2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/atomic.h>
22 #include <linux/scatterlist.h>
24 #include <asm/unaligned.h>
25 #include <crypto/hash.h>
26 #include <crypto/md5.h>
27 #include <crypto/algapi.h>
29 #include <linux/device-mapper.h>
31 #define DM_MSG_PREFIX "crypt"
34 * context holding the current state of a multi-part conversion
36 struct convert_context
{
37 struct completion restart
;
40 unsigned int offset_in
;
41 unsigned int offset_out
;
46 struct ablkcipher_request
*req
;
50 * per bio private data
53 struct crypt_config
*cc
;
55 struct work_struct work
;
57 struct convert_context ctx
;
62 struct dm_crypt_io
*base_io
;
65 struct dm_crypt_request
{
66 struct convert_context
*ctx
;
67 struct scatterlist sg_in
;
68 struct scatterlist sg_out
;
74 struct crypt_iv_operations
{
75 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
77 void (*dtr
)(struct crypt_config
*cc
);
78 int (*init
)(struct crypt_config
*cc
);
79 int (*wipe
)(struct crypt_config
*cc
);
80 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
81 struct dm_crypt_request
*dmreq
);
82 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
83 struct dm_crypt_request
*dmreq
);
86 struct iv_essiv_private
{
87 struct crypto_hash
*hash_tfm
;
91 struct iv_benbi_private
{
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private
{
97 struct crypto_shash
*hash_tfm
;
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
105 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
108 * The fields in here must be read only after initialization.
110 struct crypt_config
{
115 * pool for per bio private data, crypto requests and
116 * encryption requeusts/buffer pages
120 mempool_t
*page_pool
;
123 struct workqueue_struct
*io_queue
;
124 struct workqueue_struct
*crypt_queue
;
129 struct crypt_iv_operations
*iv_gen_ops
;
131 struct iv_essiv_private essiv
;
132 struct iv_benbi_private benbi
;
133 struct iv_lmk_private lmk
;
136 unsigned int iv_size
;
138 /* ESSIV: struct crypto_cipher *essiv_tfm */
140 struct crypto_ablkcipher
**tfms
;
144 * Layout of each crypto request:
146 * struct ablkcipher_request
149 * struct dm_crypt_request
153 * The padding is added so that dm_crypt_request and the IV are
156 unsigned int dmreq_start
;
159 unsigned int key_size
;
160 unsigned int key_parts
;
165 #define MIN_POOL_PAGES 32
167 static struct kmem_cache
*_crypt_io_pool
;
169 static void clone_init(struct dm_crypt_io
*, struct bio
*);
170 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
171 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
174 * Use this to access cipher attributes that are the same for each CPU.
176 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
182 * Different IV generation algorithms:
184 * plain: the initial vector is the 32-bit little-endian version of the sector
185 * number, padded with zeros if necessary.
187 * plain64: the initial vector is the 64-bit little-endian version of the sector
188 * number, padded with zeros if necessary.
190 * essiv: "encrypted sector|salt initial vector", the sector number is
191 * encrypted with the bulk cipher using a salt as key. The salt
192 * should be derived from the bulk cipher's key via hashing.
194 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
195 * (needed for LRW-32-AES and possible other narrow block modes)
197 * null: the initial vector is always zero. Provides compatibility with
198 * obsolete loop_fish2 devices. Do not use for new devices.
200 * lmk: Compatible implementation of the block chaining mode used
201 * by the Loop-AES block device encryption system
202 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
203 * It operates on full 512 byte sectors and uses CBC
204 * with an IV derived from the sector number, the data and
205 * optionally extra IV seed.
206 * This means that after decryption the first block
207 * of sector must be tweaked according to decrypted data.
208 * Loop-AES can use three encryption schemes:
209 * version 1: is plain aes-cbc mode
210 * version 2: uses 64 multikey scheme with lmk IV generator
211 * version 3: the same as version 2 with additional IV seed
212 * (it uses 65 keys, last key is used as IV seed)
214 * plumb: unimplemented, see:
215 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
218 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
219 struct dm_crypt_request
*dmreq
)
221 memset(iv
, 0, cc
->iv_size
);
222 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
227 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
228 struct dm_crypt_request
*dmreq
)
230 memset(iv
, 0, cc
->iv_size
);
231 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
236 /* Initialise ESSIV - compute salt but no local memory allocations */
237 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
239 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
240 struct hash_desc desc
;
241 struct scatterlist sg
;
242 struct crypto_cipher
*essiv_tfm
;
245 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
246 desc
.tfm
= essiv
->hash_tfm
;
247 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
249 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
253 essiv_tfm
= cc
->iv_private
;
255 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
256 crypto_hash_digestsize(essiv
->hash_tfm
));
263 /* Wipe salt and reset key derived from volume key */
264 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
266 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
267 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
268 struct crypto_cipher
*essiv_tfm
;
271 memset(essiv
->salt
, 0, salt_size
);
273 essiv_tfm
= cc
->iv_private
;
274 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
281 /* Set up per cpu cipher state */
282 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
283 struct dm_target
*ti
,
284 u8
*salt
, unsigned saltsize
)
286 struct crypto_cipher
*essiv_tfm
;
289 /* Setup the essiv_tfm with the given salt */
290 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
291 if (IS_ERR(essiv_tfm
)) {
292 ti
->error
= "Error allocating crypto tfm for ESSIV";
296 if (crypto_cipher_blocksize(essiv_tfm
) !=
297 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
298 ti
->error
= "Block size of ESSIV cipher does "
299 "not match IV size of block cipher";
300 crypto_free_cipher(essiv_tfm
);
301 return ERR_PTR(-EINVAL
);
304 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
306 ti
->error
= "Failed to set key for ESSIV cipher";
307 crypto_free_cipher(essiv_tfm
);
314 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
316 struct crypto_cipher
*essiv_tfm
;
317 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
319 crypto_free_hash(essiv
->hash_tfm
);
320 essiv
->hash_tfm
= NULL
;
325 essiv_tfm
= cc
->iv_private
;
328 crypto_free_cipher(essiv_tfm
);
330 cc
->iv_private
= NULL
;
333 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
336 struct crypto_cipher
*essiv_tfm
= NULL
;
337 struct crypto_hash
*hash_tfm
= NULL
;
342 ti
->error
= "Digest algorithm missing for ESSIV mode";
346 /* Allocate hash algorithm */
347 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
348 if (IS_ERR(hash_tfm
)) {
349 ti
->error
= "Error initializing ESSIV hash";
350 err
= PTR_ERR(hash_tfm
);
354 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
356 ti
->error
= "Error kmallocing salt storage in ESSIV";
361 cc
->iv_gen_private
.essiv
.salt
= salt
;
362 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
364 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
365 crypto_hash_digestsize(hash_tfm
));
366 if (IS_ERR(essiv_tfm
)) {
367 crypt_iv_essiv_dtr(cc
);
368 return PTR_ERR(essiv_tfm
);
370 cc
->iv_private
= essiv_tfm
;
375 if (hash_tfm
&& !IS_ERR(hash_tfm
))
376 crypto_free_hash(hash_tfm
);
381 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
382 struct dm_crypt_request
*dmreq
)
384 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
386 memset(iv
, 0, cc
->iv_size
);
387 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
388 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
393 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
396 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
399 /* we need to calculate how far we must shift the sector count
400 * to get the cipher block count, we use this shift in _gen */
402 if (1 << log
!= bs
) {
403 ti
->error
= "cypher blocksize is not a power of 2";
408 ti
->error
= "cypher blocksize is > 512";
412 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
417 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
421 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
422 struct dm_crypt_request
*dmreq
)
426 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
428 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
429 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
434 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
435 struct dm_crypt_request
*dmreq
)
437 memset(iv
, 0, cc
->iv_size
);
442 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
444 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
446 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
447 crypto_free_shash(lmk
->hash_tfm
);
448 lmk
->hash_tfm
= NULL
;
454 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
457 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
459 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
460 if (IS_ERR(lmk
->hash_tfm
)) {
461 ti
->error
= "Error initializing LMK hash";
462 return PTR_ERR(lmk
->hash_tfm
);
465 /* No seed in LMK version 2 */
466 if (cc
->key_parts
== cc
->tfms_count
) {
471 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
473 crypt_iv_lmk_dtr(cc
);
474 ti
->error
= "Error kmallocing seed storage in LMK";
481 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
483 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
484 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
486 /* LMK seed is on the position of LMK_KEYS + 1 key */
488 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
489 crypto_shash_digestsize(lmk
->hash_tfm
));
494 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
496 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
499 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
504 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
505 struct dm_crypt_request
*dmreq
,
508 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
510 struct shash_desc desc
;
511 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
513 struct md5_state md5state
;
517 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
518 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
520 r
= crypto_shash_init(&sdesc
.desc
);
525 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
530 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
531 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
535 /* Sector is cropped to 56 bits here */
536 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
537 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
538 buf
[2] = cpu_to_le32(4024);
540 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
544 /* No MD5 padding here */
545 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
549 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
550 __cpu_to_le32s(&md5state
.hash
[i
]);
551 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
556 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
557 struct dm_crypt_request
*dmreq
)
562 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
563 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
564 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
567 memset(iv
, 0, cc
->iv_size
);
572 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
573 struct dm_crypt_request
*dmreq
)
578 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
581 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
582 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
584 /* Tweak the first block of plaintext sector */
586 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
592 static struct crypt_iv_operations crypt_iv_plain_ops
= {
593 .generator
= crypt_iv_plain_gen
596 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
597 .generator
= crypt_iv_plain64_gen
600 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
601 .ctr
= crypt_iv_essiv_ctr
,
602 .dtr
= crypt_iv_essiv_dtr
,
603 .init
= crypt_iv_essiv_init
,
604 .wipe
= crypt_iv_essiv_wipe
,
605 .generator
= crypt_iv_essiv_gen
608 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
609 .ctr
= crypt_iv_benbi_ctr
,
610 .dtr
= crypt_iv_benbi_dtr
,
611 .generator
= crypt_iv_benbi_gen
614 static struct crypt_iv_operations crypt_iv_null_ops
= {
615 .generator
= crypt_iv_null_gen
618 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
619 .ctr
= crypt_iv_lmk_ctr
,
620 .dtr
= crypt_iv_lmk_dtr
,
621 .init
= crypt_iv_lmk_init
,
622 .wipe
= crypt_iv_lmk_wipe
,
623 .generator
= crypt_iv_lmk_gen
,
624 .post
= crypt_iv_lmk_post
627 static void crypt_convert_init(struct crypt_config
*cc
,
628 struct convert_context
*ctx
,
629 struct bio
*bio_out
, struct bio
*bio_in
,
632 ctx
->bio_in
= bio_in
;
633 ctx
->bio_out
= bio_out
;
636 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
637 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
638 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
639 init_completion(&ctx
->restart
);
642 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
643 struct ablkcipher_request
*req
)
645 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
648 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
649 struct dm_crypt_request
*dmreq
)
651 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
654 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
655 struct dm_crypt_request
*dmreq
)
657 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
658 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
661 static int crypt_convert_block(struct crypt_config
*cc
,
662 struct convert_context
*ctx
,
663 struct ablkcipher_request
*req
)
665 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
666 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
667 struct dm_crypt_request
*dmreq
;
671 dmreq
= dmreq_of_req(cc
, req
);
672 iv
= iv_of_dmreq(cc
, dmreq
);
674 dmreq
->iv_sector
= ctx
->cc_sector
;
676 sg_init_table(&dmreq
->sg_in
, 1);
677 sg_set_page(&dmreq
->sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
,
678 bv_in
->bv_offset
+ ctx
->offset_in
);
680 sg_init_table(&dmreq
->sg_out
, 1);
681 sg_set_page(&dmreq
->sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
,
682 bv_out
->bv_offset
+ ctx
->offset_out
);
684 ctx
->offset_in
+= 1 << SECTOR_SHIFT
;
685 if (ctx
->offset_in
>= bv_in
->bv_len
) {
690 ctx
->offset_out
+= 1 << SECTOR_SHIFT
;
691 if (ctx
->offset_out
>= bv_out
->bv_len
) {
696 if (cc
->iv_gen_ops
) {
697 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
702 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
703 1 << SECTOR_SHIFT
, iv
);
705 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
706 r
= crypto_ablkcipher_encrypt(req
);
708 r
= crypto_ablkcipher_decrypt(req
);
710 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
711 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
716 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
719 static void crypt_alloc_req(struct crypt_config
*cc
,
720 struct convert_context
*ctx
)
722 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
725 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
727 ablkcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
728 ablkcipher_request_set_callback(ctx
->req
,
729 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
730 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
734 * Encrypt / decrypt data from one bio to another one (can be the same one)
736 static int crypt_convert(struct crypt_config
*cc
,
737 struct convert_context
*ctx
)
741 atomic_set(&ctx
->cc_pending
, 1);
743 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
744 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
746 crypt_alloc_req(cc
, ctx
);
748 atomic_inc(&ctx
->cc_pending
);
750 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
755 wait_for_completion(&ctx
->restart
);
756 INIT_COMPLETION(ctx
->restart
);
765 atomic_dec(&ctx
->cc_pending
);
772 atomic_dec(&ctx
->cc_pending
);
781 * Generate a new unfragmented bio with the given size
782 * This should never violate the device limitations
783 * May return a smaller bio when running out of pages, indicated by
784 * *out_of_pages set to 1.
786 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
787 unsigned *out_of_pages
)
789 struct crypt_config
*cc
= io
->cc
;
791 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
792 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
796 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
800 clone_init(io
, clone
);
803 for (i
= 0; i
< nr_iovecs
; i
++) {
804 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
811 * If additional pages cannot be allocated without waiting,
812 * return a partially-allocated bio. The caller will then try
813 * to allocate more bios while submitting this partial bio.
815 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
817 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
819 if (!bio_add_page(clone
, page
, len
, 0)) {
820 mempool_free(page
, cc
->page_pool
);
827 if (!clone
->bi_size
) {
835 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
840 bio_for_each_segment_all(bv
, clone
, i
) {
841 BUG_ON(!bv
->bv_page
);
842 mempool_free(bv
->bv_page
, cc
->page_pool
);
847 static struct dm_crypt_io
*crypt_io_alloc(struct crypt_config
*cc
,
848 struct bio
*bio
, sector_t sector
)
850 struct dm_crypt_io
*io
;
852 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
859 atomic_set(&io
->io_pending
, 0);
864 static void crypt_inc_pending(struct dm_crypt_io
*io
)
866 atomic_inc(&io
->io_pending
);
870 * One of the bios was finished. Check for completion of
871 * the whole request and correctly clean up the buffer.
872 * If base_io is set, wait for the last fragment to complete.
874 static void crypt_dec_pending(struct dm_crypt_io
*io
)
876 struct crypt_config
*cc
= io
->cc
;
877 struct bio
*base_bio
= io
->base_bio
;
878 struct dm_crypt_io
*base_io
= io
->base_io
;
879 int error
= io
->error
;
881 if (!atomic_dec_and_test(&io
->io_pending
))
885 mempool_free(io
->ctx
.req
, cc
->req_pool
);
886 mempool_free(io
, cc
->io_pool
);
888 if (likely(!base_io
))
889 bio_endio(base_bio
, error
);
891 if (error
&& !base_io
->error
)
892 base_io
->error
= error
;
893 crypt_dec_pending(base_io
);
898 * kcryptd/kcryptd_io:
900 * Needed because it would be very unwise to do decryption in an
903 * kcryptd performs the actual encryption or decryption.
905 * kcryptd_io performs the IO submission.
907 * They must be separated as otherwise the final stages could be
908 * starved by new requests which can block in the first stages due
909 * to memory allocation.
911 * The work is done per CPU global for all dm-crypt instances.
912 * They should not depend on each other and do not block.
914 static void crypt_endio(struct bio
*clone
, int error
)
916 struct dm_crypt_io
*io
= clone
->bi_private
;
917 struct crypt_config
*cc
= io
->cc
;
918 unsigned rw
= bio_data_dir(clone
);
920 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
924 * free the processed pages
927 crypt_free_buffer_pages(cc
, clone
);
931 if (rw
== READ
&& !error
) {
932 kcryptd_queue_crypt(io
);
939 crypt_dec_pending(io
);
942 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
944 struct crypt_config
*cc
= io
->cc
;
946 clone
->bi_private
= io
;
947 clone
->bi_end_io
= crypt_endio
;
948 clone
->bi_bdev
= cc
->dev
->bdev
;
949 clone
->bi_rw
= io
->base_bio
->bi_rw
;
952 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
954 struct crypt_config
*cc
= io
->cc
;
955 struct bio
*base_bio
= io
->base_bio
;
959 * The block layer might modify the bvec array, so always
960 * copy the required bvecs because we need the original
961 * one in order to decrypt the whole bio data *afterwards*.
963 clone
= bio_clone_bioset(base_bio
, gfp
, cc
->bs
);
967 crypt_inc_pending(io
);
969 clone_init(io
, clone
);
970 clone
->bi_sector
= cc
->start
+ io
->sector
;
972 generic_make_request(clone
);
976 static void kcryptd_io_write(struct dm_crypt_io
*io
)
978 struct bio
*clone
= io
->ctx
.bio_out
;
979 generic_make_request(clone
);
982 static void kcryptd_io(struct work_struct
*work
)
984 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
986 if (bio_data_dir(io
->base_bio
) == READ
) {
987 crypt_inc_pending(io
);
988 if (kcryptd_io_read(io
, GFP_NOIO
))
990 crypt_dec_pending(io
);
992 kcryptd_io_write(io
);
995 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
997 struct crypt_config
*cc
= io
->cc
;
999 INIT_WORK(&io
->work
, kcryptd_io
);
1000 queue_work(cc
->io_queue
, &io
->work
);
1003 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1005 struct bio
*clone
= io
->ctx
.bio_out
;
1006 struct crypt_config
*cc
= io
->cc
;
1008 if (unlikely(io
->error
< 0)) {
1009 crypt_free_buffer_pages(cc
, clone
);
1011 crypt_dec_pending(io
);
1015 /* crypt_convert should have filled the clone bio */
1016 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
1018 clone
->bi_sector
= cc
->start
+ io
->sector
;
1021 kcryptd_queue_io(io
);
1023 generic_make_request(clone
);
1026 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1028 struct crypt_config
*cc
= io
->cc
;
1030 struct dm_crypt_io
*new_io
;
1032 unsigned out_of_pages
= 0;
1033 unsigned remaining
= io
->base_bio
->bi_size
;
1034 sector_t sector
= io
->sector
;
1038 * Prevent io from disappearing until this function completes.
1040 crypt_inc_pending(io
);
1041 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1044 * The allocated buffers can be smaller than the whole bio,
1045 * so repeat the whole process until all the data can be handled.
1048 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1049 if (unlikely(!clone
)) {
1050 io
->error
= -ENOMEM
;
1054 io
->ctx
.bio_out
= clone
;
1055 io
->ctx
.idx_out
= 0;
1057 remaining
-= clone
->bi_size
;
1058 sector
+= bio_sectors(clone
);
1060 crypt_inc_pending(io
);
1062 r
= crypt_convert(cc
, &io
->ctx
);
1066 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1068 /* Encryption was already finished, submit io now */
1069 if (crypt_finished
) {
1070 kcryptd_crypt_write_io_submit(io
, 0);
1073 * If there was an error, do not try next fragments.
1074 * For async, error is processed in async handler.
1076 if (unlikely(r
< 0))
1079 io
->sector
= sector
;
1083 * Out of memory -> run queues
1084 * But don't wait if split was due to the io size restriction
1086 if (unlikely(out_of_pages
))
1087 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1090 * With async crypto it is unsafe to share the crypto context
1091 * between fragments, so switch to a new dm_crypt_io structure.
1093 if (unlikely(!crypt_finished
&& remaining
)) {
1094 new_io
= crypt_io_alloc(io
->cc
, io
->base_bio
,
1096 crypt_inc_pending(new_io
);
1097 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1098 io
->base_bio
, sector
);
1099 new_io
->ctx
.idx_in
= io
->ctx
.idx_in
;
1100 new_io
->ctx
.offset_in
= io
->ctx
.offset_in
;
1103 * Fragments after the first use the base_io
1107 new_io
->base_io
= io
;
1109 new_io
->base_io
= io
->base_io
;
1110 crypt_inc_pending(io
->base_io
);
1111 crypt_dec_pending(io
);
1118 crypt_dec_pending(io
);
1121 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1123 crypt_dec_pending(io
);
1126 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1128 struct crypt_config
*cc
= io
->cc
;
1131 crypt_inc_pending(io
);
1133 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1136 r
= crypt_convert(cc
, &io
->ctx
);
1140 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1141 kcryptd_crypt_read_done(io
);
1143 crypt_dec_pending(io
);
1146 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1149 struct dm_crypt_request
*dmreq
= async_req
->data
;
1150 struct convert_context
*ctx
= dmreq
->ctx
;
1151 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1152 struct crypt_config
*cc
= io
->cc
;
1154 if (error
== -EINPROGRESS
) {
1155 complete(&ctx
->restart
);
1159 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1160 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1165 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1167 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1170 if (bio_data_dir(io
->base_bio
) == READ
)
1171 kcryptd_crypt_read_done(io
);
1173 kcryptd_crypt_write_io_submit(io
, 1);
1176 static void kcryptd_crypt(struct work_struct
*work
)
1178 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1180 if (bio_data_dir(io
->base_bio
) == READ
)
1181 kcryptd_crypt_read_convert(io
);
1183 kcryptd_crypt_write_convert(io
);
1186 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1188 struct crypt_config
*cc
= io
->cc
;
1190 INIT_WORK(&io
->work
, kcryptd_crypt
);
1191 queue_work(cc
->crypt_queue
, &io
->work
);
1195 * Decode key from its hex representation
1197 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1204 for (i
= 0; i
< size
; i
++) {
1208 if (kstrtou8(buffer
, 16, &key
[i
]))
1218 static void crypt_free_tfms(struct crypt_config
*cc
)
1225 for (i
= 0; i
< cc
->tfms_count
; i
++)
1226 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1227 crypto_free_ablkcipher(cc
->tfms
[i
]);
1235 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1240 cc
->tfms
= kmalloc(cc
->tfms_count
* sizeof(struct crypto_ablkcipher
*),
1245 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1246 cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1247 if (IS_ERR(cc
->tfms
[i
])) {
1248 err
= PTR_ERR(cc
->tfms
[i
]);
1249 crypt_free_tfms(cc
);
1257 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1259 unsigned subkey_size
= cc
->key_size
>> ilog2(cc
->tfms_count
);
1262 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1263 r
= crypto_ablkcipher_setkey(cc
->tfms
[i
],
1264 cc
->key
+ (i
* subkey_size
),
1273 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1276 int key_string_len
= strlen(key
);
1278 /* The key size may not be changed. */
1279 if (cc
->key_size
!= (key_string_len
>> 1))
1282 /* Hyphen (which gives a key_size of zero) means there is no key. */
1283 if (!cc
->key_size
&& strcmp(key
, "-"))
1286 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1289 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1291 r
= crypt_setkey_allcpus(cc
);
1294 /* Hex key string not needed after here, so wipe it. */
1295 memset(key
, '0', key_string_len
);
1300 static int crypt_wipe_key(struct crypt_config
*cc
)
1302 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1303 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1305 return crypt_setkey_allcpus(cc
);
1308 static void crypt_dtr(struct dm_target
*ti
)
1310 struct crypt_config
*cc
= ti
->private;
1318 destroy_workqueue(cc
->io_queue
);
1319 if (cc
->crypt_queue
)
1320 destroy_workqueue(cc
->crypt_queue
);
1322 crypt_free_tfms(cc
);
1325 bioset_free(cc
->bs
);
1328 mempool_destroy(cc
->page_pool
);
1330 mempool_destroy(cc
->req_pool
);
1332 mempool_destroy(cc
->io_pool
);
1334 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1335 cc
->iv_gen_ops
->dtr(cc
);
1338 dm_put_device(ti
, cc
->dev
);
1341 kzfree(cc
->cipher_string
);
1343 /* Must zero key material before freeing */
1347 static int crypt_ctr_cipher(struct dm_target
*ti
,
1348 char *cipher_in
, char *key
)
1350 struct crypt_config
*cc
= ti
->private;
1351 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1352 char *cipher_api
= NULL
;
1356 /* Convert to crypto api definition? */
1357 if (strchr(cipher_in
, '(')) {
1358 ti
->error
= "Bad cipher specification";
1362 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1363 if (!cc
->cipher_string
)
1367 * Legacy dm-crypt cipher specification
1368 * cipher[:keycount]-mode-iv:ivopts
1371 keycount
= strsep(&tmp
, "-");
1372 cipher
= strsep(&keycount
, ":");
1376 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1377 !is_power_of_2(cc
->tfms_count
)) {
1378 ti
->error
= "Bad cipher key count specification";
1381 cc
->key_parts
= cc
->tfms_count
;
1383 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1387 chainmode
= strsep(&tmp
, "-");
1388 ivopts
= strsep(&tmp
, "-");
1389 ivmode
= strsep(&ivopts
, ":");
1392 DMWARN("Ignoring unexpected additional cipher options");
1395 * For compatibility with the original dm-crypt mapping format, if
1396 * only the cipher name is supplied, use cbc-plain.
1398 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1403 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1404 ti
->error
= "IV mechanism required";
1408 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1412 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1413 "%s(%s)", chainmode
, cipher
);
1419 /* Allocate cipher */
1420 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1422 ti
->error
= "Error allocating crypto tfm";
1426 /* Initialize and set key */
1427 ret
= crypt_set_key(cc
, key
);
1429 ti
->error
= "Error decoding and setting key";
1434 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1436 /* at least a 64 bit sector number should fit in our buffer */
1437 cc
->iv_size
= max(cc
->iv_size
,
1438 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1440 DMWARN("Selected cipher does not support IVs");
1444 /* Choose ivmode, see comments at iv code. */
1446 cc
->iv_gen_ops
= NULL
;
1447 else if (strcmp(ivmode
, "plain") == 0)
1448 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1449 else if (strcmp(ivmode
, "plain64") == 0)
1450 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1451 else if (strcmp(ivmode
, "essiv") == 0)
1452 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1453 else if (strcmp(ivmode
, "benbi") == 0)
1454 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1455 else if (strcmp(ivmode
, "null") == 0)
1456 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1457 else if (strcmp(ivmode
, "lmk") == 0) {
1458 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1459 /* Version 2 and 3 is recognised according
1460 * to length of provided multi-key string.
1461 * If present (version 3), last key is used as IV seed.
1463 if (cc
->key_size
% cc
->key_parts
)
1467 ti
->error
= "Invalid IV mode";
1472 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1473 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1475 ti
->error
= "Error creating IV";
1480 /* Initialize IV (set keys for ESSIV etc) */
1481 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1482 ret
= cc
->iv_gen_ops
->init(cc
);
1484 ti
->error
= "Error initialising IV";
1495 ti
->error
= "Cannot allocate cipher strings";
1500 * Construct an encryption mapping:
1501 * <cipher> <key> <iv_offset> <dev_path> <start>
1503 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1505 struct crypt_config
*cc
;
1506 unsigned int key_size
, opt_params
;
1507 unsigned long long tmpll
;
1509 size_t iv_size_padding
;
1510 struct dm_arg_set as
;
1511 const char *opt_string
;
1514 static struct dm_arg _args
[] = {
1515 {0, 1, "Invalid number of feature args"},
1519 ti
->error
= "Not enough arguments";
1523 key_size
= strlen(argv
[1]) >> 1;
1525 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1527 ti
->error
= "Cannot allocate encryption context";
1530 cc
->key_size
= key_size
;
1533 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1538 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1540 ti
->error
= "Cannot allocate crypt io mempool";
1544 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1545 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1546 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1548 if (crypto_ablkcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1549 /* Allocate the padding exactly */
1550 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1551 & crypto_ablkcipher_alignmask(any_tfm(cc
));
1554 * If the cipher requires greater alignment than kmalloc
1555 * alignment, we don't know the exact position of the
1556 * initialization vector. We must assume worst case.
1558 iv_size_padding
= crypto_ablkcipher_alignmask(any_tfm(cc
));
1561 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1562 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1563 if (!cc
->req_pool
) {
1564 ti
->error
= "Cannot allocate crypt request mempool";
1568 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1569 if (!cc
->page_pool
) {
1570 ti
->error
= "Cannot allocate page mempool";
1574 cc
->bs
= bioset_create(MIN_IOS
, 0);
1576 ti
->error
= "Cannot allocate crypt bioset";
1581 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1582 ti
->error
= "Invalid iv_offset sector";
1585 cc
->iv_offset
= tmpll
;
1587 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1588 ti
->error
= "Device lookup failed";
1592 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1593 ti
->error
= "Invalid device sector";
1601 /* Optional parameters */
1606 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1610 opt_string
= dm_shift_arg(&as
);
1612 if (opt_params
== 1 && opt_string
&&
1613 !strcasecmp(opt_string
, "allow_discards"))
1614 ti
->num_discard_bios
= 1;
1615 else if (opt_params
) {
1617 ti
->error
= "Invalid feature arguments";
1623 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1624 if (!cc
->io_queue
) {
1625 ti
->error
= "Couldn't create kcryptd io queue";
1629 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1630 WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1631 if (!cc
->crypt_queue
) {
1632 ti
->error
= "Couldn't create kcryptd queue";
1636 ti
->num_flush_bios
= 1;
1637 ti
->discard_zeroes_data_unsupported
= true;
1646 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1648 struct dm_crypt_io
*io
;
1649 struct crypt_config
*cc
= ti
->private;
1652 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1653 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1654 * - for REQ_DISCARD caller must use flush if IO ordering matters
1656 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1657 bio
->bi_bdev
= cc
->dev
->bdev
;
1658 if (bio_sectors(bio
))
1659 bio
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bio
->bi_sector
);
1660 return DM_MAPIO_REMAPPED
;
1663 io
= crypt_io_alloc(cc
, bio
, dm_target_offset(ti
, bio
->bi_sector
));
1665 if (bio_data_dir(io
->base_bio
) == READ
) {
1666 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1667 kcryptd_queue_io(io
);
1669 kcryptd_queue_crypt(io
);
1671 return DM_MAPIO_SUBMITTED
;
1674 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1675 unsigned status_flags
, char *result
, unsigned maxlen
)
1677 struct crypt_config
*cc
= ti
->private;
1681 case STATUSTYPE_INFO
:
1685 case STATUSTYPE_TABLE
:
1686 DMEMIT("%s ", cc
->cipher_string
);
1688 if (cc
->key_size
> 0)
1689 for (i
= 0; i
< cc
->key_size
; i
++)
1690 DMEMIT("%02x", cc
->key
[i
]);
1694 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1695 cc
->dev
->name
, (unsigned long long)cc
->start
);
1697 if (ti
->num_discard_bios
)
1698 DMEMIT(" 1 allow_discards");
1704 static void crypt_postsuspend(struct dm_target
*ti
)
1706 struct crypt_config
*cc
= ti
->private;
1708 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1711 static int crypt_preresume(struct dm_target
*ti
)
1713 struct crypt_config
*cc
= ti
->private;
1715 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1716 DMERR("aborting resume - crypt key is not set.");
1723 static void crypt_resume(struct dm_target
*ti
)
1725 struct crypt_config
*cc
= ti
->private;
1727 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1730 /* Message interface
1734 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1736 struct crypt_config
*cc
= ti
->private;
1742 if (!strcasecmp(argv
[0], "key")) {
1743 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1744 DMWARN("not suspended during key manipulation.");
1747 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
1748 ret
= crypt_set_key(cc
, argv
[2]);
1751 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1752 ret
= cc
->iv_gen_ops
->init(cc
);
1755 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
1756 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1757 ret
= cc
->iv_gen_ops
->wipe(cc
);
1761 return crypt_wipe_key(cc
);
1766 DMWARN("unrecognised message received.");
1770 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1771 struct bio_vec
*biovec
, int max_size
)
1773 struct crypt_config
*cc
= ti
->private;
1774 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1776 if (!q
->merge_bvec_fn
)
1779 bvm
->bi_bdev
= cc
->dev
->bdev
;
1780 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1782 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1785 static int crypt_iterate_devices(struct dm_target
*ti
,
1786 iterate_devices_callout_fn fn
, void *data
)
1788 struct crypt_config
*cc
= ti
->private;
1790 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1793 static struct target_type crypt_target
= {
1795 .version
= {1, 12, 1},
1796 .module
= THIS_MODULE
,
1800 .status
= crypt_status
,
1801 .postsuspend
= crypt_postsuspend
,
1802 .preresume
= crypt_preresume
,
1803 .resume
= crypt_resume
,
1804 .message
= crypt_message
,
1805 .merge
= crypt_merge
,
1806 .iterate_devices
= crypt_iterate_devices
,
1809 static int __init
dm_crypt_init(void)
1813 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1814 if (!_crypt_io_pool
)
1817 r
= dm_register_target(&crypt_target
);
1819 DMERR("register failed %d", r
);
1820 kmem_cache_destroy(_crypt_io_pool
);
1826 static void __exit
dm_crypt_exit(void)
1828 dm_unregister_target(&crypt_target
);
1829 kmem_cache_destroy(_crypt_io_pool
);
1832 module_init(dm_crypt_init
);
1833 module_exit(dm_crypt_exit
);
1835 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1836 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1837 MODULE_LICENSE("GPL");