Linux 3.12.39
[linux/fpc-iii.git] / drivers / md / dm-raid.c
blob59715389b3cf903bb7ef83f271f2942d278a4bfe
1 /*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include <linux/slab.h>
9 #include <linux/module.h>
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
17 #include <linux/device-mapper.h>
19 #define DM_MSG_PREFIX "raid"
22 * The following flags are used by dm-raid.c to set up the array state.
23 * They must be cleared before md_run is called.
25 #define FirstUse 10 /* rdev flag */
27 struct raid_dev {
29 * Two DM devices, one to hold metadata and one to hold the
30 * actual data/parity. The reason for this is to not confuse
31 * ti->len and give more flexibility in altering size and
32 * characteristics.
34 * While it is possible for this device to be associated
35 * with a different physical device than the data_dev, it
36 * is intended for it to be the same.
37 * |--------- Physical Device ---------|
38 * |- meta_dev -|------ data_dev ------|
40 struct dm_dev *meta_dev;
41 struct dm_dev *data_dev;
42 struct md_rdev rdev;
46 * Flags for rs->print_flags field.
48 #define DMPF_SYNC 0x1
49 #define DMPF_NOSYNC 0x2
50 #define DMPF_REBUILD 0x4
51 #define DMPF_DAEMON_SLEEP 0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND 0x40
55 #define DMPF_STRIPE_CACHE 0x80
56 #define DMPF_REGION_SIZE 0x100
57 #define DMPF_RAID10_COPIES 0x200
58 #define DMPF_RAID10_FORMAT 0x400
60 struct raid_set {
61 struct dm_target *ti;
63 uint32_t bitmap_loaded;
64 uint32_t print_flags;
66 struct mddev md;
67 struct raid_type *raid_type;
68 struct dm_target_callbacks callbacks;
70 struct raid_dev dev[0];
73 /* Supported raid types and properties. */
74 static struct raid_type {
75 const char *name; /* RAID algorithm. */
76 const char *descr; /* Descriptor text for logging. */
77 const unsigned parity_devs; /* # of parity devices. */
78 const unsigned minimal_devs; /* minimal # of devices in set. */
79 const unsigned level; /* RAID level. */
80 const unsigned algorithm; /* RAID algorithm. */
81 } raid_types[] = {
82 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */},
83 {"raid10", "RAID10 (striped mirrors)", 0, 2, 10, UINT_MAX /* Varies */},
84 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0},
85 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
94 static char *raid10_md_layout_to_format(int layout)
97 * Bit 16 and 17 stand for "offset" and "use_far_sets"
98 * Refer to MD's raid10.c for details
100 if ((layout & 0x10000) && (layout & 0x20000))
101 return "offset";
103 if ((layout & 0xFF) > 1)
104 return "near";
106 return "far";
109 static unsigned raid10_md_layout_to_copies(int layout)
111 if ((layout & 0xFF) > 1)
112 return layout & 0xFF;
113 return (layout >> 8) & 0xFF;
116 static int raid10_format_to_md_layout(char *format, unsigned copies)
118 unsigned n = 1, f = 1;
120 if (!strcmp("near", format))
121 n = copies;
122 else
123 f = copies;
125 if (!strcmp("offset", format))
126 return 0x30000 | (f << 8) | n;
128 if (!strcmp("far", format))
129 return 0x20000 | (f << 8) | n;
131 return (f << 8) | n;
134 static struct raid_type *get_raid_type(char *name)
136 int i;
138 for (i = 0; i < ARRAY_SIZE(raid_types); i++)
139 if (!strcmp(raid_types[i].name, name))
140 return &raid_types[i];
142 return NULL;
145 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
147 unsigned i;
148 struct raid_set *rs;
150 if (raid_devs <= raid_type->parity_devs) {
151 ti->error = "Insufficient number of devices";
152 return ERR_PTR(-EINVAL);
155 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
156 if (!rs) {
157 ti->error = "Cannot allocate raid context";
158 return ERR_PTR(-ENOMEM);
161 mddev_init(&rs->md);
163 rs->ti = ti;
164 rs->raid_type = raid_type;
165 rs->md.raid_disks = raid_devs;
166 rs->md.level = raid_type->level;
167 rs->md.new_level = rs->md.level;
168 rs->md.layout = raid_type->algorithm;
169 rs->md.new_layout = rs->md.layout;
170 rs->md.delta_disks = 0;
171 rs->md.recovery_cp = 0;
173 for (i = 0; i < raid_devs; i++)
174 md_rdev_init(&rs->dev[i].rdev);
177 * Remaining items to be initialized by further RAID params:
178 * rs->md.persistent
179 * rs->md.external
180 * rs->md.chunk_sectors
181 * rs->md.new_chunk_sectors
182 * rs->md.dev_sectors
185 return rs;
188 static void context_free(struct raid_set *rs)
190 int i;
192 for (i = 0; i < rs->md.raid_disks; i++) {
193 if (rs->dev[i].meta_dev)
194 dm_put_device(rs->ti, rs->dev[i].meta_dev);
195 md_rdev_clear(&rs->dev[i].rdev);
196 if (rs->dev[i].data_dev)
197 dm_put_device(rs->ti, rs->dev[i].data_dev);
200 kfree(rs);
204 * For every device we have two words
205 * <meta_dev>: meta device name or '-' if missing
206 * <data_dev>: data device name or '-' if missing
208 * The following are permitted:
209 * - -
210 * - <data_dev>
211 * <meta_dev> <data_dev>
213 * The following is not allowed:
214 * <meta_dev> -
216 * This code parses those words. If there is a failure,
217 * the caller must use context_free to unwind the operations.
219 static int dev_parms(struct raid_set *rs, char **argv)
221 int i;
222 int rebuild = 0;
223 int metadata_available = 0;
224 int ret = 0;
226 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
227 rs->dev[i].rdev.raid_disk = i;
229 rs->dev[i].meta_dev = NULL;
230 rs->dev[i].data_dev = NULL;
233 * There are no offsets, since there is a separate device
234 * for data and metadata.
236 rs->dev[i].rdev.data_offset = 0;
237 rs->dev[i].rdev.mddev = &rs->md;
239 if (strcmp(argv[0], "-")) {
240 ret = dm_get_device(rs->ti, argv[0],
241 dm_table_get_mode(rs->ti->table),
242 &rs->dev[i].meta_dev);
243 rs->ti->error = "RAID metadata device lookup failure";
244 if (ret)
245 return ret;
247 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
248 if (!rs->dev[i].rdev.sb_page)
249 return -ENOMEM;
252 if (!strcmp(argv[1], "-")) {
253 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
254 (!rs->dev[i].rdev.recovery_offset)) {
255 rs->ti->error = "Drive designated for rebuild not specified";
256 return -EINVAL;
259 rs->ti->error = "No data device supplied with metadata device";
260 if (rs->dev[i].meta_dev)
261 return -EINVAL;
263 continue;
266 ret = dm_get_device(rs->ti, argv[1],
267 dm_table_get_mode(rs->ti->table),
268 &rs->dev[i].data_dev);
269 if (ret) {
270 rs->ti->error = "RAID device lookup failure";
271 return ret;
274 if (rs->dev[i].meta_dev) {
275 metadata_available = 1;
276 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
278 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
279 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
280 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
281 rebuild++;
284 if (metadata_available) {
285 rs->md.external = 0;
286 rs->md.persistent = 1;
287 rs->md.major_version = 2;
288 } else if (rebuild && !rs->md.recovery_cp) {
290 * Without metadata, we will not be able to tell if the array
291 * is in-sync or not - we must assume it is not. Therefore,
292 * it is impossible to rebuild a drive.
294 * Even if there is metadata, the on-disk information may
295 * indicate that the array is not in-sync and it will then
296 * fail at that time.
298 * User could specify 'nosync' option if desperate.
300 DMERR("Unable to rebuild drive while array is not in-sync");
301 rs->ti->error = "RAID device lookup failure";
302 return -EINVAL;
305 return 0;
309 * validate_region_size
310 * @rs
311 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
313 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
314 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
316 * Returns: 0 on success, -EINVAL on failure.
318 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
320 unsigned long min_region_size = rs->ti->len / (1 << 21);
322 if (!region_size) {
324 * Choose a reasonable default. All figures in sectors.
326 if (min_region_size > (1 << 13)) {
327 /* If not a power of 2, make it the next power of 2 */
328 if (min_region_size & (min_region_size - 1))
329 region_size = 1 << fls(region_size);
330 DMINFO("Choosing default region size of %lu sectors",
331 region_size);
332 } else {
333 DMINFO("Choosing default region size of 4MiB");
334 region_size = 1 << 13; /* sectors */
336 } else {
338 * Validate user-supplied value.
340 if (region_size > rs->ti->len) {
341 rs->ti->error = "Supplied region size is too large";
342 return -EINVAL;
345 if (region_size < min_region_size) {
346 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
347 region_size, min_region_size);
348 rs->ti->error = "Supplied region size is too small";
349 return -EINVAL;
352 if (!is_power_of_2(region_size)) {
353 rs->ti->error = "Region size is not a power of 2";
354 return -EINVAL;
357 if (region_size < rs->md.chunk_sectors) {
358 rs->ti->error = "Region size is smaller than the chunk size";
359 return -EINVAL;
364 * Convert sectors to bytes.
366 rs->md.bitmap_info.chunksize = (region_size << 9);
368 return 0;
372 * validate_raid_redundancy
373 * @rs
375 * Determine if there are enough devices in the array that haven't
376 * failed (or are being rebuilt) to form a usable array.
378 * Returns: 0 on success, -EINVAL on failure.
380 static int validate_raid_redundancy(struct raid_set *rs)
382 unsigned i, rebuild_cnt = 0;
383 unsigned rebuilds_per_group = 0, copies, d;
384 unsigned group_size, last_group_start;
386 for (i = 0; i < rs->md.raid_disks; i++)
387 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
388 !rs->dev[i].rdev.sb_page)
389 rebuild_cnt++;
391 switch (rs->raid_type->level) {
392 case 1:
393 if (rebuild_cnt >= rs->md.raid_disks)
394 goto too_many;
395 break;
396 case 4:
397 case 5:
398 case 6:
399 if (rebuild_cnt > rs->raid_type->parity_devs)
400 goto too_many;
401 break;
402 case 10:
403 copies = raid10_md_layout_to_copies(rs->md.layout);
404 if (rebuild_cnt < copies)
405 break;
408 * It is possible to have a higher rebuild count for RAID10,
409 * as long as the failed devices occur in different mirror
410 * groups (i.e. different stripes).
412 * When checking "near" format, make sure no adjacent devices
413 * have failed beyond what can be handled. In addition to the
414 * simple case where the number of devices is a multiple of the
415 * number of copies, we must also handle cases where the number
416 * of devices is not a multiple of the number of copies.
417 * E.g. dev1 dev2 dev3 dev4 dev5
418 * A A B B C
419 * C D D E E
421 if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) {
422 for (i = 0; i < rs->md.raid_disks * copies; i++) {
423 if (!(i % copies))
424 rebuilds_per_group = 0;
425 d = i % rs->md.raid_disks;
426 if ((!rs->dev[d].rdev.sb_page ||
427 !test_bit(In_sync, &rs->dev[d].rdev.flags)) &&
428 (++rebuilds_per_group >= copies))
429 goto too_many;
431 break;
435 * When checking "far" and "offset" formats, we need to ensure
436 * that the device that holds its copy is not also dead or
437 * being rebuilt. (Note that "far" and "offset" formats only
438 * support two copies right now. These formats also only ever
439 * use the 'use_far_sets' variant.)
441 * This check is somewhat complicated by the need to account
442 * for arrays that are not a multiple of (far) copies. This
443 * results in the need to treat the last (potentially larger)
444 * set differently.
446 group_size = (rs->md.raid_disks / copies);
447 last_group_start = (rs->md.raid_disks / group_size) - 1;
448 last_group_start *= group_size;
449 for (i = 0; i < rs->md.raid_disks; i++) {
450 if (!(i % copies) && !(i > last_group_start))
451 rebuilds_per_group = 0;
452 if ((!rs->dev[i].rdev.sb_page ||
453 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
454 (++rebuilds_per_group >= copies))
455 goto too_many;
457 break;
458 default:
459 if (rebuild_cnt)
460 return -EINVAL;
463 return 0;
465 too_many:
466 return -EINVAL;
470 * Possible arguments are...
471 * <chunk_size> [optional_args]
473 * Argument definitions
474 * <chunk_size> The number of sectors per disk that
475 * will form the "stripe"
476 * [[no]sync] Force or prevent recovery of the
477 * entire array
478 * [rebuild <idx>] Rebuild the drive indicated by the index
479 * [daemon_sleep <ms>] Time between bitmap daemon work to
480 * clear bits
481 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
482 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
483 * [write_mostly <idx>] Indicate a write mostly drive via index
484 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
485 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
486 * [region_size <sectors>] Defines granularity of bitmap
488 * RAID10-only options:
489 * [raid10_copies <# copies>] Number of copies. (Default: 2)
490 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
492 static int parse_raid_params(struct raid_set *rs, char **argv,
493 unsigned num_raid_params)
495 char *raid10_format = "near";
496 unsigned raid10_copies = 2;
497 unsigned i;
498 unsigned long value, region_size = 0;
499 sector_t sectors_per_dev = rs->ti->len;
500 sector_t max_io_len;
501 char *key;
504 * First, parse the in-order required arguments
505 * "chunk_size" is the only argument of this type.
507 if ((kstrtoul(argv[0], 10, &value) < 0)) {
508 rs->ti->error = "Bad chunk size";
509 return -EINVAL;
510 } else if (rs->raid_type->level == 1) {
511 if (value)
512 DMERR("Ignoring chunk size parameter for RAID 1");
513 value = 0;
514 } else if (!is_power_of_2(value)) {
515 rs->ti->error = "Chunk size must be a power of 2";
516 return -EINVAL;
517 } else if (value < 8) {
518 rs->ti->error = "Chunk size value is too small";
519 return -EINVAL;
522 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
523 argv++;
524 num_raid_params--;
527 * We set each individual device as In_sync with a completed
528 * 'recovery_offset'. If there has been a device failure or
529 * replacement then one of the following cases applies:
531 * 1) User specifies 'rebuild'.
532 * - Device is reset when param is read.
533 * 2) A new device is supplied.
534 * - No matching superblock found, resets device.
535 * 3) Device failure was transient and returns on reload.
536 * - Failure noticed, resets device for bitmap replay.
537 * 4) Device hadn't completed recovery after previous failure.
538 * - Superblock is read and overrides recovery_offset.
540 * What is found in the superblocks of the devices is always
541 * authoritative, unless 'rebuild' or '[no]sync' was specified.
543 for (i = 0; i < rs->md.raid_disks; i++) {
544 set_bit(In_sync, &rs->dev[i].rdev.flags);
545 rs->dev[i].rdev.recovery_offset = MaxSector;
549 * Second, parse the unordered optional arguments
551 for (i = 0; i < num_raid_params; i++) {
552 if (!strcasecmp(argv[i], "nosync")) {
553 rs->md.recovery_cp = MaxSector;
554 rs->print_flags |= DMPF_NOSYNC;
555 continue;
557 if (!strcasecmp(argv[i], "sync")) {
558 rs->md.recovery_cp = 0;
559 rs->print_flags |= DMPF_SYNC;
560 continue;
563 /* The rest of the optional arguments come in key/value pairs */
564 if ((i + 1) >= num_raid_params) {
565 rs->ti->error = "Wrong number of raid parameters given";
566 return -EINVAL;
569 key = argv[i++];
571 /* Parameters that take a string value are checked here. */
572 if (!strcasecmp(key, "raid10_format")) {
573 if (rs->raid_type->level != 10) {
574 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
575 return -EINVAL;
577 if (strcmp("near", argv[i]) &&
578 strcmp("far", argv[i]) &&
579 strcmp("offset", argv[i])) {
580 rs->ti->error = "Invalid 'raid10_format' value given";
581 return -EINVAL;
583 raid10_format = argv[i];
584 rs->print_flags |= DMPF_RAID10_FORMAT;
585 continue;
588 if (kstrtoul(argv[i], 10, &value) < 0) {
589 rs->ti->error = "Bad numerical argument given in raid params";
590 return -EINVAL;
593 /* Parameters that take a numeric value are checked here */
594 if (!strcasecmp(key, "rebuild")) {
595 if (value >= rs->md.raid_disks) {
596 rs->ti->error = "Invalid rebuild index given";
597 return -EINVAL;
599 clear_bit(In_sync, &rs->dev[value].rdev.flags);
600 rs->dev[value].rdev.recovery_offset = 0;
601 rs->print_flags |= DMPF_REBUILD;
602 } else if (!strcasecmp(key, "write_mostly")) {
603 if (rs->raid_type->level != 1) {
604 rs->ti->error = "write_mostly option is only valid for RAID1";
605 return -EINVAL;
607 if (value >= rs->md.raid_disks) {
608 rs->ti->error = "Invalid write_mostly drive index given";
609 return -EINVAL;
611 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
612 } else if (!strcasecmp(key, "max_write_behind")) {
613 if (rs->raid_type->level != 1) {
614 rs->ti->error = "max_write_behind option is only valid for RAID1";
615 return -EINVAL;
617 rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
620 * In device-mapper, we specify things in sectors, but
621 * MD records this value in kB
623 value /= 2;
624 if (value > COUNTER_MAX) {
625 rs->ti->error = "Max write-behind limit out of range";
626 return -EINVAL;
628 rs->md.bitmap_info.max_write_behind = value;
629 } else if (!strcasecmp(key, "daemon_sleep")) {
630 rs->print_flags |= DMPF_DAEMON_SLEEP;
631 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
632 rs->ti->error = "daemon sleep period out of range";
633 return -EINVAL;
635 rs->md.bitmap_info.daemon_sleep = value;
636 } else if (!strcasecmp(key, "stripe_cache")) {
637 rs->print_flags |= DMPF_STRIPE_CACHE;
640 * In device-mapper, we specify things in sectors, but
641 * MD records this value in kB
643 value /= 2;
645 if ((rs->raid_type->level != 5) &&
646 (rs->raid_type->level != 6)) {
647 rs->ti->error = "Inappropriate argument: stripe_cache";
648 return -EINVAL;
650 if (raid5_set_cache_size(&rs->md, (int)value)) {
651 rs->ti->error = "Bad stripe_cache size";
652 return -EINVAL;
654 } else if (!strcasecmp(key, "min_recovery_rate")) {
655 rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
656 if (value > INT_MAX) {
657 rs->ti->error = "min_recovery_rate out of range";
658 return -EINVAL;
660 rs->md.sync_speed_min = (int)value;
661 } else if (!strcasecmp(key, "max_recovery_rate")) {
662 rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
663 if (value > INT_MAX) {
664 rs->ti->error = "max_recovery_rate out of range";
665 return -EINVAL;
667 rs->md.sync_speed_max = (int)value;
668 } else if (!strcasecmp(key, "region_size")) {
669 rs->print_flags |= DMPF_REGION_SIZE;
670 region_size = value;
671 } else if (!strcasecmp(key, "raid10_copies") &&
672 (rs->raid_type->level == 10)) {
673 if ((value < 2) || (value > 0xFF)) {
674 rs->ti->error = "Bad value for 'raid10_copies'";
675 return -EINVAL;
677 rs->print_flags |= DMPF_RAID10_COPIES;
678 raid10_copies = value;
679 } else {
680 DMERR("Unable to parse RAID parameter: %s", key);
681 rs->ti->error = "Unable to parse RAID parameters";
682 return -EINVAL;
686 if (validate_region_size(rs, region_size))
687 return -EINVAL;
689 if (rs->md.chunk_sectors)
690 max_io_len = rs->md.chunk_sectors;
691 else
692 max_io_len = region_size;
694 if (dm_set_target_max_io_len(rs->ti, max_io_len))
695 return -EINVAL;
697 if (rs->raid_type->level == 10) {
698 if (raid10_copies > rs->md.raid_disks) {
699 rs->ti->error = "Not enough devices to satisfy specification";
700 return -EINVAL;
704 * If the format is not "near", we only support
705 * two copies at the moment.
707 if (strcmp("near", raid10_format) && (raid10_copies > 2)) {
708 rs->ti->error = "Too many copies for given RAID10 format.";
709 return -EINVAL;
712 /* (Len * #mirrors) / #devices */
713 sectors_per_dev = rs->ti->len * raid10_copies;
714 sector_div(sectors_per_dev, rs->md.raid_disks);
716 rs->md.layout = raid10_format_to_md_layout(raid10_format,
717 raid10_copies);
718 rs->md.new_layout = rs->md.layout;
719 } else if ((rs->raid_type->level > 1) &&
720 sector_div(sectors_per_dev,
721 (rs->md.raid_disks - rs->raid_type->parity_devs))) {
722 rs->ti->error = "Target length not divisible by number of data devices";
723 return -EINVAL;
725 rs->md.dev_sectors = sectors_per_dev;
727 /* Assume there are no metadata devices until the drives are parsed */
728 rs->md.persistent = 0;
729 rs->md.external = 1;
731 return 0;
734 static void do_table_event(struct work_struct *ws)
736 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
738 dm_table_event(rs->ti->table);
741 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
743 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
745 if (rs->raid_type->level == 1)
746 return md_raid1_congested(&rs->md, bits);
748 if (rs->raid_type->level == 10)
749 return md_raid10_congested(&rs->md, bits);
751 return md_raid5_congested(&rs->md, bits);
755 * This structure is never routinely used by userspace, unlike md superblocks.
756 * Devices with this superblock should only ever be accessed via device-mapper.
758 #define DM_RAID_MAGIC 0x64526D44
759 struct dm_raid_superblock {
760 __le32 magic; /* "DmRd" */
761 __le32 features; /* Used to indicate possible future changes */
763 __le32 num_devices; /* Number of devices in this array. (Max 64) */
764 __le32 array_position; /* The position of this drive in the array */
766 __le64 events; /* Incremented by md when superblock updated */
767 __le64 failed_devices; /* Bit field of devices to indicate failures */
770 * This offset tracks the progress of the repair or replacement of
771 * an individual drive.
773 __le64 disk_recovery_offset;
776 * This offset tracks the progress of the initial array
777 * synchronisation/parity calculation.
779 __le64 array_resync_offset;
782 * RAID characteristics
784 __le32 level;
785 __le32 layout;
786 __le32 stripe_sectors;
788 /* Remainder of a logical block is zero-filled when writing (see super_sync()). */
789 } __packed;
791 static int read_disk_sb(struct md_rdev *rdev, int size)
793 BUG_ON(!rdev->sb_page);
795 if (rdev->sb_loaded)
796 return 0;
798 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
799 DMERR("Failed to read superblock of device at position %d",
800 rdev->raid_disk);
801 md_error(rdev->mddev, rdev);
802 return -EINVAL;
805 rdev->sb_loaded = 1;
807 return 0;
810 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
812 int i;
813 uint64_t failed_devices;
814 struct dm_raid_superblock *sb;
815 struct raid_set *rs = container_of(mddev, struct raid_set, md);
817 sb = page_address(rdev->sb_page);
818 failed_devices = le64_to_cpu(sb->failed_devices);
820 for (i = 0; i < mddev->raid_disks; i++)
821 if (!rs->dev[i].data_dev ||
822 test_bit(Faulty, &(rs->dev[i].rdev.flags)))
823 failed_devices |= (1ULL << i);
825 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
827 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
828 sb->features = cpu_to_le32(0); /* No features yet */
830 sb->num_devices = cpu_to_le32(mddev->raid_disks);
831 sb->array_position = cpu_to_le32(rdev->raid_disk);
833 sb->events = cpu_to_le64(mddev->events);
834 sb->failed_devices = cpu_to_le64(failed_devices);
836 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
837 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
839 sb->level = cpu_to_le32(mddev->level);
840 sb->layout = cpu_to_le32(mddev->layout);
841 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
845 * super_load
847 * This function creates a superblock if one is not found on the device
848 * and will decide which superblock to use if there's a choice.
850 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
852 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
854 int ret;
855 struct dm_raid_superblock *sb;
856 struct dm_raid_superblock *refsb;
857 uint64_t events_sb, events_refsb;
859 rdev->sb_start = 0;
860 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
861 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
862 DMERR("superblock size of a logical block is no longer valid");
863 return -EINVAL;
866 ret = read_disk_sb(rdev, rdev->sb_size);
867 if (ret)
868 return ret;
870 sb = page_address(rdev->sb_page);
873 * Two cases that we want to write new superblocks and rebuild:
874 * 1) New device (no matching magic number)
875 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
877 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
878 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
879 super_sync(rdev->mddev, rdev);
881 set_bit(FirstUse, &rdev->flags);
883 /* Force writing of superblocks to disk */
884 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
886 /* Any superblock is better than none, choose that if given */
887 return refdev ? 0 : 1;
890 if (!refdev)
891 return 1;
893 events_sb = le64_to_cpu(sb->events);
895 refsb = page_address(refdev->sb_page);
896 events_refsb = le64_to_cpu(refsb->events);
898 return (events_sb > events_refsb) ? 1 : 0;
901 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
903 int role;
904 struct raid_set *rs = container_of(mddev, struct raid_set, md);
905 uint64_t events_sb;
906 uint64_t failed_devices;
907 struct dm_raid_superblock *sb;
908 uint32_t new_devs = 0;
909 uint32_t rebuilds = 0;
910 struct md_rdev *r;
911 struct dm_raid_superblock *sb2;
913 sb = page_address(rdev->sb_page);
914 events_sb = le64_to_cpu(sb->events);
915 failed_devices = le64_to_cpu(sb->failed_devices);
918 * Initialise to 1 if this is a new superblock.
920 mddev->events = events_sb ? : 1;
923 * Reshaping is not currently allowed
925 if (le32_to_cpu(sb->level) != mddev->level) {
926 DMERR("Reshaping arrays not yet supported. (RAID level change)");
927 return -EINVAL;
929 if (le32_to_cpu(sb->layout) != mddev->layout) {
930 DMERR("Reshaping arrays not yet supported. (RAID layout change)");
931 DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
932 DMERR(" Old layout: %s w/ %d copies",
933 raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
934 raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
935 DMERR(" New layout: %s w/ %d copies",
936 raid10_md_layout_to_format(mddev->layout),
937 raid10_md_layout_to_copies(mddev->layout));
938 return -EINVAL;
940 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
941 DMERR("Reshaping arrays not yet supported. (stripe sectors change)");
942 return -EINVAL;
945 /* We can only change the number of devices in RAID1 right now */
946 if ((rs->raid_type->level != 1) &&
947 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
948 DMERR("Reshaping arrays not yet supported. (device count change)");
949 return -EINVAL;
952 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
953 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
956 * During load, we set FirstUse if a new superblock was written.
957 * There are two reasons we might not have a superblock:
958 * 1) The array is brand new - in which case, all of the
959 * devices must have their In_sync bit set. Also,
960 * recovery_cp must be 0, unless forced.
961 * 2) This is a new device being added to an old array
962 * and the new device needs to be rebuilt - in which
963 * case the In_sync bit will /not/ be set and
964 * recovery_cp must be MaxSector.
966 rdev_for_each(r, mddev) {
967 if (!test_bit(In_sync, &r->flags)) {
968 DMINFO("Device %d specified for rebuild: "
969 "Clearing superblock", r->raid_disk);
970 rebuilds++;
971 } else if (test_bit(FirstUse, &r->flags))
972 new_devs++;
975 if (!rebuilds) {
976 if (new_devs == mddev->raid_disks) {
977 DMINFO("Superblocks created for new array");
978 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
979 } else if (new_devs) {
980 DMERR("New device injected "
981 "into existing array without 'rebuild' "
982 "parameter specified");
983 return -EINVAL;
985 } else if (new_devs) {
986 DMERR("'rebuild' devices cannot be "
987 "injected into an array with other first-time devices");
988 return -EINVAL;
989 } else if (mddev->recovery_cp != MaxSector) {
990 DMERR("'rebuild' specified while array is not in-sync");
991 return -EINVAL;
995 * Now we set the Faulty bit for those devices that are
996 * recorded in the superblock as failed.
998 rdev_for_each(r, mddev) {
999 if (!r->sb_page)
1000 continue;
1001 sb2 = page_address(r->sb_page);
1002 sb2->failed_devices = 0;
1005 * Check for any device re-ordering.
1007 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
1008 role = le32_to_cpu(sb2->array_position);
1009 if (role != r->raid_disk) {
1010 if (rs->raid_type->level != 1) {
1011 rs->ti->error = "Cannot change device "
1012 "positions in RAID array";
1013 return -EINVAL;
1015 DMINFO("RAID1 device #%d now at position #%d",
1016 role, r->raid_disk);
1020 * Partial recovery is performed on
1021 * returning failed devices.
1023 if (failed_devices & (1 << role))
1024 set_bit(Faulty, &r->flags);
1028 return 0;
1031 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
1033 struct dm_raid_superblock *sb = page_address(rdev->sb_page);
1036 * If mddev->events is not set, we know we have not yet initialized
1037 * the array.
1039 if (!mddev->events && super_init_validation(mddev, rdev))
1040 return -EINVAL;
1042 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
1043 rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
1044 if (!test_bit(FirstUse, &rdev->flags)) {
1045 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
1046 if (rdev->recovery_offset != MaxSector)
1047 clear_bit(In_sync, &rdev->flags);
1051 * If a device comes back, set it as not In_sync and no longer faulty.
1053 if (test_bit(Faulty, &rdev->flags)) {
1054 clear_bit(Faulty, &rdev->flags);
1055 clear_bit(In_sync, &rdev->flags);
1056 rdev->saved_raid_disk = rdev->raid_disk;
1057 rdev->recovery_offset = 0;
1060 clear_bit(FirstUse, &rdev->flags);
1062 return 0;
1066 * Analyse superblocks and select the freshest.
1068 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
1070 int ret;
1071 struct raid_dev *dev;
1072 struct md_rdev *rdev, *tmp, *freshest;
1073 struct mddev *mddev = &rs->md;
1075 freshest = NULL;
1076 rdev_for_each_safe(rdev, tmp, mddev) {
1078 * Skipping super_load due to DMPF_SYNC will cause
1079 * the array to undergo initialization again as
1080 * though it were new. This is the intended effect
1081 * of the "sync" directive.
1083 * When reshaping capability is added, we must ensure
1084 * that the "sync" directive is disallowed during the
1085 * reshape.
1087 if (rs->print_flags & DMPF_SYNC)
1088 continue;
1090 if (!rdev->meta_bdev)
1091 continue;
1093 ret = super_load(rdev, freshest);
1095 switch (ret) {
1096 case 1:
1097 freshest = rdev;
1098 break;
1099 case 0:
1100 break;
1101 default:
1102 dev = container_of(rdev, struct raid_dev, rdev);
1103 if (dev->meta_dev)
1104 dm_put_device(ti, dev->meta_dev);
1106 dev->meta_dev = NULL;
1107 rdev->meta_bdev = NULL;
1109 if (rdev->sb_page)
1110 put_page(rdev->sb_page);
1112 rdev->sb_page = NULL;
1114 rdev->sb_loaded = 0;
1117 * We might be able to salvage the data device
1118 * even though the meta device has failed. For
1119 * now, we behave as though '- -' had been
1120 * set for this device in the table.
1122 if (dev->data_dev)
1123 dm_put_device(ti, dev->data_dev);
1125 dev->data_dev = NULL;
1126 rdev->bdev = NULL;
1128 list_del(&rdev->same_set);
1132 if (!freshest)
1133 return 0;
1135 if (validate_raid_redundancy(rs)) {
1136 rs->ti->error = "Insufficient redundancy to activate array";
1137 return -EINVAL;
1141 * Validation of the freshest device provides the source of
1142 * validation for the remaining devices.
1144 ti->error = "Unable to assemble array: Invalid superblocks";
1145 if (super_validate(mddev, freshest))
1146 return -EINVAL;
1148 rdev_for_each(rdev, mddev)
1149 if ((rdev != freshest) && super_validate(mddev, rdev))
1150 return -EINVAL;
1152 return 0;
1156 * Construct a RAID4/5/6 mapping:
1157 * Args:
1158 * <raid_type> <#raid_params> <raid_params> \
1159 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1161 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
1162 * details on possible <raid_params>.
1164 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1166 int ret;
1167 struct raid_type *rt;
1168 unsigned long num_raid_params, num_raid_devs;
1169 struct raid_set *rs = NULL;
1171 /* Must have at least <raid_type> <#raid_params> */
1172 if (argc < 2) {
1173 ti->error = "Too few arguments";
1174 return -EINVAL;
1177 /* raid type */
1178 rt = get_raid_type(argv[0]);
1179 if (!rt) {
1180 ti->error = "Unrecognised raid_type";
1181 return -EINVAL;
1183 argc--;
1184 argv++;
1186 /* number of RAID parameters */
1187 if (kstrtoul(argv[0], 10, &num_raid_params) < 0) {
1188 ti->error = "Cannot understand number of RAID parameters";
1189 return -EINVAL;
1191 argc--;
1192 argv++;
1194 /* Skip over RAID params for now and find out # of devices */
1195 if (num_raid_params + 1 > argc) {
1196 ti->error = "Arguments do not agree with counts given";
1197 return -EINVAL;
1200 if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1201 (num_raid_devs >= INT_MAX)) {
1202 ti->error = "Cannot understand number of raid devices";
1203 return -EINVAL;
1206 rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1207 if (IS_ERR(rs))
1208 return PTR_ERR(rs);
1210 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1211 if (ret)
1212 goto bad;
1214 ret = -EINVAL;
1216 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1217 argv += num_raid_params + 1;
1219 if (argc != (num_raid_devs * 2)) {
1220 ti->error = "Supplied RAID devices does not match the count given";
1221 goto bad;
1224 ret = dev_parms(rs, argv);
1225 if (ret)
1226 goto bad;
1228 rs->md.sync_super = super_sync;
1229 ret = analyse_superblocks(ti, rs);
1230 if (ret)
1231 goto bad;
1233 INIT_WORK(&rs->md.event_work, do_table_event);
1234 ti->private = rs;
1235 ti->num_flush_bios = 1;
1237 mutex_lock(&rs->md.reconfig_mutex);
1238 ret = md_run(&rs->md);
1239 rs->md.in_sync = 0; /* Assume already marked dirty */
1240 mutex_unlock(&rs->md.reconfig_mutex);
1242 if (ret) {
1243 ti->error = "Fail to run raid array";
1244 goto bad;
1247 if (ti->len != rs->md.array_sectors) {
1248 ti->error = "Array size does not match requested target length";
1249 ret = -EINVAL;
1250 goto size_mismatch;
1252 rs->callbacks.congested_fn = raid_is_congested;
1253 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1255 mddev_suspend(&rs->md);
1256 return 0;
1258 size_mismatch:
1259 md_stop(&rs->md);
1260 bad:
1261 context_free(rs);
1263 return ret;
1266 static void raid_dtr(struct dm_target *ti)
1268 struct raid_set *rs = ti->private;
1270 list_del_init(&rs->callbacks.list);
1271 md_stop(&rs->md);
1272 context_free(rs);
1275 static int raid_map(struct dm_target *ti, struct bio *bio)
1277 struct raid_set *rs = ti->private;
1278 struct mddev *mddev = &rs->md;
1280 mddev->pers->make_request(mddev, bio);
1282 return DM_MAPIO_SUBMITTED;
1285 static const char *decipher_sync_action(struct mddev *mddev)
1287 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
1288 return "frozen";
1290 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1291 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
1292 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1293 return "reshape";
1295 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1296 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1297 return "resync";
1298 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1299 return "check";
1300 return "repair";
1303 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
1304 return "recover";
1307 return "idle";
1310 static void raid_status(struct dm_target *ti, status_type_t type,
1311 unsigned status_flags, char *result, unsigned maxlen)
1313 struct raid_set *rs = ti->private;
1314 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1315 unsigned sz = 0;
1316 int i, array_in_sync = 0;
1317 sector_t sync;
1319 switch (type) {
1320 case STATUSTYPE_INFO:
1321 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1323 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1324 sync = rs->md.curr_resync_completed;
1325 else
1326 sync = rs->md.recovery_cp;
1328 if (sync >= rs->md.resync_max_sectors) {
1330 * Sync complete.
1332 array_in_sync = 1;
1333 sync = rs->md.resync_max_sectors;
1334 } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) {
1336 * If "check" or "repair" is occurring, the array has
1337 * undergone and initial sync and the health characters
1338 * should not be 'a' anymore.
1340 array_in_sync = 1;
1341 } else {
1343 * The array may be doing an initial sync, or it may
1344 * be rebuilding individual components. If all the
1345 * devices are In_sync, then it is the array that is
1346 * being initialized.
1348 for (i = 0; i < rs->md.raid_disks; i++)
1349 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1350 array_in_sync = 1;
1354 * Status characters:
1355 * 'D' = Dead/Failed device
1356 * 'a' = Alive but not in-sync
1357 * 'A' = Alive and in-sync
1359 for (i = 0; i < rs->md.raid_disks; i++) {
1360 if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1361 DMEMIT("D");
1362 else if (!array_in_sync ||
1363 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1364 DMEMIT("a");
1365 else
1366 DMEMIT("A");
1370 * In-sync ratio:
1371 * The in-sync ratio shows the progress of:
1372 * - Initializing the array
1373 * - Rebuilding a subset of devices of the array
1374 * The user can distinguish between the two by referring
1375 * to the status characters.
1377 DMEMIT(" %llu/%llu",
1378 (unsigned long long) sync,
1379 (unsigned long long) rs->md.resync_max_sectors);
1382 * Sync action:
1383 * See Documentation/device-mapper/dm-raid.c for
1384 * information on each of these states.
1386 DMEMIT(" %s", decipher_sync_action(&rs->md));
1389 * resync_mismatches/mismatch_cnt
1390 * This field shows the number of discrepancies found when
1391 * performing a "check" of the array.
1393 DMEMIT(" %llu",
1394 (strcmp(rs->md.last_sync_action, "check")) ? 0 :
1395 (unsigned long long)
1396 atomic64_read(&rs->md.resync_mismatches));
1397 break;
1398 case STATUSTYPE_TABLE:
1399 /* The string you would use to construct this array */
1400 for (i = 0; i < rs->md.raid_disks; i++) {
1401 if ((rs->print_flags & DMPF_REBUILD) &&
1402 rs->dev[i].data_dev &&
1403 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1404 raid_param_cnt += 2; /* for rebuilds */
1405 if (rs->dev[i].data_dev &&
1406 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1407 raid_param_cnt += 2;
1410 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1411 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1412 raid_param_cnt--;
1414 DMEMIT("%s %u %u", rs->raid_type->name,
1415 raid_param_cnt, rs->md.chunk_sectors);
1417 if ((rs->print_flags & DMPF_SYNC) &&
1418 (rs->md.recovery_cp == MaxSector))
1419 DMEMIT(" sync");
1420 if (rs->print_flags & DMPF_NOSYNC)
1421 DMEMIT(" nosync");
1423 for (i = 0; i < rs->md.raid_disks; i++)
1424 if ((rs->print_flags & DMPF_REBUILD) &&
1425 rs->dev[i].data_dev &&
1426 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1427 DMEMIT(" rebuild %u", i);
1429 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1430 DMEMIT(" daemon_sleep %lu",
1431 rs->md.bitmap_info.daemon_sleep);
1433 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1434 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1436 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1437 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1439 for (i = 0; i < rs->md.raid_disks; i++)
1440 if (rs->dev[i].data_dev &&
1441 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1442 DMEMIT(" write_mostly %u", i);
1444 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1445 DMEMIT(" max_write_behind %lu",
1446 rs->md.bitmap_info.max_write_behind);
1448 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1449 struct r5conf *conf = rs->md.private;
1451 /* convert from kiB to sectors */
1452 DMEMIT(" stripe_cache %d",
1453 conf ? conf->max_nr_stripes * 2 : 0);
1456 if (rs->print_flags & DMPF_REGION_SIZE)
1457 DMEMIT(" region_size %lu",
1458 rs->md.bitmap_info.chunksize >> 9);
1460 if (rs->print_flags & DMPF_RAID10_COPIES)
1461 DMEMIT(" raid10_copies %u",
1462 raid10_md_layout_to_copies(rs->md.layout));
1464 if (rs->print_flags & DMPF_RAID10_FORMAT)
1465 DMEMIT(" raid10_format %s",
1466 raid10_md_layout_to_format(rs->md.layout));
1468 DMEMIT(" %d", rs->md.raid_disks);
1469 for (i = 0; i < rs->md.raid_disks; i++) {
1470 if (rs->dev[i].meta_dev)
1471 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1472 else
1473 DMEMIT(" -");
1475 if (rs->dev[i].data_dev)
1476 DMEMIT(" %s", rs->dev[i].data_dev->name);
1477 else
1478 DMEMIT(" -");
1483 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
1485 struct raid_set *rs = ti->private;
1486 struct mddev *mddev = &rs->md;
1488 if (!strcasecmp(argv[0], "reshape")) {
1489 DMERR("Reshape not supported.");
1490 return -EINVAL;
1493 if (!mddev->pers || !mddev->pers->sync_request)
1494 return -EINVAL;
1496 if (!strcasecmp(argv[0], "frozen"))
1497 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1498 else
1499 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
1501 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
1502 if (mddev->sync_thread) {
1503 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1504 md_reap_sync_thread(mddev);
1506 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1507 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1508 return -EBUSY;
1509 else if (!strcasecmp(argv[0], "resync"))
1510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1511 else if (!strcasecmp(argv[0], "recover")) {
1512 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1514 } else {
1515 if (!strcasecmp(argv[0], "check"))
1516 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1517 else if (!!strcasecmp(argv[0], "repair"))
1518 return -EINVAL;
1519 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1520 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1522 if (mddev->ro == 2) {
1523 /* A write to sync_action is enough to justify
1524 * canceling read-auto mode
1526 mddev->ro = 0;
1527 if (!mddev->suspended)
1528 md_wakeup_thread(mddev->sync_thread);
1530 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1531 if (!mddev->suspended)
1532 md_wakeup_thread(mddev->thread);
1534 return 0;
1537 static int raid_iterate_devices(struct dm_target *ti,
1538 iterate_devices_callout_fn fn, void *data)
1540 struct raid_set *rs = ti->private;
1541 unsigned i;
1542 int ret = 0;
1544 for (i = 0; !ret && i < rs->md.raid_disks; i++)
1545 if (rs->dev[i].data_dev)
1546 ret = fn(ti,
1547 rs->dev[i].data_dev,
1548 0, /* No offset on data devs */
1549 rs->md.dev_sectors,
1550 data);
1552 return ret;
1555 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1557 struct raid_set *rs = ti->private;
1558 unsigned chunk_size = rs->md.chunk_sectors << 9;
1559 struct r5conf *conf = rs->md.private;
1561 blk_limits_io_min(limits, chunk_size);
1562 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1565 static void raid_presuspend(struct dm_target *ti)
1567 struct raid_set *rs = ti->private;
1569 md_stop_writes(&rs->md);
1572 static void raid_postsuspend(struct dm_target *ti)
1574 struct raid_set *rs = ti->private;
1576 mddev_suspend(&rs->md);
1579 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
1581 int i;
1582 uint64_t failed_devices, cleared_failed_devices = 0;
1583 unsigned long flags;
1584 struct dm_raid_superblock *sb;
1585 struct md_rdev *r;
1587 for (i = 0; i < rs->md.raid_disks; i++) {
1588 r = &rs->dev[i].rdev;
1589 if (test_bit(Faulty, &r->flags) && r->sb_page &&
1590 sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) {
1591 DMINFO("Faulty %s device #%d has readable super block."
1592 " Attempting to revive it.",
1593 rs->raid_type->name, i);
1596 * Faulty bit may be set, but sometimes the array can
1597 * be suspended before the personalities can respond
1598 * by removing the device from the array (i.e. calling
1599 * 'hot_remove_disk'). If they haven't yet removed
1600 * the failed device, its 'raid_disk' number will be
1601 * '>= 0' - meaning we must call this function
1602 * ourselves.
1604 if ((r->raid_disk >= 0) &&
1605 (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
1606 /* Failed to revive this device, try next */
1607 continue;
1609 r->raid_disk = i;
1610 r->saved_raid_disk = i;
1611 flags = r->flags;
1612 clear_bit(Faulty, &r->flags);
1613 clear_bit(WriteErrorSeen, &r->flags);
1614 clear_bit(In_sync, &r->flags);
1615 if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
1616 r->raid_disk = -1;
1617 r->saved_raid_disk = -1;
1618 r->flags = flags;
1619 } else {
1620 r->recovery_offset = 0;
1621 cleared_failed_devices |= 1 << i;
1625 if (cleared_failed_devices) {
1626 rdev_for_each(r, &rs->md) {
1627 sb = page_address(r->sb_page);
1628 failed_devices = le64_to_cpu(sb->failed_devices);
1629 failed_devices &= ~cleared_failed_devices;
1630 sb->failed_devices = cpu_to_le64(failed_devices);
1635 static void raid_resume(struct dm_target *ti)
1637 struct raid_set *rs = ti->private;
1639 set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1640 if (!rs->bitmap_loaded) {
1641 bitmap_load(&rs->md);
1642 rs->bitmap_loaded = 1;
1643 } else {
1645 * A secondary resume while the device is active.
1646 * Take this opportunity to check whether any failed
1647 * devices are reachable again.
1649 attempt_restore_of_faulty_devices(rs);
1652 clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1653 mddev_resume(&rs->md);
1656 static struct target_type raid_target = {
1657 .name = "raid",
1658 .version = {1, 5, 2},
1659 .module = THIS_MODULE,
1660 .ctr = raid_ctr,
1661 .dtr = raid_dtr,
1662 .map = raid_map,
1663 .status = raid_status,
1664 .message = raid_message,
1665 .iterate_devices = raid_iterate_devices,
1666 .io_hints = raid_io_hints,
1667 .presuspend = raid_presuspend,
1668 .postsuspend = raid_postsuspend,
1669 .resume = raid_resume,
1672 static int __init dm_raid_init(void)
1674 DMINFO("Loading target version %u.%u.%u",
1675 raid_target.version[0],
1676 raid_target.version[1],
1677 raid_target.version[2]);
1678 return dm_register_target(&raid_target);
1681 static void __exit dm_raid_exit(void)
1683 dm_unregister_target(&raid_target);
1686 module_init(dm_raid_init);
1687 module_exit(dm_raid_exit);
1689 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1690 MODULE_ALIAS("dm-raid1");
1691 MODULE_ALIAS("dm-raid10");
1692 MODULE_ALIAS("dm-raid4");
1693 MODULE_ALIAS("dm-raid5");
1694 MODULE_ALIAS("dm-raid6");
1695 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1696 MODULE_LICENSE("GPL");