,
1606 FILE_SPREAD_SLAB,
1607 } cpuset_filetype_t;
1609 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1610 u64 val)
1612 struct cpuset *cs = css_cs(css);
1613 cpuset_filetype_t type = cft->private;
1614 int retval = 0;
1616 mutex_lock(&cpuset_mutex);
1617 if (!is_cpuset_online(cs)) {
1618 retval = -ENODEV;
1619 goto out_unlock;
1622 switch (type) {
1623 case FILE_CPU_EXCLUSIVE:
1624 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1625 break;
1626 case FILE_MEM_EXCLUSIVE:
1627 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1628 break;
1629 case FILE_MEM_HARDWALL:
1630 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1631 break;
1632 case FILE_SCHED_LOAD_BALANCE:
1633 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1634 break;
1635 case FILE_MEMORY_MIGRATE:
1636 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1637 break;
1638 case FILE_MEMORY_PRESSURE_ENABLED:
1639 cpuset_memory_pressure_enabled = !!val;
1640 break;
1641 case FILE_SPREAD_PAGE:
1642 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1643 break;
1644 case FILE_SPREAD_SLAB:
1645 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1646 break;
1647 default:
1648 retval = -EINVAL;
1649 break;
1651 out_unlock:
1652 mutex_unlock(&cpuset_mutex);
1653 return retval;
1656 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1657 s64 val)
1659 struct cpuset *cs = css_cs(css);
1660 cpuset_filetype_t type = cft->private;
1661 int retval = -ENODEV;
1663 mutex_lock(&cpuset_mutex);
1664 if (!is_cpuset_online(cs))
1665 goto out_unlock;
1667 switch (type) {
1668 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1669 retval = update_relax_domain_level(cs, val);
1670 break;
1671 default:
1672 retval = -EINVAL;
1673 break;
1675 out_unlock:
1676 mutex_unlock(&cpuset_mutex);
1677 return retval;
1681 * Common handling for a write to a "cpus" or "mems" file.
1683 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1684 char *buf, size_t nbytes, loff_t off)
1686 struct cpuset *cs = css_cs(of_css(of));
1687 struct cpuset *trialcs;
1688 int retval = -ENODEV;
1690 buf = strstrip(buf);
1693 * CPU or memory hotunplug may leave @cs w/o any execution
1694 * resources, in which case the hotplug code asynchronously updates
1695 * configuration and transfers all tasks to the nearest ancestor
1696 * which can execute.
1698 * As writes to "cpus" or "mems" may restore @cs's execution
1699 * resources, wait for the previously scheduled operations before
1700 * proceeding, so that we don't end up keep removing tasks added
1701 * after execution capability is restored.
1703 * cpuset_hotplug_work calls back into cgroup core via
1704 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1705 * operation like this one can lead to a deadlock through kernfs
1706 * active_ref protection. Let's break the protection. Losing the
1707 * protection is okay as we check whether @cs is online after
1708 * grabbing cpuset_mutex anyway. This only happens on the legacy
1709 * hierarchies.
1711 css_get(&cs->css);
1712 kernfs_break_active_protection(of->kn);
1713 flush_work(&cpuset_hotplug_work);
1715 mutex_lock(&cpuset_mutex);
1716 if (!is_cpuset_online(cs))
1717 goto out_unlock;
1719 trialcs = alloc_trial_cpuset(cs);
1720 if (!trialcs) {
1721 retval = -ENOMEM;
1722 goto out_unlock;
1725 switch (of_cft(of)->private) {
1726 case FILE_CPULIST:
1727 retval = update_cpumask(cs, trialcs, buf);
1728 break;
1729 case FILE_MEMLIST:
1730 retval = update_nodemask(cs, trialcs, buf);
1731 break;
1732 default:
1733 retval = -EINVAL;
1734 break;
1737 free_trial_cpuset(trialcs);
1738 out_unlock:
1739 mutex_unlock(&cpuset_mutex);
1740 kernfs_unbreak_active_protection(of->kn);
1741 css_put(&cs->css);
1742 flush_workqueue(cpuset_migrate_mm_wq);
1743 return retval ?: nbytes;
1747 * These ascii lists should be read in a single call, by using a user
1748 * buffer large enough to hold the entire map. If read in smaller
1749 * chunks, there is no guarantee of atomicity. Since the display format
1750 * used, list of ranges of sequential numbers, is variable length,
1751 * and since these maps can change value dynamically, one could read
1752 * gibberish by doing partial reads while a list was changing.
1754 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1756 struct cpuset *cs = css_cs(seq_css(sf));
1757 cpuset_filetype_t type = seq_cft(sf)->private;
1758 int ret = 0;
1760 spin_lock_irq(&callback_lock);
1762 switch (type) {
1763 case FILE_CPULIST:
1764 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1765 break;
1766 case FILE_MEMLIST:
1767 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1768 break;
1769 case FILE_EFFECTIVE_CPULIST:
1770 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1771 break;
1772 case FILE_EFFECTIVE_MEMLIST:
1773 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1774 break;
1775 default:
1776 ret = -EINVAL;
1779 spin_unlock_irq(&callback_lock);
1780 return ret;
1783 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1785 struct cpuset *cs = css_cs(css);
1786 cpuset_filetype_t type = cft->private;
1787 switch (type) {
1788 case FILE_CPU_EXCLUSIVE:
1789 return is_cpu_exclusive(cs);
1790 case FILE_MEM_EXCLUSIVE:
1791 return is_mem_exclusive(cs);
1792 case FILE_MEM_HARDWALL:
1793 return is_mem_hardwall(cs);
1794 case FILE_SCHED_LOAD_BALANCE:
1795 return is_sched_load_balance(cs);
1796 case FILE_MEMORY_MIGRATE:
1797 return is_memory_migrate(cs);
1798 case FILE_MEMORY_PRESSURE_ENABLED:
1799 return cpuset_memory_pressure_enabled;
1800 case FILE_MEMORY_PRESSURE:
1801 return fmeter_getrate(&cs->fmeter);
1802 case FILE_SPREAD_PAGE:
1803 return is_spread_page(cs);
1804 case FILE_SPREAD_SLAB:
1805 return is_spread_slab(cs);
1806 default:
1807 BUG();
1810 /* Unreachable but makes gcc happy */
1811 return 0;
1814 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1816 struct cpuset *cs = css_cs(css);
1817 cpuset_filetype_t type = cft->private;
1818 switch (type) {
1819 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1820 return cs->relax_domain_level;
1821 default:
1822 BUG();
1825 /* Unrechable but makes gcc happy */
1826 return 0;
1831 * for the common functions, 'private' gives the type of file
1834 static struct cftype files[] = {
1836 .name = "cpus",
1837 .seq_show = cpuset_common_seq_show,
1838 .write = cpuset_write_resmask,
1839 .max_write_len = (100U + 6 * NR_CPUS),
1840 .private = FILE_CPULIST,
1844 .name = "mems",
1845 .seq_show = cpuset_common_seq_show,
1846 .write = cpuset_write_resmask,
1847 .max_write_len = (100U + 6 * MAX_NUMNODES),
1848 .private = FILE_MEMLIST,
1852 .name = "effective_cpus",
1853 .seq_show = cpuset_common_seq_show,
1854 .private = FILE_EFFECTIVE_CPULIST,
1858 .name = "effective_mems",
1859 .seq_show = cpuset_common_seq_show,
1860 .private = FILE_EFFECTIVE_MEMLIST,
1864 .name = "cpu_exclusive",
1865 .read_u64 = cpuset_read_u64,
1866 .write_u64 = cpuset_write_u64,
1867 .private = FILE_CPU_EXCLUSIVE,
1871 .name = "mem_exclusive",
1872 .read_u64 = cpuset_read_u64,
1873 .write_u64 = cpuset_write_u64,
1874 .private = FILE_MEM_EXCLUSIVE,
1878 .name = "mem_hardwall",
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_MEM_HARDWALL,
1885 .name = "sched_load_balance",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_SCHED_LOAD_BALANCE,
1892 .name = "sched_relax_domain_level",
1893 .read_s64 = cpuset_read_s64,
1894 .write_s64 = cpuset_write_s64,
1895 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1899 .name = "memory_migrate",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_MEMORY_MIGRATE,
1906 .name = "memory_pressure",
1907 .read_u64 = cpuset_read_u64,
1908 .private = FILE_MEMORY_PRESSURE,
1912 .name = "memory_spread_page",
1913 .read_u64 = cpuset_read_u64,
1914 .write_u64 = cpuset_write_u64,
1915 .private = FILE_SPREAD_PAGE,
1919 .name = "memory_spread_slab",
1920 .read_u64 = cpuset_read_u64,
1921 .write_u64 = cpuset_write_u64,
1922 .private = FILE_SPREAD_SLAB,
1926 .name = "memory_pressure_enabled",
1927 .flags = CFTYPE_ONLY_ON_ROOT,
1928 .read_u64 = cpuset_read_u64,
1929 .write_u64 = cpuset_write_u64,
1930 .private = FILE_MEMORY_PRESSURE_ENABLED,
1933 { } /* terminate */
1937 * cpuset_css_alloc - allocate a cpuset css
1938 * cgrp: control group that the new cpuset will be part of
1941 static struct cgroup_subsys_state *
1942 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1944 struct cpuset *cs;
1946 if (!parent_css)
1947 return &top_cpuset.css;
1949 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1950 if (!cs)
1951 return ERR_PTR(-ENOMEM);
1952 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1953 goto free_cs;
1954 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1955 goto free_cpus;
1957 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1958 cpumask_clear(cs->cpus_allowed);
1959 nodes_clear(cs->mems_allowed);
1960 cpumask_clear(cs->effective_cpus);
1961 nodes_clear(cs->effective_mems);
1962 fmeter_init(&cs->fmeter);
1963 cs->relax_domain_level = -1;
1965 return &cs->css;
1967 free_cpus:
1968 free_cpumask_var(cs->cpus_allowed);
1969 free_cs:
1970 kfree(cs);
1971 return ERR_PTR(-ENOMEM);
1974 static int cpuset_css_online(struct cgroup_subsys_state *css)
1976 struct cpuset *cs = css_cs(css);
1977 struct cpuset *parent = parent_cs(cs);
1978 struct cpuset *tmp_cs;
1979 struct cgroup_subsys_state *pos_css;
1981 if (!parent)
1982 return 0;
1984 mutex_lock(&cpuset_mutex);
1986 set_bit(CS_ONLINE, &cs->flags);
1987 if (is_spread_page(parent))
1988 set_bit(CS_SPREAD_PAGE, &cs->flags);
1989 if (is_spread_slab(parent))
1990 set_bit(CS_SPREAD_SLAB, &cs->flags);
1992 cpuset_inc();
1994 spin_lock_irq(&callback_lock);
1995 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1996 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1997 cs->effective_mems = parent->effective_mems;
1999 spin_unlock_irq(&callback_lock);
2001 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2002 goto out_unlock;
2005 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2006 * set. This flag handling is implemented in cgroup core for
2007 * histrical reasons - the flag may be specified during mount.
2009 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2010 * refuse to clone the configuration - thereby refusing the task to
2011 * be entered, and as a result refusing the sys_unshare() or
2012 * clone() which initiated it. If this becomes a problem for some
2013 * users who wish to allow that scenario, then this could be
2014 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2015 * (and likewise for mems) to the new cgroup.
2017 rcu_read_lock();
2018 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2019 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2020 rcu_read_unlock();
2021 goto out_unlock;
2024 rcu_read_unlock();
2026 spin_lock_irq(&callback_lock);
2027 cs->mems_allowed = parent->mems_allowed;
2028 cs->effective_mems = parent->mems_allowed;
2029 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2030 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2031 spin_unlock_irq(&callback_lock);
2032 out_unlock:
2033 mutex_unlock(&cpuset_mutex);
2034 return 0;
2038 * If the cpuset being removed has its flag 'sched_load_balance'
2039 * enabled, then simulate turning sched_load_balance off, which
2040 * will call rebuild_sched_domains_locked().
2043 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2045 struct cpuset *cs = css_cs(css);
2047 mutex_lock(&cpuset_mutex);
2049 if (is_sched_load_balance(cs))
2050 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2052 cpuset_dec();
2053 clear_bit(CS_ONLINE, &cs->flags);
2055 mutex_unlock(&cpuset_mutex);
2058 static void cpuset_css_free(struct cgroup_subsys_state *css)
2060 struct cpuset *cs = css_cs(css);
2062 free_cpumask_var(cs->effective_cpus);
2063 free_cpumask_var(cs->cpus_allowed);
2064 kfree(cs);
2067 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2069 mutex_lock(&cpuset_mutex);
2070 spin_lock_irq(&callback_lock);
2072 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2073 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2074 top_cpuset.mems_allowed = node_possible_map;
2075 } else {
2076 cpumask_copy(top_cpuset.cpus_allowed,
2077 top_cpuset.effective_cpus);
2078 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2081 spin_unlock_irq(&callback_lock);
2082 mutex_unlock(&cpuset_mutex);
2086 * Make sure the new task conform to the current state of its parent,
2087 * which could have been changed by cpuset just after it inherits the
2088 * state from the parent and before it sits on the cgroup's task list.
2090 static void cpuset_fork(struct task_struct *task)
2092 if (task_css_is_root(task, cpuset_cgrp_id))
2093 return;
2095 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2096 task->mems_allowed = current->mems_allowed;
2099 struct cgroup_subsys cpuset_cgrp_subsys = {
2100 .css_alloc = cpuset_css_alloc,
2101 .css_online = cpuset_css_online,
2102 .css_offline = cpuset_css_offline,
2103 .css_free = cpuset_css_free,
2104 .can_attach = cpuset_can_attach,
2105 .cancel_attach = cpuset_cancel_attach,
2106 .attach = cpuset_attach,
2107 .post_attach = cpuset_post_attach,
2108 .bind = cpuset_bind,
2109 .fork = cpuset_fork,
2110 .legacy_cftypes = files,
2111 .early_init = true,
2115 * cpuset_init - initialize cpusets at system boot
2117 * Description: Initialize top_cpuset and the cpuset internal file system,
2120 int __init cpuset_init(void)
2122 int err = 0;
2124 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2125 BUG();
2126 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2127 BUG();
2129 cpumask_setall(top_cpuset.cpus_allowed);
2130 nodes_setall(top_cpuset.mems_allowed);
2131 cpumask_setall(top_cpuset.effective_cpus);
2132 nodes_setall(top_cpuset.effective_mems);
2134 fmeter_init(&top_cpuset.fmeter);
2135 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2136 top_cpuset.relax_domain_level = -1;
2138 err = register_filesystem(&cpuset_fs_type);
2139 if (err < 0)
2140 return err;
2142 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2143 BUG();
2145 return 0;
2149 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2150 * or memory nodes, we need to walk over the cpuset hierarchy,
2151 * removing that CPU or node from all cpusets. If this removes the
2152 * last CPU or node from a cpuset, then move the tasks in the empty
2153 * cpuset to its next-highest non-empty parent.
2155 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2157 struct cpuset *parent;
2160 * Find its next-highest non-empty parent, (top cpuset
2161 * has online cpus, so can't be empty).
2163 parent = parent_cs(cs);
2164 while (cpumask_empty(parent->cpus_allowed) ||
2165 nodes_empty(parent->mems_allowed))
2166 parent = parent_cs(parent);
2168 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2169 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2170 pr_cont_cgroup_name(cs->css.cgroup);
2171 pr_cont("\n");
2175 static void
2176 hotplug_update_tasks_legacy(struct cpuset *cs,
2177 struct cpumask *new_cpus, nodemask_t *new_mems,
2178 bool cpus_updated, bool mems_updated)
2180 bool is_empty;
2182 spin_lock_irq(&callback_lock);
2183 cpumask_copy(cs->cpus_allowed, new_cpus);
2184 cpumask_copy(cs->effective_cpus, new_cpus);
2185 cs->mems_allowed = *new_mems;
2186 cs->effective_mems = *new_mems;
2187 spin_unlock_irq(&callback_lock);
2190 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2191 * as the tasks will be migratecd to an ancestor.
2193 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2194 update_tasks_cpumask(cs);
2195 if (mems_updated && !nodes_empty(cs->mems_allowed))
2196 update_tasks_nodemask(cs);
2198 is_empty = cpumask_empty(cs->cpus_allowed) ||
2199 nodes_empty(cs->mems_allowed);
2201 mutex_unlock(&cpuset_mutex);
2204 * Move tasks to the nearest ancestor with execution resources,
2205 * This is full cgroup operation which will also call back into
2206 * cpuset. Should be done outside any lock.
2208 if (is_empty)
2209 remove_tasks_in_empty_cpuset(cs);
2211 mutex_lock(&cpuset_mutex);
2214 static void
2215 hotplug_update_tasks(struct cpuset *cs,
2216 struct cpumask *new_cpus, nodemask_t *new_mems,
2217 bool cpus_updated, bool mems_updated)
2219 if (cpumask_empty(new_cpus))
2220 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2221 if (nodes_empty(*new_mems))
2222 *new_mems = parent_cs(cs)->effective_mems;
2224 spin_lock_irq(&callback_lock);
2225 cpumask_copy(cs->effective_cpus, new_cpus);
2226 cs->effective_mems = *new_mems;
2227 spin_unlock_irq(&callback_lock);
2229 if (cpus_updated)
2230 update_tasks_cpumask(cs);
2231 if (mems_updated)
2232 update_tasks_nodemask(cs);
2236 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2237 * @cs: cpuset in interest
2239 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2240 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2241 * all its tasks are moved to the nearest ancestor with both resources.
2243 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2245 static cpumask_t new_cpus;
2246 static nodemask_t new_mems;
2247 bool cpus_updated;
2248 bool mems_updated;
2249 retry:
2250 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2252 mutex_lock(&cpuset_mutex);
2255 * We have raced with task attaching. We wait until attaching
2256 * is finished, so we won't attach a task to an empty cpuset.
2258 if (cs->attach_in_progress) {
2259 mutex_unlock(&cpuset_mutex);
2260 goto retry;
2263 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2264 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2266 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2267 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2269 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2270 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2271 cpus_updated, mems_updated);
2272 else
2273 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2274 cpus_updated, mems_updated);
2276 mutex_unlock(&cpuset_mutex);
2279 static bool force_rebuild;
2281 void cpuset_force_rebuild(void)
2283 force_rebuild = true;
2287 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2289 * This function is called after either CPU or memory configuration has
2290 * changed and updates cpuset accordingly. The top_cpuset is always
2291 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2292 * order to make cpusets transparent (of no affect) on systems that are
2293 * actively using CPU hotplug but making no active use of cpusets.
2295 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2296 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2297 * all descendants.
2299 * Note that CPU offlining during suspend is ignored. We don't modify
2300 * cpusets across suspend/resume cycles at all.
2302 static void cpuset_hotplug_workfn(struct work_struct *work)
2304 static cpumask_t new_cpus;
2305 static nodemask_t new_mems;
2306 bool cpus_updated, mems_updated;
2307 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2309 mutex_lock(&cpuset_mutex);
2311 /* fetch the available cpus/mems and find out which changed how */
2312 cpumask_copy(&new_cpus, cpu_active_mask);
2313 new_mems = node_states[N_MEMORY];
2315 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2316 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2318 /* synchronize cpus_allowed to cpu_active_mask */
2319 if (cpus_updated) {
2320 spin_lock_irq(&callback_lock);
2321 if (!on_dfl)
2322 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2323 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2324 spin_unlock_irq(&callback_lock);
2325 /* we don't mess with cpumasks of tasks in top_cpuset */
2328 /* synchronize mems_allowed to N_MEMORY */
2329 if (mems_updated) {
2330 spin_lock_irq(&callback_lock);
2331 if (!on_dfl)
2332 top_cpuset.mems_allowed = new_mems;
2333 top_cpuset.effective_mems = new_mems;
2334 spin_unlock_irq(&callback_lock);
2335 update_tasks_nodemask(&top_cpuset);
2338 mutex_unlock(&cpuset_mutex);
2340 /* if cpus or mems changed, we need to propagate to descendants */
2341 if (cpus_updated || mems_updated) {
2342 struct cpuset *cs;
2343 struct cgroup_subsys_state *pos_css;
2345 rcu_read_lock();
2346 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2347 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2348 continue;
2349 rcu_read_unlock();
2351 cpuset_hotplug_update_tasks(cs);
2353 rcu_read_lock();
2354 css_put(&cs->css);
2356 rcu_read_unlock();
2359 /* rebuild sched domains if cpus_allowed has changed */
2360 if (cpus_updated || force_rebuild) {
2361 force_rebuild = false;
2362 rebuild_sched_domains();
2366 void cpuset_update_active_cpus(bool cpu_online)
2369 * We're inside cpu hotplug critical region which usually nests
2370 * inside cgroup synchronization. Bounce actual hotplug processing
2371 * to a work item to avoid reverse locking order.
2373 * We still need to do partition_sched_domains() synchronously;
2374 * otherwise, the scheduler will get confused and put tasks to the
2375 * dead CPU. Fall back to the default single domain.
2376 * cpuset_hotplug_workfn() will rebuild it as necessary.
2378 partition_sched_domains(1, NULL, NULL);
2379 schedule_work(&cpuset_hotplug_work);
2382 void cpuset_wait_for_hotplug(void)
2384 flush_work(&cpuset_hotplug_work);
2388 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2389 * Call this routine anytime after node_states[N_MEMORY] changes.
2390 * See cpuset_update_active_cpus() for CPU hotplug handling.
2392 static int cpuset_track_online_nodes(struct notifier_block *self,
2393 unsigned long action, void *arg)
2395 schedule_work(&cpuset_hotplug_work);
2396 return NOTIFY_OK;
2399 static struct notifier_block cpuset_track_online_nodes_nb = {
2400 .notifier_call = cpuset_track_online_nodes,
2401 .priority = 10, /* ??! */
2405 * cpuset_init_smp - initialize cpus_allowed
2407 * Description: Finish top cpuset after cpu, node maps are initialized
2409 void __init cpuset_init_smp(void)
2411 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2412 top_cpuset.mems_allowed = node_states[N_MEMORY];
2413 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2415 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2416 top_cpuset.effective_mems = node_states[N_MEMORY];
2418 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2420 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2421 BUG_ON(!cpuset_migrate_mm_wq);
2425 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2426 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2427 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2429 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2430 * attached to the specified @tsk. Guaranteed to return some non-empty
2431 * subset of cpu_online_mask, even if this means going outside the
2432 * tasks cpuset.
2435 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2437 unsigned long flags;
2439 spin_lock_irqsave(&callback_lock, flags);
2440 rcu_read_lock();
2441 guarantee_online_cpus(task_cs(tsk), pmask);
2442 rcu_read_unlock();
2443 spin_unlock_irqrestore(&callback_lock, flags);
2446 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2448 rcu_read_lock();
2449 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2450 rcu_read_unlock();
2453 * We own tsk->cpus_allowed, nobody can change it under us.
2455 * But we used cs && cs->cpus_allowed lockless and thus can
2456 * race with cgroup_attach_task() or update_cpumask() and get
2457 * the wrong tsk->cpus_allowed. However, both cases imply the
2458 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2459 * which takes task_rq_lock().
2461 * If we are called after it dropped the lock we must see all
2462 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2463 * set any mask even if it is not right from task_cs() pov,
2464 * the pending set_cpus_allowed_ptr() will fix things.
2466 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2467 * if required.
2471 void __init cpuset_init_current_mems_allowed(void)
2473 nodes_setall(current->mems_allowed);
2477 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2478 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2480 * Description: Returns the nodemask_t mems_allowed of the cpuset
2481 * attached to the specified @tsk. Guaranteed to return some non-empty
2482 * subset of node_states[N_MEMORY], even if this means going outside the
2483 * tasks cpuset.
2486 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2488 nodemask_t mask;
2489 unsigned long flags;
2491 spin_lock_irqsave(&callback_lock, flags);
2492 rcu_read_lock();
2493 guarantee_online_mems(task_cs(tsk), &mask);
2494 rcu_read_unlock();
2495 spin_unlock_irqrestore(&callback_lock, flags);
2497 return mask;
2501 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2502 * @nodemask: the nodemask to be checked
2504 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2506 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2508 return nodes_intersects(*nodemask, current->mems_allowed);
2512 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2513 * mem_hardwall ancestor to the specified cpuset. Call holding
2514 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2515 * (an unusual configuration), then returns the root cpuset.
2517 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2519 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2520 cs = parent_cs(cs);
2521 return cs;
2525 * cpuset_node_allowed - Can we allocate on a memory node?
2526 * @node: is this an allowed node?
2527 * @gfp_mask: memory allocation flags
2529 * If we're in interrupt, yes, we can always allocate. If @node is set in
2530 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2531 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2532 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2533 * Otherwise, no.
2535 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2536 * and do not allow allocations outside the current tasks cpuset
2537 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2538 * GFP_KERNEL allocations are not so marked, so can escape to the
2539 * nearest enclosing hardwalled ancestor cpuset.
2541 * Scanning up parent cpusets requires callback_lock. The
2542 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2543 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2544 * current tasks mems_allowed came up empty on the first pass over
2545 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2546 * cpuset are short of memory, might require taking the callback_lock.
2548 * The first call here from mm/page_alloc:get_page_from_freelist()
2549 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2550 * so no allocation on a node outside the cpuset is allowed (unless
2551 * in interrupt, of course).
2553 * The second pass through get_page_from_freelist() doesn't even call
2554 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2555 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2556 * in alloc_flags. That logic and the checks below have the combined
2557 * affect that:
2558 * in_interrupt - any node ok (current task context irrelevant)
2559 * GFP_ATOMIC - any node ok
2560 * TIF_MEMDIE - any node ok
2561 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2562 * GFP_USER - only nodes in current tasks mems allowed ok.
2564 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2566 struct cpuset *cs; /* current cpuset ancestors */
2567 int allowed; /* is allocation in zone z allowed? */
2568 unsigned long flags;
2570 if (in_interrupt())
2571 return true;
2572 if (node_isset(node, current->mems_allowed))
2573 return true;
2575 * Allow tasks that have access to memory reserves because they have
2576 * been OOM killed to get memory anywhere.
2578 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2579 return true;
2580 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2581 return false;
2583 if (current->flags & PF_EXITING) /* Let dying task have memory */
2584 return true;
2586 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2587 spin_lock_irqsave(&callback_lock, flags);
2589 rcu_read_lock();
2590 cs = nearest_hardwall_ancestor(task_cs(current));
2591 allowed = node_isset(node, cs->mems_allowed);
2592 rcu_read_unlock();
2594 spin_unlock_irqrestore(&callback_lock, flags);
2595 return allowed;
2599 * cpuset_mem_spread_node() - On which node to begin search for a file page
2600 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2602 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2603 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2604 * and if the memory allocation used cpuset_mem_spread_node()
2605 * to determine on which node to start looking, as it will for
2606 * certain page cache or slab cache pages such as used for file
2607 * system buffers and inode caches, then instead of starting on the
2608 * local node to look for a free page, rather spread the starting
2609 * node around the tasks mems_allowed nodes.
2611 * We don't have to worry about the returned node being offline
2612 * because "it can't happen", and even if it did, it would be ok.
2614 * The routines calling guarantee_online_mems() are careful to
2615 * only set nodes in task->mems_allowed that are online. So it
2616 * should not be possible for the following code to return an
2617 * offline node. But if it did, that would be ok, as this routine
2618 * is not returning the node where the allocation must be, only
2619 * the node where the search should start. The zonelist passed to
2620 * __alloc_pages() will include all nodes. If the slab allocator
2621 * is passed an offline node, it will fall back to the local node.
2622 * See kmem_cache_alloc_node().
2625 static int cpuset_spread_node(int *rotor)
2627 return *rotor = next_node_in(*rotor, current->mems_allowed);
2630 int cpuset_mem_spread_node(void)
2632 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2633 current->cpuset_mem_spread_rotor =
2634 node_random(&current->mems_allowed);
2636 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2639 int cpuset_slab_spread_node(void)
2641 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2642 current->cpuset_slab_spread_rotor =
2643 node_random(&current->mems_allowed);
2645 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2648 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2651 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2652 * @tsk1: pointer to task_struct of some task.
2653 * @tsk2: pointer to task_struct of some other task.
2655 * Description: Return true if @tsk1's mems_allowed intersects the
2656 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2657 * one of the task's memory usage might impact the memory available
2658 * to the other.
2661 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2662 const struct task_struct *tsk2)
2664 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2668 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2670 * Description: Prints current's name, cpuset name, and cached copy of its
2671 * mems_allowed to the kernel log.
2673 void cpuset_print_current_mems_allowed(void)
2675 struct cgroup *cgrp;
2677 rcu_read_lock();
2679 cgrp = task_cs(current)->css.cgroup;
2680 pr_info("%s cpuset=", current->comm);
2681 pr_cont_cgroup_name(cgrp);
2682 pr_cont(" mems_allowed=%*pbl\n",
2683 nodemask_pr_args(&current->mems_allowed));
2685 rcu_read_unlock();
2689 * Collection of memory_pressure is suppressed unless
2690 * this flag is enabled by writing "1" to the special
2691 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2694 int cpuset_memory_pressure_enabled __read_mostly;
2697 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2699 * Keep a running average of the rate of synchronous (direct)
2700 * page reclaim efforts initiated by tasks in each cpuset.
2702 * This represents the rate at which some task in the cpuset
2703 * ran low on memory on all nodes it was allowed to use, and
2704 * had to enter the kernels page reclaim code in an effort to
2705 * create more free memory by tossing clean pages or swapping
2706 * or writing dirty pages.
2708 * Display to user space in the per-cpuset read-only file
2709 * "memory_pressure". Value displayed is an integer
2710 * representing the recent rate of entry into the synchronous
2711 * (direct) page reclaim by any task attached to the cpuset.
2714 void __cpuset_memory_pressure_bump(void)
2716 rcu_read_lock();
2717 fmeter_markevent(&task_cs(current)->fmeter);
2718 rcu_read_unlock();
2721 #ifdef CONFIG_PROC_PID_CPUSET
2723 * proc_cpuset_show()
2724 * - Print tasks cpuset path into seq_file.
2725 * - Used for /proc/<pid>/cpuset.
2726 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2727 * doesn't really matter if tsk->cpuset changes after we read it,
2728 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2729 * anyway.
2731 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2732 struct pid *pid, struct task_struct *tsk)
2734 char *buf;
2735 struct cgroup_subsys_state *css;
2736 int retval;
2738 retval = -ENOMEM;
2739 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2740 if (!buf)
2741 goto out;
2743 css = task_get_css(tsk, cpuset_cgrp_id);
2744 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2745 current->nsproxy->cgroup_ns);
2746 css_put(css);
2747 if (retval >= PATH_MAX)
2748 retval = -ENAMETOOLONG;
2749 if (retval < 0)
2750 goto out_free;
2751 seq_puts(m, buf);
2752 seq_putc(m, '\n');
2753 retval = 0;
2754 out_free:
2755 kfree(buf);
2756 out:
2757 return retval;
2759 #endif /* CONFIG_PROC_PID_CPUSET */
2761 /* Display task mems_allowed in /proc/<pid>/status file. */
2762 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2764 seq_printf(m, "Mems_allowed:\t%*pb\n",
2765 nodemask_pr_args(&task->mems_allowed));
2766 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2767 nodemask_pr_args(&task->mems_allowed));