1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
14 #include <asm/oplib.h>
16 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
18 static inline unsigned long tsb_hash(unsigned long vaddr
, unsigned long hash_shift
, unsigned long nentries
)
21 return vaddr
& (nentries
- 1);
24 static inline int tag_compare(unsigned long tag
, unsigned long vaddr
)
26 return (tag
== (vaddr
>> 22));
29 /* TSB flushes need only occur on the processor initiating the address
30 * space modification, not on each cpu the address space has run on.
31 * Only the TLB flush needs that treatment.
34 void flush_tsb_kernel_range(unsigned long start
, unsigned long end
)
38 for (v
= start
; v
< end
; v
+= PAGE_SIZE
) {
39 unsigned long hash
= tsb_hash(v
, PAGE_SHIFT
,
41 struct tsb
*ent
= &swapper_tsb
[hash
];
43 if (tag_compare(ent
->tag
, v
))
44 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
48 static void __flush_tsb_one_entry(unsigned long tsb
, unsigned long v
,
49 unsigned long hash_shift
,
50 unsigned long nentries
)
52 unsigned long tag
, ent
, hash
;
55 hash
= tsb_hash(v
, hash_shift
, nentries
);
56 ent
= tsb
+ (hash
* sizeof(struct tsb
));
62 static void __flush_tsb_one(struct tlb_batch
*tb
, unsigned long hash_shift
,
63 unsigned long tsb
, unsigned long nentries
)
67 for (i
= 0; i
< tb
->tlb_nr
; i
++)
68 __flush_tsb_one_entry(tsb
, tb
->vaddrs
[i
], hash_shift
, nentries
);
71 void flush_tsb_user(struct tlb_batch
*tb
)
73 struct mm_struct
*mm
= tb
->mm
;
74 unsigned long nentries
, base
, flags
;
76 spin_lock_irqsave(&mm
->context
.lock
, flags
);
78 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
79 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
80 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
82 __flush_tsb_one(tb
, PAGE_SHIFT
, base
, nentries
);
84 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
85 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
86 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
87 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
88 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
90 __flush_tsb_one(tb
, REAL_HPAGE_SHIFT
, base
, nentries
);
93 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
96 void flush_tsb_user_page(struct mm_struct
*mm
, unsigned long vaddr
)
98 unsigned long nentries
, base
, flags
;
100 spin_lock_irqsave(&mm
->context
.lock
, flags
);
102 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
103 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
104 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
106 __flush_tsb_one_entry(base
, vaddr
, PAGE_SHIFT
, nentries
);
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
110 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
111 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
112 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
114 __flush_tsb_one_entry(base
, vaddr
, REAL_HPAGE_SHIFT
, nentries
);
117 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
120 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
121 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
123 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
124 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
125 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
128 static void setup_tsb_params(struct mm_struct
*mm
, unsigned long tsb_idx
, unsigned long tsb_bytes
)
130 unsigned long tsb_reg
, base
, tsb_paddr
;
131 unsigned long page_sz
, tte
;
133 mm
->context
.tsb_block
[tsb_idx
].tsb_nentries
=
134 tsb_bytes
/ sizeof(struct tsb
);
138 base
= TSBMAP_8K_BASE
;
140 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
142 base
= TSBMAP_4M_BASE
;
149 tte
= pgprot_val(PAGE_KERNEL_LOCKED
);
150 tsb_paddr
= __pa(mm
->context
.tsb_block
[tsb_idx
].tsb
);
151 BUG_ON(tsb_paddr
& (tsb_bytes
- 1UL));
153 /* Use the smallest page size that can map the whole TSB
159 #ifdef DCACHE_ALIASING_POSSIBLE
160 base
+= (tsb_paddr
& 8192);
182 page_sz
= 512 * 1024;
187 page_sz
= 512 * 1024;
192 page_sz
= 512 * 1024;
197 page_sz
= 4 * 1024 * 1024;
201 printk(KERN_ERR
"TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
202 current
->comm
, current
->pid
, tsb_bytes
);
205 tte
|= pte_sz_bits(page_sz
);
207 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
208 /* Physical mapping, no locked TLB entry for TSB. */
209 tsb_reg
|= tsb_paddr
;
211 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
212 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= 0;
213 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= 0;
216 tsb_reg
|= (tsb_paddr
& (page_sz
- 1UL));
217 tte
|= (tsb_paddr
& ~(page_sz
- 1UL));
219 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
220 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= base
;
221 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= tte
;
224 /* Setup the Hypervisor TSB descriptor. */
225 if (tlb_type
== hypervisor
) {
226 struct hv_tsb_descr
*hp
= &mm
->context
.tsb_descr
[tsb_idx
];
230 hp
->pgsz_idx
= HV_PGSZ_IDX_BASE
;
232 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
234 hp
->pgsz_idx
= HV_PGSZ_IDX_HUGE
;
241 hp
->num_ttes
= tsb_bytes
/ 16;
245 hp
->pgsz_mask
= HV_PGSZ_MASK_BASE
;
247 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
249 hp
->pgsz_mask
= HV_PGSZ_MASK_HUGE
;
255 hp
->tsb_base
= tsb_paddr
;
260 struct kmem_cache
*pgtable_cache __read_mostly
;
262 static struct kmem_cache
*tsb_caches
[8] __read_mostly
;
264 static const char *tsb_cache_names
[8] = {
275 void __init
pgtable_cache_init(void)
279 pgtable_cache
= kmem_cache_create("pgtable_cache",
280 PAGE_SIZE
, PAGE_SIZE
,
283 if (!pgtable_cache
) {
284 prom_printf("pgtable_cache_init(): Could not create!\n");
288 for (i
= 0; i
< 8; i
++) {
289 unsigned long size
= 8192 << i
;
290 const char *name
= tsb_cache_names
[i
];
292 tsb_caches
[i
] = kmem_cache_create(name
,
295 if (!tsb_caches
[i
]) {
296 prom_printf("Could not create %s cache\n", name
);
302 int sysctl_tsb_ratio
= -2;
304 static unsigned long tsb_size_to_rss_limit(unsigned long new_size
)
306 unsigned long num_ents
= (new_size
/ sizeof(struct tsb
));
308 if (sysctl_tsb_ratio
< 0)
309 return num_ents
- (num_ents
>> -sysctl_tsb_ratio
);
311 return num_ents
+ (num_ents
>> sysctl_tsb_ratio
);
314 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
315 * do_sparc64_fault() invokes this routine to try and grow it.
317 * When we reach the maximum TSB size supported, we stick ~0UL into
318 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
319 * will not trigger any longer.
321 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
322 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
323 * must be 512K aligned. It also must be physically contiguous, so we
324 * cannot use vmalloc().
326 * The idea here is to grow the TSB when the RSS of the process approaches
327 * the number of entries that the current TSB can hold at once. Currently,
328 * we trigger when the RSS hits 3/4 of the TSB capacity.
330 void tsb_grow(struct mm_struct
*mm
, unsigned long tsb_index
, unsigned long rss
)
332 unsigned long max_tsb_size
= 1 * 1024 * 1024;
333 unsigned long new_size
, old_size
, flags
;
334 struct tsb
*old_tsb
, *new_tsb
;
335 unsigned long new_cache_index
, old_cache_index
;
336 unsigned long new_rss_limit
;
339 if (max_tsb_size
> (PAGE_SIZE
<< MAX_ORDER
))
340 max_tsb_size
= (PAGE_SIZE
<< MAX_ORDER
);
343 for (new_size
= 8192; new_size
< max_tsb_size
; new_size
<<= 1UL) {
344 new_rss_limit
= tsb_size_to_rss_limit(new_size
);
345 if (new_rss_limit
> rss
)
350 if (new_size
== max_tsb_size
)
351 new_rss_limit
= ~0UL;
354 gfp_flags
= GFP_KERNEL
;
355 if (new_size
> (PAGE_SIZE
* 2))
356 gfp_flags
|= __GFP_NOWARN
| __GFP_NORETRY
;
358 new_tsb
= kmem_cache_alloc_node(tsb_caches
[new_cache_index
],
359 gfp_flags
, numa_node_id());
360 if (unlikely(!new_tsb
)) {
361 /* Not being able to fork due to a high-order TSB
362 * allocation failure is very bad behavior. Just back
363 * down to a 0-order allocation and force no TSB
364 * growing for this address space.
366 if (mm
->context
.tsb_block
[tsb_index
].tsb
== NULL
&&
367 new_cache_index
> 0) {
370 new_rss_limit
= ~0UL;
371 goto retry_tsb_alloc
;
374 /* If we failed on a TSB grow, we are under serious
375 * memory pressure so don't try to grow any more.
377 if (mm
->context
.tsb_block
[tsb_index
].tsb
!= NULL
)
378 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= ~0UL;
382 /* Mark all tags as invalid. */
383 tsb_init(new_tsb
, new_size
);
385 /* Ok, we are about to commit the changes. If we are
386 * growing an existing TSB the locking is very tricky,
389 * We have to hold mm->context.lock while committing to the
390 * new TSB, this synchronizes us with processors in
391 * flush_tsb_user() and switch_mm() for this address space.
393 * But even with that lock held, processors run asynchronously
394 * accessing the old TSB via TLB miss handling. This is OK
395 * because those actions are just propagating state from the
396 * Linux page tables into the TSB, page table mappings are not
397 * being changed. If a real fault occurs, the processor will
398 * synchronize with us when it hits flush_tsb_user(), this is
399 * also true for the case where vmscan is modifying the page
400 * tables. The only thing we need to be careful with is to
401 * skip any locked TSB entries during copy_tsb().
403 * When we finish committing to the new TSB, we have to drop
404 * the lock and ask all other cpus running this address space
405 * to run tsb_context_switch() to see the new TSB table.
407 spin_lock_irqsave(&mm
->context
.lock
, flags
);
409 old_tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
411 (mm
->context
.tsb_block
[tsb_index
].tsb_reg_val
& 0x7UL
);
412 old_size
= (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
*
416 /* Handle multiple threads trying to grow the TSB at the same time.
417 * One will get in here first, and bump the size and the RSS limit.
418 * The others will get in here next and hit this check.
420 if (unlikely(old_tsb
&&
421 (rss
< mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
))) {
422 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
424 kmem_cache_free(tsb_caches
[new_cache_index
], new_tsb
);
428 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= new_rss_limit
;
431 extern void copy_tsb(unsigned long old_tsb_base
,
432 unsigned long old_tsb_size
,
433 unsigned long new_tsb_base
,
434 unsigned long new_tsb_size
);
435 unsigned long old_tsb_base
= (unsigned long) old_tsb
;
436 unsigned long new_tsb_base
= (unsigned long) new_tsb
;
438 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
439 old_tsb_base
= __pa(old_tsb_base
);
440 new_tsb_base
= __pa(new_tsb_base
);
442 copy_tsb(old_tsb_base
, old_size
, new_tsb_base
, new_size
);
445 mm
->context
.tsb_block
[tsb_index
].tsb
= new_tsb
;
446 setup_tsb_params(mm
, tsb_index
, new_size
);
448 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
450 /* If old_tsb is NULL, we're being invoked for the first time
451 * from init_new_context().
454 /* Reload it on the local cpu. */
455 tsb_context_switch(mm
);
457 /* Now force other processors to do the same. */
462 /* Now it is safe to free the old tsb. */
463 kmem_cache_free(tsb_caches
[old_cache_index
], old_tsb
);
467 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
469 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
470 unsigned long huge_pte_count
;
474 spin_lock_init(&mm
->context
.lock
);
476 mm
->context
.sparc64_ctx_val
= 0UL;
478 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
479 /* We reset it to zero because the fork() page copying
480 * will re-increment the counters as the parent PTEs are
481 * copied into the child address space.
483 huge_pte_count
= mm
->context
.huge_pte_count
;
484 mm
->context
.huge_pte_count
= 0;
487 /* copy_mm() copies over the parent's mm_struct before calling
488 * us, so we need to zero out the TSB pointer or else tsb_grow()
489 * will be confused and think there is an older TSB to free up.
491 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
492 mm
->context
.tsb_block
[i
].tsb
= NULL
;
494 /* If this is fork, inherit the parent's TSB size. We would
495 * grow it to that size on the first page fault anyways.
497 tsb_grow(mm
, MM_TSB_BASE
, get_mm_rss(mm
));
499 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
500 if (unlikely(huge_pte_count
))
501 tsb_grow(mm
, MM_TSB_HUGE
, huge_pte_count
);
504 if (unlikely(!mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
))
510 static void tsb_destroy_one(struct tsb_config
*tp
)
512 unsigned long cache_index
;
516 cache_index
= tp
->tsb_reg_val
& 0x7UL
;
517 kmem_cache_free(tsb_caches
[cache_index
], tp
->tsb
);
519 tp
->tsb_reg_val
= 0UL;
522 void destroy_context(struct mm_struct
*mm
)
524 unsigned long flags
, i
;
526 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
527 tsb_destroy_one(&mm
->context
.tsb_block
[i
]);
529 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
531 if (CTX_VALID(mm
->context
)) {
532 unsigned long nr
= CTX_NRBITS(mm
->context
);
533 mmu_context_bmap
[nr
>>6] &= ~(1UL << (nr
& 63));
536 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);