2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex
);
43 static LIST_HEAD(mc_devices
);
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
49 static void const *edac_mc_owner
;
51 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
53 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
56 struct mem_ctl_info
*mci
= dimm
->mci
;
60 for (i
= 0; i
< mci
->n_layers
; i
++) {
61 n
= snprintf(p
, len
, "%s %d ",
62 edac_layer_name
[mci
->layers
[i
].type
],
74 #ifdef CONFIG_EDAC_DEBUG
76 static void edac_mc_dump_channel(struct rank_info
*chan
)
78 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
79 edac_dbg(4, " channel = %p\n", chan
);
80 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
81 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
84 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
88 edac_dimm_info_location(dimm
, location
, sizeof(location
));
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm
->mci
->csbased
? "rank" : "dimm",
92 number
, location
, dimm
->csrow
, dimm
->cschannel
);
93 edac_dbg(4, " dimm = %p\n", dimm
);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
96 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
100 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
103 edac_dbg(4, " csrow = %p\n", csrow
);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
108 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
109 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
112 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
114 edac_dbg(3, "\tmci = %p\n", mci
);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci
->nr_csrows
, mci
->csrows
);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci
->tot_dimms
, mci
->dimms
);
123 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci
->mod_name
, mci
->ctl_name
);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
129 #endif /* CONFIG_EDAC_DEBUG */
132 * keep those in sync with the enum mem_type
134 const char *edac_mem_types
[] = {
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
153 EXPORT_SYMBOL_GPL(edac_mem_types
);
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
170 * At return, the pointer 'p' will be incremented to be used on a next call
173 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
178 *p
+= size
* n_elems
;
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
189 if (size
> sizeof(long))
190 align
= sizeof(long long);
191 else if (size
> sizeof(int))
192 align
= sizeof(long);
193 else if (size
> sizeof(short))
195 else if (size
> sizeof(char))
196 align
= sizeof(short);
200 r
= (unsigned long)p
% align
;
207 return (void *)(((unsigned long)ptr
) + align
- r
);
210 static void _edac_mc_free(struct mem_ctl_info
*mci
)
213 struct csrow_info
*csr
;
214 const unsigned int tot_dimms
= mci
->tot_dimms
;
215 const unsigned int tot_channels
= mci
->num_cschannel
;
216 const unsigned int tot_csrows
= mci
->nr_csrows
;
219 for (i
= 0; i
< tot_dimms
; i
++)
220 kfree(mci
->dimms
[i
]);
224 for (row
= 0; row
< tot_csrows
; row
++) {
225 csr
= mci
->csrows
[row
];
228 for (chn
= 0; chn
< tot_channels
; chn
++)
229 kfree(csr
->channels
[chn
]);
230 kfree(csr
->channels
);
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
252 * Use edac_mc_free() to free mc structures allocated by this function.
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
262 * On success: struct mem_ctl_info pointer
264 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
266 struct edac_mc_layer
*layers
,
269 struct mem_ctl_info
*mci
;
270 struct edac_mc_layer
*layer
;
271 struct csrow_info
*csr
;
272 struct rank_info
*chan
;
273 struct dimm_info
*dimm
;
274 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
275 unsigned pos
[EDAC_MAX_LAYERS
];
276 unsigned size
, tot_dimms
= 1, count
= 1;
277 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
278 void *pvt
, *p
, *ptr
= NULL
;
279 int i
, j
, row
, chn
, n
, len
, off
;
280 bool per_rank
= false;
282 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
287 for (i
= 0; i
< n_layers
; i
++) {
288 tot_dimms
*= layers
[i
].size
;
289 if (layers
[i
].is_virt_csrow
)
290 tot_csrows
*= layers
[i
].size
;
292 tot_channels
*= layers
[i
].size
;
294 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
303 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
304 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
305 for (i
= 0; i
< n_layers
; i
++) {
306 count
*= layers
[i
].size
;
307 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
308 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
309 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
310 tot_errcount
+= 2 * count
;
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
314 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
315 size
= ((unsigned long)pvt
) + sz_pvt
;
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 per_rank
? "ranks" : "dimms",
321 tot_csrows
* tot_channels
);
323 mci
= kzalloc(size
, GFP_KERNEL
);
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
330 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
331 for (i
= 0; i
< n_layers
; i
++) {
332 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
333 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
335 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
337 /* setup index and various internal pointers */
338 mci
->mc_idx
= mc_num
;
339 mci
->tot_dimms
= tot_dimms
;
341 mci
->n_layers
= n_layers
;
343 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
344 mci
->nr_csrows
= tot_csrows
;
345 mci
->num_cschannel
= tot_channels
;
346 mci
->csbased
= per_rank
;
349 * Alocate and fill the csrow/channels structs
351 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
354 for (row
= 0; row
< tot_csrows
; row
++) {
355 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
358 mci
->csrows
[row
] = csr
;
359 csr
->csrow_idx
= row
;
361 csr
->nr_channels
= tot_channels
;
362 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
367 for (chn
= 0; chn
< tot_channels
; chn
++) {
368 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
371 csr
->channels
[chn
] = chan
;
372 chan
->chan_idx
= chn
;
378 * Allocate and fill the dimm structs
380 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
384 memset(&pos
, 0, sizeof(pos
));
387 for (i
= 0; i
< tot_dimms
; i
++) {
388 chan
= mci
->csrows
[row
]->channels
[chn
];
389 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
390 if (off
< 0 || off
>= tot_dimms
) {
391 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
395 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
398 mci
->dimms
[off
] = dimm
;
402 * Copy DIMM location and initialize it.
404 len
= sizeof(dimm
->label
);
406 n
= snprintf(p
, len
, "mc#%u", mc_num
);
409 for (j
= 0; j
< n_layers
; j
++) {
410 n
= snprintf(p
, len
, "%s#%u",
411 edac_layer_name
[layers
[j
].type
],
415 dimm
->location
[j
] = pos
[j
];
421 /* Link it to the csrows old API data */
424 dimm
->cschannel
= chn
;
426 /* Increment csrow location */
427 if (layers
[0].is_virt_csrow
) {
429 if (chn
== tot_channels
) {
435 if (row
== tot_csrows
) {
441 /* Increment dimm location */
442 for (j
= n_layers
- 1; j
>= 0; j
--) {
444 if (pos
[j
] < layers
[j
].size
)
450 mci
->op_state
= OP_ALLOC
;
459 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
466 void edac_mc_free(struct mem_ctl_info
*mci
)
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
473 if (!device_is_registered(&mci
->dev
)) {
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci
);
481 EXPORT_SYMBOL_GPL(edac_mc_free
);
487 * scan list of controllers looking for the one that manages
489 * @dev: pointer to a struct device related with the MCI
491 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
493 struct mem_ctl_info
*mci
;
494 struct list_head
*item
;
498 list_for_each(item
, &mc_devices
) {
499 mci
= list_entry(item
, struct mem_ctl_info
, link
);
501 if (mci
->pdev
== dev
)
507 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
510 * handler for EDAC to check if NMI type handler has asserted interrupt
512 static int edac_mc_assert_error_check_and_clear(void)
516 if (edac_op_state
== EDAC_OPSTATE_POLL
)
519 old_state
= edac_err_assert
;
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
529 static void edac_mc_workq_function(struct work_struct
*work_req
)
531 struct delayed_work
*d_work
= to_delayed_work(work_req
);
532 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
534 mutex_lock(&mem_ctls_mutex
);
536 /* if this control struct has movd to offline state, we are done */
537 if (mci
->op_state
== OP_OFFLINE
) {
538 mutex_unlock(&mem_ctls_mutex
);
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci
->edac_check
!= NULL
))
544 mci
->edac_check(mci
);
546 mutex_unlock(&mem_ctls_mutex
);
549 queue_delayed_work(edac_workqueue
, &mci
->work
,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
560 * called with the mem_ctls_mutex held
562 static void edac_mc_workq_setup(struct mem_ctl_info
*mci
, unsigned msec
,
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci
->op_state
!= OP_RUNNING_POLL
)
572 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
574 mod_delayed_work(edac_workqueue
, &mci
->work
, msecs_to_jiffies(msec
));
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
583 * called WITHOUT lock held
585 static void edac_mc_workq_teardown(struct mem_ctl_info
*mci
)
589 if (mci
->op_state
!= OP_RUNNING_POLL
)
592 status
= cancel_delayed_work(&mci
->work
);
594 edac_dbg(0, "not canceled, flush the queue\n");
596 /* workq instance might be running, wait for it */
597 flush_workqueue(edac_workqueue
);
602 * edac_mc_reset_delay_period(unsigned long value)
604 * user space has updated our poll period value, need to
605 * reset our workq delays
607 void edac_mc_reset_delay_period(unsigned long value
)
609 struct mem_ctl_info
*mci
;
610 struct list_head
*item
;
612 mutex_lock(&mem_ctls_mutex
);
614 list_for_each(item
, &mc_devices
) {
615 mci
= list_entry(item
, struct mem_ctl_info
, link
);
617 edac_mc_workq_setup(mci
, value
, false);
620 mutex_unlock(&mem_ctls_mutex
);
625 /* Return 0 on success, 1 on failure.
626 * Before calling this function, caller must
627 * assign a unique value to mci->mc_idx.
631 * called with the mem_ctls_mutex lock held
633 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
635 struct list_head
*item
, *insert_before
;
636 struct mem_ctl_info
*p
;
638 insert_before
= &mc_devices
;
640 p
= find_mci_by_dev(mci
->pdev
);
641 if (unlikely(p
!= NULL
))
644 list_for_each(item
, &mc_devices
) {
645 p
= list_entry(item
, struct mem_ctl_info
, link
);
647 if (p
->mc_idx
>= mci
->mc_idx
) {
648 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
651 insert_before
= item
;
656 list_add_tail_rcu(&mci
->link
, insert_before
);
657 atomic_inc(&edac_handlers
);
661 edac_printk(KERN_WARNING
, EDAC_MC
,
662 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
663 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
667 edac_printk(KERN_WARNING
, EDAC_MC
,
668 "bug in low-level driver: attempt to assign\n"
669 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
673 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
675 int handlers
= atomic_dec_return(&edac_handlers
);
676 list_del_rcu(&mci
->link
);
678 /* these are for safe removal of devices from global list while
679 * NMI handlers may be traversing list
682 INIT_LIST_HEAD(&mci
->link
);
688 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
690 * If found, return a pointer to the structure.
693 * Caller must hold mem_ctls_mutex.
695 struct mem_ctl_info
*edac_mc_find(int idx
)
697 struct list_head
*item
;
698 struct mem_ctl_info
*mci
;
700 list_for_each(item
, &mc_devices
) {
701 mci
= list_entry(item
, struct mem_ctl_info
, link
);
703 if (mci
->mc_idx
>= idx
) {
704 if (mci
->mc_idx
== idx
)
713 EXPORT_SYMBOL(edac_mc_find
);
716 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
717 * create sysfs entries associated with mci structure
718 * @mci: pointer to the mci structure to be added to the list
725 /* FIXME - should a warning be printed if no error detection? correction? */
726 int edac_mc_add_mc(struct mem_ctl_info
*mci
)
731 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
732 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
736 #ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level
>= 3)
738 edac_mc_dump_mci(mci
);
740 if (edac_debug_level
>= 4) {
743 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
744 struct csrow_info
*csrow
= mci
->csrows
[i
];
748 for (j
= 0; j
< csrow
->nr_channels
; j
++)
749 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
752 edac_mc_dump_csrow(csrow
);
753 for (j
= 0; j
< csrow
->nr_channels
; j
++)
754 if (csrow
->channels
[j
]->dimm
->nr_pages
)
755 edac_mc_dump_channel(csrow
->channels
[j
]);
757 for (i
= 0; i
< mci
->tot_dimms
; i
++)
758 if (mci
->dimms
[i
]->nr_pages
)
759 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
762 mutex_lock(&mem_ctls_mutex
);
764 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
769 if (add_mc_to_global_list(mci
))
772 /* set load time so that error rate can be tracked */
773 mci
->start_time
= jiffies
;
775 mci
->bus
= &mc_bus
[mci
->mc_idx
];
777 if (edac_create_sysfs_mci_device(mci
)) {
778 edac_mc_printk(mci
, KERN_WARNING
,
779 "failed to create sysfs device\n");
783 /* If there IS a check routine, then we are running POLLED */
784 if (mci
->edac_check
!= NULL
) {
785 /* This instance is NOW RUNNING */
786 mci
->op_state
= OP_RUNNING_POLL
;
788 edac_mc_workq_setup(mci
, edac_mc_get_poll_msec(), true);
790 mci
->op_state
= OP_RUNNING_INTERRUPT
;
793 /* Report action taken */
794 edac_mc_printk(mci
, KERN_INFO
, "Giving out device to '%s' '%s':"
795 " DEV %s\n", mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
797 edac_mc_owner
= mci
->mod_name
;
799 mutex_unlock(&mem_ctls_mutex
);
803 del_mc_from_global_list(mci
);
806 mutex_unlock(&mem_ctls_mutex
);
809 EXPORT_SYMBOL_GPL(edac_mc_add_mc
);
812 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
813 * remove mci structure from global list
814 * @pdev: Pointer to 'struct device' representing mci structure to remove.
816 * Return pointer to removed mci structure, or NULL if device not found.
818 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
820 struct mem_ctl_info
*mci
;
824 mutex_lock(&mem_ctls_mutex
);
826 /* find the requested mci struct in the global list */
827 mci
= find_mci_by_dev(dev
);
829 mutex_unlock(&mem_ctls_mutex
);
833 if (!del_mc_from_global_list(mci
))
834 edac_mc_owner
= NULL
;
835 mutex_unlock(&mem_ctls_mutex
);
837 /* flush workq processes */
838 edac_mc_workq_teardown(mci
);
840 /* marking MCI offline */
841 mci
->op_state
= OP_OFFLINE
;
843 /* remove from sysfs */
844 edac_remove_sysfs_mci_device(mci
);
846 edac_printk(KERN_INFO
, EDAC_MC
,
847 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
848 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
852 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
854 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
859 unsigned long flags
= 0;
863 /* ECC error page was not in our memory. Ignore it. */
864 if (!pfn_valid(page
))
867 /* Find the actual page structure then map it and fix */
868 pg
= pfn_to_page(page
);
871 local_irq_save(flags
);
873 virt_addr
= kmap_atomic(pg
);
875 /* Perform architecture specific atomic scrub operation */
876 atomic_scrub(virt_addr
+ offset
, size
);
878 /* Unmap and complete */
879 kunmap_atomic(virt_addr
);
882 local_irq_restore(flags
);
885 /* FIXME - should return -1 */
886 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
888 struct csrow_info
**csrows
= mci
->csrows
;
891 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
894 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
895 struct csrow_info
*csrow
= csrows
[i
];
897 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
898 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
904 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
906 csrow
->first_page
, page
, csrow
->last_page
,
909 if ((page
>= csrow
->first_page
) &&
910 (page
<= csrow
->last_page
) &&
911 ((page
& csrow
->page_mask
) ==
912 (csrow
->first_page
& csrow
->page_mask
))) {
919 edac_mc_printk(mci
, KERN_ERR
,
920 "could not look up page error address %lx\n",
921 (unsigned long)page
);
925 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
927 const char *edac_layer_name
[] = {
928 [EDAC_MC_LAYER_BRANCH
] = "branch",
929 [EDAC_MC_LAYER_CHANNEL
] = "channel",
930 [EDAC_MC_LAYER_SLOT
] = "slot",
931 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
932 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
934 EXPORT_SYMBOL_GPL(edac_layer_name
);
936 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
937 bool enable_per_layer_report
,
938 const int pos
[EDAC_MAX_LAYERS
],
945 if (!enable_per_layer_report
) {
946 mci
->ce_noinfo_count
+= count
;
950 for (i
= 0; i
< mci
->n_layers
; i
++) {
954 mci
->ce_per_layer
[i
][index
] += count
;
956 if (i
< mci
->n_layers
- 1)
957 index
*= mci
->layers
[i
+ 1].size
;
961 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
962 bool enable_per_layer_report
,
963 const int pos
[EDAC_MAX_LAYERS
],
970 if (!enable_per_layer_report
) {
971 mci
->ce_noinfo_count
+= count
;
975 for (i
= 0; i
< mci
->n_layers
; i
++) {
979 mci
->ue_per_layer
[i
][index
] += count
;
981 if (i
< mci
->n_layers
- 1)
982 index
*= mci
->layers
[i
+ 1].size
;
986 static void edac_ce_error(struct mem_ctl_info
*mci
,
987 const u16 error_count
,
988 const int pos
[EDAC_MAX_LAYERS
],
990 const char *location
,
993 const char *other_detail
,
994 const bool enable_per_layer_report
,
995 const unsigned long page_frame_number
,
996 const unsigned long offset_in_page
,
999 unsigned long remapped_page
;
1005 if (edac_mc_get_log_ce()) {
1006 if (other_detail
&& *other_detail
)
1007 edac_mc_printk(mci
, KERN_WARNING
,
1008 "%d CE %s%son %s (%s %s - %s)\n",
1009 error_count
, msg
, msg_aux
, label
,
1010 location
, detail
, other_detail
);
1012 edac_mc_printk(mci
, KERN_WARNING
,
1013 "%d CE %s%son %s (%s %s)\n",
1014 error_count
, msg
, msg_aux
, label
,
1017 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1019 if (mci
->scrub_mode
& SCRUB_SW_SRC
) {
1021 * Some memory controllers (called MCs below) can remap
1022 * memory so that it is still available at a different
1023 * address when PCI devices map into memory.
1024 * MC's that can't do this, lose the memory where PCI
1025 * devices are mapped. This mapping is MC-dependent
1026 * and so we call back into the MC driver for it to
1027 * map the MC page to a physical (CPU) page which can
1028 * then be mapped to a virtual page - which can then
1031 remapped_page
= mci
->ctl_page_to_phys
?
1032 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1035 edac_mc_scrub_block(remapped_page
,
1036 offset_in_page
, grain
);
1040 static void edac_ue_error(struct mem_ctl_info
*mci
,
1041 const u16 error_count
,
1042 const int pos
[EDAC_MAX_LAYERS
],
1044 const char *location
,
1047 const char *other_detail
,
1048 const bool enable_per_layer_report
)
1055 if (edac_mc_get_log_ue()) {
1056 if (other_detail
&& *other_detail
)
1057 edac_mc_printk(mci
, KERN_WARNING
,
1058 "%d UE %s%son %s (%s %s - %s)\n",
1059 error_count
, msg
, msg_aux
, label
,
1060 location
, detail
, other_detail
);
1062 edac_mc_printk(mci
, KERN_WARNING
,
1063 "%d UE %s%son %s (%s %s)\n",
1064 error_count
, msg
, msg_aux
, label
,
1068 if (edac_mc_get_panic_on_ue()) {
1069 if (other_detail
&& *other_detail
)
1070 panic("UE %s%son %s (%s%s - %s)\n",
1071 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1073 panic("UE %s%son %s (%s%s)\n",
1074 msg
, msg_aux
, label
, location
, detail
);
1077 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1081 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1082 * anything to discover the error location
1084 * @type: severity of the error (CE/UE/Fatal)
1085 * @mci: a struct mem_ctl_info pointer
1086 * @e: error description
1088 * This raw function is used internally by edac_mc_handle_error(). It should
1089 * only be called directly when the hardware error come directly from BIOS,
1090 * like in the case of APEI GHES driver.
1092 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1093 struct mem_ctl_info
*mci
,
1094 struct edac_raw_error_desc
*e
)
1097 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1099 /* Memory type dependent details about the error */
1100 if (type
== HW_EVENT_ERR_CORRECTED
) {
1101 snprintf(detail
, sizeof(detail
),
1102 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1103 e
->page_frame_number
, e
->offset_in_page
,
1104 e
->grain
, e
->syndrome
);
1105 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1106 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1107 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1109 snprintf(detail
, sizeof(detail
),
1110 "page:0x%lx offset:0x%lx grain:%ld",
1111 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1113 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1114 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1119 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1122 * edac_mc_handle_error - reports a memory event to userspace
1124 * @type: severity of the error (CE/UE/Fatal)
1125 * @mci: a struct mem_ctl_info pointer
1126 * @error_count: Number of errors of the same type
1127 * @page_frame_number: mem page where the error occurred
1128 * @offset_in_page: offset of the error inside the page
1129 * @syndrome: ECC syndrome
1130 * @top_layer: Memory layer[0] position
1131 * @mid_layer: Memory layer[1] position
1132 * @low_layer: Memory layer[2] position
1133 * @msg: Message meaningful to the end users that
1134 * explains the event
1135 * @other_detail: Technical details about the event that
1136 * may help hardware manufacturers and
1137 * EDAC developers to analyse the event
1139 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1140 struct mem_ctl_info
*mci
,
1141 const u16 error_count
,
1142 const unsigned long page_frame_number
,
1143 const unsigned long offset_in_page
,
1144 const unsigned long syndrome
,
1145 const int top_layer
,
1146 const int mid_layer
,
1147 const int low_layer
,
1149 const char *other_detail
)
1152 int row
= -1, chan
= -1;
1153 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1154 int i
, n_labels
= 0;
1156 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1158 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1160 /* Fills the error report buffer */
1161 memset(e
, 0, sizeof (*e
));
1162 e
->error_count
= error_count
;
1163 e
->top_layer
= top_layer
;
1164 e
->mid_layer
= mid_layer
;
1165 e
->low_layer
= low_layer
;
1166 e
->page_frame_number
= page_frame_number
;
1167 e
->offset_in_page
= offset_in_page
;
1168 e
->syndrome
= syndrome
;
1170 e
->other_detail
= other_detail
;
1173 * Check if the event report is consistent and if the memory
1174 * location is known. If it is known, enable_per_layer_report will be
1175 * true, the DIMM(s) label info will be filled and the per-layer
1176 * error counters will be incremented.
1178 for (i
= 0; i
< mci
->n_layers
; i
++) {
1179 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1181 edac_mc_printk(mci
, KERN_ERR
,
1182 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1183 edac_layer_name
[mci
->layers
[i
].type
],
1184 pos
[i
], mci
->layers
[i
].size
);
1186 * Instead of just returning it, let's use what's
1187 * known about the error. The increment routines and
1188 * the DIMM filter logic will do the right thing by
1189 * pointing the likely damaged DIMMs.
1194 e
->enable_per_layer_report
= true;
1198 * Get the dimm label/grain that applies to the match criteria.
1199 * As the error algorithm may not be able to point to just one memory
1200 * stick, the logic here will get all possible labels that could
1201 * pottentially be affected by the error.
1202 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1203 * to have only the MC channel and the MC dimm (also called "branch")
1204 * but the channel is not known, as the memory is arranged in pairs,
1205 * where each memory belongs to a separate channel within the same
1211 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1212 struct dimm_info
*dimm
= mci
->dimms
[i
];
1214 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1216 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1218 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1221 /* get the max grain, over the error match range */
1222 if (dimm
->grain
> e
->grain
)
1223 e
->grain
= dimm
->grain
;
1226 * If the error is memory-controller wide, there's no need to
1227 * seek for the affected DIMMs because the whole
1228 * channel/memory controller/... may be affected.
1229 * Also, don't show errors for empty DIMM slots.
1231 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1232 if (n_labels
>= EDAC_MAX_LABELS
) {
1233 e
->enable_per_layer_report
= false;
1237 if (p
!= e
->label
) {
1238 strcpy(p
, OTHER_LABEL
);
1239 p
+= strlen(OTHER_LABEL
);
1241 strcpy(p
, dimm
->label
);
1246 * get csrow/channel of the DIMM, in order to allow
1247 * incrementing the compat API counters
1249 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1250 mci
->csbased
? "rank" : "dimm",
1251 dimm
->csrow
, dimm
->cschannel
);
1254 else if (row
>= 0 && row
!= dimm
->csrow
)
1258 chan
= dimm
->cschannel
;
1259 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1264 if (!e
->enable_per_layer_report
) {
1265 strcpy(e
->label
, "any memory");
1267 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1269 strcpy(e
->label
, "unknown memory");
1270 if (type
== HW_EVENT_ERR_CORRECTED
) {
1272 mci
->csrows
[row
]->ce_count
+= error_count
;
1274 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1278 mci
->csrows
[row
]->ue_count
+= error_count
;
1281 /* Fill the RAM location data */
1284 for (i
= 0; i
< mci
->n_layers
; i
++) {
1288 p
+= sprintf(p
, "%s:%d ",
1289 edac_layer_name
[mci
->layers
[i
].type
],
1292 if (p
> e
->location
)
1295 /* Report the error via the trace interface */
1296 grain_bits
= fls_long(e
->grain
) + 1;
1297 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1298 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1299 PAGES_TO_MiB(e
->page_frame_number
) | e
->offset_in_page
,
1300 grain_bits
, e
->syndrome
, e
->other_detail
);
1302 edac_raw_mc_handle_error(type
, mci
, e
);
1304 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);