4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
103 #include <trace/events/sched.h>
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
109 * Minimum number of threads to boot the kernel
111 #define MIN_THREADS 20
114 * Maximum number of threads
116 #define MAX_THREADS FUTEX_TID_MASK
119 * Protected counters by write_lock_irq(&tasklist_lock)
121 unsigned long total_forks
; /* Handle normal Linux uptimes. */
122 int nr_threads
; /* The idle threads do not count.. */
124 int max_threads
; /* tunable limit on nr_threads */
126 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
128 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
133 return lockdep_is_held(&tasklist_lock
);
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
138 int nr_processes(void)
143 for_each_possible_cpu(cpu
)
144 total
+= per_cpu(process_counts
, cpu
);
149 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache
*task_struct_cachep
;
156 static inline struct task_struct
*alloc_task_struct_node(int node
)
158 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
161 static inline void free_task_struct(struct task_struct
*tsk
)
163 kmem_cache_free(task_struct_cachep
, tsk
);
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171 * kmemcache based allocator.
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
175 #ifdef CONFIG_VMAP_STACK
177 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178 * flush. Try to minimize the number of calls by caching stacks.
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
183 static int free_vm_stack_cache(unsigned int cpu
)
185 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
188 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
189 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
194 vfree(vm_stack
->addr
);
195 cached_vm_stacks
[i
] = NULL
;
202 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
204 #ifdef CONFIG_VMAP_STACK
208 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
211 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
216 /* Clear stale pointers from reused stack. */
217 memset(s
->addr
, 0, THREAD_SIZE
);
219 tsk
->stack_vm_area
= s
;
220 tsk
->stack
= s
->addr
;
225 * Allocated stacks are cached and later reused by new threads,
226 * so memcg accounting is performed manually on assigning/releasing
227 * stacks to tasks. Drop __GFP_ACCOUNT.
229 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
230 VMALLOC_START
, VMALLOC_END
,
231 THREADINFO_GFP
& ~__GFP_ACCOUNT
,
233 0, node
, __builtin_return_address(0));
236 * We can't call find_vm_area() in interrupt context, and
237 * free_thread_stack() can be called in interrupt context,
238 * so cache the vm_struct.
241 tsk
->stack_vm_area
= find_vm_area(stack
);
246 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
249 return page
? page_address(page
) : NULL
;
253 static inline void free_thread_stack(struct task_struct
*tsk
)
255 #ifdef CONFIG_VMAP_STACK
256 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
261 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
262 mod_memcg_page_state(vm
->pages
[i
],
263 MEMCG_KERNEL_STACK_KB
,
264 -(int)(PAGE_SIZE
/ 1024));
266 memcg_kmem_uncharge(vm
->pages
[i
], 0);
269 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
270 if (this_cpu_cmpxchg(cached_stacks
[i
],
271 NULL
, tsk
->stack_vm_area
) != NULL
)
277 vfree_atomic(tsk
->stack
);
282 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
285 static struct kmem_cache
*thread_stack_cache
;
287 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
290 unsigned long *stack
;
291 stack
= kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
296 static void free_thread_stack(struct task_struct
*tsk
)
298 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
301 void thread_stack_cache_init(void)
303 thread_stack_cache
= kmem_cache_create_usercopy("thread_stack",
304 THREAD_SIZE
, THREAD_SIZE
, 0, 0,
306 BUG_ON(thread_stack_cache
== NULL
);
311 /* SLAB cache for signal_struct structures (tsk->signal) */
312 static struct kmem_cache
*signal_cachep
;
314 /* SLAB cache for sighand_struct structures (tsk->sighand) */
315 struct kmem_cache
*sighand_cachep
;
317 /* SLAB cache for files_struct structures (tsk->files) */
318 struct kmem_cache
*files_cachep
;
320 /* SLAB cache for fs_struct structures (tsk->fs) */
321 struct kmem_cache
*fs_cachep
;
323 /* SLAB cache for vm_area_struct structures */
324 static struct kmem_cache
*vm_area_cachep
;
326 /* SLAB cache for mm_struct structures (tsk->mm) */
327 static struct kmem_cache
*mm_cachep
;
329 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*mm
)
331 struct vm_area_struct
*vma
;
333 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
339 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*orig
)
341 struct vm_area_struct
*new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
345 INIT_LIST_HEAD(&new->anon_vma_chain
);
350 void vm_area_free(struct vm_area_struct
*vma
)
352 kmem_cache_free(vm_area_cachep
, vma
);
355 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
357 void *stack
= task_stack_page(tsk
);
358 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
360 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
365 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
367 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
368 mod_zone_page_state(page_zone(vm
->pages
[i
]),
370 PAGE_SIZE
/ 1024 * account
);
374 * All stack pages are in the same zone and belong to the
377 struct page
*first_page
= virt_to_page(stack
);
379 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
380 THREAD_SIZE
/ 1024 * account
);
382 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
383 account
* (THREAD_SIZE
/ 1024));
387 static int memcg_charge_kernel_stack(struct task_struct
*tsk
)
389 #ifdef CONFIG_VMAP_STACK
390 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
396 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
398 * If memcg_kmem_charge() fails, page->mem_cgroup
399 * pointer is NULL, and both memcg_kmem_uncharge()
400 * and mod_memcg_page_state() in free_thread_stack()
401 * will ignore this page. So it's safe.
403 ret
= memcg_kmem_charge(vm
->pages
[i
], GFP_KERNEL
, 0);
407 mod_memcg_page_state(vm
->pages
[i
],
408 MEMCG_KERNEL_STACK_KB
,
416 static void release_task_stack(struct task_struct
*tsk
)
418 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
419 return; /* Better to leak the stack than to free prematurely */
421 account_kernel_stack(tsk
, -1);
422 free_thread_stack(tsk
);
424 #ifdef CONFIG_VMAP_STACK
425 tsk
->stack_vm_area
= NULL
;
429 #ifdef CONFIG_THREAD_INFO_IN_TASK
430 void put_task_stack(struct task_struct
*tsk
)
432 if (atomic_dec_and_test(&tsk
->stack_refcount
))
433 release_task_stack(tsk
);
437 void free_task(struct task_struct
*tsk
)
439 #ifndef CONFIG_THREAD_INFO_IN_TASK
441 * The task is finally done with both the stack and thread_info,
444 release_task_stack(tsk
);
447 * If the task had a separate stack allocation, it should be gone
450 WARN_ON_ONCE(atomic_read(&tsk
->stack_refcount
) != 0);
452 rt_mutex_debug_task_free(tsk
);
453 ftrace_graph_exit_task(tsk
);
454 put_seccomp_filter(tsk
);
455 arch_release_task_struct(tsk
);
456 if (tsk
->flags
& PF_KTHREAD
)
457 free_kthread_struct(tsk
);
458 free_task_struct(tsk
);
460 EXPORT_SYMBOL(free_task
);
463 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
464 struct mm_struct
*oldmm
)
466 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
467 struct rb_node
**rb_link
, *rb_parent
;
469 unsigned long charge
;
472 uprobe_start_dup_mmap();
473 if (down_write_killable(&oldmm
->mmap_sem
)) {
475 goto fail_uprobe_end
;
477 flush_cache_dup_mm(oldmm
);
478 uprobe_dup_mmap(oldmm
, mm
);
480 * Not linked in yet - no deadlock potential:
482 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
484 /* No ordering required: file already has been exposed. */
485 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
487 mm
->total_vm
= oldmm
->total_vm
;
488 mm
->data_vm
= oldmm
->data_vm
;
489 mm
->exec_vm
= oldmm
->exec_vm
;
490 mm
->stack_vm
= oldmm
->stack_vm
;
492 rb_link
= &mm
->mm_rb
.rb_node
;
495 retval
= ksm_fork(mm
, oldmm
);
498 retval
= khugepaged_fork(mm
, oldmm
);
503 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
506 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
507 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
512 * Don't duplicate many vmas if we've been oom-killed (for
515 if (fatal_signal_pending(current
)) {
519 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
520 unsigned long len
= vma_pages(mpnt
);
522 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
526 tmp
= vm_area_dup(mpnt
);
529 retval
= vma_dup_policy(mpnt
, tmp
);
531 goto fail_nomem_policy
;
533 retval
= dup_userfaultfd(tmp
, &uf
);
535 goto fail_nomem_anon_vma_fork
;
536 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
537 /* VM_WIPEONFORK gets a clean slate in the child. */
538 tmp
->anon_vma
= NULL
;
539 if (anon_vma_prepare(tmp
))
540 goto fail_nomem_anon_vma_fork
;
541 } else if (anon_vma_fork(tmp
, mpnt
))
542 goto fail_nomem_anon_vma_fork
;
543 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
544 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
547 struct inode
*inode
= file_inode(file
);
548 struct address_space
*mapping
= file
->f_mapping
;
551 if (tmp
->vm_flags
& VM_DENYWRITE
)
552 atomic_dec(&inode
->i_writecount
);
553 i_mmap_lock_write(mapping
);
554 if (tmp
->vm_flags
& VM_SHARED
)
555 atomic_inc(&mapping
->i_mmap_writable
);
556 flush_dcache_mmap_lock(mapping
);
557 /* insert tmp into the share list, just after mpnt */
558 vma_interval_tree_insert_after(tmp
, mpnt
,
560 flush_dcache_mmap_unlock(mapping
);
561 i_mmap_unlock_write(mapping
);
565 * Clear hugetlb-related page reserves for children. This only
566 * affects MAP_PRIVATE mappings. Faults generated by the child
567 * are not guaranteed to succeed, even if read-only
569 if (is_vm_hugetlb_page(tmp
))
570 reset_vma_resv_huge_pages(tmp
);
573 * Link in the new vma and copy the page table entries.
576 pprev
= &tmp
->vm_next
;
580 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
581 rb_link
= &tmp
->vm_rb
.rb_right
;
582 rb_parent
= &tmp
->vm_rb
;
585 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
586 retval
= copy_page_range(mm
, oldmm
, mpnt
);
588 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
589 tmp
->vm_ops
->open(tmp
);
594 /* a new mm has just been created */
595 retval
= arch_dup_mmap(oldmm
, mm
);
597 up_write(&mm
->mmap_sem
);
599 up_write(&oldmm
->mmap_sem
);
600 dup_userfaultfd_complete(&uf
);
602 uprobe_end_dup_mmap();
604 fail_nomem_anon_vma_fork
:
605 mpol_put(vma_policy(tmp
));
610 vm_unacct_memory(charge
);
614 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
616 mm
->pgd
= pgd_alloc(mm
);
617 if (unlikely(!mm
->pgd
))
622 static inline void mm_free_pgd(struct mm_struct
*mm
)
624 pgd_free(mm
, mm
->pgd
);
627 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
629 down_write(&oldmm
->mmap_sem
);
630 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
631 up_write(&oldmm
->mmap_sem
);
634 #define mm_alloc_pgd(mm) (0)
635 #define mm_free_pgd(mm)
636 #endif /* CONFIG_MMU */
638 static void check_mm(struct mm_struct
*mm
)
642 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
643 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
646 printk(KERN_ALERT
"BUG: Bad rss-counter state "
647 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
650 if (mm_pgtables_bytes(mm
))
651 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
652 mm_pgtables_bytes(mm
));
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
659 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
660 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
663 * Called when the last reference to the mm
664 * is dropped: either by a lazy thread or by
665 * mmput. Free the page directory and the mm.
667 void __mmdrop(struct mm_struct
*mm
)
669 BUG_ON(mm
== &init_mm
);
670 WARN_ON_ONCE(mm
== current
->mm
);
671 WARN_ON_ONCE(mm
== current
->active_mm
);
675 mmu_notifier_mm_destroy(mm
);
677 put_user_ns(mm
->user_ns
);
680 EXPORT_SYMBOL_GPL(__mmdrop
);
682 static void mmdrop_async_fn(struct work_struct
*work
)
684 struct mm_struct
*mm
;
686 mm
= container_of(work
, struct mm_struct
, async_put_work
);
690 static void mmdrop_async(struct mm_struct
*mm
)
692 if (unlikely(atomic_dec_and_test(&mm
->mm_count
))) {
693 INIT_WORK(&mm
->async_put_work
, mmdrop_async_fn
);
694 schedule_work(&mm
->async_put_work
);
698 static inline void free_signal_struct(struct signal_struct
*sig
)
700 taskstats_tgid_free(sig
);
701 sched_autogroup_exit(sig
);
703 * __mmdrop is not safe to call from softirq context on x86 due to
704 * pgd_dtor so postpone it to the async context
707 mmdrop_async(sig
->oom_mm
);
708 kmem_cache_free(signal_cachep
, sig
);
711 static inline void put_signal_struct(struct signal_struct
*sig
)
713 if (atomic_dec_and_test(&sig
->sigcnt
))
714 free_signal_struct(sig
);
717 void __put_task_struct(struct task_struct
*tsk
)
719 WARN_ON(!tsk
->exit_state
);
720 WARN_ON(atomic_read(&tsk
->usage
));
721 WARN_ON(tsk
== current
);
725 security_task_free(tsk
);
727 delayacct_tsk_free(tsk
);
728 put_signal_struct(tsk
->signal
);
730 if (!profile_handoff_task(tsk
))
733 EXPORT_SYMBOL_GPL(__put_task_struct
);
735 void __init __weak
arch_task_cache_init(void) { }
740 static void set_max_threads(unsigned int max_threads_suggested
)
743 unsigned long nr_pages
= totalram_pages();
746 * The number of threads shall be limited such that the thread
747 * structures may only consume a small part of the available memory.
749 if (fls64(nr_pages
) + fls64(PAGE_SIZE
) > 64)
750 threads
= MAX_THREADS
;
752 threads
= div64_u64((u64
) nr_pages
* (u64
) PAGE_SIZE
,
753 (u64
) THREAD_SIZE
* 8UL);
755 if (threads
> max_threads_suggested
)
756 threads
= max_threads_suggested
;
758 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
761 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
762 /* Initialized by the architecture: */
763 int arch_task_struct_size __read_mostly
;
766 static void task_struct_whitelist(unsigned long *offset
, unsigned long *size
)
768 /* Fetch thread_struct whitelist for the architecture. */
769 arch_thread_struct_whitelist(offset
, size
);
772 * Handle zero-sized whitelist or empty thread_struct, otherwise
773 * adjust offset to position of thread_struct in task_struct.
775 if (unlikely(*size
== 0))
778 *offset
+= offsetof(struct task_struct
, thread
);
781 void __init
fork_init(void)
784 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
785 #ifndef ARCH_MIN_TASKALIGN
786 #define ARCH_MIN_TASKALIGN 0
788 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
789 unsigned long useroffset
, usersize
;
791 /* create a slab on which task_structs can be allocated */
792 task_struct_whitelist(&useroffset
, &usersize
);
793 task_struct_cachep
= kmem_cache_create_usercopy("task_struct",
794 arch_task_struct_size
, align
,
795 SLAB_PANIC
|SLAB_ACCOUNT
,
796 useroffset
, usersize
, NULL
);
799 /* do the arch specific task caches init */
800 arch_task_cache_init();
802 set_max_threads(MAX_THREADS
);
804 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
805 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
806 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
807 init_task
.signal
->rlim
[RLIMIT_NPROC
];
809 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
810 init_user_ns
.ucount_max
[i
] = max_threads
/2;
813 #ifdef CONFIG_VMAP_STACK
814 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
815 NULL
, free_vm_stack_cache
);
818 lockdep_init_task(&init_task
);
821 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
822 struct task_struct
*src
)
828 void set_task_stack_end_magic(struct task_struct
*tsk
)
830 unsigned long *stackend
;
832 stackend
= end_of_stack(tsk
);
833 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
836 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
838 struct task_struct
*tsk
;
839 unsigned long *stack
;
840 struct vm_struct
*stack_vm_area __maybe_unused
;
843 if (node
== NUMA_NO_NODE
)
844 node
= tsk_fork_get_node(orig
);
845 tsk
= alloc_task_struct_node(node
);
849 stack
= alloc_thread_stack_node(tsk
, node
);
853 if (memcg_charge_kernel_stack(tsk
))
856 stack_vm_area
= task_stack_vm_area(tsk
);
858 err
= arch_dup_task_struct(tsk
, orig
);
861 * arch_dup_task_struct() clobbers the stack-related fields. Make
862 * sure they're properly initialized before using any stack-related
866 #ifdef CONFIG_VMAP_STACK
867 tsk
->stack_vm_area
= stack_vm_area
;
869 #ifdef CONFIG_THREAD_INFO_IN_TASK
870 atomic_set(&tsk
->stack_refcount
, 1);
876 #ifdef CONFIG_SECCOMP
878 * We must handle setting up seccomp filters once we're under
879 * the sighand lock in case orig has changed between now and
880 * then. Until then, filter must be NULL to avoid messing up
881 * the usage counts on the error path calling free_task.
883 tsk
->seccomp
.filter
= NULL
;
886 setup_thread_stack(tsk
, orig
);
887 clear_user_return_notifier(tsk
);
888 clear_tsk_need_resched(tsk
);
889 set_task_stack_end_magic(tsk
);
891 #ifdef CONFIG_STACKPROTECTOR
892 tsk
->stack_canary
= get_random_canary();
896 * One for us, one for whoever does the "release_task()" (usually
899 atomic_set(&tsk
->usage
, 2);
900 #ifdef CONFIG_BLK_DEV_IO_TRACE
903 tsk
->splice_pipe
= NULL
;
904 tsk
->task_frag
.page
= NULL
;
905 tsk
->wake_q
.next
= NULL
;
907 account_kernel_stack(tsk
, 1);
911 #ifdef CONFIG_FAULT_INJECTION
915 #ifdef CONFIG_BLK_CGROUP
916 tsk
->throttle_queue
= NULL
;
917 tsk
->use_memdelay
= 0;
921 tsk
->active_memcg
= NULL
;
926 free_thread_stack(tsk
);
928 free_task_struct(tsk
);
932 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
934 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
936 static int __init
coredump_filter_setup(char *s
)
938 default_dump_filter
=
939 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
940 MMF_DUMP_FILTER_MASK
;
944 __setup("coredump_filter=", coredump_filter_setup
);
946 #include <linux/init_task.h>
948 static void mm_init_aio(struct mm_struct
*mm
)
951 spin_lock_init(&mm
->ioctx_lock
);
952 mm
->ioctx_table
= NULL
;
956 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
963 static void mm_init_uprobes_state(struct mm_struct
*mm
)
965 #ifdef CONFIG_UPROBES
966 mm
->uprobes_state
.xol_area
= NULL
;
970 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
971 struct user_namespace
*user_ns
)
975 mm
->vmacache_seqnum
= 0;
976 atomic_set(&mm
->mm_users
, 1);
977 atomic_set(&mm
->mm_count
, 1);
978 init_rwsem(&mm
->mmap_sem
);
979 INIT_LIST_HEAD(&mm
->mmlist
);
980 mm
->core_state
= NULL
;
981 mm_pgtables_bytes_init(mm
);
985 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
986 spin_lock_init(&mm
->page_table_lock
);
987 spin_lock_init(&mm
->arg_lock
);
990 mm_init_owner(mm
, p
);
991 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
992 mmu_notifier_mm_init(mm
);
994 init_tlb_flush_pending(mm
);
995 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
996 mm
->pmd_huge_pte
= NULL
;
998 mm_init_uprobes_state(mm
);
1001 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
1002 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
1004 mm
->flags
= default_dump_filter
;
1008 if (mm_alloc_pgd(mm
))
1011 if (init_new_context(p
, mm
))
1012 goto fail_nocontext
;
1014 mm
->user_ns
= get_user_ns(user_ns
);
1025 * Allocate and initialize an mm_struct.
1027 struct mm_struct
*mm_alloc(void)
1029 struct mm_struct
*mm
;
1035 memset(mm
, 0, sizeof(*mm
));
1036 return mm_init(mm
, current
, current_user_ns());
1039 static inline void __mmput(struct mm_struct
*mm
)
1041 VM_BUG_ON(atomic_read(&mm
->mm_users
));
1043 uprobe_clear_state(mm
);
1046 khugepaged_exit(mm
); /* must run before exit_mmap */
1048 mm_put_huge_zero_page(mm
);
1049 set_mm_exe_file(mm
, NULL
);
1050 if (!list_empty(&mm
->mmlist
)) {
1051 spin_lock(&mmlist_lock
);
1052 list_del(&mm
->mmlist
);
1053 spin_unlock(&mmlist_lock
);
1056 module_put(mm
->binfmt
->module
);
1061 * Decrement the use count and release all resources for an mm.
1063 void mmput(struct mm_struct
*mm
)
1067 if (atomic_dec_and_test(&mm
->mm_users
))
1070 EXPORT_SYMBOL_GPL(mmput
);
1073 static void mmput_async_fn(struct work_struct
*work
)
1075 struct mm_struct
*mm
= container_of(work
, struct mm_struct
,
1081 void mmput_async(struct mm_struct
*mm
)
1083 if (atomic_dec_and_test(&mm
->mm_users
)) {
1084 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
1085 schedule_work(&mm
->async_put_work
);
1091 * set_mm_exe_file - change a reference to the mm's executable file
1093 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1095 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1096 * invocations: in mmput() nobody alive left, in execve task is single
1097 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1098 * mm->exe_file, but does so without using set_mm_exe_file() in order
1099 * to do avoid the need for any locks.
1101 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
1103 struct file
*old_exe_file
;
1106 * It is safe to dereference the exe_file without RCU as
1107 * this function is only called if nobody else can access
1108 * this mm -- see comment above for justification.
1110 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
1113 get_file(new_exe_file
);
1114 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
1120 * get_mm_exe_file - acquire a reference to the mm's executable file
1122 * Returns %NULL if mm has no associated executable file.
1123 * User must release file via fput().
1125 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
1127 struct file
*exe_file
;
1130 exe_file
= rcu_dereference(mm
->exe_file
);
1131 if (exe_file
&& !get_file_rcu(exe_file
))
1136 EXPORT_SYMBOL(get_mm_exe_file
);
1139 * get_task_exe_file - acquire a reference to the task's executable file
1141 * Returns %NULL if task's mm (if any) has no associated executable file or
1142 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1143 * User must release file via fput().
1145 struct file
*get_task_exe_file(struct task_struct
*task
)
1147 struct file
*exe_file
= NULL
;
1148 struct mm_struct
*mm
;
1153 if (!(task
->flags
& PF_KTHREAD
))
1154 exe_file
= get_mm_exe_file(mm
);
1159 EXPORT_SYMBOL(get_task_exe_file
);
1162 * get_task_mm - acquire a reference to the task's mm
1164 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1165 * this kernel workthread has transiently adopted a user mm with use_mm,
1166 * to do its AIO) is not set and if so returns a reference to it, after
1167 * bumping up the use count. User must release the mm via mmput()
1168 * after use. Typically used by /proc and ptrace.
1170 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1172 struct mm_struct
*mm
;
1177 if (task
->flags
& PF_KTHREAD
)
1185 EXPORT_SYMBOL_GPL(get_task_mm
);
1187 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1189 struct mm_struct
*mm
;
1192 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1194 return ERR_PTR(err
);
1196 mm
= get_task_mm(task
);
1197 if (mm
&& mm
!= current
->mm
&&
1198 !ptrace_may_access(task
, mode
)) {
1200 mm
= ERR_PTR(-EACCES
);
1202 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1207 static void complete_vfork_done(struct task_struct
*tsk
)
1209 struct completion
*vfork
;
1212 vfork
= tsk
->vfork_done
;
1213 if (likely(vfork
)) {
1214 tsk
->vfork_done
= NULL
;
1220 static int wait_for_vfork_done(struct task_struct
*child
,
1221 struct completion
*vfork
)
1225 freezer_do_not_count();
1226 killed
= wait_for_completion_killable(vfork
);
1231 child
->vfork_done
= NULL
;
1235 put_task_struct(child
);
1239 /* Please note the differences between mmput and mm_release.
1240 * mmput is called whenever we stop holding onto a mm_struct,
1241 * error success whatever.
1243 * mm_release is called after a mm_struct has been removed
1244 * from the current process.
1246 * This difference is important for error handling, when we
1247 * only half set up a mm_struct for a new process and need to restore
1248 * the old one. Because we mmput the new mm_struct before
1249 * restoring the old one. . .
1250 * Eric Biederman 10 January 1998
1252 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1254 /* Get rid of any futexes when releasing the mm */
1256 if (unlikely(tsk
->robust_list
)) {
1257 exit_robust_list(tsk
);
1258 tsk
->robust_list
= NULL
;
1260 #ifdef CONFIG_COMPAT
1261 if (unlikely(tsk
->compat_robust_list
)) {
1262 compat_exit_robust_list(tsk
);
1263 tsk
->compat_robust_list
= NULL
;
1266 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1267 exit_pi_state_list(tsk
);
1270 uprobe_free_utask(tsk
);
1272 /* Get rid of any cached register state */
1273 deactivate_mm(tsk
, mm
);
1276 * Signal userspace if we're not exiting with a core dump
1277 * because we want to leave the value intact for debugging
1280 if (tsk
->clear_child_tid
) {
1281 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1282 atomic_read(&mm
->mm_users
) > 1) {
1284 * We don't check the error code - if userspace has
1285 * not set up a proper pointer then tough luck.
1287 put_user(0, tsk
->clear_child_tid
);
1288 do_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1289 1, NULL
, NULL
, 0, 0);
1291 tsk
->clear_child_tid
= NULL
;
1295 * All done, finally we can wake up parent and return this mm to him.
1296 * Also kthread_stop() uses this completion for synchronization.
1298 if (tsk
->vfork_done
)
1299 complete_vfork_done(tsk
);
1303 * Allocate a new mm structure and copy contents from the
1304 * mm structure of the passed in task structure.
1306 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
1308 struct mm_struct
*mm
, *oldmm
= current
->mm
;
1315 memcpy(mm
, oldmm
, sizeof(*mm
));
1317 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1320 err
= dup_mmap(mm
, oldmm
);
1324 mm
->hiwater_rss
= get_mm_rss(mm
);
1325 mm
->hiwater_vm
= mm
->total_vm
;
1327 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1333 /* don't put binfmt in mmput, we haven't got module yet */
1341 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1343 struct mm_struct
*mm
, *oldmm
;
1346 tsk
->min_flt
= tsk
->maj_flt
= 0;
1347 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1348 #ifdef CONFIG_DETECT_HUNG_TASK
1349 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1350 tsk
->last_switch_time
= 0;
1354 tsk
->active_mm
= NULL
;
1357 * Are we cloning a kernel thread?
1359 * We need to steal a active VM for that..
1361 oldmm
= current
->mm
;
1365 /* initialize the new vmacache entries */
1366 vmacache_flush(tsk
);
1368 if (clone_flags
& CLONE_VM
) {
1381 tsk
->active_mm
= mm
;
1388 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1390 struct fs_struct
*fs
= current
->fs
;
1391 if (clone_flags
& CLONE_FS
) {
1392 /* tsk->fs is already what we want */
1393 spin_lock(&fs
->lock
);
1395 spin_unlock(&fs
->lock
);
1399 spin_unlock(&fs
->lock
);
1402 tsk
->fs
= copy_fs_struct(fs
);
1408 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1410 struct files_struct
*oldf
, *newf
;
1414 * A background process may not have any files ...
1416 oldf
= current
->files
;
1420 if (clone_flags
& CLONE_FILES
) {
1421 atomic_inc(&oldf
->count
);
1425 newf
= dup_fd(oldf
, &error
);
1435 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1438 struct io_context
*ioc
= current
->io_context
;
1439 struct io_context
*new_ioc
;
1444 * Share io context with parent, if CLONE_IO is set
1446 if (clone_flags
& CLONE_IO
) {
1448 tsk
->io_context
= ioc
;
1449 } else if (ioprio_valid(ioc
->ioprio
)) {
1450 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1451 if (unlikely(!new_ioc
))
1454 new_ioc
->ioprio
= ioc
->ioprio
;
1455 put_io_context(new_ioc
);
1461 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1463 struct sighand_struct
*sig
;
1465 if (clone_flags
& CLONE_SIGHAND
) {
1466 atomic_inc(¤t
->sighand
->count
);
1469 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1470 rcu_assign_pointer(tsk
->sighand
, sig
);
1474 atomic_set(&sig
->count
, 1);
1475 spin_lock_irq(¤t
->sighand
->siglock
);
1476 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1477 spin_unlock_irq(¤t
->sighand
->siglock
);
1481 void __cleanup_sighand(struct sighand_struct
*sighand
)
1483 if (atomic_dec_and_test(&sighand
->count
)) {
1484 signalfd_cleanup(sighand
);
1486 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1487 * without an RCU grace period, see __lock_task_sighand().
1489 kmem_cache_free(sighand_cachep
, sighand
);
1493 #ifdef CONFIG_POSIX_TIMERS
1495 * Initialize POSIX timer handling for a thread group.
1497 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1499 unsigned long cpu_limit
;
1501 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1502 if (cpu_limit
!= RLIM_INFINITY
) {
1503 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1504 sig
->cputimer
.running
= true;
1507 /* The timer lists. */
1508 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1509 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1510 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1513 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1516 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1518 struct signal_struct
*sig
;
1520 if (clone_flags
& CLONE_THREAD
)
1523 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1528 sig
->nr_threads
= 1;
1529 atomic_set(&sig
->live
, 1);
1530 atomic_set(&sig
->sigcnt
, 1);
1532 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1533 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1534 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1536 init_waitqueue_head(&sig
->wait_chldexit
);
1537 sig
->curr_target
= tsk
;
1538 init_sigpending(&sig
->shared_pending
);
1539 INIT_HLIST_HEAD(&sig
->multiprocess
);
1540 seqlock_init(&sig
->stats_lock
);
1541 prev_cputime_init(&sig
->prev_cputime
);
1543 #ifdef CONFIG_POSIX_TIMERS
1544 INIT_LIST_HEAD(&sig
->posix_timers
);
1545 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1546 sig
->real_timer
.function
= it_real_fn
;
1549 task_lock(current
->group_leader
);
1550 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1551 task_unlock(current
->group_leader
);
1553 posix_cpu_timers_init_group(sig
);
1555 tty_audit_fork(sig
);
1556 sched_autogroup_fork(sig
);
1558 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1559 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1561 mutex_init(&sig
->cred_guard_mutex
);
1566 static void copy_seccomp(struct task_struct
*p
)
1568 #ifdef CONFIG_SECCOMP
1570 * Must be called with sighand->lock held, which is common to
1571 * all threads in the group. Holding cred_guard_mutex is not
1572 * needed because this new task is not yet running and cannot
1575 assert_spin_locked(¤t
->sighand
->siglock
);
1577 /* Ref-count the new filter user, and assign it. */
1578 get_seccomp_filter(current
);
1579 p
->seccomp
= current
->seccomp
;
1582 * Explicitly enable no_new_privs here in case it got set
1583 * between the task_struct being duplicated and holding the
1584 * sighand lock. The seccomp state and nnp must be in sync.
1586 if (task_no_new_privs(current
))
1587 task_set_no_new_privs(p
);
1590 * If the parent gained a seccomp mode after copying thread
1591 * flags and between before we held the sighand lock, we have
1592 * to manually enable the seccomp thread flag here.
1594 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1595 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1599 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1601 current
->clear_child_tid
= tidptr
;
1603 return task_pid_vnr(current
);
1606 static void rt_mutex_init_task(struct task_struct
*p
)
1608 raw_spin_lock_init(&p
->pi_lock
);
1609 #ifdef CONFIG_RT_MUTEXES
1610 p
->pi_waiters
= RB_ROOT_CACHED
;
1611 p
->pi_top_task
= NULL
;
1612 p
->pi_blocked_on
= NULL
;
1616 #ifdef CONFIG_POSIX_TIMERS
1618 * Initialize POSIX timer handling for a single task.
1620 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1622 tsk
->cputime_expires
.prof_exp
= 0;
1623 tsk
->cputime_expires
.virt_exp
= 0;
1624 tsk
->cputime_expires
.sched_exp
= 0;
1625 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1626 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1627 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1630 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1633 static inline void init_task_pid_links(struct task_struct
*task
)
1637 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1638 INIT_HLIST_NODE(&task
->pid_links
[type
]);
1643 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1645 if (type
== PIDTYPE_PID
)
1646 task
->thread_pid
= pid
;
1648 task
->signal
->pids
[type
] = pid
;
1651 static inline void rcu_copy_process(struct task_struct
*p
)
1653 #ifdef CONFIG_PREEMPT_RCU
1654 p
->rcu_read_lock_nesting
= 0;
1655 p
->rcu_read_unlock_special
.s
= 0;
1656 p
->rcu_blocked_node
= NULL
;
1657 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1658 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1659 #ifdef CONFIG_TASKS_RCU
1660 p
->rcu_tasks_holdout
= false;
1661 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1662 p
->rcu_tasks_idle_cpu
= -1;
1663 #endif /* #ifdef CONFIG_TASKS_RCU */
1667 * This creates a new process as a copy of the old one,
1668 * but does not actually start it yet.
1670 * It copies the registers, and all the appropriate
1671 * parts of the process environment (as per the clone
1672 * flags). The actual kick-off is left to the caller.
1674 static __latent_entropy
struct task_struct
*copy_process(
1675 unsigned long clone_flags
,
1676 unsigned long stack_start
,
1677 unsigned long stack_size
,
1678 int __user
*child_tidptr
,
1685 struct task_struct
*p
;
1686 struct multiprocess_signals delayed
;
1689 * Don't allow sharing the root directory with processes in a different
1692 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1693 return ERR_PTR(-EINVAL
);
1695 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1696 return ERR_PTR(-EINVAL
);
1699 * Thread groups must share signals as well, and detached threads
1700 * can only be started up within the thread group.
1702 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1703 return ERR_PTR(-EINVAL
);
1706 * Shared signal handlers imply shared VM. By way of the above,
1707 * thread groups also imply shared VM. Blocking this case allows
1708 * for various simplifications in other code.
1710 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1711 return ERR_PTR(-EINVAL
);
1714 * Siblings of global init remain as zombies on exit since they are
1715 * not reaped by their parent (swapper). To solve this and to avoid
1716 * multi-rooted process trees, prevent global and container-inits
1717 * from creating siblings.
1719 if ((clone_flags
& CLONE_PARENT
) &&
1720 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1721 return ERR_PTR(-EINVAL
);
1724 * If the new process will be in a different pid or user namespace
1725 * do not allow it to share a thread group with the forking task.
1727 if (clone_flags
& CLONE_THREAD
) {
1728 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1729 (task_active_pid_ns(current
) !=
1730 current
->nsproxy
->pid_ns_for_children
))
1731 return ERR_PTR(-EINVAL
);
1735 * Force any signals received before this point to be delivered
1736 * before the fork happens. Collect up signals sent to multiple
1737 * processes that happen during the fork and delay them so that
1738 * they appear to happen after the fork.
1740 sigemptyset(&delayed
.signal
);
1741 INIT_HLIST_NODE(&delayed
.node
);
1743 spin_lock_irq(¤t
->sighand
->siglock
);
1744 if (!(clone_flags
& CLONE_THREAD
))
1745 hlist_add_head(&delayed
.node
, ¤t
->signal
->multiprocess
);
1746 recalc_sigpending();
1747 spin_unlock_irq(¤t
->sighand
->siglock
);
1748 retval
= -ERESTARTNOINTR
;
1749 if (signal_pending(current
))
1753 p
= dup_task_struct(current
, node
);
1758 * This _must_ happen before we call free_task(), i.e. before we jump
1759 * to any of the bad_fork_* labels. This is to avoid freeing
1760 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1761 * kernel threads (PF_KTHREAD).
1763 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1765 * Clear TID on mm_release()?
1767 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1769 ftrace_graph_init_task(p
);
1771 rt_mutex_init_task(p
);
1773 #ifdef CONFIG_PROVE_LOCKING
1774 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1775 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1778 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1779 task_rlimit(p
, RLIMIT_NPROC
)) {
1780 if (p
->real_cred
->user
!= INIT_USER
&&
1781 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1784 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1786 retval
= copy_creds(p
, clone_flags
);
1791 * If multiple threads are within copy_process(), then this check
1792 * triggers too late. This doesn't hurt, the check is only there
1793 * to stop root fork bombs.
1796 if (nr_threads
>= max_threads
)
1797 goto bad_fork_cleanup_count
;
1799 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1800 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1801 p
->flags
|= PF_FORKNOEXEC
;
1802 INIT_LIST_HEAD(&p
->children
);
1803 INIT_LIST_HEAD(&p
->sibling
);
1804 rcu_copy_process(p
);
1805 p
->vfork_done
= NULL
;
1806 spin_lock_init(&p
->alloc_lock
);
1808 init_sigpending(&p
->pending
);
1810 p
->utime
= p
->stime
= p
->gtime
= 0;
1811 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1812 p
->utimescaled
= p
->stimescaled
= 0;
1814 prev_cputime_init(&p
->prev_cputime
);
1816 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1817 seqcount_init(&p
->vtime
.seqcount
);
1818 p
->vtime
.starttime
= 0;
1819 p
->vtime
.state
= VTIME_INACTIVE
;
1822 #if defined(SPLIT_RSS_COUNTING)
1823 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1826 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1832 task_io_accounting_init(&p
->ioac
);
1833 acct_clear_integrals(p
);
1835 posix_cpu_timers_init(p
);
1837 p
->io_context
= NULL
;
1838 audit_set_context(p
, NULL
);
1841 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1842 if (IS_ERR(p
->mempolicy
)) {
1843 retval
= PTR_ERR(p
->mempolicy
);
1844 p
->mempolicy
= NULL
;
1845 goto bad_fork_cleanup_threadgroup_lock
;
1848 #ifdef CONFIG_CPUSETS
1849 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1850 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1851 seqcount_init(&p
->mems_allowed_seq
);
1853 #ifdef CONFIG_TRACE_IRQFLAGS
1855 p
->hardirqs_enabled
= 0;
1856 p
->hardirq_enable_ip
= 0;
1857 p
->hardirq_enable_event
= 0;
1858 p
->hardirq_disable_ip
= _THIS_IP_
;
1859 p
->hardirq_disable_event
= 0;
1860 p
->softirqs_enabled
= 1;
1861 p
->softirq_enable_ip
= _THIS_IP_
;
1862 p
->softirq_enable_event
= 0;
1863 p
->softirq_disable_ip
= 0;
1864 p
->softirq_disable_event
= 0;
1865 p
->hardirq_context
= 0;
1866 p
->softirq_context
= 0;
1869 p
->pagefault_disabled
= 0;
1871 #ifdef CONFIG_LOCKDEP
1872 p
->lockdep_depth
= 0; /* no locks held yet */
1873 p
->curr_chain_key
= 0;
1874 p
->lockdep_recursion
= 0;
1875 lockdep_init_task(p
);
1878 #ifdef CONFIG_DEBUG_MUTEXES
1879 p
->blocked_on
= NULL
; /* not blocked yet */
1881 #ifdef CONFIG_BCACHE
1882 p
->sequential_io
= 0;
1883 p
->sequential_io_avg
= 0;
1886 /* Perform scheduler related setup. Assign this task to a CPU. */
1887 retval
= sched_fork(clone_flags
, p
);
1889 goto bad_fork_cleanup_policy
;
1891 retval
= perf_event_init_task(p
);
1893 goto bad_fork_cleanup_policy
;
1894 retval
= audit_alloc(p
);
1896 goto bad_fork_cleanup_perf
;
1897 /* copy all the process information */
1899 retval
= security_task_alloc(p
, clone_flags
);
1901 goto bad_fork_cleanup_audit
;
1902 retval
= copy_semundo(clone_flags
, p
);
1904 goto bad_fork_cleanup_security
;
1905 retval
= copy_files(clone_flags
, p
);
1907 goto bad_fork_cleanup_semundo
;
1908 retval
= copy_fs(clone_flags
, p
);
1910 goto bad_fork_cleanup_files
;
1911 retval
= copy_sighand(clone_flags
, p
);
1913 goto bad_fork_cleanup_fs
;
1914 retval
= copy_signal(clone_flags
, p
);
1916 goto bad_fork_cleanup_sighand
;
1917 retval
= copy_mm(clone_flags
, p
);
1919 goto bad_fork_cleanup_signal
;
1920 retval
= copy_namespaces(clone_flags
, p
);
1922 goto bad_fork_cleanup_mm
;
1923 retval
= copy_io(clone_flags
, p
);
1925 goto bad_fork_cleanup_namespaces
;
1926 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1928 goto bad_fork_cleanup_io
;
1930 stackleak_task_init(p
);
1932 if (pid
!= &init_struct_pid
) {
1933 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1935 retval
= PTR_ERR(pid
);
1936 goto bad_fork_cleanup_thread
;
1944 p
->robust_list
= NULL
;
1945 #ifdef CONFIG_COMPAT
1946 p
->compat_robust_list
= NULL
;
1948 INIT_LIST_HEAD(&p
->pi_state_list
);
1949 p
->pi_state_cache
= NULL
;
1952 * sigaltstack should be cleared when sharing the same VM
1954 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1958 * Syscall tracing and stepping should be turned off in the
1959 * child regardless of CLONE_PTRACE.
1961 user_disable_single_step(p
);
1962 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1963 #ifdef TIF_SYSCALL_EMU
1964 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1966 clear_all_latency_tracing(p
);
1968 /* ok, now we should be set up.. */
1969 p
->pid
= pid_nr(pid
);
1970 if (clone_flags
& CLONE_THREAD
) {
1971 p
->exit_signal
= -1;
1972 p
->group_leader
= current
->group_leader
;
1973 p
->tgid
= current
->tgid
;
1975 if (clone_flags
& CLONE_PARENT
)
1976 p
->exit_signal
= current
->group_leader
->exit_signal
;
1978 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1979 p
->group_leader
= p
;
1984 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1985 p
->dirty_paused_when
= 0;
1987 p
->pdeath_signal
= 0;
1988 INIT_LIST_HEAD(&p
->thread_group
);
1989 p
->task_works
= NULL
;
1991 cgroup_threadgroup_change_begin(current
);
1993 * Ensure that the cgroup subsystem policies allow the new process to be
1994 * forked. It should be noted the the new process's css_set can be changed
1995 * between here and cgroup_post_fork() if an organisation operation is in
1998 retval
= cgroup_can_fork(p
);
2000 goto bad_fork_free_pid
;
2003 * From this point on we must avoid any synchronous user-space
2004 * communication until we take the tasklist-lock. In particular, we do
2005 * not want user-space to be able to predict the process start-time by
2006 * stalling fork(2) after we recorded the start_time but before it is
2007 * visible to the system.
2010 p
->start_time
= ktime_get_ns();
2011 p
->real_start_time
= ktime_get_boot_ns();
2014 * Make it visible to the rest of the system, but dont wake it up yet.
2015 * Need tasklist lock for parent etc handling!
2017 write_lock_irq(&tasklist_lock
);
2019 /* CLONE_PARENT re-uses the old parent */
2020 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
2021 p
->real_parent
= current
->real_parent
;
2022 p
->parent_exec_id
= current
->parent_exec_id
;
2024 p
->real_parent
= current
;
2025 p
->parent_exec_id
= current
->self_exec_id
;
2028 klp_copy_process(p
);
2030 spin_lock(¤t
->sighand
->siglock
);
2033 * Copy seccomp details explicitly here, in case they were changed
2034 * before holding sighand lock.
2038 rseq_fork(p
, clone_flags
);
2040 /* Don't start children in a dying pid namespace */
2041 if (unlikely(!(ns_of_pid(pid
)->pid_allocated
& PIDNS_ADDING
))) {
2043 goto bad_fork_cancel_cgroup
;
2046 /* Let kill terminate clone/fork in the middle */
2047 if (fatal_signal_pending(current
)) {
2049 goto bad_fork_cancel_cgroup
;
2053 init_task_pid_links(p
);
2054 if (likely(p
->pid
)) {
2055 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
2057 init_task_pid(p
, PIDTYPE_PID
, pid
);
2058 if (thread_group_leader(p
)) {
2059 init_task_pid(p
, PIDTYPE_TGID
, pid
);
2060 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
2061 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
2063 if (is_child_reaper(pid
)) {
2064 ns_of_pid(pid
)->child_reaper
= p
;
2065 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
2067 p
->signal
->shared_pending
.signal
= delayed
.signal
;
2068 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
2070 * Inherit has_child_subreaper flag under the same
2071 * tasklist_lock with adding child to the process tree
2072 * for propagate_has_child_subreaper optimization.
2074 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
2075 p
->real_parent
->signal
->is_child_subreaper
;
2076 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
2077 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
2078 attach_pid(p
, PIDTYPE_TGID
);
2079 attach_pid(p
, PIDTYPE_PGID
);
2080 attach_pid(p
, PIDTYPE_SID
);
2081 __this_cpu_inc(process_counts
);
2083 current
->signal
->nr_threads
++;
2084 atomic_inc(¤t
->signal
->live
);
2085 atomic_inc(¤t
->signal
->sigcnt
);
2086 task_join_group_stop(p
);
2087 list_add_tail_rcu(&p
->thread_group
,
2088 &p
->group_leader
->thread_group
);
2089 list_add_tail_rcu(&p
->thread_node
,
2090 &p
->signal
->thread_head
);
2092 attach_pid(p
, PIDTYPE_PID
);
2096 hlist_del_init(&delayed
.node
);
2097 spin_unlock(¤t
->sighand
->siglock
);
2098 syscall_tracepoint_update(p
);
2099 write_unlock_irq(&tasklist_lock
);
2101 proc_fork_connector(p
);
2102 cgroup_post_fork(p
);
2103 cgroup_threadgroup_change_end(current
);
2106 trace_task_newtask(p
, clone_flags
);
2107 uprobe_copy_process(p
, clone_flags
);
2111 bad_fork_cancel_cgroup
:
2112 spin_unlock(¤t
->sighand
->siglock
);
2113 write_unlock_irq(&tasklist_lock
);
2114 cgroup_cancel_fork(p
);
2116 cgroup_threadgroup_change_end(current
);
2117 if (pid
!= &init_struct_pid
)
2119 bad_fork_cleanup_thread
:
2121 bad_fork_cleanup_io
:
2124 bad_fork_cleanup_namespaces
:
2125 exit_task_namespaces(p
);
2126 bad_fork_cleanup_mm
:
2129 bad_fork_cleanup_signal
:
2130 if (!(clone_flags
& CLONE_THREAD
))
2131 free_signal_struct(p
->signal
);
2132 bad_fork_cleanup_sighand
:
2133 __cleanup_sighand(p
->sighand
);
2134 bad_fork_cleanup_fs
:
2135 exit_fs(p
); /* blocking */
2136 bad_fork_cleanup_files
:
2137 exit_files(p
); /* blocking */
2138 bad_fork_cleanup_semundo
:
2140 bad_fork_cleanup_security
:
2141 security_task_free(p
);
2142 bad_fork_cleanup_audit
:
2144 bad_fork_cleanup_perf
:
2145 perf_event_free_task(p
);
2146 bad_fork_cleanup_policy
:
2147 lockdep_free_task(p
);
2149 mpol_put(p
->mempolicy
);
2150 bad_fork_cleanup_threadgroup_lock
:
2152 delayacct_tsk_free(p
);
2153 bad_fork_cleanup_count
:
2154 atomic_dec(&p
->cred
->user
->processes
);
2157 p
->state
= TASK_DEAD
;
2161 spin_lock_irq(¤t
->sighand
->siglock
);
2162 hlist_del_init(&delayed
.node
);
2163 spin_unlock_irq(¤t
->sighand
->siglock
);
2164 return ERR_PTR(retval
);
2167 static inline void init_idle_pids(struct task_struct
*idle
)
2171 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
2172 INIT_HLIST_NODE(&idle
->pid_links
[type
]); /* not really needed */
2173 init_task_pid(idle
, type
, &init_struct_pid
);
2177 struct task_struct
*fork_idle(int cpu
)
2179 struct task_struct
*task
;
2180 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
2182 if (!IS_ERR(task
)) {
2183 init_idle_pids(task
);
2184 init_idle(task
, cpu
);
2191 * Ok, this is the main fork-routine.
2193 * It copies the process, and if successful kick-starts
2194 * it and waits for it to finish using the VM if required.
2196 long _do_fork(unsigned long clone_flags
,
2197 unsigned long stack_start
,
2198 unsigned long stack_size
,
2199 int __user
*parent_tidptr
,
2200 int __user
*child_tidptr
,
2203 struct completion vfork
;
2205 struct task_struct
*p
;
2210 * Determine whether and which event to report to ptracer. When
2211 * called from kernel_thread or CLONE_UNTRACED is explicitly
2212 * requested, no event is reported; otherwise, report if the event
2213 * for the type of forking is enabled.
2215 if (!(clone_flags
& CLONE_UNTRACED
)) {
2216 if (clone_flags
& CLONE_VFORK
)
2217 trace
= PTRACE_EVENT_VFORK
;
2218 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2219 trace
= PTRACE_EVENT_CLONE
;
2221 trace
= PTRACE_EVENT_FORK
;
2223 if (likely(!ptrace_event_enabled(current
, trace
)))
2227 p
= copy_process(clone_flags
, stack_start
, stack_size
,
2228 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2229 add_latent_entropy();
2235 * Do this prior waking up the new thread - the thread pointer
2236 * might get invalid after that point, if the thread exits quickly.
2238 trace_sched_process_fork(current
, p
);
2240 pid
= get_task_pid(p
, PIDTYPE_PID
);
2243 if (clone_flags
& CLONE_PARENT_SETTID
)
2244 put_user(nr
, parent_tidptr
);
2246 if (clone_flags
& CLONE_VFORK
) {
2247 p
->vfork_done
= &vfork
;
2248 init_completion(&vfork
);
2252 wake_up_new_task(p
);
2254 /* forking complete and child started to run, tell ptracer */
2255 if (unlikely(trace
))
2256 ptrace_event_pid(trace
, pid
);
2258 if (clone_flags
& CLONE_VFORK
) {
2259 if (!wait_for_vfork_done(p
, &vfork
))
2260 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2267 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2268 /* For compatibility with architectures that call do_fork directly rather than
2269 * using the syscall entry points below. */
2270 long do_fork(unsigned long clone_flags
,
2271 unsigned long stack_start
,
2272 unsigned long stack_size
,
2273 int __user
*parent_tidptr
,
2274 int __user
*child_tidptr
)
2276 return _do_fork(clone_flags
, stack_start
, stack_size
,
2277 parent_tidptr
, child_tidptr
, 0);
2282 * Create a kernel thread.
2284 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2286 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2287 (unsigned long)arg
, NULL
, NULL
, 0);
2290 #ifdef __ARCH_WANT_SYS_FORK
2291 SYSCALL_DEFINE0(fork
)
2294 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2296 /* can not support in nommu mode */
2302 #ifdef __ARCH_WANT_SYS_VFORK
2303 SYSCALL_DEFINE0(vfork
)
2305 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2310 #ifdef __ARCH_WANT_SYS_CLONE
2311 #ifdef CONFIG_CLONE_BACKWARDS
2312 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2313 int __user
*, parent_tidptr
,
2315 int __user
*, child_tidptr
)
2316 #elif defined(CONFIG_CLONE_BACKWARDS2)
2317 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2318 int __user
*, parent_tidptr
,
2319 int __user
*, child_tidptr
,
2321 #elif defined(CONFIG_CLONE_BACKWARDS3)
2322 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2324 int __user
*, parent_tidptr
,
2325 int __user
*, child_tidptr
,
2328 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2329 int __user
*, parent_tidptr
,
2330 int __user
*, child_tidptr
,
2334 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2338 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2340 struct task_struct
*leader
, *parent
, *child
;
2343 read_lock(&tasklist_lock
);
2344 leader
= top
= top
->group_leader
;
2346 for_each_thread(leader
, parent
) {
2347 list_for_each_entry(child
, &parent
->children
, sibling
) {
2348 res
= visitor(child
, data
);
2360 if (leader
!= top
) {
2362 parent
= child
->real_parent
;
2363 leader
= parent
->group_leader
;
2367 read_unlock(&tasklist_lock
);
2370 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2371 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2374 static void sighand_ctor(void *data
)
2376 struct sighand_struct
*sighand
= data
;
2378 spin_lock_init(&sighand
->siglock
);
2379 init_waitqueue_head(&sighand
->signalfd_wqh
);
2382 void __init
proc_caches_init(void)
2384 unsigned int mm_size
;
2386 sighand_cachep
= kmem_cache_create("sighand_cache",
2387 sizeof(struct sighand_struct
), 0,
2388 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2389 SLAB_ACCOUNT
, sighand_ctor
);
2390 signal_cachep
= kmem_cache_create("signal_cache",
2391 sizeof(struct signal_struct
), 0,
2392 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2394 files_cachep
= kmem_cache_create("files_cache",
2395 sizeof(struct files_struct
), 0,
2396 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2398 fs_cachep
= kmem_cache_create("fs_cache",
2399 sizeof(struct fs_struct
), 0,
2400 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2404 * The mm_cpumask is located at the end of mm_struct, and is
2405 * dynamically sized based on the maximum CPU number this system
2406 * can have, taking hotplug into account (nr_cpu_ids).
2408 mm_size
= sizeof(struct mm_struct
) + cpumask_size();
2410 mm_cachep
= kmem_cache_create_usercopy("mm_struct",
2411 mm_size
, ARCH_MIN_MMSTRUCT_ALIGN
,
2412 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2413 offsetof(struct mm_struct
, saved_auxv
),
2414 sizeof_field(struct mm_struct
, saved_auxv
),
2416 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2418 nsproxy_cache_init();
2422 * Check constraints on flags passed to the unshare system call.
2424 static int check_unshare_flags(unsigned long unshare_flags
)
2426 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2427 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2428 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2429 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2432 * Not implemented, but pretend it works if there is nothing
2433 * to unshare. Note that unsharing the address space or the
2434 * signal handlers also need to unshare the signal queues (aka
2437 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2438 if (!thread_group_empty(current
))
2441 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2442 if (atomic_read(¤t
->sighand
->count
) > 1)
2445 if (unshare_flags
& CLONE_VM
) {
2446 if (!current_is_single_threaded())
2454 * Unshare the filesystem structure if it is being shared
2456 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2458 struct fs_struct
*fs
= current
->fs
;
2460 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2463 /* don't need lock here; in the worst case we'll do useless copy */
2467 *new_fsp
= copy_fs_struct(fs
);
2475 * Unshare file descriptor table if it is being shared
2477 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2479 struct files_struct
*fd
= current
->files
;
2482 if ((unshare_flags
& CLONE_FILES
) &&
2483 (fd
&& atomic_read(&fd
->count
) > 1)) {
2484 *new_fdp
= dup_fd(fd
, &error
);
2493 * unshare allows a process to 'unshare' part of the process
2494 * context which was originally shared using clone. copy_*
2495 * functions used by do_fork() cannot be used here directly
2496 * because they modify an inactive task_struct that is being
2497 * constructed. Here we are modifying the current, active,
2500 int ksys_unshare(unsigned long unshare_flags
)
2502 struct fs_struct
*fs
, *new_fs
= NULL
;
2503 struct files_struct
*fd
, *new_fd
= NULL
;
2504 struct cred
*new_cred
= NULL
;
2505 struct nsproxy
*new_nsproxy
= NULL
;
2510 * If unsharing a user namespace must also unshare the thread group
2511 * and unshare the filesystem root and working directories.
2513 if (unshare_flags
& CLONE_NEWUSER
)
2514 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2516 * If unsharing vm, must also unshare signal handlers.
2518 if (unshare_flags
& CLONE_VM
)
2519 unshare_flags
|= CLONE_SIGHAND
;
2521 * If unsharing a signal handlers, must also unshare the signal queues.
2523 if (unshare_flags
& CLONE_SIGHAND
)
2524 unshare_flags
|= CLONE_THREAD
;
2526 * If unsharing namespace, must also unshare filesystem information.
2528 if (unshare_flags
& CLONE_NEWNS
)
2529 unshare_flags
|= CLONE_FS
;
2531 err
= check_unshare_flags(unshare_flags
);
2533 goto bad_unshare_out
;
2535 * CLONE_NEWIPC must also detach from the undolist: after switching
2536 * to a new ipc namespace, the semaphore arrays from the old
2537 * namespace are unreachable.
2539 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2541 err
= unshare_fs(unshare_flags
, &new_fs
);
2543 goto bad_unshare_out
;
2544 err
= unshare_fd(unshare_flags
, &new_fd
);
2546 goto bad_unshare_cleanup_fs
;
2547 err
= unshare_userns(unshare_flags
, &new_cred
);
2549 goto bad_unshare_cleanup_fd
;
2550 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2553 goto bad_unshare_cleanup_cred
;
2555 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2558 * CLONE_SYSVSEM is equivalent to sys_exit().
2562 if (unshare_flags
& CLONE_NEWIPC
) {
2563 /* Orphan segments in old ns (see sem above). */
2565 shm_init_task(current
);
2569 switch_task_namespaces(current
, new_nsproxy
);
2575 spin_lock(&fs
->lock
);
2576 current
->fs
= new_fs
;
2581 spin_unlock(&fs
->lock
);
2585 fd
= current
->files
;
2586 current
->files
= new_fd
;
2590 task_unlock(current
);
2593 /* Install the new user namespace */
2594 commit_creds(new_cred
);
2599 perf_event_namespaces(current
);
2601 bad_unshare_cleanup_cred
:
2604 bad_unshare_cleanup_fd
:
2606 put_files_struct(new_fd
);
2608 bad_unshare_cleanup_fs
:
2610 free_fs_struct(new_fs
);
2616 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2618 return ksys_unshare(unshare_flags
);
2622 * Helper to unshare the files of the current task.
2623 * We don't want to expose copy_files internals to
2624 * the exec layer of the kernel.
2627 int unshare_files(struct files_struct
**displaced
)
2629 struct task_struct
*task
= current
;
2630 struct files_struct
*copy
= NULL
;
2633 error
= unshare_fd(CLONE_FILES
, ©
);
2634 if (error
|| !copy
) {
2638 *displaced
= task
->files
;
2645 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2646 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2650 int threads
= max_threads
;
2651 int min
= MIN_THREADS
;
2652 int max
= MAX_THREADS
;
2659 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2663 set_max_threads(threads
);