Linux 3.12.39
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
blob26ca4db908b987af8eac073af21ac8e5f86d2218
1 /*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "request.h"
27 #include "writeback.h"
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/prefetch.h>
33 #include <linux/random.h>
34 #include <linux/rcupdate.h>
35 #include <trace/events/bcache.h>
38 * Todo:
39 * register_bcache: Return errors out to userspace correctly
41 * Writeback: don't undirty key until after a cache flush
43 * Create an iterator for key pointers
45 * On btree write error, mark bucket such that it won't be freed from the cache
47 * Journalling:
48 * Check for bad keys in replay
49 * Propagate barriers
50 * Refcount journal entries in journal_replay
52 * Garbage collection:
53 * Finish incremental gc
54 * Gc should free old UUIDs, data for invalid UUIDs
56 * Provide a way to list backing device UUIDs we have data cached for, and
57 * probably how long it's been since we've seen them, and a way to invalidate
58 * dirty data for devices that will never be attached again
60 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61 * that based on that and how much dirty data we have we can keep writeback
62 * from being starved
64 * Add a tracepoint or somesuch to watch for writeback starvation
66 * When btree depth > 1 and splitting an interior node, we have to make sure
67 * alloc_bucket() cannot fail. This should be true but is not completely
68 * obvious.
70 * Make sure all allocations get charged to the root cgroup
72 * Plugging?
74 * If data write is less than hard sector size of ssd, round up offset in open
75 * bucket to the next whole sector
77 * Also lookup by cgroup in get_open_bucket()
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 static const char * const op_types[] = {
92 "insert", "replace"
95 static const char *op_type(struct btree_op *op)
97 return op_types[op->type];
100 #define MAX_NEED_GC 64
101 #define MAX_SAVE_PRIO 72
103 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
105 #define PTR_HASH(c, k) \
106 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
108 struct workqueue_struct *bch_gc_wq;
109 static struct workqueue_struct *btree_io_wq;
111 void bch_btree_op_init_stack(struct btree_op *op)
113 memset(op, 0, sizeof(struct btree_op));
114 closure_init_stack(&op->cl);
115 op->lock = -1;
116 bch_keylist_init(&op->keys);
119 /* Btree key manipulation */
121 static void bkey_put(struct cache_set *c, struct bkey *k, int level)
123 if ((level && KEY_OFFSET(k)) || !level)
124 __bkey_put(c, k);
127 /* Btree IO */
129 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
131 uint64_t crc = b->key.ptr[0];
132 void *data = (void *) i + 8, *end = end(i);
134 crc = bch_crc64_update(crc, data, end - data);
135 return crc ^ 0xffffffffffffffffULL;
138 static void bch_btree_node_read_done(struct btree *b)
140 const char *err = "bad btree header";
141 struct bset *i = b->sets[0].data;
142 struct btree_iter *iter;
144 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
145 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
146 iter->used = 0;
148 if (!i->seq)
149 goto err;
151 for (;
152 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
153 i = write_block(b)) {
154 err = "unsupported bset version";
155 if (i->version > BCACHE_BSET_VERSION)
156 goto err;
158 err = "bad btree header";
159 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
160 goto err;
162 err = "bad magic";
163 if (i->magic != bset_magic(b->c))
164 goto err;
166 err = "bad checksum";
167 switch (i->version) {
168 case 0:
169 if (i->csum != csum_set(i))
170 goto err;
171 break;
172 case BCACHE_BSET_VERSION:
173 if (i->csum != btree_csum_set(b, i))
174 goto err;
175 break;
178 err = "empty set";
179 if (i != b->sets[0].data && !i->keys)
180 goto err;
182 bch_btree_iter_push(iter, i->start, end(i));
184 b->written += set_blocks(i, b->c);
187 err = "corrupted btree";
188 for (i = write_block(b);
189 index(i, b) < btree_blocks(b);
190 i = ((void *) i) + block_bytes(b->c))
191 if (i->seq == b->sets[0].data->seq)
192 goto err;
194 bch_btree_sort_and_fix_extents(b, iter);
196 i = b->sets[0].data;
197 err = "short btree key";
198 if (b->sets[0].size &&
199 bkey_cmp(&b->key, &b->sets[0].end) < 0)
200 goto err;
202 if (b->written < btree_blocks(b))
203 bch_bset_init_next(b);
204 out:
205 mempool_free(iter, b->c->fill_iter);
206 return;
207 err:
208 set_btree_node_io_error(b);
209 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
210 err, PTR_BUCKET_NR(b->c, &b->key, 0),
211 index(i, b), i->keys);
212 goto out;
215 static void btree_node_read_endio(struct bio *bio, int error)
217 struct closure *cl = bio->bi_private;
218 closure_put(cl);
221 void bch_btree_node_read(struct btree *b)
223 uint64_t start_time = local_clock();
224 struct closure cl;
225 struct bio *bio;
227 trace_bcache_btree_read(b);
229 closure_init_stack(&cl);
231 bio = bch_bbio_alloc(b->c);
232 bio->bi_rw = REQ_META|READ_SYNC;
233 bio->bi_size = KEY_SIZE(&b->key) << 9;
234 bio->bi_end_io = btree_node_read_endio;
235 bio->bi_private = &cl;
237 bch_bio_map(bio, b->sets[0].data);
239 bch_submit_bbio(bio, b->c, &b->key, 0);
240 closure_sync(&cl);
242 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
243 set_btree_node_io_error(b);
245 bch_bbio_free(bio, b->c);
247 if (btree_node_io_error(b))
248 goto err;
250 bch_btree_node_read_done(b);
252 spin_lock(&b->c->btree_read_time_lock);
253 bch_time_stats_update(&b->c->btree_read_time, start_time);
254 spin_unlock(&b->c->btree_read_time_lock);
256 return;
257 err:
258 bch_cache_set_error(b->c, "io error reading bucket %zu",
259 PTR_BUCKET_NR(b->c, &b->key, 0));
262 static void btree_complete_write(struct btree *b, struct btree_write *w)
264 if (w->prio_blocked &&
265 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
266 wake_up_allocators(b->c);
268 if (w->journal) {
269 atomic_dec_bug(w->journal);
270 __closure_wake_up(&b->c->journal.wait);
273 w->prio_blocked = 0;
274 w->journal = NULL;
277 static void __btree_node_write_done(struct closure *cl)
279 struct btree *b = container_of(cl, struct btree, io.cl);
280 struct btree_write *w = btree_prev_write(b);
282 bch_bbio_free(b->bio, b->c);
283 b->bio = NULL;
284 btree_complete_write(b, w);
286 if (btree_node_dirty(b))
287 queue_delayed_work(btree_io_wq, &b->work,
288 msecs_to_jiffies(30000));
290 closure_return(cl);
293 static void btree_node_write_done(struct closure *cl)
295 struct btree *b = container_of(cl, struct btree, io.cl);
296 struct bio_vec *bv;
297 int n;
299 __bio_for_each_segment(bv, b->bio, n, 0)
300 __free_page(bv->bv_page);
302 __btree_node_write_done(cl);
305 static void btree_node_write_endio(struct bio *bio, int error)
307 struct closure *cl = bio->bi_private;
308 struct btree *b = container_of(cl, struct btree, io.cl);
310 if (error)
311 set_btree_node_io_error(b);
313 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
314 closure_put(cl);
317 static void do_btree_node_write(struct btree *b)
319 struct closure *cl = &b->io.cl;
320 struct bset *i = b->sets[b->nsets].data;
321 BKEY_PADDED(key) k;
323 i->version = BCACHE_BSET_VERSION;
324 i->csum = btree_csum_set(b, i);
326 BUG_ON(b->bio);
327 b->bio = bch_bbio_alloc(b->c);
329 b->bio->bi_end_io = btree_node_write_endio;
330 b->bio->bi_private = &b->io.cl;
331 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
332 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
333 bch_bio_map(b->bio, i);
336 * If we're appending to a leaf node, we don't technically need FUA -
337 * this write just needs to be persisted before the next journal write,
338 * which will be marked FLUSH|FUA.
340 * Similarly if we're writing a new btree root - the pointer is going to
341 * be in the next journal entry.
343 * But if we're writing a new btree node (that isn't a root) or
344 * appending to a non leaf btree node, we need either FUA or a flush
345 * when we write the parent with the new pointer. FUA is cheaper than a
346 * flush, and writes appending to leaf nodes aren't blocking anything so
347 * just make all btree node writes FUA to keep things sane.
350 bkey_copy(&k.key, &b->key);
351 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
353 if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
354 int j;
355 struct bio_vec *bv;
356 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
358 bio_for_each_segment(bv, b->bio, j)
359 memcpy(page_address(bv->bv_page),
360 base + j * PAGE_SIZE, PAGE_SIZE);
362 bch_submit_bbio(b->bio, b->c, &k.key, 0);
364 continue_at(cl, btree_node_write_done, NULL);
365 } else {
366 b->bio->bi_vcnt = 0;
367 bch_bio_map(b->bio, i);
369 bch_submit_bbio(b->bio, b->c, &k.key, 0);
371 closure_sync(cl);
372 __btree_node_write_done(cl);
376 void bch_btree_node_write(struct btree *b, struct closure *parent)
378 struct bset *i = b->sets[b->nsets].data;
380 trace_bcache_btree_write(b);
382 BUG_ON(current->bio_list);
383 BUG_ON(b->written >= btree_blocks(b));
384 BUG_ON(b->written && !i->keys);
385 BUG_ON(b->sets->data->seq != i->seq);
386 bch_check_key_order(b, i);
388 cancel_delayed_work(&b->work);
390 /* If caller isn't waiting for write, parent refcount is cache set */
391 closure_lock(&b->io, parent ?: &b->c->cl);
393 clear_bit(BTREE_NODE_dirty, &b->flags);
394 change_bit(BTREE_NODE_write_idx, &b->flags);
396 do_btree_node_write(b);
398 b->written += set_blocks(i, b->c);
399 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
400 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
402 bch_btree_sort_lazy(b);
404 if (b->written < btree_blocks(b))
405 bch_bset_init_next(b);
408 static void btree_node_write_work(struct work_struct *w)
410 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
412 rw_lock(true, b, b->level);
414 if (btree_node_dirty(b))
415 bch_btree_node_write(b, NULL);
416 rw_unlock(true, b);
419 static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
421 struct bset *i = b->sets[b->nsets].data;
422 struct btree_write *w = btree_current_write(b);
424 BUG_ON(!b->written);
425 BUG_ON(!i->keys);
427 if (!btree_node_dirty(b))
428 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
430 set_btree_node_dirty(b);
432 if (op && op->journal) {
433 if (w->journal &&
434 journal_pin_cmp(b->c, w, op)) {
435 atomic_dec_bug(w->journal);
436 w->journal = NULL;
439 if (!w->journal) {
440 w->journal = op->journal;
441 atomic_inc(w->journal);
445 /* Force write if set is too big */
446 if (set_bytes(i) > PAGE_SIZE - 48 &&
447 !current->bio_list)
448 bch_btree_node_write(b, NULL);
452 * Btree in memory cache - allocation/freeing
453 * mca -> memory cache
456 static void mca_reinit(struct btree *b)
458 unsigned i;
460 b->flags = 0;
461 b->written = 0;
462 b->nsets = 0;
464 for (i = 0; i < MAX_BSETS; i++)
465 b->sets[i].size = 0;
467 * Second loop starts at 1 because b->sets[0]->data is the memory we
468 * allocated
470 for (i = 1; i < MAX_BSETS; i++)
471 b->sets[i].data = NULL;
474 #define mca_reserve(c) (((c->root && c->root->level) \
475 ? c->root->level : 1) * 8 + 16)
476 #define mca_can_free(c) \
477 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
479 static void mca_data_free(struct btree *b)
481 struct bset_tree *t = b->sets;
482 BUG_ON(!closure_is_unlocked(&b->io.cl));
484 if (bset_prev_bytes(b) < PAGE_SIZE)
485 kfree(t->prev);
486 else
487 free_pages((unsigned long) t->prev,
488 get_order(bset_prev_bytes(b)));
490 if (bset_tree_bytes(b) < PAGE_SIZE)
491 kfree(t->tree);
492 else
493 free_pages((unsigned long) t->tree,
494 get_order(bset_tree_bytes(b)));
496 free_pages((unsigned long) t->data, b->page_order);
498 t->prev = NULL;
499 t->tree = NULL;
500 t->data = NULL;
501 list_move(&b->list, &b->c->btree_cache_freed);
502 b->c->bucket_cache_used--;
505 static void mca_bucket_free(struct btree *b)
507 BUG_ON(btree_node_dirty(b));
509 b->key.ptr[0] = 0;
510 hlist_del_init_rcu(&b->hash);
511 list_move(&b->list, &b->c->btree_cache_freeable);
514 static unsigned btree_order(struct bkey *k)
516 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
519 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
521 struct bset_tree *t = b->sets;
522 BUG_ON(t->data);
524 b->page_order = max_t(unsigned,
525 ilog2(b->c->btree_pages),
526 btree_order(k));
528 t->data = (void *) __get_free_pages(gfp, b->page_order);
529 if (!t->data)
530 goto err;
532 t->tree = bset_tree_bytes(b) < PAGE_SIZE
533 ? kmalloc(bset_tree_bytes(b), gfp)
534 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
535 if (!t->tree)
536 goto err;
538 t->prev = bset_prev_bytes(b) < PAGE_SIZE
539 ? kmalloc(bset_prev_bytes(b), gfp)
540 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
541 if (!t->prev)
542 goto err;
544 list_move(&b->list, &b->c->btree_cache);
545 b->c->bucket_cache_used++;
546 return;
547 err:
548 mca_data_free(b);
551 static struct btree *mca_bucket_alloc(struct cache_set *c,
552 struct bkey *k, gfp_t gfp)
554 struct btree *b = kzalloc(sizeof(struct btree), gfp);
555 if (!b)
556 return NULL;
558 init_rwsem(&b->lock);
559 lockdep_set_novalidate_class(&b->lock);
560 INIT_LIST_HEAD(&b->list);
561 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
562 b->c = c;
563 closure_init_unlocked(&b->io);
565 mca_data_alloc(b, k, gfp);
566 return b;
569 static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
571 lockdep_assert_held(&b->c->bucket_lock);
573 if (!down_write_trylock(&b->lock))
574 return -ENOMEM;
576 if (b->page_order < min_order) {
577 rw_unlock(true, b);
578 return -ENOMEM;
581 BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
583 if (cl && btree_node_dirty(b))
584 bch_btree_node_write(b, NULL);
586 if (cl)
587 closure_wait_event_async(&b->io.wait, cl,
588 atomic_read(&b->io.cl.remaining) == -1);
590 if (btree_node_dirty(b) ||
591 !closure_is_unlocked(&b->io.cl) ||
592 work_pending(&b->work.work)) {
593 rw_unlock(true, b);
594 return -EAGAIN;
597 return 0;
600 static unsigned long bch_mca_scan(struct shrinker *shrink,
601 struct shrink_control *sc)
603 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
604 struct btree *b, *t;
605 unsigned long i, nr = sc->nr_to_scan;
606 unsigned long freed = 0;
608 if (c->shrinker_disabled)
609 return SHRINK_STOP;
611 if (c->try_harder)
612 return SHRINK_STOP;
614 /* Return -1 if we can't do anything right now */
615 if (sc->gfp_mask & __GFP_IO)
616 mutex_lock(&c->bucket_lock);
617 else if (!mutex_trylock(&c->bucket_lock))
618 return -1;
621 * It's _really_ critical that we don't free too many btree nodes - we
622 * have to always leave ourselves a reserve. The reserve is how we
623 * guarantee that allocating memory for a new btree node can always
624 * succeed, so that inserting keys into the btree can always succeed and
625 * IO can always make forward progress:
627 nr /= c->btree_pages;
628 nr = min_t(unsigned long, nr, mca_can_free(c));
630 i = 0;
631 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
632 if (freed >= nr)
633 break;
635 if (++i > 3 &&
636 !mca_reap(b, NULL, 0)) {
637 mca_data_free(b);
638 rw_unlock(true, b);
639 freed++;
644 * Can happen right when we first start up, before we've read in any
645 * btree nodes
647 if (list_empty(&c->btree_cache))
648 goto out;
650 for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
651 b = list_first_entry(&c->btree_cache, struct btree, list);
652 list_rotate_left(&c->btree_cache);
654 if (!b->accessed &&
655 !mca_reap(b, NULL, 0)) {
656 mca_bucket_free(b);
657 mca_data_free(b);
658 rw_unlock(true, b);
659 freed++;
660 } else
661 b->accessed = 0;
663 out:
664 mutex_unlock(&c->bucket_lock);
665 return freed;
668 static unsigned long bch_mca_count(struct shrinker *shrink,
669 struct shrink_control *sc)
671 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
673 if (c->shrinker_disabled)
674 return 0;
676 if (c->try_harder)
677 return 0;
679 return mca_can_free(c) * c->btree_pages;
682 void bch_btree_cache_free(struct cache_set *c)
684 struct btree *b;
685 struct closure cl;
686 closure_init_stack(&cl);
688 if (c->shrink.list.next)
689 unregister_shrinker(&c->shrink);
691 mutex_lock(&c->bucket_lock);
693 #ifdef CONFIG_BCACHE_DEBUG
694 if (c->verify_data)
695 list_move(&c->verify_data->list, &c->btree_cache);
696 #endif
698 list_splice(&c->btree_cache_freeable,
699 &c->btree_cache);
701 while (!list_empty(&c->btree_cache)) {
702 b = list_first_entry(&c->btree_cache, struct btree, list);
704 if (btree_node_dirty(b))
705 btree_complete_write(b, btree_current_write(b));
706 clear_bit(BTREE_NODE_dirty, &b->flags);
708 mca_data_free(b);
711 while (!list_empty(&c->btree_cache_freed)) {
712 b = list_first_entry(&c->btree_cache_freed,
713 struct btree, list);
714 list_del(&b->list);
715 cancel_delayed_work_sync(&b->work);
716 kfree(b);
719 mutex_unlock(&c->bucket_lock);
722 int bch_btree_cache_alloc(struct cache_set *c)
724 unsigned i;
726 /* XXX: doesn't check for errors */
728 closure_init_unlocked(&c->gc);
730 for (i = 0; i < mca_reserve(c); i++)
731 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
733 list_splice_init(&c->btree_cache,
734 &c->btree_cache_freeable);
736 #ifdef CONFIG_BCACHE_DEBUG
737 mutex_init(&c->verify_lock);
739 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
741 if (c->verify_data &&
742 c->verify_data->sets[0].data)
743 list_del_init(&c->verify_data->list);
744 else
745 c->verify_data = NULL;
746 #endif
748 c->shrink.count_objects = bch_mca_count;
749 c->shrink.scan_objects = bch_mca_scan;
750 c->shrink.seeks = 4;
751 c->shrink.batch = c->btree_pages * 2;
752 register_shrinker(&c->shrink);
754 return 0;
757 /* Btree in memory cache - hash table */
759 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
761 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
764 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
766 struct btree *b;
768 rcu_read_lock();
769 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
770 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
771 goto out;
772 b = NULL;
773 out:
774 rcu_read_unlock();
775 return b;
778 static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
779 int level, struct closure *cl)
781 int ret = -ENOMEM;
782 struct btree *i;
784 trace_bcache_btree_cache_cannibalize(c);
786 if (!cl)
787 return ERR_PTR(-ENOMEM);
790 * Trying to free up some memory - i.e. reuse some btree nodes - may
791 * require initiating IO to flush the dirty part of the node. If we're
792 * running under generic_make_request(), that IO will never finish and
793 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
794 * punt to workqueue and retry.
796 if (current->bio_list)
797 return ERR_PTR(-EAGAIN);
799 if (c->try_harder && c->try_harder != cl) {
800 closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
801 return ERR_PTR(-EAGAIN);
804 c->try_harder = cl;
805 c->try_harder_start = local_clock();
806 retry:
807 list_for_each_entry_reverse(i, &c->btree_cache, list) {
808 int r = mca_reap(i, cl, btree_order(k));
809 if (!r)
810 return i;
811 if (r != -ENOMEM)
812 ret = r;
815 if (ret == -EAGAIN &&
816 closure_blocking(cl)) {
817 mutex_unlock(&c->bucket_lock);
818 closure_sync(cl);
819 mutex_lock(&c->bucket_lock);
820 goto retry;
823 return ERR_PTR(ret);
827 * We can only have one thread cannibalizing other cached btree nodes at a time,
828 * or we'll deadlock. We use an open coded mutex to ensure that, which a
829 * cannibalize_bucket() will take. This means every time we unlock the root of
830 * the btree, we need to release this lock if we have it held.
832 void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
834 if (c->try_harder == cl) {
835 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
836 c->try_harder = NULL;
837 __closure_wake_up(&c->try_wait);
841 static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
842 int level, struct closure *cl)
844 struct btree *b;
846 lockdep_assert_held(&c->bucket_lock);
848 if (mca_find(c, k))
849 return NULL;
851 /* btree_free() doesn't free memory; it sticks the node on the end of
852 * the list. Check if there's any freed nodes there:
854 list_for_each_entry(b, &c->btree_cache_freeable, list)
855 if (!mca_reap(b, NULL, btree_order(k)))
856 goto out;
858 /* We never free struct btree itself, just the memory that holds the on
859 * disk node. Check the freed list before allocating a new one:
861 list_for_each_entry(b, &c->btree_cache_freed, list)
862 if (!mca_reap(b, NULL, 0)) {
863 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
864 if (!b->sets[0].data)
865 goto err;
866 else
867 goto out;
870 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
871 if (!b)
872 goto err;
874 BUG_ON(!down_write_trylock(&b->lock));
875 if (!b->sets->data)
876 goto err;
877 out:
878 BUG_ON(!closure_is_unlocked(&b->io.cl));
880 bkey_copy(&b->key, k);
881 list_move(&b->list, &c->btree_cache);
882 hlist_del_init_rcu(&b->hash);
883 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
885 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
886 b->level = level;
888 mca_reinit(b);
890 return b;
891 err:
892 if (b)
893 rw_unlock(true, b);
895 b = mca_cannibalize(c, k, level, cl);
896 if (!IS_ERR(b))
897 goto out;
899 return b;
903 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
904 * in from disk if necessary.
906 * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
907 * if that closure is in non blocking mode, will return -EAGAIN.
909 * The btree node will have either a read or a write lock held, depending on
910 * level and op->lock.
912 struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
913 int level, struct btree_op *op)
915 int i = 0;
916 bool write = level <= op->lock;
917 struct btree *b;
919 BUG_ON(level < 0);
920 retry:
921 b = mca_find(c, k);
923 if (!b) {
924 if (current->bio_list)
925 return ERR_PTR(-EAGAIN);
927 mutex_lock(&c->bucket_lock);
928 b = mca_alloc(c, k, level, &op->cl);
929 mutex_unlock(&c->bucket_lock);
931 if (!b)
932 goto retry;
933 if (IS_ERR(b))
934 return b;
936 bch_btree_node_read(b);
938 if (!write)
939 downgrade_write(&b->lock);
940 } else {
941 rw_lock(write, b, level);
942 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
943 rw_unlock(write, b);
944 goto retry;
946 BUG_ON(b->level != level);
949 b->accessed = 1;
951 for (; i <= b->nsets && b->sets[i].size; i++) {
952 prefetch(b->sets[i].tree);
953 prefetch(b->sets[i].data);
956 for (; i <= b->nsets; i++)
957 prefetch(b->sets[i].data);
959 if (btree_node_io_error(b)) {
960 rw_unlock(write, b);
961 return ERR_PTR(-EIO);
964 BUG_ON(!b->written);
966 return b;
969 static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
971 struct btree *b;
973 mutex_lock(&c->bucket_lock);
974 b = mca_alloc(c, k, level, NULL);
975 mutex_unlock(&c->bucket_lock);
977 if (!IS_ERR_OR_NULL(b)) {
978 bch_btree_node_read(b);
979 rw_unlock(true, b);
983 /* Btree alloc */
985 static void btree_node_free(struct btree *b, struct btree_op *op)
987 unsigned i;
989 trace_bcache_btree_node_free(b);
992 * The BUG_ON() in btree_node_get() implies that we must have a write
993 * lock on parent to free or even invalidate a node
995 BUG_ON(op->lock <= b->level);
996 BUG_ON(b == b->c->root);
998 if (btree_node_dirty(b))
999 btree_complete_write(b, btree_current_write(b));
1000 clear_bit(BTREE_NODE_dirty, &b->flags);
1002 cancel_delayed_work(&b->work);
1004 mutex_lock(&b->c->bucket_lock);
1006 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1007 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
1009 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1010 PTR_BUCKET(b->c, &b->key, i));
1013 bch_bucket_free(b->c, &b->key);
1014 mca_bucket_free(b);
1015 mutex_unlock(&b->c->bucket_lock);
1018 struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
1019 struct closure *cl)
1021 BKEY_PADDED(key) k;
1022 struct btree *b = ERR_PTR(-EAGAIN);
1024 mutex_lock(&c->bucket_lock);
1025 retry:
1026 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
1027 goto err;
1029 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1031 b = mca_alloc(c, &k.key, level, cl);
1032 if (IS_ERR(b))
1033 goto err_free;
1035 if (!b) {
1036 cache_bug(c,
1037 "Tried to allocate bucket that was in btree cache");
1038 __bkey_put(c, &k.key);
1039 goto retry;
1042 b->accessed = 1;
1043 bch_bset_init_next(b);
1045 mutex_unlock(&c->bucket_lock);
1047 trace_bcache_btree_node_alloc(b);
1048 return b;
1049 err_free:
1050 bch_bucket_free(c, &k.key);
1051 __bkey_put(c, &k.key);
1052 err:
1053 mutex_unlock(&c->bucket_lock);
1055 trace_bcache_btree_node_alloc_fail(b);
1056 return b;
1059 static struct btree *btree_node_alloc_replacement(struct btree *b,
1060 struct closure *cl)
1062 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1063 if (!IS_ERR_OR_NULL(n))
1064 bch_btree_sort_into(b, n);
1066 return n;
1069 /* Garbage collection */
1071 uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1073 uint8_t stale = 0;
1074 unsigned i;
1075 struct bucket *g;
1078 * ptr_invalid() can't return true for the keys that mark btree nodes as
1079 * freed, but since ptr_bad() returns true we'll never actually use them
1080 * for anything and thus we don't want mark their pointers here
1082 if (!bkey_cmp(k, &ZERO_KEY))
1083 return stale;
1085 for (i = 0; i < KEY_PTRS(k); i++) {
1086 if (!ptr_available(c, k, i))
1087 continue;
1089 g = PTR_BUCKET(c, k, i);
1091 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1092 g->gc_gen = PTR_GEN(k, i);
1094 if (ptr_stale(c, k, i)) {
1095 stale = max(stale, ptr_stale(c, k, i));
1096 continue;
1099 cache_bug_on(GC_MARK(g) &&
1100 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1101 c, "inconsistent ptrs: mark = %llu, level = %i",
1102 GC_MARK(g), level);
1104 if (level)
1105 SET_GC_MARK(g, GC_MARK_METADATA);
1106 else if (KEY_DIRTY(k))
1107 SET_GC_MARK(g, GC_MARK_DIRTY);
1109 /* guard against overflow */
1110 SET_GC_SECTORS_USED(g, min_t(unsigned,
1111 GC_SECTORS_USED(g) + KEY_SIZE(k),
1112 (1 << 14) - 1));
1114 BUG_ON(!GC_SECTORS_USED(g));
1117 return stale;
1120 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1122 static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1123 struct gc_stat *gc)
1125 uint8_t stale = 0;
1126 unsigned last_dev = -1;
1127 struct bcache_device *d = NULL;
1128 struct bkey *k;
1129 struct btree_iter iter;
1130 struct bset_tree *t;
1132 gc->nodes++;
1134 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1135 if (last_dev != KEY_INODE(k)) {
1136 last_dev = KEY_INODE(k);
1138 d = KEY_INODE(k) < b->c->nr_uuids
1139 ? b->c->devices[last_dev]
1140 : NULL;
1143 stale = max(stale, btree_mark_key(b, k));
1145 if (bch_ptr_bad(b, k))
1146 continue;
1148 *keys += bkey_u64s(k);
1150 gc->key_bytes += bkey_u64s(k);
1151 gc->nkeys++;
1153 gc->data += KEY_SIZE(k);
1154 if (KEY_DIRTY(k))
1155 gc->dirty += KEY_SIZE(k);
1158 for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1159 btree_bug_on(t->size &&
1160 bset_written(b, t) &&
1161 bkey_cmp(&b->key, &t->end) < 0,
1162 b, "found short btree key in gc");
1164 return stale;
1167 static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1168 struct btree_op *op)
1171 * We block priorities from being written for the duration of garbage
1172 * collection, so we can't sleep in btree_alloc() ->
1173 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1174 * our closure.
1176 struct btree *n = btree_node_alloc_replacement(b, NULL);
1178 if (!IS_ERR_OR_NULL(n)) {
1179 swap(b, n);
1180 __bkey_put(b->c, &b->key);
1182 memcpy(k->ptr, b->key.ptr,
1183 sizeof(uint64_t) * KEY_PTRS(&b->key));
1185 btree_node_free(n, op);
1186 up_write(&n->lock);
1189 return b;
1193 * Leaving this at 2 until we've got incremental garbage collection done; it
1194 * could be higher (and has been tested with 4) except that garbage collection
1195 * could take much longer, adversely affecting latency.
1197 #define GC_MERGE_NODES 2U
1199 struct gc_merge_info {
1200 struct btree *b;
1201 struct bkey *k;
1202 unsigned keys;
1205 static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1206 struct gc_stat *gc, struct gc_merge_info *r)
1208 unsigned nodes = 0, keys = 0, blocks;
1209 int i;
1211 while (nodes < GC_MERGE_NODES && r[nodes].b)
1212 keys += r[nodes++].keys;
1214 blocks = btree_default_blocks(b->c) * 2 / 3;
1216 if (nodes < 2 ||
1217 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1218 return;
1220 for (i = nodes - 1; i >= 0; --i) {
1221 if (r[i].b->written)
1222 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1224 if (r[i].b->written)
1225 return;
1228 for (i = nodes - 1; i > 0; --i) {
1229 struct bset *n1 = r[i].b->sets->data;
1230 struct bset *n2 = r[i - 1].b->sets->data;
1231 struct bkey *k, *last = NULL;
1233 keys = 0;
1235 if (i == 1) {
1237 * Last node we're not getting rid of - we're getting
1238 * rid of the node at r[0]. Have to try and fit all of
1239 * the remaining keys into this node; we can't ensure
1240 * they will always fit due to rounding and variable
1241 * length keys (shouldn't be possible in practice,
1242 * though)
1244 if (__set_blocks(n1, n1->keys + r->keys,
1245 b->c) > btree_blocks(r[i].b))
1246 return;
1248 keys = n2->keys;
1249 last = &r->b->key;
1250 } else
1251 for (k = n2->start;
1252 k < end(n2);
1253 k = bkey_next(k)) {
1254 if (__set_blocks(n1, n1->keys + keys +
1255 bkey_u64s(k), b->c) > blocks)
1256 break;
1258 last = k;
1259 keys += bkey_u64s(k);
1262 BUG_ON(__set_blocks(n1, n1->keys + keys,
1263 b->c) > btree_blocks(r[i].b));
1265 if (last) {
1266 bkey_copy_key(&r[i].b->key, last);
1267 bkey_copy_key(r[i].k, last);
1270 memcpy(end(n1),
1271 n2->start,
1272 (void *) node(n2, keys) - (void *) n2->start);
1274 n1->keys += keys;
1276 memmove(n2->start,
1277 node(n2, keys),
1278 (void *) end(n2) - (void *) node(n2, keys));
1280 n2->keys -= keys;
1282 r[i].keys = n1->keys;
1283 r[i - 1].keys = n2->keys;
1286 btree_node_free(r->b, op);
1287 up_write(&r->b->lock);
1289 trace_bcache_btree_gc_coalesce(nodes);
1291 gc->nodes--;
1292 nodes--;
1294 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1295 memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1298 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1299 struct closure *writes, struct gc_stat *gc)
1301 void write(struct btree *r)
1303 if (!r->written)
1304 bch_btree_node_write(r, &op->cl);
1305 else if (btree_node_dirty(r))
1306 bch_btree_node_write(r, writes);
1308 up_write(&r->lock);
1311 int ret = 0, stale;
1312 unsigned i;
1313 struct gc_merge_info r[GC_MERGE_NODES];
1315 memset(r, 0, sizeof(r));
1317 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1318 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1320 if (IS_ERR(r->b)) {
1321 ret = PTR_ERR(r->b);
1322 break;
1325 r->keys = 0;
1326 stale = btree_gc_mark_node(r->b, &r->keys, gc);
1328 if (!b->written &&
1329 (r->b->level || stale > 10 ||
1330 b->c->gc_always_rewrite))
1331 r->b = btree_gc_alloc(r->b, r->k, op);
1333 if (r->b->level)
1334 ret = btree_gc_recurse(r->b, op, writes, gc);
1336 if (ret) {
1337 write(r->b);
1338 break;
1341 bkey_copy_key(&b->c->gc_done, r->k);
1343 if (!b->written)
1344 btree_gc_coalesce(b, op, gc, r);
1346 if (r[GC_MERGE_NODES - 1].b)
1347 write(r[GC_MERGE_NODES - 1].b);
1349 memmove(&r[1], &r[0],
1350 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1352 /* When we've got incremental GC working, we'll want to do
1353 * if (should_resched())
1354 * return -EAGAIN;
1356 cond_resched();
1357 #if 0
1358 if (need_resched()) {
1359 ret = -EAGAIN;
1360 break;
1362 #endif
1365 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1366 write(r[i].b);
1368 /* Might have freed some children, must remove their keys */
1369 if (!b->written)
1370 bch_btree_sort(b);
1372 return ret;
1375 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1376 struct closure *writes, struct gc_stat *gc)
1378 struct btree *n = NULL;
1379 unsigned keys = 0;
1380 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1382 if (b->level || stale > 10)
1383 n = btree_node_alloc_replacement(b, NULL);
1385 if (!IS_ERR_OR_NULL(n))
1386 swap(b, n);
1388 if (b->level)
1389 ret = btree_gc_recurse(b, op, writes, gc);
1391 if (!b->written || btree_node_dirty(b)) {
1392 bch_btree_node_write(b, n ? &op->cl : NULL);
1395 if (!IS_ERR_OR_NULL(n)) {
1396 closure_sync(&op->cl);
1397 bch_btree_set_root(b);
1398 btree_node_free(n, op);
1399 rw_unlock(true, b);
1402 return ret;
1405 static void btree_gc_start(struct cache_set *c)
1407 struct cache *ca;
1408 struct bucket *b;
1409 unsigned i;
1411 if (!c->gc_mark_valid)
1412 return;
1414 mutex_lock(&c->bucket_lock);
1416 c->gc_mark_valid = 0;
1417 c->gc_done = ZERO_KEY;
1419 for_each_cache(ca, c, i)
1420 for_each_bucket(b, ca) {
1421 b->gc_gen = b->gen;
1422 if (!atomic_read(&b->pin)) {
1423 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1424 SET_GC_SECTORS_USED(b, 0);
1428 mutex_unlock(&c->bucket_lock);
1431 size_t bch_btree_gc_finish(struct cache_set *c)
1433 size_t available = 0;
1434 struct bucket *b;
1435 struct cache *ca;
1436 unsigned i;
1438 mutex_lock(&c->bucket_lock);
1440 set_gc_sectors(c);
1441 c->gc_mark_valid = 1;
1442 c->need_gc = 0;
1444 if (c->root)
1445 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1446 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1447 GC_MARK_METADATA);
1449 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1450 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1451 GC_MARK_METADATA);
1453 for_each_cache(ca, c, i) {
1454 uint64_t *i;
1456 ca->invalidate_needs_gc = 0;
1458 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1459 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1461 for (i = ca->prio_buckets;
1462 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1463 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1465 for_each_bucket(b, ca) {
1466 b->last_gc = b->gc_gen;
1467 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1469 if (!atomic_read(&b->pin) &&
1470 GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1471 available++;
1472 if (!GC_SECTORS_USED(b))
1473 bch_bucket_add_unused(ca, b);
1478 mutex_unlock(&c->bucket_lock);
1479 return available;
1482 static void bch_btree_gc(struct closure *cl)
1484 struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1485 int ret;
1486 unsigned long available;
1487 struct gc_stat stats;
1488 struct closure writes;
1489 struct btree_op op;
1490 uint64_t start_time = local_clock();
1492 trace_bcache_gc_start(c);
1494 memset(&stats, 0, sizeof(struct gc_stat));
1495 closure_init_stack(&writes);
1496 bch_btree_op_init_stack(&op);
1497 op.lock = SHRT_MAX;
1499 btree_gc_start(c);
1501 atomic_inc(&c->prio_blocked);
1503 ret = btree_root(gc_root, c, &op, &writes, &stats);
1504 closure_sync(&op.cl);
1505 closure_sync(&writes);
1507 if (ret) {
1508 pr_warn("gc failed!");
1509 continue_at(cl, bch_btree_gc, bch_gc_wq);
1512 /* Possibly wait for new UUIDs or whatever to hit disk */
1513 bch_journal_meta(c, &op.cl);
1514 closure_sync(&op.cl);
1516 available = bch_btree_gc_finish(c);
1518 atomic_dec(&c->prio_blocked);
1519 wake_up_allocators(c);
1521 bch_time_stats_update(&c->btree_gc_time, start_time);
1523 stats.key_bytes *= sizeof(uint64_t);
1524 stats.dirty <<= 9;
1525 stats.data <<= 9;
1526 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1527 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1529 trace_bcache_gc_end(c);
1531 continue_at(cl, bch_moving_gc, bch_gc_wq);
1534 void bch_queue_gc(struct cache_set *c)
1536 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1539 /* Initial partial gc */
1541 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1542 unsigned long **seen)
1544 int ret;
1545 unsigned i;
1546 struct bkey *k;
1547 struct bucket *g;
1548 struct btree_iter iter;
1550 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1551 for (i = 0; i < KEY_PTRS(k); i++) {
1552 if (!ptr_available(b->c, k, i))
1553 continue;
1555 g = PTR_BUCKET(b->c, k, i);
1557 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1558 seen[PTR_DEV(k, i)]) ||
1559 !ptr_stale(b->c, k, i)) {
1560 g->gen = PTR_GEN(k, i);
1562 if (b->level)
1563 g->prio = BTREE_PRIO;
1564 else if (g->prio == BTREE_PRIO)
1565 g->prio = INITIAL_PRIO;
1569 btree_mark_key(b, k);
1572 if (b->level) {
1573 k = bch_next_recurse_key(b, &ZERO_KEY);
1575 while (k) {
1576 struct bkey *p = bch_next_recurse_key(b, k);
1577 if (p)
1578 btree_node_prefetch(b->c, p, b->level - 1);
1580 ret = btree(check_recurse, k, b, op, seen);
1581 if (ret)
1582 return ret;
1584 k = p;
1588 return 0;
1591 int bch_btree_check(struct cache_set *c, struct btree_op *op)
1593 int ret = -ENOMEM;
1594 unsigned i;
1595 unsigned long *seen[MAX_CACHES_PER_SET];
1597 memset(seen, 0, sizeof(seen));
1599 for (i = 0; c->cache[i]; i++) {
1600 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1601 seen[i] = kmalloc(n, GFP_KERNEL);
1602 if (!seen[i])
1603 goto err;
1605 /* Disables the seen array until prio_read() uses it too */
1606 memset(seen[i], 0xFF, n);
1609 ret = btree_root(check_recurse, c, op, seen);
1610 err:
1611 for (i = 0; i < MAX_CACHES_PER_SET; i++)
1612 kfree(seen[i]);
1613 return ret;
1616 /* Btree insertion */
1618 static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1620 struct bset *i = b->sets[b->nsets].data;
1622 memmove((uint64_t *) where + bkey_u64s(insert),
1623 where,
1624 (void *) end(i) - (void *) where);
1626 i->keys += bkey_u64s(insert);
1627 bkey_copy(where, insert);
1628 bch_bset_fix_lookup_table(b, where);
1631 static bool fix_overlapping_extents(struct btree *b,
1632 struct bkey *insert,
1633 struct btree_iter *iter,
1634 struct btree_op *op)
1636 void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
1638 if (KEY_DIRTY(k))
1639 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1640 offset, -sectors);
1643 uint64_t old_offset;
1644 unsigned old_size, sectors_found = 0;
1646 while (1) {
1647 struct bkey *k = bch_btree_iter_next(iter);
1648 if (!k ||
1649 bkey_cmp(&START_KEY(k), insert) >= 0)
1650 break;
1652 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1653 continue;
1655 old_offset = KEY_START(k);
1656 old_size = KEY_SIZE(k);
1659 * We might overlap with 0 size extents; we can't skip these
1660 * because if they're in the set we're inserting to we have to
1661 * adjust them so they don't overlap with the key we're
1662 * inserting. But we don't want to check them for BTREE_REPLACE
1663 * operations.
1666 if (op->type == BTREE_REPLACE &&
1667 KEY_SIZE(k)) {
1669 * k might have been split since we inserted/found the
1670 * key we're replacing
1672 unsigned i;
1673 uint64_t offset = KEY_START(k) -
1674 KEY_START(&op->replace);
1676 /* But it must be a subset of the replace key */
1677 if (KEY_START(k) < KEY_START(&op->replace) ||
1678 KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1679 goto check_failed;
1681 /* We didn't find a key that we were supposed to */
1682 if (KEY_START(k) > KEY_START(insert) + sectors_found)
1683 goto check_failed;
1685 if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1686 goto check_failed;
1688 /* skip past gen */
1689 offset <<= 8;
1691 BUG_ON(!KEY_PTRS(&op->replace));
1693 for (i = 0; i < KEY_PTRS(&op->replace); i++)
1694 if (k->ptr[i] != op->replace.ptr[i] + offset)
1695 goto check_failed;
1697 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1700 if (bkey_cmp(insert, k) < 0 &&
1701 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1703 * We overlapped in the middle of an existing key: that
1704 * means we have to split the old key. But we have to do
1705 * slightly different things depending on whether the
1706 * old key has been written out yet.
1709 struct bkey *top;
1711 subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
1713 if (bkey_written(b, k)) {
1715 * We insert a new key to cover the top of the
1716 * old key, and the old key is modified in place
1717 * to represent the bottom split.
1719 * It's completely arbitrary whether the new key
1720 * is the top or the bottom, but it has to match
1721 * up with what btree_sort_fixup() does - it
1722 * doesn't check for this kind of overlap, it
1723 * depends on us inserting a new key for the top
1724 * here.
1726 top = bch_bset_search(b, &b->sets[b->nsets],
1727 insert);
1728 shift_keys(b, top, k);
1729 } else {
1730 BKEY_PADDED(key) temp;
1731 bkey_copy(&temp.key, k);
1732 shift_keys(b, k, &temp.key);
1733 top = bkey_next(k);
1736 bch_cut_front(insert, top);
1737 bch_cut_back(&START_KEY(insert), k);
1738 bch_bset_fix_invalidated_key(b, k);
1739 return false;
1742 if (bkey_cmp(insert, k) < 0) {
1743 bch_cut_front(insert, k);
1744 } else {
1745 if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
1746 old_offset = KEY_START(insert);
1748 if (bkey_written(b, k) &&
1749 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1751 * Completely overwrote, so we don't have to
1752 * invalidate the binary search tree
1754 bch_cut_front(k, k);
1755 } else {
1756 __bch_cut_back(&START_KEY(insert), k);
1757 bch_bset_fix_invalidated_key(b, k);
1761 subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
1764 check_failed:
1765 if (op->type == BTREE_REPLACE) {
1766 if (!sectors_found) {
1767 op->insert_collision = true;
1768 return true;
1769 } else if (sectors_found < KEY_SIZE(insert)) {
1770 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1771 (KEY_SIZE(insert) - sectors_found));
1772 SET_KEY_SIZE(insert, sectors_found);
1776 return false;
1779 static bool btree_insert_key(struct btree *b, struct btree_op *op,
1780 struct bkey *k)
1782 struct bset *i = b->sets[b->nsets].data;
1783 struct bkey *m, *prev;
1784 unsigned status = BTREE_INSERT_STATUS_INSERT;
1786 BUG_ON(bkey_cmp(k, &b->key) > 0);
1787 BUG_ON(b->level && !KEY_PTRS(k));
1788 BUG_ON(!b->level && !KEY_OFFSET(k));
1790 if (!b->level) {
1791 struct btree_iter iter;
1792 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1795 * bset_search() returns the first key that is strictly greater
1796 * than the search key - but for back merging, we want to find
1797 * the first key that is greater than or equal to KEY_START(k) -
1798 * unless KEY_START(k) is 0.
1800 if (KEY_OFFSET(&search))
1801 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1803 prev = NULL;
1804 m = bch_btree_iter_init(b, &iter, &search);
1806 if (fix_overlapping_extents(b, k, &iter, op))
1807 return false;
1809 if (KEY_DIRTY(k))
1810 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
1811 KEY_START(k), KEY_SIZE(k));
1813 while (m != end(i) &&
1814 bkey_cmp(k, &START_KEY(m)) > 0)
1815 prev = m, m = bkey_next(m);
1817 if (key_merging_disabled(b->c))
1818 goto insert;
1820 /* prev is in the tree, if we merge we're done */
1821 status = BTREE_INSERT_STATUS_BACK_MERGE;
1822 if (prev &&
1823 bch_bkey_try_merge(b, prev, k))
1824 goto merged;
1826 status = BTREE_INSERT_STATUS_OVERWROTE;
1827 if (m != end(i) &&
1828 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1829 goto copy;
1831 status = BTREE_INSERT_STATUS_FRONT_MERGE;
1832 if (m != end(i) &&
1833 bch_bkey_try_merge(b, k, m))
1834 goto copy;
1835 } else
1836 m = bch_bset_search(b, &b->sets[b->nsets], k);
1838 insert: shift_keys(b, m, k);
1839 copy: bkey_copy(m, k);
1840 merged:
1841 bch_check_keys(b, "%u for %s", status, op_type(op));
1843 if (b->level && !KEY_OFFSET(k))
1844 btree_current_write(b)->prio_blocked++;
1846 trace_bcache_btree_insert_key(b, k, op->type, status);
1848 return true;
1851 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1853 bool ret = false;
1854 struct bkey *k;
1855 unsigned oldsize = bch_count_data(b);
1857 while ((k = bch_keylist_pop(&op->keys))) {
1858 bkey_put(b->c, k, b->level);
1859 ret |= btree_insert_key(b, op, k);
1862 BUG_ON(bch_count_data(b) < oldsize);
1863 return ret;
1866 bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1867 struct bio *bio)
1869 bool ret = false;
1870 uint64_t btree_ptr = b->key.ptr[0];
1871 unsigned long seq = b->seq;
1872 BKEY_PADDED(k) tmp;
1874 rw_unlock(false, b);
1875 rw_lock(true, b, b->level);
1877 if (b->key.ptr[0] != btree_ptr ||
1878 b->seq != seq + 1 ||
1879 should_split(b))
1880 goto out;
1882 op->replace = KEY(op->inode, bio_end_sector(bio), bio_sectors(bio));
1884 SET_KEY_PTRS(&op->replace, 1);
1885 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1887 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1889 bkey_copy(&tmp.k, &op->replace);
1891 BUG_ON(op->type != BTREE_INSERT);
1892 BUG_ON(!btree_insert_key(b, op, &tmp.k));
1893 ret = true;
1894 out:
1895 downgrade_write(&b->lock);
1896 return ret;
1899 static int btree_split(struct btree *b, struct btree_op *op)
1901 bool split, root = b == b->c->root;
1902 struct btree *n1, *n2 = NULL, *n3 = NULL;
1903 uint64_t start_time = local_clock();
1905 if (b->level)
1906 set_closure_blocking(&op->cl);
1908 n1 = btree_node_alloc_replacement(b, &op->cl);
1909 if (IS_ERR(n1))
1910 goto err;
1912 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1914 if (split) {
1915 unsigned keys = 0;
1917 trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
1919 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1920 if (IS_ERR(n2))
1921 goto err_free1;
1923 if (root) {
1924 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1925 if (IS_ERR(n3))
1926 goto err_free2;
1929 bch_btree_insert_keys(n1, op);
1931 /* Has to be a linear search because we don't have an auxiliary
1932 * search tree yet
1935 while (keys < (n1->sets[0].data->keys * 3) / 5)
1936 keys += bkey_u64s(node(n1->sets[0].data, keys));
1938 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1939 keys += bkey_u64s(node(n1->sets[0].data, keys));
1941 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1942 n1->sets[0].data->keys = keys;
1944 memcpy(n2->sets[0].data->start,
1945 end(n1->sets[0].data),
1946 n2->sets[0].data->keys * sizeof(uint64_t));
1948 bkey_copy_key(&n2->key, &b->key);
1950 bch_keylist_add(&op->keys, &n2->key);
1951 bch_btree_node_write(n2, &op->cl);
1952 rw_unlock(true, n2);
1953 } else {
1954 trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
1956 bch_btree_insert_keys(n1, op);
1959 bch_keylist_add(&op->keys, &n1->key);
1960 bch_btree_node_write(n1, &op->cl);
1962 if (n3) {
1963 bkey_copy_key(&n3->key, &MAX_KEY);
1964 bch_btree_insert_keys(n3, op);
1965 bch_btree_node_write(n3, &op->cl);
1967 closure_sync(&op->cl);
1968 bch_btree_set_root(n3);
1969 rw_unlock(true, n3);
1970 } else if (root) {
1971 op->keys.top = op->keys.bottom;
1972 closure_sync(&op->cl);
1973 bch_btree_set_root(n1);
1974 } else {
1975 unsigned i;
1977 bkey_copy(op->keys.top, &b->key);
1978 bkey_copy_key(op->keys.top, &ZERO_KEY);
1980 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1981 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1983 SET_PTR_GEN(op->keys.top, i, g);
1986 bch_keylist_push(&op->keys);
1987 closure_sync(&op->cl);
1988 atomic_inc(&b->c->prio_blocked);
1991 rw_unlock(true, n1);
1992 btree_node_free(b, op);
1994 bch_time_stats_update(&b->c->btree_split_time, start_time);
1996 return 0;
1997 err_free2:
1998 __bkey_put(n2->c, &n2->key);
1999 btree_node_free(n2, op);
2000 rw_unlock(true, n2);
2001 err_free1:
2002 __bkey_put(n1->c, &n1->key);
2003 btree_node_free(n1, op);
2004 rw_unlock(true, n1);
2005 err:
2006 if (n3 == ERR_PTR(-EAGAIN) ||
2007 n2 == ERR_PTR(-EAGAIN) ||
2008 n1 == ERR_PTR(-EAGAIN))
2009 return -EAGAIN;
2011 pr_warn("couldn't split");
2012 return -ENOMEM;
2015 static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2016 struct keylist *stack_keys)
2018 if (b->level) {
2019 int ret;
2020 struct bkey *insert = op->keys.bottom;
2021 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2023 if (!k) {
2024 btree_bug(b, "no key to recurse on at level %i/%i",
2025 b->level, b->c->root->level);
2027 op->keys.top = op->keys.bottom;
2028 return -EIO;
2031 if (bkey_cmp(insert, k) > 0) {
2032 unsigned i;
2034 if (op->type == BTREE_REPLACE) {
2035 __bkey_put(b->c, insert);
2036 op->keys.top = op->keys.bottom;
2037 op->insert_collision = true;
2038 return 0;
2041 for (i = 0; i < KEY_PTRS(insert); i++)
2042 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2044 bkey_copy(stack_keys->top, insert);
2046 bch_cut_back(k, insert);
2047 bch_cut_front(k, stack_keys->top);
2049 bch_keylist_push(stack_keys);
2052 ret = btree(insert_recurse, k, b, op, stack_keys);
2053 if (ret)
2054 return ret;
2057 if (!bch_keylist_empty(&op->keys)) {
2058 if (should_split(b)) {
2059 if (op->lock <= b->c->root->level) {
2060 BUG_ON(b->level);
2061 op->lock = b->c->root->level + 1;
2062 return -EINTR;
2064 return btree_split(b, op);
2067 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2069 if (bch_btree_insert_keys(b, op)) {
2070 if (!b->level)
2071 bch_btree_leaf_dirty(b, op);
2072 else
2073 bch_btree_node_write(b, &op->cl);
2077 return 0;
2080 int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2082 int ret = 0;
2083 struct keylist stack_keys;
2086 * Don't want to block with the btree locked unless we have to,
2087 * otherwise we get deadlocks with try_harder and between split/gc
2089 clear_closure_blocking(&op->cl);
2091 BUG_ON(bch_keylist_empty(&op->keys));
2092 bch_keylist_copy(&stack_keys, &op->keys);
2093 bch_keylist_init(&op->keys);
2095 while (!bch_keylist_empty(&stack_keys) ||
2096 !bch_keylist_empty(&op->keys)) {
2097 if (bch_keylist_empty(&op->keys)) {
2098 bch_keylist_add(&op->keys,
2099 bch_keylist_pop(&stack_keys));
2100 op->lock = 0;
2103 ret = btree_root(insert_recurse, c, op, &stack_keys);
2105 if (ret == -EAGAIN) {
2106 ret = 0;
2107 closure_sync(&op->cl);
2108 } else if (ret) {
2109 struct bkey *k;
2111 pr_err("error %i trying to insert key for %s",
2112 ret, op_type(op));
2114 while ((k = bch_keylist_pop(&stack_keys) ?:
2115 bch_keylist_pop(&op->keys)))
2116 bkey_put(c, k, 0);
2120 bch_keylist_free(&stack_keys);
2122 if (op->journal)
2123 atomic_dec_bug(op->journal);
2124 op->journal = NULL;
2125 return ret;
2128 void bch_btree_set_root(struct btree *b)
2130 unsigned i;
2131 struct closure cl;
2133 closure_init_stack(&cl);
2135 trace_bcache_btree_set_root(b);
2137 BUG_ON(!b->written);
2139 for (i = 0; i < KEY_PTRS(&b->key); i++)
2140 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2142 mutex_lock(&b->c->bucket_lock);
2143 list_del_init(&b->list);
2144 mutex_unlock(&b->c->bucket_lock);
2146 b->c->root = b;
2147 __bkey_put(b->c, &b->key);
2149 bch_journal_meta(b->c, &cl);
2150 closure_sync(&cl);
2153 /* Cache lookup */
2155 static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2156 struct bkey *k)
2158 struct search *s = container_of(op, struct search, op);
2159 struct bio *bio = &s->bio.bio;
2160 int ret = 0;
2162 while (!ret &&
2163 !op->lookup_done) {
2164 unsigned sectors = INT_MAX;
2166 if (KEY_INODE(k) == op->inode) {
2167 if (KEY_START(k) <= bio->bi_sector)
2168 break;
2170 sectors = min_t(uint64_t, sectors,
2171 KEY_START(k) - bio->bi_sector);
2174 ret = s->d->cache_miss(b, s, bio, sectors);
2177 return ret;
2181 * Read from a single key, handling the initial cache miss if the key starts in
2182 * the middle of the bio
2184 static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2185 struct bkey *k)
2187 struct search *s = container_of(op, struct search, op);
2188 struct bio *bio = &s->bio.bio;
2189 unsigned ptr;
2190 struct bio *n;
2192 int ret = submit_partial_cache_miss(b, op, k);
2193 if (ret || op->lookup_done)
2194 return ret;
2196 /* XXX: figure out best pointer - for multiple cache devices */
2197 ptr = 0;
2199 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2201 while (!op->lookup_done &&
2202 KEY_INODE(k) == op->inode &&
2203 bio->bi_sector < KEY_OFFSET(k)) {
2204 struct bkey *bio_key;
2205 sector_t sector = PTR_OFFSET(k, ptr) +
2206 (bio->bi_sector - KEY_START(k));
2207 unsigned sectors = min_t(uint64_t, INT_MAX,
2208 KEY_OFFSET(k) - bio->bi_sector);
2210 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2211 if (n == bio)
2212 op->lookup_done = true;
2214 bio_key = &container_of(n, struct bbio, bio)->key;
2217 * The bucket we're reading from might be reused while our bio
2218 * is in flight, and we could then end up reading the wrong
2219 * data.
2221 * We guard against this by checking (in cache_read_endio()) if
2222 * the pointer is stale again; if so, we treat it as an error
2223 * and reread from the backing device (but we don't pass that
2224 * error up anywhere).
2227 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2228 SET_PTR_OFFSET(bio_key, 0, sector);
2230 n->bi_end_io = bch_cache_read_endio;
2231 n->bi_private = &s->cl;
2233 __bch_submit_bbio(n, b->c);
2236 return 0;
2239 int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2241 struct search *s = container_of(op, struct search, op);
2242 struct bio *bio = &s->bio.bio;
2244 int ret = 0;
2245 struct bkey *k;
2246 struct btree_iter iter;
2247 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2249 do {
2250 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2251 if (!k) {
2253 * b->key would be exactly what we want, except that
2254 * pointers to btree nodes have nonzero size - we
2255 * wouldn't go far enough
2258 ret = submit_partial_cache_miss(b, op,
2259 &KEY(KEY_INODE(&b->key),
2260 KEY_OFFSET(&b->key), 0));
2261 break;
2264 ret = b->level
2265 ? btree(search_recurse, k, b, op)
2266 : submit_partial_cache_hit(b, op, k);
2267 } while (!ret &&
2268 !op->lookup_done);
2270 return ret;
2273 /* Keybuf code */
2275 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2277 /* Overlapping keys compare equal */
2278 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2279 return -1;
2280 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2281 return 1;
2282 return 0;
2285 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2286 struct keybuf_key *r)
2288 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2291 static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2292 struct keybuf *buf, struct bkey *end,
2293 keybuf_pred_fn *pred)
2295 struct btree_iter iter;
2296 bch_btree_iter_init(b, &iter, &buf->last_scanned);
2298 while (!array_freelist_empty(&buf->freelist)) {
2299 struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2300 bch_ptr_bad);
2302 if (!b->level) {
2303 if (!k) {
2304 buf->last_scanned = b->key;
2305 break;
2308 buf->last_scanned = *k;
2309 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2310 break;
2312 if (pred(buf, k)) {
2313 struct keybuf_key *w;
2315 spin_lock(&buf->lock);
2317 w = array_alloc(&buf->freelist);
2319 w->private = NULL;
2320 bkey_copy(&w->key, k);
2322 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2323 array_free(&buf->freelist, w);
2325 spin_unlock(&buf->lock);
2327 } else {
2328 if (!k)
2329 break;
2331 btree(refill_keybuf, k, b, op, buf, end, pred);
2333 * Might get an error here, but can't really do anything
2334 * and it'll get logged elsewhere. Just read what we
2335 * can.
2338 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2339 break;
2341 cond_resched();
2345 return 0;
2348 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2349 struct bkey *end, keybuf_pred_fn *pred)
2351 struct bkey start = buf->last_scanned;
2352 struct btree_op op;
2353 bch_btree_op_init_stack(&op);
2355 cond_resched();
2357 btree_root(refill_keybuf, c, &op, buf, end, pred);
2358 closure_sync(&op.cl);
2360 pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2361 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2362 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2363 KEY_INODE(&start), KEY_OFFSET(&start),
2364 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2366 spin_lock(&buf->lock);
2368 if (!RB_EMPTY_ROOT(&buf->keys)) {
2369 struct keybuf_key *w;
2370 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2371 buf->start = START_KEY(&w->key);
2373 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2374 buf->end = w->key;
2375 } else {
2376 buf->start = MAX_KEY;
2377 buf->end = MAX_KEY;
2380 spin_unlock(&buf->lock);
2383 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2385 rb_erase(&w->node, &buf->keys);
2386 array_free(&buf->freelist, w);
2389 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2391 spin_lock(&buf->lock);
2392 __bch_keybuf_del(buf, w);
2393 spin_unlock(&buf->lock);
2396 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2397 struct bkey *end)
2399 bool ret = false;
2400 struct keybuf_key *p, *w, s;
2401 s.key = *start;
2403 if (bkey_cmp(end, &buf->start) <= 0 ||
2404 bkey_cmp(start, &buf->end) >= 0)
2405 return false;
2407 spin_lock(&buf->lock);
2408 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2410 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2411 p = w;
2412 w = RB_NEXT(w, node);
2414 if (p->private)
2415 ret = true;
2416 else
2417 __bch_keybuf_del(buf, p);
2420 spin_unlock(&buf->lock);
2421 return ret;
2424 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2426 struct keybuf_key *w;
2427 spin_lock(&buf->lock);
2429 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2431 while (w && w->private)
2432 w = RB_NEXT(w, node);
2434 if (w)
2435 w->private = ERR_PTR(-EINTR);
2437 spin_unlock(&buf->lock);
2438 return w;
2441 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2442 struct keybuf *buf,
2443 struct bkey *end,
2444 keybuf_pred_fn *pred)
2446 struct keybuf_key *ret;
2448 while (1) {
2449 ret = bch_keybuf_next(buf);
2450 if (ret)
2451 break;
2453 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2454 pr_debug("scan finished");
2455 break;
2458 bch_refill_keybuf(c, buf, end, pred);
2461 return ret;
2464 void bch_keybuf_init(struct keybuf *buf)
2466 buf->last_scanned = MAX_KEY;
2467 buf->keys = RB_ROOT;
2469 spin_lock_init(&buf->lock);
2470 array_allocator_init(&buf->freelist);
2473 void bch_btree_exit(void)
2475 if (btree_io_wq)
2476 destroy_workqueue(btree_io_wq);
2477 if (bch_gc_wq)
2478 destroy_workqueue(bch_gc_wq);
2481 int __init bch_btree_init(void)
2483 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2484 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
2485 return -ENOMEM;
2487 return 0;