ALSA: hda - Fix a wrong FIXUP for alc289 on Dell machines
[linux/fpc-iii.git] / kernel / relay.c
blob3623ad9b529c2ed3132203321b58a18ad37fdb2b
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
48 if (!buf)
49 return VM_FAULT_OOM;
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
57 return 0;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
69 * allocate an array of pointers of struct page
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page **array)
84 kvfree(array);
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
92 * Returns 0 if ok, negative on error
94 * Caller should already have grabbed mmap_sem.
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
101 if (!buf)
102 return -EBADF;
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
112 return 0;
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
125 void *mem;
126 unsigned int i, j, n_pages;
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
160 * Returns channel buffer if successful, %NULL otherwise.
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
164 struct rchan_buf *buf;
166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 return NULL;
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
194 * Should only be called from kref_put().
196 static void relay_destroy_channel(struct kref *kref)
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 free_percpu(chan->buf);
200 kfree(chan);
204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205 * @buf: the buffer struct
207 static void relay_destroy_buf(struct rchan_buf *buf)
209 struct rchan *chan = buf->chan;
210 unsigned int i;
212 if (likely(buf->start)) {
213 vunmap(buf->start);
214 for (i = 0; i < buf->page_count; i++)
215 __free_page(buf->page_array[i]);
216 relay_free_page_array(buf->page_array);
218 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219 kfree(buf->padding);
220 kfree(buf);
221 kref_put(&chan->kref, relay_destroy_channel);
225 * relay_remove_buf - remove a channel buffer
226 * @kref: target kernel reference that contains the relay buffer
228 * Removes the file from the filesystem, which also frees the
229 * rchan_buf_struct and the channel buffer. Should only be called from
230 * kref_put().
232 static void relay_remove_buf(struct kref *kref)
234 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235 relay_destroy_buf(buf);
239 * relay_buf_empty - boolean, is the channel buffer empty?
240 * @buf: channel buffer
242 * Returns 1 if the buffer is empty, 0 otherwise.
244 static int relay_buf_empty(struct rchan_buf *buf)
246 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
250 * relay_buf_full - boolean, is the channel buffer full?
251 * @buf: channel buffer
253 * Returns 1 if the buffer is full, 0 otherwise.
255 int relay_buf_full(struct rchan_buf *buf)
257 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
260 EXPORT_SYMBOL_GPL(relay_buf_full);
263 * High-level relay kernel API and associated functions.
267 * rchan_callback implementations defining default channel behavior. Used
268 * in place of corresponding NULL values in client callback struct.
272 * subbuf_start() default callback. Does nothing.
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275 void *subbuf,
276 void *prev_subbuf,
277 size_t prev_padding)
279 if (relay_buf_full(buf))
280 return 0;
282 return 1;
286 * buf_mapped() default callback. Does nothing.
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289 struct file *filp)
294 * buf_unmapped() default callback. Does nothing.
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297 struct file *filp)
302 * create_buf_file_create() default callback. Does nothing.
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305 struct dentry *parent,
306 umode_t mode,
307 struct rchan_buf *buf,
308 int *is_global)
310 return NULL;
314 * remove_buf_file() default callback. Does nothing.
316 static int remove_buf_file_default_callback(struct dentry *dentry)
318 return -EINVAL;
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323 .subbuf_start = subbuf_start_default_callback,
324 .buf_mapped = buf_mapped_default_callback,
325 .buf_unmapped = buf_unmapped_default_callback,
326 .create_buf_file = create_buf_file_default_callback,
327 .remove_buf_file = remove_buf_file_default_callback,
331 * wakeup_readers - wake up readers waiting on a channel
332 * @work: contains the channel buffer
334 * This is the function used to defer reader waking
336 static void wakeup_readers(struct irq_work *work)
338 struct rchan_buf *buf;
340 buf = container_of(work, struct rchan_buf, wakeup_work);
341 wake_up_interruptible(&buf->read_wait);
345 * __relay_reset - reset a channel buffer
346 * @buf: the channel buffer
347 * @init: 1 if this is a first-time initialization
349 * See relay_reset() for description of effect.
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
353 size_t i;
355 if (init) {
356 init_waitqueue_head(&buf->read_wait);
357 kref_init(&buf->kref);
358 init_irq_work(&buf->wakeup_work, wakeup_readers);
359 } else {
360 irq_work_sync(&buf->wakeup_work);
363 buf->subbufs_produced = 0;
364 buf->subbufs_consumed = 0;
365 buf->bytes_consumed = 0;
366 buf->finalized = 0;
367 buf->data = buf->start;
368 buf->offset = 0;
370 for (i = 0; i < buf->chan->n_subbufs; i++)
371 buf->padding[i] = 0;
373 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 * relay_reset - reset the channel
378 * @chan: the channel
380 * This has the effect of erasing all data from all channel buffers
381 * and restarting the channel in its initial state. The buffers
382 * are not freed, so any mappings are still in effect.
384 * NOTE. Care should be taken that the channel isn't actually
385 * being used by anything when this call is made.
387 void relay_reset(struct rchan *chan)
389 struct rchan_buf *buf;
390 unsigned int i;
392 if (!chan)
393 return;
395 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396 __relay_reset(buf, 0);
397 return;
400 mutex_lock(&relay_channels_mutex);
401 for_each_possible_cpu(i)
402 if ((buf = *per_cpu_ptr(chan->buf, i)))
403 __relay_reset(buf, 0);
404 mutex_unlock(&relay_channels_mutex);
406 EXPORT_SYMBOL_GPL(relay_reset);
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409 struct dentry *dentry)
411 buf->dentry = dentry;
412 d_inode(buf->dentry)->i_size = buf->early_bytes;
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416 struct rchan_buf *buf,
417 unsigned int cpu)
419 struct dentry *dentry;
420 char *tmpname;
422 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423 if (!tmpname)
424 return NULL;
425 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
427 /* Create file in fs */
428 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429 S_IRUSR, buf,
430 &chan->is_global);
432 kfree(tmpname);
434 return dentry;
438 * relay_open_buf - create a new relay channel buffer
440 * used by relay_open() and CPU hotplug.
442 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
444 struct rchan_buf *buf = NULL;
445 struct dentry *dentry;
447 if (chan->is_global)
448 return *per_cpu_ptr(chan->buf, 0);
450 buf = relay_create_buf(chan);
451 if (!buf)
452 return NULL;
454 if (chan->has_base_filename) {
455 dentry = relay_create_buf_file(chan, buf, cpu);
456 if (!dentry)
457 goto free_buf;
458 relay_set_buf_dentry(buf, dentry);
459 } else {
460 /* Only retrieve global info, nothing more, nothing less */
461 dentry = chan->cb->create_buf_file(NULL, NULL,
462 S_IRUSR, buf,
463 &chan->is_global);
464 if (WARN_ON(dentry))
465 goto free_buf;
468 buf->cpu = cpu;
469 __relay_reset(buf, 1);
471 if(chan->is_global) {
472 *per_cpu_ptr(chan->buf, 0) = buf;
473 buf->cpu = 0;
476 return buf;
478 free_buf:
479 relay_destroy_buf(buf);
480 return NULL;
484 * relay_close_buf - close a channel buffer
485 * @buf: channel buffer
487 * Marks the buffer finalized and restores the default callbacks.
488 * The channel buffer and channel buffer data structure are then freed
489 * automatically when the last reference is given up.
491 static void relay_close_buf(struct rchan_buf *buf)
493 buf->finalized = 1;
494 irq_work_sync(&buf->wakeup_work);
495 buf->chan->cb->remove_buf_file(buf->dentry);
496 kref_put(&buf->kref, relay_remove_buf);
499 static void setup_callbacks(struct rchan *chan,
500 struct rchan_callbacks *cb)
502 if (!cb) {
503 chan->cb = &default_channel_callbacks;
504 return;
507 if (!cb->subbuf_start)
508 cb->subbuf_start = subbuf_start_default_callback;
509 if (!cb->buf_mapped)
510 cb->buf_mapped = buf_mapped_default_callback;
511 if (!cb->buf_unmapped)
512 cb->buf_unmapped = buf_unmapped_default_callback;
513 if (!cb->create_buf_file)
514 cb->create_buf_file = create_buf_file_default_callback;
515 if (!cb->remove_buf_file)
516 cb->remove_buf_file = remove_buf_file_default_callback;
517 chan->cb = cb;
520 int relay_prepare_cpu(unsigned int cpu)
522 struct rchan *chan;
523 struct rchan_buf *buf;
525 mutex_lock(&relay_channels_mutex);
526 list_for_each_entry(chan, &relay_channels, list) {
527 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
528 continue;
529 buf = relay_open_buf(chan, cpu);
530 if (!buf) {
531 pr_err("relay: cpu %d buffer creation failed\n", cpu);
532 mutex_unlock(&relay_channels_mutex);
533 return -ENOMEM;
535 *per_cpu_ptr(chan->buf, cpu) = buf;
537 mutex_unlock(&relay_channels_mutex);
538 return 0;
542 * relay_open - create a new relay channel
543 * @base_filename: base name of files to create, %NULL for buffering only
544 * @parent: dentry of parent directory, %NULL for root directory or buffer
545 * @subbuf_size: size of sub-buffers
546 * @n_subbufs: number of sub-buffers
547 * @cb: client callback functions
548 * @private_data: user-defined data
550 * Returns channel pointer if successful, %NULL otherwise.
552 * Creates a channel buffer for each cpu using the sizes and
553 * attributes specified. The created channel buffer files
554 * will be named base_filename0...base_filenameN-1. File
555 * permissions will be %S_IRUSR.
557 * If opening a buffer (@parent = NULL) that you later wish to register
558 * in a filesystem, call relay_late_setup_files() once the @parent dentry
559 * is available.
561 struct rchan *relay_open(const char *base_filename,
562 struct dentry *parent,
563 size_t subbuf_size,
564 size_t n_subbufs,
565 struct rchan_callbacks *cb,
566 void *private_data)
568 unsigned int i;
569 struct rchan *chan;
570 struct rchan_buf *buf;
572 if (!(subbuf_size && n_subbufs))
573 return NULL;
574 if (subbuf_size > UINT_MAX / n_subbufs)
575 return NULL;
577 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
578 if (!chan)
579 return NULL;
581 chan->buf = alloc_percpu(struct rchan_buf *);
582 if (!chan->buf) {
583 kfree(chan);
584 return NULL;
587 chan->version = RELAYFS_CHANNEL_VERSION;
588 chan->n_subbufs = n_subbufs;
589 chan->subbuf_size = subbuf_size;
590 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
591 chan->parent = parent;
592 chan->private_data = private_data;
593 if (base_filename) {
594 chan->has_base_filename = 1;
595 strlcpy(chan->base_filename, base_filename, NAME_MAX);
597 setup_callbacks(chan, cb);
598 kref_init(&chan->kref);
600 mutex_lock(&relay_channels_mutex);
601 for_each_online_cpu(i) {
602 buf = relay_open_buf(chan, i);
603 if (!buf)
604 goto free_bufs;
605 *per_cpu_ptr(chan->buf, i) = buf;
607 list_add(&chan->list, &relay_channels);
608 mutex_unlock(&relay_channels_mutex);
610 return chan;
612 free_bufs:
613 for_each_possible_cpu(i) {
614 if ((buf = *per_cpu_ptr(chan->buf, i)))
615 relay_close_buf(buf);
618 kref_put(&chan->kref, relay_destroy_channel);
619 mutex_unlock(&relay_channels_mutex);
620 return NULL;
622 EXPORT_SYMBOL_GPL(relay_open);
624 struct rchan_percpu_buf_dispatcher {
625 struct rchan_buf *buf;
626 struct dentry *dentry;
629 /* Called in atomic context. */
630 static void __relay_set_buf_dentry(void *info)
632 struct rchan_percpu_buf_dispatcher *p = info;
634 relay_set_buf_dentry(p->buf, p->dentry);
638 * relay_late_setup_files - triggers file creation
639 * @chan: channel to operate on
640 * @base_filename: base name of files to create
641 * @parent: dentry of parent directory, %NULL for root directory
643 * Returns 0 if successful, non-zero otherwise.
645 * Use to setup files for a previously buffer-only channel created
646 * by relay_open() with a NULL parent dentry.
648 * For example, this is useful for perfomring early tracing in kernel,
649 * before VFS is up and then exposing the early results once the dentry
650 * is available.
652 int relay_late_setup_files(struct rchan *chan,
653 const char *base_filename,
654 struct dentry *parent)
656 int err = 0;
657 unsigned int i, curr_cpu;
658 unsigned long flags;
659 struct dentry *dentry;
660 struct rchan_buf *buf;
661 struct rchan_percpu_buf_dispatcher disp;
663 if (!chan || !base_filename)
664 return -EINVAL;
666 strlcpy(chan->base_filename, base_filename, NAME_MAX);
668 mutex_lock(&relay_channels_mutex);
669 /* Is chan already set up? */
670 if (unlikely(chan->has_base_filename)) {
671 mutex_unlock(&relay_channels_mutex);
672 return -EEXIST;
674 chan->has_base_filename = 1;
675 chan->parent = parent;
677 if (chan->is_global) {
678 err = -EINVAL;
679 buf = *per_cpu_ptr(chan->buf, 0);
680 if (!WARN_ON_ONCE(!buf)) {
681 dentry = relay_create_buf_file(chan, buf, 0);
682 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
683 relay_set_buf_dentry(buf, dentry);
684 err = 0;
687 mutex_unlock(&relay_channels_mutex);
688 return err;
691 curr_cpu = get_cpu();
693 * The CPU hotplug notifier ran before us and created buffers with
694 * no files associated. So it's safe to call relay_setup_buf_file()
695 * on all currently online CPUs.
697 for_each_online_cpu(i) {
698 buf = *per_cpu_ptr(chan->buf, i);
699 if (unlikely(!buf)) {
700 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
701 err = -EINVAL;
702 break;
705 dentry = relay_create_buf_file(chan, buf, i);
706 if (unlikely(!dentry)) {
707 err = -EINVAL;
708 break;
711 if (curr_cpu == i) {
712 local_irq_save(flags);
713 relay_set_buf_dentry(buf, dentry);
714 local_irq_restore(flags);
715 } else {
716 disp.buf = buf;
717 disp.dentry = dentry;
718 smp_mb();
719 /* relay_channels_mutex must be held, so wait. */
720 err = smp_call_function_single(i,
721 __relay_set_buf_dentry,
722 &disp, 1);
724 if (unlikely(err))
725 break;
727 put_cpu();
728 mutex_unlock(&relay_channels_mutex);
730 return err;
732 EXPORT_SYMBOL_GPL(relay_late_setup_files);
735 * relay_switch_subbuf - switch to a new sub-buffer
736 * @buf: channel buffer
737 * @length: size of current event
739 * Returns either the length passed in or 0 if full.
741 * Performs sub-buffer-switch tasks such as invoking callbacks,
742 * updating padding counts, waking up readers, etc.
744 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
746 void *old, *new;
747 size_t old_subbuf, new_subbuf;
749 if (unlikely(length > buf->chan->subbuf_size))
750 goto toobig;
752 if (buf->offset != buf->chan->subbuf_size + 1) {
753 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
754 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
755 buf->padding[old_subbuf] = buf->prev_padding;
756 buf->subbufs_produced++;
757 if (buf->dentry)
758 d_inode(buf->dentry)->i_size +=
759 buf->chan->subbuf_size -
760 buf->padding[old_subbuf];
761 else
762 buf->early_bytes += buf->chan->subbuf_size -
763 buf->padding[old_subbuf];
764 smp_mb();
765 if (waitqueue_active(&buf->read_wait)) {
767 * Calling wake_up_interruptible() from here
768 * will deadlock if we happen to be logging
769 * from the scheduler (trying to re-grab
770 * rq->lock), so defer it.
772 irq_work_queue(&buf->wakeup_work);
776 old = buf->data;
777 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
778 new = buf->start + new_subbuf * buf->chan->subbuf_size;
779 buf->offset = 0;
780 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
781 buf->offset = buf->chan->subbuf_size + 1;
782 return 0;
784 buf->data = new;
785 buf->padding[new_subbuf] = 0;
787 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
788 goto toobig;
790 return length;
792 toobig:
793 buf->chan->last_toobig = length;
794 return 0;
796 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
799 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
800 * @chan: the channel
801 * @cpu: the cpu associated with the channel buffer to update
802 * @subbufs_consumed: number of sub-buffers to add to current buf's count
804 * Adds to the channel buffer's consumed sub-buffer count.
805 * subbufs_consumed should be the number of sub-buffers newly consumed,
806 * not the total consumed.
808 * NOTE. Kernel clients don't need to call this function if the channel
809 * mode is 'overwrite'.
811 void relay_subbufs_consumed(struct rchan *chan,
812 unsigned int cpu,
813 size_t subbufs_consumed)
815 struct rchan_buf *buf;
817 if (!chan || cpu >= NR_CPUS)
818 return;
820 buf = *per_cpu_ptr(chan->buf, cpu);
821 if (!buf || subbufs_consumed > chan->n_subbufs)
822 return;
824 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
825 buf->subbufs_consumed = buf->subbufs_produced;
826 else
827 buf->subbufs_consumed += subbufs_consumed;
829 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
832 * relay_close - close the channel
833 * @chan: the channel
835 * Closes all channel buffers and frees the channel.
837 void relay_close(struct rchan *chan)
839 struct rchan_buf *buf;
840 unsigned int i;
842 if (!chan)
843 return;
845 mutex_lock(&relay_channels_mutex);
846 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
847 relay_close_buf(buf);
848 else
849 for_each_possible_cpu(i)
850 if ((buf = *per_cpu_ptr(chan->buf, i)))
851 relay_close_buf(buf);
853 if (chan->last_toobig)
854 printk(KERN_WARNING "relay: one or more items not logged "
855 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
856 chan->last_toobig, chan->subbuf_size);
858 list_del(&chan->list);
859 kref_put(&chan->kref, relay_destroy_channel);
860 mutex_unlock(&relay_channels_mutex);
862 EXPORT_SYMBOL_GPL(relay_close);
865 * relay_flush - close the channel
866 * @chan: the channel
868 * Flushes all channel buffers, i.e. forces buffer switch.
870 void relay_flush(struct rchan *chan)
872 struct rchan_buf *buf;
873 unsigned int i;
875 if (!chan)
876 return;
878 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
879 relay_switch_subbuf(buf, 0);
880 return;
883 mutex_lock(&relay_channels_mutex);
884 for_each_possible_cpu(i)
885 if ((buf = *per_cpu_ptr(chan->buf, i)))
886 relay_switch_subbuf(buf, 0);
887 mutex_unlock(&relay_channels_mutex);
889 EXPORT_SYMBOL_GPL(relay_flush);
892 * relay_file_open - open file op for relay files
893 * @inode: the inode
894 * @filp: the file
896 * Increments the channel buffer refcount.
898 static int relay_file_open(struct inode *inode, struct file *filp)
900 struct rchan_buf *buf = inode->i_private;
901 kref_get(&buf->kref);
902 filp->private_data = buf;
904 return nonseekable_open(inode, filp);
908 * relay_file_mmap - mmap file op for relay files
909 * @filp: the file
910 * @vma: the vma describing what to map
912 * Calls upon relay_mmap_buf() to map the file into user space.
914 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
916 struct rchan_buf *buf = filp->private_data;
917 return relay_mmap_buf(buf, vma);
921 * relay_file_poll - poll file op for relay files
922 * @filp: the file
923 * @wait: poll table
925 * Poll implemention.
927 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
929 unsigned int mask = 0;
930 struct rchan_buf *buf = filp->private_data;
932 if (buf->finalized)
933 return POLLERR;
935 if (filp->f_mode & FMODE_READ) {
936 poll_wait(filp, &buf->read_wait, wait);
937 if (!relay_buf_empty(buf))
938 mask |= POLLIN | POLLRDNORM;
941 return mask;
945 * relay_file_release - release file op for relay files
946 * @inode: the inode
947 * @filp: the file
949 * Decrements the channel refcount, as the filesystem is
950 * no longer using it.
952 static int relay_file_release(struct inode *inode, struct file *filp)
954 struct rchan_buf *buf = filp->private_data;
955 kref_put(&buf->kref, relay_remove_buf);
957 return 0;
961 * relay_file_read_consume - update the consumed count for the buffer
963 static void relay_file_read_consume(struct rchan_buf *buf,
964 size_t read_pos,
965 size_t bytes_consumed)
967 size_t subbuf_size = buf->chan->subbuf_size;
968 size_t n_subbufs = buf->chan->n_subbufs;
969 size_t read_subbuf;
971 if (buf->subbufs_produced == buf->subbufs_consumed &&
972 buf->offset == buf->bytes_consumed)
973 return;
975 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
976 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
977 buf->bytes_consumed = 0;
980 buf->bytes_consumed += bytes_consumed;
981 if (!read_pos)
982 read_subbuf = buf->subbufs_consumed % n_subbufs;
983 else
984 read_subbuf = read_pos / buf->chan->subbuf_size;
985 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
986 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
987 (buf->offset == subbuf_size))
988 return;
989 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
990 buf->bytes_consumed = 0;
995 * relay_file_read_avail - boolean, are there unconsumed bytes available?
997 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
999 size_t subbuf_size = buf->chan->subbuf_size;
1000 size_t n_subbufs = buf->chan->n_subbufs;
1001 size_t produced = buf->subbufs_produced;
1002 size_t consumed = buf->subbufs_consumed;
1004 relay_file_read_consume(buf, read_pos, 0);
1006 consumed = buf->subbufs_consumed;
1008 if (unlikely(buf->offset > subbuf_size)) {
1009 if (produced == consumed)
1010 return 0;
1011 return 1;
1014 if (unlikely(produced - consumed >= n_subbufs)) {
1015 consumed = produced - n_subbufs + 1;
1016 buf->subbufs_consumed = consumed;
1017 buf->bytes_consumed = 0;
1020 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1021 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1023 if (consumed > produced)
1024 produced += n_subbufs * subbuf_size;
1026 if (consumed == produced) {
1027 if (buf->offset == subbuf_size &&
1028 buf->subbufs_produced > buf->subbufs_consumed)
1029 return 1;
1030 return 0;
1033 return 1;
1037 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1038 * @read_pos: file read position
1039 * @buf: relay channel buffer
1041 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1042 struct rchan_buf *buf)
1044 size_t padding, avail = 0;
1045 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1046 size_t subbuf_size = buf->chan->subbuf_size;
1048 write_subbuf = (buf->data - buf->start) / subbuf_size;
1049 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1050 read_subbuf = read_pos / subbuf_size;
1051 read_offset = read_pos % subbuf_size;
1052 padding = buf->padding[read_subbuf];
1054 if (read_subbuf == write_subbuf) {
1055 if (read_offset + padding < write_offset)
1056 avail = write_offset - (read_offset + padding);
1057 } else
1058 avail = (subbuf_size - padding) - read_offset;
1060 return avail;
1064 * relay_file_read_start_pos - find the first available byte to read
1065 * @read_pos: file read position
1066 * @buf: relay channel buffer
1068 * If the @read_pos is in the middle of padding, return the
1069 * position of the first actually available byte, otherwise
1070 * return the original value.
1072 static size_t relay_file_read_start_pos(size_t read_pos,
1073 struct rchan_buf *buf)
1075 size_t read_subbuf, padding, padding_start, padding_end;
1076 size_t subbuf_size = buf->chan->subbuf_size;
1077 size_t n_subbufs = buf->chan->n_subbufs;
1078 size_t consumed = buf->subbufs_consumed % n_subbufs;
1080 if (!read_pos)
1081 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1082 read_subbuf = read_pos / subbuf_size;
1083 padding = buf->padding[read_subbuf];
1084 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1085 padding_end = (read_subbuf + 1) * subbuf_size;
1086 if (read_pos >= padding_start && read_pos < padding_end) {
1087 read_subbuf = (read_subbuf + 1) % n_subbufs;
1088 read_pos = read_subbuf * subbuf_size;
1091 return read_pos;
1095 * relay_file_read_end_pos - return the new read position
1096 * @read_pos: file read position
1097 * @buf: relay channel buffer
1098 * @count: number of bytes to be read
1100 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1101 size_t read_pos,
1102 size_t count)
1104 size_t read_subbuf, padding, end_pos;
1105 size_t subbuf_size = buf->chan->subbuf_size;
1106 size_t n_subbufs = buf->chan->n_subbufs;
1108 read_subbuf = read_pos / subbuf_size;
1109 padding = buf->padding[read_subbuf];
1110 if (read_pos % subbuf_size + count + padding == subbuf_size)
1111 end_pos = (read_subbuf + 1) * subbuf_size;
1112 else
1113 end_pos = read_pos + count;
1114 if (end_pos >= subbuf_size * n_subbufs)
1115 end_pos = 0;
1117 return end_pos;
1120 static ssize_t relay_file_read(struct file *filp,
1121 char __user *buffer,
1122 size_t count,
1123 loff_t *ppos)
1125 struct rchan_buf *buf = filp->private_data;
1126 size_t read_start, avail;
1127 size_t written = 0;
1128 int ret;
1130 if (!count)
1131 return 0;
1133 inode_lock(file_inode(filp));
1134 do {
1135 void *from;
1137 if (!relay_file_read_avail(buf, *ppos))
1138 break;
1140 read_start = relay_file_read_start_pos(*ppos, buf);
1141 avail = relay_file_read_subbuf_avail(read_start, buf);
1142 if (!avail)
1143 break;
1145 avail = min(count, avail);
1146 from = buf->start + read_start;
1147 ret = avail;
1148 if (copy_to_user(buffer, from, avail))
1149 break;
1151 buffer += ret;
1152 written += ret;
1153 count -= ret;
1155 relay_file_read_consume(buf, read_start, ret);
1156 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1157 } while (count);
1158 inode_unlock(file_inode(filp));
1160 return written;
1163 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1165 rbuf->bytes_consumed += bytes_consumed;
1167 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1168 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1169 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1173 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1174 struct pipe_buffer *buf)
1176 struct rchan_buf *rbuf;
1178 rbuf = (struct rchan_buf *)page_private(buf->page);
1179 relay_consume_bytes(rbuf, buf->private);
1182 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1183 .can_merge = 0,
1184 .confirm = generic_pipe_buf_confirm,
1185 .release = relay_pipe_buf_release,
1186 .steal = generic_pipe_buf_steal,
1187 .get = generic_pipe_buf_get,
1190 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1195 * subbuf_splice_actor - splice up to one subbuf's worth of data
1197 static ssize_t subbuf_splice_actor(struct file *in,
1198 loff_t *ppos,
1199 struct pipe_inode_info *pipe,
1200 size_t len,
1201 unsigned int flags,
1202 int *nonpad_ret)
1204 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1205 struct rchan_buf *rbuf = in->private_data;
1206 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1207 uint64_t pos = (uint64_t) *ppos;
1208 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1209 size_t read_start = (size_t) do_div(pos, alloc_size);
1210 size_t read_subbuf = read_start / subbuf_size;
1211 size_t padding = rbuf->padding[read_subbuf];
1212 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1213 struct page *pages[PIPE_DEF_BUFFERS];
1214 struct partial_page partial[PIPE_DEF_BUFFERS];
1215 struct splice_pipe_desc spd = {
1216 .pages = pages,
1217 .nr_pages = 0,
1218 .nr_pages_max = PIPE_DEF_BUFFERS,
1219 .partial = partial,
1220 .flags = flags,
1221 .ops = &relay_pipe_buf_ops,
1222 .spd_release = relay_page_release,
1224 ssize_t ret;
1226 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1227 return 0;
1228 if (splice_grow_spd(pipe, &spd))
1229 return -ENOMEM;
1232 * Adjust read len, if longer than what is available
1234 if (len > (subbuf_size - read_start % subbuf_size))
1235 len = subbuf_size - read_start % subbuf_size;
1237 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1238 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1239 poff = read_start & ~PAGE_MASK;
1240 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1242 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1243 unsigned int this_len, this_end, private;
1244 unsigned int cur_pos = read_start + total_len;
1246 if (!len)
1247 break;
1249 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1250 private = this_len;
1252 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1253 spd.partial[spd.nr_pages].offset = poff;
1255 this_end = cur_pos + this_len;
1256 if (this_end >= nonpad_end) {
1257 this_len = nonpad_end - cur_pos;
1258 private = this_len + padding;
1260 spd.partial[spd.nr_pages].len = this_len;
1261 spd.partial[spd.nr_pages].private = private;
1263 len -= this_len;
1264 total_len += this_len;
1265 poff = 0;
1266 pidx = (pidx + 1) % subbuf_pages;
1268 if (this_end >= nonpad_end) {
1269 spd.nr_pages++;
1270 break;
1274 ret = 0;
1275 if (!spd.nr_pages)
1276 goto out;
1278 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1279 if (ret < 0 || ret < total_len)
1280 goto out;
1282 if (read_start + ret == nonpad_end)
1283 ret += padding;
1285 out:
1286 splice_shrink_spd(&spd);
1287 return ret;
1290 static ssize_t relay_file_splice_read(struct file *in,
1291 loff_t *ppos,
1292 struct pipe_inode_info *pipe,
1293 size_t len,
1294 unsigned int flags)
1296 ssize_t spliced;
1297 int ret;
1298 int nonpad_ret = 0;
1300 ret = 0;
1301 spliced = 0;
1303 while (len && !spliced) {
1304 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1305 if (ret < 0)
1306 break;
1307 else if (!ret) {
1308 if (flags & SPLICE_F_NONBLOCK)
1309 ret = -EAGAIN;
1310 break;
1313 *ppos += ret;
1314 if (ret > len)
1315 len = 0;
1316 else
1317 len -= ret;
1318 spliced += nonpad_ret;
1319 nonpad_ret = 0;
1322 if (spliced)
1323 return spliced;
1325 return ret;
1328 const struct file_operations relay_file_operations = {
1329 .open = relay_file_open,
1330 .poll = relay_file_poll,
1331 .mmap = relay_file_mmap,
1332 .read = relay_file_read,
1333 .llseek = no_llseek,
1334 .release = relay_file_release,
1335 .splice_read = relay_file_splice_read,
1337 EXPORT_SYMBOL_GPL(relay_file_operations);