Linux 3.12.39
[linux/fpc-iii.git] / drivers / cpufreq / acpi-cpufreq.c
blob506fd23c755069f1f1b1e81763335f8f79b0de37
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
53 #define PFX "acpi-cpufreq: "
55 enum {
56 UNDEFINED_CAPABLE = 0,
57 SYSTEM_INTEL_MSR_CAPABLE,
58 SYSTEM_AMD_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define AMD_MSR_RANGE (0x7)
65 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67 struct acpi_cpufreq_data {
68 struct acpi_processor_performance *acpi_data;
69 struct cpufreq_frequency_table *freq_table;
70 unsigned int resume;
71 unsigned int cpu_feature;
72 cpumask_var_t freqdomain_cpus;
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
80 static struct cpufreq_driver acpi_cpufreq_driver;
82 static unsigned int acpi_pstate_strict;
83 static bool boost_enabled, boost_supported;
84 static struct msr __percpu *msrs;
86 static bool boost_state(unsigned int cpu)
88 u32 lo, hi;
89 u64 msr;
91 switch (boot_cpu_data.x86_vendor) {
92 case X86_VENDOR_INTEL:
93 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
94 msr = lo | ((u64)hi << 32);
95 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
96 case X86_VENDOR_AMD:
97 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
98 msr = lo | ((u64)hi << 32);
99 return !(msr & MSR_K7_HWCR_CPB_DIS);
101 return false;
104 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
106 u32 cpu;
107 u32 msr_addr;
108 u64 msr_mask;
110 switch (boot_cpu_data.x86_vendor) {
111 case X86_VENDOR_INTEL:
112 msr_addr = MSR_IA32_MISC_ENABLE;
113 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
114 break;
115 case X86_VENDOR_AMD:
116 msr_addr = MSR_K7_HWCR;
117 msr_mask = MSR_K7_HWCR_CPB_DIS;
118 break;
119 default:
120 return;
123 rdmsr_on_cpus(cpumask, msr_addr, msrs);
125 for_each_cpu(cpu, cpumask) {
126 struct msr *reg = per_cpu_ptr(msrs, cpu);
127 if (enable)
128 reg->q &= ~msr_mask;
129 else
130 reg->q |= msr_mask;
133 wrmsr_on_cpus(cpumask, msr_addr, msrs);
136 static ssize_t _store_boost(const char *buf, size_t count)
138 int ret;
139 unsigned long val = 0;
141 if (!boost_supported)
142 return -EINVAL;
144 ret = kstrtoul(buf, 10, &val);
145 if (ret || (val > 1))
146 return -EINVAL;
148 if ((val && boost_enabled) || (!val && !boost_enabled))
149 return count;
151 get_online_cpus();
153 boost_set_msrs(val, cpu_online_mask);
155 put_online_cpus();
157 boost_enabled = val;
158 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
160 return count;
163 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
164 const char *buf, size_t count)
166 return _store_boost(buf, count);
169 static ssize_t show_global_boost(struct kobject *kobj,
170 struct attribute *attr, char *buf)
172 return sprintf(buf, "%u\n", boost_enabled);
175 static struct global_attr global_boost = __ATTR(boost, 0644,
176 show_global_boost,
177 store_global_boost);
179 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
181 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
183 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
186 cpufreq_freq_attr_ro(freqdomain_cpus);
188 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
189 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
190 size_t count)
192 return _store_boost(buf, count);
195 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
197 return sprintf(buf, "%u\n", boost_enabled);
200 cpufreq_freq_attr_rw(cpb);
201 #endif
203 static int check_est_cpu(unsigned int cpuid)
205 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
207 return cpu_has(cpu, X86_FEATURE_EST);
210 static int check_amd_hwpstate_cpu(unsigned int cpuid)
212 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
214 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
217 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
219 struct acpi_processor_performance *perf;
220 int i;
222 perf = data->acpi_data;
224 for (i = 0; i < perf->state_count; i++) {
225 if (value == perf->states[i].status)
226 return data->freq_table[i].frequency;
228 return 0;
231 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
233 int i;
234 struct acpi_processor_performance *perf;
236 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
237 msr &= AMD_MSR_RANGE;
238 else
239 msr &= INTEL_MSR_RANGE;
241 perf = data->acpi_data;
243 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
244 if (msr == perf->states[data->freq_table[i].driver_data].status)
245 return data->freq_table[i].frequency;
247 return data->freq_table[0].frequency;
250 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
252 switch (data->cpu_feature) {
253 case SYSTEM_INTEL_MSR_CAPABLE:
254 case SYSTEM_AMD_MSR_CAPABLE:
255 return extract_msr(val, data);
256 case SYSTEM_IO_CAPABLE:
257 return extract_io(val, data);
258 default:
259 return 0;
263 struct msr_addr {
264 u32 reg;
267 struct io_addr {
268 u16 port;
269 u8 bit_width;
272 struct drv_cmd {
273 unsigned int type;
274 const struct cpumask *mask;
275 union {
276 struct msr_addr msr;
277 struct io_addr io;
278 } addr;
279 u32 val;
282 /* Called via smp_call_function_single(), on the target CPU */
283 static void do_drv_read(void *_cmd)
285 struct drv_cmd *cmd = _cmd;
286 u32 h;
288 switch (cmd->type) {
289 case SYSTEM_INTEL_MSR_CAPABLE:
290 case SYSTEM_AMD_MSR_CAPABLE:
291 rdmsr(cmd->addr.msr.reg, cmd->val, h);
292 break;
293 case SYSTEM_IO_CAPABLE:
294 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
295 &cmd->val,
296 (u32)cmd->addr.io.bit_width);
297 break;
298 default:
299 break;
303 /* Called via smp_call_function_many(), on the target CPUs */
304 static void do_drv_write(void *_cmd)
306 struct drv_cmd *cmd = _cmd;
307 u32 lo, hi;
309 switch (cmd->type) {
310 case SYSTEM_INTEL_MSR_CAPABLE:
311 rdmsr(cmd->addr.msr.reg, lo, hi);
312 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
313 wrmsr(cmd->addr.msr.reg, lo, hi);
314 break;
315 case SYSTEM_AMD_MSR_CAPABLE:
316 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
317 break;
318 case SYSTEM_IO_CAPABLE:
319 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
320 cmd->val,
321 (u32)cmd->addr.io.bit_width);
322 break;
323 default:
324 break;
328 static void drv_read(struct drv_cmd *cmd)
330 int err;
331 cmd->val = 0;
333 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
334 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
337 static void drv_write(struct drv_cmd *cmd)
339 int this_cpu;
341 this_cpu = get_cpu();
342 if (cpumask_test_cpu(this_cpu, cmd->mask))
343 do_drv_write(cmd);
344 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
345 put_cpu();
348 static u32 get_cur_val(const struct cpumask *mask)
350 struct acpi_processor_performance *perf;
351 struct drv_cmd cmd;
353 if (unlikely(cpumask_empty(mask)))
354 return 0;
356 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
357 case SYSTEM_INTEL_MSR_CAPABLE:
358 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
359 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
360 break;
361 case SYSTEM_AMD_MSR_CAPABLE:
362 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
363 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
364 break;
365 case SYSTEM_IO_CAPABLE:
366 cmd.type = SYSTEM_IO_CAPABLE;
367 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
368 cmd.addr.io.port = perf->control_register.address;
369 cmd.addr.io.bit_width = perf->control_register.bit_width;
370 break;
371 default:
372 return 0;
375 cmd.mask = mask;
376 drv_read(&cmd);
378 pr_debug("get_cur_val = %u\n", cmd.val);
380 return cmd.val;
383 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
385 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
386 unsigned int freq;
387 unsigned int cached_freq;
389 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
391 if (unlikely(data == NULL ||
392 data->acpi_data == NULL || data->freq_table == NULL)) {
393 return 0;
396 cached_freq = data->freq_table[data->acpi_data->state].frequency;
397 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
398 if (freq != cached_freq) {
400 * The dreaded BIOS frequency change behind our back.
401 * Force set the frequency on next target call.
403 data->resume = 1;
406 pr_debug("cur freq = %u\n", freq);
408 return freq;
411 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
412 struct acpi_cpufreq_data *data)
414 unsigned int cur_freq;
415 unsigned int i;
417 for (i = 0; i < 100; i++) {
418 cur_freq = extract_freq(get_cur_val(mask), data);
419 if (cur_freq == freq)
420 return 1;
421 udelay(10);
423 return 0;
426 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
427 unsigned int target_freq, unsigned int relation)
429 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
430 struct acpi_processor_performance *perf;
431 struct cpufreq_freqs freqs;
432 struct drv_cmd cmd;
433 unsigned int next_state = 0; /* Index into freq_table */
434 unsigned int next_perf_state = 0; /* Index into perf table */
435 int result = 0;
437 pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
439 if (unlikely(data == NULL ||
440 data->acpi_data == NULL || data->freq_table == NULL)) {
441 return -ENODEV;
444 perf = data->acpi_data;
445 result = cpufreq_frequency_table_target(policy,
446 data->freq_table,
447 target_freq,
448 relation, &next_state);
449 if (unlikely(result)) {
450 result = -ENODEV;
451 goto out;
454 next_perf_state = data->freq_table[next_state].driver_data;
455 if (perf->state == next_perf_state) {
456 if (unlikely(data->resume)) {
457 pr_debug("Called after resume, resetting to P%d\n",
458 next_perf_state);
459 data->resume = 0;
460 } else {
461 pr_debug("Already at target state (P%d)\n",
462 next_perf_state);
463 goto out;
467 switch (data->cpu_feature) {
468 case SYSTEM_INTEL_MSR_CAPABLE:
469 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
470 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
471 cmd.val = (u32) perf->states[next_perf_state].control;
472 break;
473 case SYSTEM_AMD_MSR_CAPABLE:
474 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
475 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
476 cmd.val = (u32) perf->states[next_perf_state].control;
477 break;
478 case SYSTEM_IO_CAPABLE:
479 cmd.type = SYSTEM_IO_CAPABLE;
480 cmd.addr.io.port = perf->control_register.address;
481 cmd.addr.io.bit_width = perf->control_register.bit_width;
482 cmd.val = (u32) perf->states[next_perf_state].control;
483 break;
484 default:
485 result = -ENODEV;
486 goto out;
489 /* cpufreq holds the hotplug lock, so we are safe from here on */
490 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
491 cmd.mask = policy->cpus;
492 else
493 cmd.mask = cpumask_of(policy->cpu);
495 freqs.old = perf->states[perf->state].core_frequency * 1000;
496 freqs.new = data->freq_table[next_state].frequency;
497 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
499 drv_write(&cmd);
501 if (acpi_pstate_strict) {
502 if (!check_freqs(cmd.mask, freqs.new, data)) {
503 pr_debug("acpi_cpufreq_target failed (%d)\n",
504 policy->cpu);
505 result = -EAGAIN;
506 freqs.new = freqs.old;
510 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
512 if (!result)
513 perf->state = next_perf_state;
515 out:
516 return result;
519 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
521 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
523 pr_debug("acpi_cpufreq_verify\n");
525 return cpufreq_frequency_table_verify(policy, data->freq_table);
528 static unsigned long
529 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
531 struct acpi_processor_performance *perf = data->acpi_data;
533 if (cpu_khz) {
534 /* search the closest match to cpu_khz */
535 unsigned int i;
536 unsigned long freq;
537 unsigned long freqn = perf->states[0].core_frequency * 1000;
539 for (i = 0; i < (perf->state_count-1); i++) {
540 freq = freqn;
541 freqn = perf->states[i+1].core_frequency * 1000;
542 if ((2 * cpu_khz) > (freqn + freq)) {
543 perf->state = i;
544 return freq;
547 perf->state = perf->state_count-1;
548 return freqn;
549 } else {
550 /* assume CPU is at P0... */
551 perf->state = 0;
552 return perf->states[0].core_frequency * 1000;
556 static void free_acpi_perf_data(void)
558 unsigned int i;
560 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
561 for_each_possible_cpu(i)
562 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
563 ->shared_cpu_map);
564 free_percpu(acpi_perf_data);
567 static int boost_notify(struct notifier_block *nb, unsigned long action,
568 void *hcpu)
570 unsigned cpu = (long)hcpu;
571 const struct cpumask *cpumask;
573 cpumask = get_cpu_mask(cpu);
576 * Clear the boost-disable bit on the CPU_DOWN path so that
577 * this cpu cannot block the remaining ones from boosting. On
578 * the CPU_UP path we simply keep the boost-disable flag in
579 * sync with the current global state.
582 switch (action) {
583 case CPU_UP_PREPARE:
584 case CPU_UP_PREPARE_FROZEN:
585 boost_set_msrs(boost_enabled, cpumask);
586 break;
588 case CPU_DOWN_PREPARE:
589 case CPU_DOWN_PREPARE_FROZEN:
590 boost_set_msrs(1, cpumask);
591 break;
593 default:
594 break;
597 return NOTIFY_OK;
601 static struct notifier_block boost_nb = {
602 .notifier_call = boost_notify,
606 * acpi_cpufreq_early_init - initialize ACPI P-States library
608 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
609 * in order to determine correct frequency and voltage pairings. We can
610 * do _PDC and _PSD and find out the processor dependency for the
611 * actual init that will happen later...
613 static int __init acpi_cpufreq_early_init(void)
615 unsigned int i;
616 pr_debug("acpi_cpufreq_early_init\n");
618 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
619 if (!acpi_perf_data) {
620 pr_debug("Memory allocation error for acpi_perf_data.\n");
621 return -ENOMEM;
623 for_each_possible_cpu(i) {
624 if (!zalloc_cpumask_var_node(
625 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
626 GFP_KERNEL, cpu_to_node(i))) {
628 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
629 free_acpi_perf_data();
630 return -ENOMEM;
634 /* Do initialization in ACPI core */
635 acpi_processor_preregister_performance(acpi_perf_data);
636 return 0;
639 #ifdef CONFIG_SMP
641 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
642 * or do it in BIOS firmware and won't inform about it to OS. If not
643 * detected, this has a side effect of making CPU run at a different speed
644 * than OS intended it to run at. Detect it and handle it cleanly.
646 static int bios_with_sw_any_bug;
648 static int sw_any_bug_found(const struct dmi_system_id *d)
650 bios_with_sw_any_bug = 1;
651 return 0;
654 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
656 .callback = sw_any_bug_found,
657 .ident = "Supermicro Server X6DLP",
658 .matches = {
659 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
660 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
661 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
667 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
669 /* Intel Xeon Processor 7100 Series Specification Update
670 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
671 * AL30: A Machine Check Exception (MCE) Occurring during an
672 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
673 * Both Processor Cores to Lock Up. */
674 if (c->x86_vendor == X86_VENDOR_INTEL) {
675 if ((c->x86 == 15) &&
676 (c->x86_model == 6) &&
677 (c->x86_mask == 8)) {
678 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
679 "Xeon(R) 7100 Errata AL30, processors may "
680 "lock up on frequency changes: disabling "
681 "acpi-cpufreq.\n");
682 return -ENODEV;
685 return 0;
687 #endif
689 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
691 unsigned int i;
692 unsigned int valid_states = 0;
693 unsigned int cpu = policy->cpu;
694 struct acpi_cpufreq_data *data;
695 unsigned int result = 0;
696 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
697 struct acpi_processor_performance *perf;
698 #ifdef CONFIG_SMP
699 static int blacklisted;
700 #endif
702 pr_debug("acpi_cpufreq_cpu_init\n");
704 #ifdef CONFIG_SMP
705 if (blacklisted)
706 return blacklisted;
707 blacklisted = acpi_cpufreq_blacklist(c);
708 if (blacklisted)
709 return blacklisted;
710 #endif
712 data = kzalloc(sizeof(*data), GFP_KERNEL);
713 if (!data)
714 return -ENOMEM;
716 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
717 result = -ENOMEM;
718 goto err_free;
721 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
722 per_cpu(acfreq_data, cpu) = data;
724 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
725 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
727 result = acpi_processor_register_performance(data->acpi_data, cpu);
728 if (result)
729 goto err_free_mask;
731 perf = data->acpi_data;
732 policy->shared_type = perf->shared_type;
735 * Will let policy->cpus know about dependency only when software
736 * coordination is required.
738 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
739 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
740 cpumask_copy(policy->cpus, perf->shared_cpu_map);
742 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
744 #ifdef CONFIG_SMP
745 dmi_check_system(sw_any_bug_dmi_table);
746 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
747 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
748 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
751 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
752 cpumask_clear(policy->cpus);
753 cpumask_set_cpu(cpu, policy->cpus);
754 cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
755 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
756 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
758 #endif
760 /* capability check */
761 if (perf->state_count <= 1) {
762 pr_debug("No P-States\n");
763 result = -ENODEV;
764 goto err_unreg;
767 if (perf->control_register.space_id != perf->status_register.space_id) {
768 result = -ENODEV;
769 goto err_unreg;
772 switch (perf->control_register.space_id) {
773 case ACPI_ADR_SPACE_SYSTEM_IO:
774 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
775 boot_cpu_data.x86 == 0xf) {
776 pr_debug("AMD K8 systems must use native drivers.\n");
777 result = -ENODEV;
778 goto err_unreg;
780 pr_debug("SYSTEM IO addr space\n");
781 data->cpu_feature = SYSTEM_IO_CAPABLE;
782 break;
783 case ACPI_ADR_SPACE_FIXED_HARDWARE:
784 pr_debug("HARDWARE addr space\n");
785 if (check_est_cpu(cpu)) {
786 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
787 break;
789 if (check_amd_hwpstate_cpu(cpu)) {
790 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
791 break;
793 result = -ENODEV;
794 goto err_unreg;
795 default:
796 pr_debug("Unknown addr space %d\n",
797 (u32) (perf->control_register.space_id));
798 result = -ENODEV;
799 goto err_unreg;
802 data->freq_table = kmalloc(sizeof(*data->freq_table) *
803 (perf->state_count+1), GFP_KERNEL);
804 if (!data->freq_table) {
805 result = -ENOMEM;
806 goto err_unreg;
809 /* detect transition latency */
810 policy->cpuinfo.transition_latency = 0;
811 for (i = 0; i < perf->state_count; i++) {
812 if ((perf->states[i].transition_latency * 1000) >
813 policy->cpuinfo.transition_latency)
814 policy->cpuinfo.transition_latency =
815 perf->states[i].transition_latency * 1000;
818 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
819 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
820 policy->cpuinfo.transition_latency > 20 * 1000) {
821 policy->cpuinfo.transition_latency = 20 * 1000;
822 printk_once(KERN_INFO
823 "P-state transition latency capped at 20 uS\n");
826 /* table init */
827 for (i = 0; i < perf->state_count; i++) {
828 if (i > 0 && perf->states[i].core_frequency >=
829 data->freq_table[valid_states-1].frequency / 1000)
830 continue;
832 data->freq_table[valid_states].driver_data = i;
833 data->freq_table[valid_states].frequency =
834 perf->states[i].core_frequency * 1000;
835 valid_states++;
837 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
838 perf->state = 0;
840 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
841 if (result)
842 goto err_freqfree;
844 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
845 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
847 switch (perf->control_register.space_id) {
848 case ACPI_ADR_SPACE_SYSTEM_IO:
849 /* Current speed is unknown and not detectable by IO port */
850 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
851 break;
852 case ACPI_ADR_SPACE_FIXED_HARDWARE:
853 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
854 policy->cur = get_cur_freq_on_cpu(cpu);
855 break;
856 default:
857 break;
860 /* notify BIOS that we exist */
861 acpi_processor_notify_smm(THIS_MODULE);
863 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
864 for (i = 0; i < perf->state_count; i++)
865 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
866 (i == perf->state ? '*' : ' '), i,
867 (u32) perf->states[i].core_frequency,
868 (u32) perf->states[i].power,
869 (u32) perf->states[i].transition_latency);
871 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
874 * the first call to ->target() should result in us actually
875 * writing something to the appropriate registers.
877 data->resume = 1;
879 return result;
881 err_freqfree:
882 kfree(data->freq_table);
883 err_unreg:
884 acpi_processor_unregister_performance(perf, cpu);
885 err_free_mask:
886 free_cpumask_var(data->freqdomain_cpus);
887 err_free:
888 kfree(data);
889 per_cpu(acfreq_data, cpu) = NULL;
891 return result;
894 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
896 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
898 pr_debug("acpi_cpufreq_cpu_exit\n");
900 if (data) {
901 cpufreq_frequency_table_put_attr(policy->cpu);
902 per_cpu(acfreq_data, policy->cpu) = NULL;
903 acpi_processor_unregister_performance(data->acpi_data,
904 policy->cpu);
905 free_cpumask_var(data->freqdomain_cpus);
906 kfree(data->freq_table);
907 kfree(data);
910 return 0;
913 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
915 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
917 pr_debug("acpi_cpufreq_resume\n");
919 data->resume = 1;
921 return 0;
924 static struct freq_attr *acpi_cpufreq_attr[] = {
925 &cpufreq_freq_attr_scaling_available_freqs,
926 &freqdomain_cpus,
927 NULL, /* this is a placeholder for cpb, do not remove */
928 NULL,
931 static struct cpufreq_driver acpi_cpufreq_driver = {
932 .verify = acpi_cpufreq_verify,
933 .target = acpi_cpufreq_target,
934 .bios_limit = acpi_processor_get_bios_limit,
935 .init = acpi_cpufreq_cpu_init,
936 .exit = acpi_cpufreq_cpu_exit,
937 .resume = acpi_cpufreq_resume,
938 .name = "acpi-cpufreq",
939 .attr = acpi_cpufreq_attr,
942 static void __init acpi_cpufreq_boost_init(void)
944 if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
945 msrs = msrs_alloc();
947 if (!msrs)
948 return;
950 boost_supported = true;
951 boost_enabled = boost_state(0);
953 get_online_cpus();
955 /* Force all MSRs to the same value */
956 boost_set_msrs(boost_enabled, cpu_online_mask);
958 register_cpu_notifier(&boost_nb);
960 put_online_cpus();
961 } else
962 global_boost.attr.mode = 0444;
964 /* We create the boost file in any case, though for systems without
965 * hardware support it will be read-only and hardwired to return 0.
967 if (cpufreq_sysfs_create_file(&(global_boost.attr)))
968 pr_warn(PFX "could not register global boost sysfs file\n");
969 else
970 pr_debug("registered global boost sysfs file\n");
973 static void __exit acpi_cpufreq_boost_exit(void)
975 cpufreq_sysfs_remove_file(&(global_boost.attr));
977 if (msrs) {
978 unregister_cpu_notifier(&boost_nb);
980 msrs_free(msrs);
981 msrs = NULL;
985 static int __init acpi_cpufreq_init(void)
987 int ret;
989 if (acpi_disabled)
990 return -ENODEV;
992 /* don't keep reloading if cpufreq_driver exists */
993 if (cpufreq_get_current_driver())
994 return -EEXIST;
996 pr_debug("acpi_cpufreq_init\n");
998 ret = acpi_cpufreq_early_init();
999 if (ret)
1000 return ret;
1002 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1003 /* this is a sysfs file with a strange name and an even stranger
1004 * semantic - per CPU instantiation, but system global effect.
1005 * Lets enable it only on AMD CPUs for compatibility reasons and
1006 * only if configured. This is considered legacy code, which
1007 * will probably be removed at some point in the future.
1009 if (check_amd_hwpstate_cpu(0)) {
1010 struct freq_attr **iter;
1012 pr_debug("adding sysfs entry for cpb\n");
1014 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
1017 /* make sure there is a terminator behind it */
1018 if (iter[1] == NULL)
1019 *iter = &cpb;
1021 #endif
1023 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1024 if (ret)
1025 free_acpi_perf_data();
1026 else
1027 acpi_cpufreq_boost_init();
1029 return ret;
1032 static void __exit acpi_cpufreq_exit(void)
1034 pr_debug("acpi_cpufreq_exit\n");
1036 acpi_cpufreq_boost_exit();
1038 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1040 free_acpi_perf_data();
1043 module_param(acpi_pstate_strict, uint, 0644);
1044 MODULE_PARM_DESC(acpi_pstate_strict,
1045 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1046 "performed during frequency changes.");
1048 late_initcall(acpi_cpufreq_init);
1049 module_exit(acpi_cpufreq_exit);
1051 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1052 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1053 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1056 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1058 static const struct acpi_device_id processor_device_ids[] = {
1059 {ACPI_PROCESSOR_OBJECT_HID, },
1060 {ACPI_PROCESSOR_DEVICE_HID, },
1063 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1065 MODULE_ALIAS("acpi");