2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
27 #include <media/v4l2-device.h>
28 #include <media/rc-core.h>
31 #include "cx23888-ir.h"
33 static unsigned int ir_888_debug
;
34 module_param(ir_888_debug
, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug
, "enable debug messages [CX23888 IR controller]");
37 #define CX23888_IR_REG_BASE 0x170000
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
42 #define CX23888_IR_CNTRL_REG 0x170000
43 #define CNTRL_WIN_3_3 0x00000000
44 #define CNTRL_WIN_4_3 0x00000001
45 #define CNTRL_WIN_3_4 0x00000002
46 #define CNTRL_WIN_4_4 0x00000003
47 #define CNTRL_WIN 0x00000003
48 #define CNTRL_EDG_NONE 0x00000000
49 #define CNTRL_EDG_FALL 0x00000004
50 #define CNTRL_EDG_RISE 0x00000008
51 #define CNTRL_EDG_BOTH 0x0000000C
52 #define CNTRL_EDG 0x0000000C
53 #define CNTRL_DMD 0x00000010
54 #define CNTRL_MOD 0x00000020
55 #define CNTRL_RFE 0x00000040
56 #define CNTRL_TFE 0x00000080
57 #define CNTRL_RXE 0x00000100
58 #define CNTRL_TXE 0x00000200
59 #define CNTRL_RIC 0x00000400
60 #define CNTRL_TIC 0x00000800
61 #define CNTRL_CPL 0x00001000
62 #define CNTRL_LBM 0x00002000
63 #define CNTRL_R 0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO 0x00008000
67 #define CX23888_IR_TXCLK_REG 0x170004
68 #define TXCLK_TCD 0x0000FFFF
70 #define CX23888_IR_RXCLK_REG 0x170008
71 #define RXCLK_RCD 0x0000FFFF
73 #define CX23888_IR_CDUTY_REG 0x17000C
74 #define CDUTY_CDC 0x0000000F
76 #define CX23888_IR_STATS_REG 0x170010
77 #define STATS_RTO 0x00000001
78 #define STATS_ROR 0x00000002
79 #define STATS_RBY 0x00000004
80 #define STATS_TBY 0x00000008
81 #define STATS_RSR 0x00000010
82 #define STATS_TSR 0x00000020
84 #define CX23888_IR_IRQEN_REG 0x170014
85 #define IRQEN_RTE 0x00000001
86 #define IRQEN_ROE 0x00000002
87 #define IRQEN_RSE 0x00000010
88 #define IRQEN_TSE 0x00000020
90 #define CX23888_IR_FILTR_REG 0x170018
91 #define FILTR_LPF 0x0000FFFF
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG 0x170040
95 #define FIFO_RXTX 0x0000FFFF
96 #define FIFO_RXTX_LVL 0x00010000
97 #define FIFO_RXTX_RTO 0x0001FFFF
98 #define FIFO_RX_NDV 0x00020000
99 #define FIFO_RX_DEPTH 8
100 #define FIFO_TX_DEPTH 8
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG 0x17001C
104 #define CX23888_IR_TIMOL_REG 0x170020
105 #define CX23888_IR_WAKE0_REG 0x170024
106 #define CX23888_IR_WAKE1_REG 0x170028
107 #define CX23888_IR_WAKE2_REG 0x17002C
108 #define CX23888_IR_MASK0_REG 0x170030
109 #define CX23888_IR_MASK1_REG 0x170034
110 #define CX23888_IR_MAKS2_REG 0x170038
111 #define CX23888_IR_DPIPG_REG 0x17003C
112 #define CX23888_IR_LEARN_REG 0x170044
114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
122 union cx23888_ir_fifo_rec
{
124 struct ir_raw_event ir_core_data
;
127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
130 struct cx23888_ir_state
{
131 struct v4l2_subdev sd
;
132 struct cx23885_dev
*dev
;
134 struct v4l2_subdev_ir_parameters rx_params
;
135 struct mutex rx_params_lock
;
136 atomic_t rxclk_divider
;
139 struct kfifo rx_kfifo
;
140 spinlock_t rx_kfifo_lock
;
142 struct v4l2_subdev_ir_parameters tx_params
;
143 struct mutex tx_params_lock
;
144 atomic_t txclk_divider
;
147 static inline struct cx23888_ir_state
*to_state(struct v4l2_subdev
*sd
)
149 return v4l2_get_subdevdata(sd
);
153 * IR register block read and write functions
156 inline int cx23888_ir_write4(struct cx23885_dev
*dev
, u32 addr
, u32 value
)
158 cx_write(addr
, value
);
162 static inline u32
cx23888_ir_read4(struct cx23885_dev
*dev
, u32 addr
)
164 return cx_read(addr
);
167 static inline int cx23888_ir_and_or4(struct cx23885_dev
*dev
, u32 addr
,
168 u32 and_mask
, u32 or_value
)
170 cx_andor(addr
, ~and_mask
, or_value
);
175 * Rx and Tx Clock Divider register computations
177 * Note the largest clock divider value of 0xffff corresponds to:
178 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
179 * which fits in 21 bits, so we'll use unsigned int for time arguments.
181 static inline u16
count_to_clock_divider(unsigned int d
)
183 if (d
> RXCLK_RCD
+ 1)
192 static inline u16
ns_to_clock_divider(unsigned int ns
)
194 return count_to_clock_divider(
195 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
198 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
200 /* Period of the Rx or Tx clock in ns */
201 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
202 CX23888_IR_REFCLK_FREQ
/ 1000000);
205 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
207 return count_to_clock_divider(
208 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* 16));
211 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
213 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
216 static inline u16
freq_to_clock_divider(unsigned int freq
,
217 unsigned int rollovers
)
219 return count_to_clock_divider(
220 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* rollovers
));
223 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
224 unsigned int rollovers
)
226 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
,
227 (divider
+ 1) * rollovers
);
231 * Low Pass Filter register calculations
233 * Note the largest count value of 0xffff corresponds to:
234 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
235 * which fits in 21 bits, so we'll use unsigned int for time arguments.
237 static inline u16
count_to_lpf_count(unsigned int d
)
246 static inline u16
ns_to_lpf_count(unsigned int ns
)
248 return count_to_lpf_count(
249 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
252 static inline unsigned int lpf_count_to_ns(unsigned int count
)
254 /* Duration of the Low Pass Filter rejection window in ns */
255 return DIV_ROUND_CLOSEST(count
* 1000,
256 CX23888_IR_REFCLK_FREQ
/ 1000000);
259 static inline unsigned int lpf_count_to_us(unsigned int count
)
261 /* Duration of the Low Pass Filter rejection window in us */
262 return DIV_ROUND_CLOSEST(count
, CX23888_IR_REFCLK_FREQ
/ 1000000);
266 * FIFO register pulse width count compuations
268 static u32
clock_divider_to_resolution(u16 divider
)
271 * Resolution is the duration of 1 tick of the readable portion of
272 * of the pulse width counter as read from the FIFO. The two lsb's are
273 * not readable, hence the << 2. This function returns ns.
275 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
276 CX23888_IR_REFCLK_FREQ
/ 1000000);
279 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
285 * The 2 lsb's of the pulse width timer count are not readable, hence
286 * the (count << 2) | 0x3
288 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
289 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
290 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
295 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
301 * The 2 lsb's of the pulse width timer count are not readable, hence
302 * the (count << 2) | 0x3
304 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
305 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
306 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
308 return (unsigned int) n
;
312 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
314 * The total pulse clock count is an 18 bit pulse width timer count as the most
315 * significant part and (up to) 16 bit clock divider count as a modulus.
316 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
317 * width timer count's least significant bit.
319 static u64
ns_to_pulse_clocks(u32 ns
)
323 clocks
= CX23888_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
324 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
330 static u16
pulse_clocks_to_clock_divider(u64 count
)
332 do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
334 /* net result needs to be rounded down and decremented by 1 */
335 if (count
> RXCLK_RCD
+ 1)
345 * IR Control Register helpers
347 enum tx_fifo_watermark
{
348 TX_FIFO_HALF_EMPTY
= 0,
349 TX_FIFO_EMPTY
= CNTRL_TIC
,
352 enum rx_fifo_watermark
{
353 RX_FIFO_HALF_FULL
= 0,
354 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
357 static inline void control_tx_irq_watermark(struct cx23885_dev
*dev
,
358 enum tx_fifo_watermark level
)
360 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
363 static inline void control_rx_irq_watermark(struct cx23885_dev
*dev
,
364 enum rx_fifo_watermark level
)
366 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
369 static inline void control_tx_enable(struct cx23885_dev
*dev
, bool enable
)
371 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
372 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
375 static inline void control_rx_enable(struct cx23885_dev
*dev
, bool enable
)
377 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
378 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
381 static inline void control_tx_modulation_enable(struct cx23885_dev
*dev
,
384 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_MOD
,
385 enable
? CNTRL_MOD
: 0);
388 static inline void control_rx_demodulation_enable(struct cx23885_dev
*dev
,
391 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_DMD
,
392 enable
? CNTRL_DMD
: 0);
395 static inline void control_rx_s_edge_detection(struct cx23885_dev
*dev
,
398 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
399 edge_types
& CNTRL_EDG_BOTH
);
402 static void control_rx_s_carrier_window(struct cx23885_dev
*dev
,
403 unsigned int carrier
,
404 unsigned int *carrier_range_low
,
405 unsigned int *carrier_range_high
)
408 unsigned int c16
= carrier
* 16;
410 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
412 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
415 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
418 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
420 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
423 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
425 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
428 static inline void control_tx_polarity_invert(struct cx23885_dev
*dev
,
431 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_CPL
,
432 invert
? CNTRL_CPL
: 0);
435 static inline void control_tx_level_invert(struct cx23885_dev
*dev
,
438 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_IVO
,
439 invert
? CNTRL_IVO
: 0);
443 * IR Rx & Tx Clock Register helpers
445 static unsigned int txclk_tx_s_carrier(struct cx23885_dev
*dev
,
449 *divider
= carrier_freq_to_clock_divider(freq
);
450 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
451 return clock_divider_to_carrier_freq(*divider
);
454 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev
*dev
,
458 *divider
= carrier_freq_to_clock_divider(freq
);
459 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
460 return clock_divider_to_carrier_freq(*divider
);
463 static u32
txclk_tx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
468 if (ns
> IR_MAX_DURATION
)
469 ns
= IR_MAX_DURATION
;
470 pulse_clocks
= ns_to_pulse_clocks(ns
);
471 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
472 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
473 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
476 static u32
rxclk_rx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
481 if (ns
> IR_MAX_DURATION
)
482 ns
= IR_MAX_DURATION
;
483 pulse_clocks
= ns_to_pulse_clocks(ns
);
484 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
485 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
486 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
490 * IR Tx Carrier Duty Cycle register helpers
492 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev
*dev
,
493 unsigned int duty_cycle
)
496 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
501 cx23888_ir_write4(dev
, CX23888_IR_CDUTY_REG
, n
);
502 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
506 * IR Filter Register helpers
508 static u32
filter_rx_s_min_width(struct cx23885_dev
*dev
, u32 min_width_ns
)
510 u32 count
= ns_to_lpf_count(min_width_ns
);
511 cx23888_ir_write4(dev
, CX23888_IR_FILTR_REG
, count
);
512 return lpf_count_to_ns(count
);
516 * IR IRQ Enable Register helpers
518 static inline void irqenable_rx(struct cx23885_dev
*dev
, u32 mask
)
520 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
521 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
,
522 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
525 static inline void irqenable_tx(struct cx23885_dev
*dev
, u32 mask
)
528 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
532 * V4L2 Subdevice IR Ops
534 static int cx23888_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
,
537 struct cx23888_ir_state
*state
= to_state(sd
);
538 struct cx23885_dev
*dev
= state
->dev
;
541 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
542 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
543 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
545 union cx23888_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
546 unsigned int i
, j
, k
;
548 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
550 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
551 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
552 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
553 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
555 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
556 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
557 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
558 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
561 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Status: %s %s %s %s %s %s\n",
562 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
563 rto
? "rto" : " ", ror
? "ror" : " ",
564 stats
& STATS_TBY
? "tby" : " ",
565 stats
& STATS_RBY
? "rby" : " ");
567 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Enables: %s %s %s %s\n",
568 tse
? "tse" : " ", rse
? "rse" : " ",
569 rte
? "rte" : " ", roe
? "roe" : " ");
572 * Transmitter interrupt service
577 * Check the watermark threshold setting
578 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
579 * Push the data to the hardware FIFO.
580 * If there was nothing more to send in the tx_kfifo, disable
581 * the TSR IRQ and notify the v4l2_device.
582 * If there was something in the tx_kfifo, check the tx_kfifo
583 * level and notify the v4l2_device, if it is low.
585 /* For now, inhibit TSR interrupt until Tx is implemented */
586 irqenable_tx(dev
, 0);
587 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
588 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
593 * Receiver interrupt service
596 if ((rse
&& rsr
) || (rte
&& rto
)) {
598 * Receive data on RSR to clear the STATS_RSR.
599 * Receive data on RTO, since we may not have yet hit the RSR
600 * watermark when we receive the RTO.
602 for (i
= 0, v
= FIFO_RX_NDV
;
603 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
605 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
606 v
= cx23888_ir_read4(dev
, CX23888_IR_FIFO_REG
);
607 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
612 j
= i
* sizeof(union cx23888_ir_fifo_rec
);
613 k
= kfifo_in_locked(&state
->rx_kfifo
,
614 (unsigned char *) rx_data
, j
,
615 &state
->rx_kfifo_lock
);
617 kror
++; /* rx_kfifo over run */
625 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
626 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
630 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
631 * the Rx FIFO Over Run status (STATS_ROR)
634 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
635 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
639 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
640 * the Rx Pulse Width Timer Time Out (STATS_RTO)
643 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
646 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
647 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
& ~v
);
648 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
);
652 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
653 if (kfifo_len(&state
->rx_kfifo
) >= CX23888_IR_RX_KFIFO_SIZE
/ 2)
654 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
655 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
658 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
663 static int cx23888_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
666 struct cx23888_ir_state
*state
= to_state(sd
);
667 bool invert
= (bool) atomic_read(&state
->rx_invert
);
668 u16 divider
= (u16
) atomic_read(&state
->rxclk_divider
);
671 union cx23888_ir_fifo_rec
*p
;
674 n
= count
/ sizeof(union cx23888_ir_fifo_rec
)
675 * sizeof(union cx23888_ir_fifo_rec
);
681 n
= kfifo_out_locked(&state
->rx_kfifo
, buf
, n
, &state
->rx_kfifo_lock
);
683 n
/= sizeof(union cx23888_ir_fifo_rec
);
684 *num
= n
* sizeof(union cx23888_ir_fifo_rec
);
686 for (p
= (union cx23888_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
688 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
689 /* Assume RTO was because of no IR light input */
693 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
699 v
= (unsigned) pulse_width_count_to_ns(
700 (u16
) (p
->hw_fifo_data
& FIFO_RXTX
), divider
);
701 if (v
> IR_MAX_DURATION
)
704 init_ir_raw_event(&p
->ir_core_data
);
705 p
->ir_core_data
.pulse
= u
;
706 p
->ir_core_data
.duration
= v
;
707 p
->ir_core_data
.timeout
= w
;
709 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: %10u ns %s %s\n",
710 v
, u
? "mark" : "space", w
? "(timed out)" : "");
712 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: end of rx\n");
717 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
718 struct v4l2_subdev_ir_parameters
*p
)
720 struct cx23888_ir_state
*state
= to_state(sd
);
721 mutex_lock(&state
->rx_params_lock
);
722 memcpy(p
, &state
->rx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
723 mutex_unlock(&state
->rx_params_lock
);
727 static int cx23888_ir_rx_shutdown(struct v4l2_subdev
*sd
)
729 struct cx23888_ir_state
*state
= to_state(sd
);
730 struct cx23885_dev
*dev
= state
->dev
;
732 mutex_lock(&state
->rx_params_lock
);
734 /* Disable or slow down all IR Rx circuits and counters */
735 irqenable_rx(dev
, 0);
736 control_rx_enable(dev
, false);
737 control_rx_demodulation_enable(dev
, false);
738 control_rx_s_edge_detection(dev
, CNTRL_EDG_NONE
);
739 filter_rx_s_min_width(dev
, 0);
740 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, RXCLK_RCD
);
742 state
->rx_params
.shutdown
= true;
744 mutex_unlock(&state
->rx_params_lock
);
748 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
749 struct v4l2_subdev_ir_parameters
*p
)
751 struct cx23888_ir_state
*state
= to_state(sd
);
752 struct cx23885_dev
*dev
= state
->dev
;
753 struct v4l2_subdev_ir_parameters
*o
= &state
->rx_params
;
757 return cx23888_ir_rx_shutdown(sd
);
759 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
762 mutex_lock(&state
->rx_params_lock
);
764 o
->shutdown
= p
->shutdown
;
766 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
768 o
->bytes_per_data_element
= p
->bytes_per_data_element
769 = sizeof(union cx23888_ir_fifo_rec
);
771 /* Before we tweak the hardware, we have to disable the receiver */
772 irqenable_rx(dev
, 0);
773 control_rx_enable(dev
, false);
775 control_rx_demodulation_enable(dev
, p
->modulation
);
776 o
->modulation
= p
->modulation
;
779 p
->carrier_freq
= rxclk_rx_s_carrier(dev
, p
->carrier_freq
,
782 o
->carrier_freq
= p
->carrier_freq
;
784 o
->duty_cycle
= p
->duty_cycle
= 50;
786 control_rx_s_carrier_window(dev
, p
->carrier_freq
,
787 &p
->carrier_range_lower
,
788 &p
->carrier_range_upper
);
789 o
->carrier_range_lower
= p
->carrier_range_lower
;
790 o
->carrier_range_upper
= p
->carrier_range_upper
;
793 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
796 rxclk_rx_s_max_pulse_width(dev
, p
->max_pulse_width
,
799 o
->max_pulse_width
= p
->max_pulse_width
;
800 atomic_set(&state
->rxclk_divider
, rxclk_divider
);
802 p
->noise_filter_min_width
=
803 filter_rx_s_min_width(dev
, p
->noise_filter_min_width
);
804 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
806 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
807 o
->resolution
= p
->resolution
;
809 /* FIXME - make this dependent on resolution for better performance */
810 control_rx_irq_watermark(dev
, RX_FIFO_HALF_FULL
);
812 control_rx_s_edge_detection(dev
, CNTRL_EDG_BOTH
);
814 o
->invert_level
= p
->invert_level
;
815 atomic_set(&state
->rx_invert
, p
->invert_level
);
817 o
->interrupt_enable
= p
->interrupt_enable
;
818 o
->enable
= p
->enable
;
822 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
823 kfifo_reset(&state
->rx_kfifo
);
824 /* reset tx_fifo too if there is one... */
825 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
826 if (p
->interrupt_enable
)
827 irqenable_rx(dev
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
828 control_rx_enable(dev
, p
->enable
);
831 mutex_unlock(&state
->rx_params_lock
);
836 static int cx23888_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
839 struct cx23888_ir_state
*state
= to_state(sd
);
840 struct cx23885_dev
*dev
= state
->dev
;
841 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
842 irqenable_tx(dev
, IRQEN_TSE
);
847 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
848 struct v4l2_subdev_ir_parameters
*p
)
850 struct cx23888_ir_state
*state
= to_state(sd
);
851 mutex_lock(&state
->tx_params_lock
);
852 memcpy(p
, &state
->tx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
853 mutex_unlock(&state
->tx_params_lock
);
857 static int cx23888_ir_tx_shutdown(struct v4l2_subdev
*sd
)
859 struct cx23888_ir_state
*state
= to_state(sd
);
860 struct cx23885_dev
*dev
= state
->dev
;
862 mutex_lock(&state
->tx_params_lock
);
864 /* Disable or slow down all IR Tx circuits and counters */
865 irqenable_tx(dev
, 0);
866 control_tx_enable(dev
, false);
867 control_tx_modulation_enable(dev
, false);
868 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, TXCLK_TCD
);
870 state
->tx_params
.shutdown
= true;
872 mutex_unlock(&state
->tx_params_lock
);
876 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
877 struct v4l2_subdev_ir_parameters
*p
)
879 struct cx23888_ir_state
*state
= to_state(sd
);
880 struct cx23885_dev
*dev
= state
->dev
;
881 struct v4l2_subdev_ir_parameters
*o
= &state
->tx_params
;
885 return cx23888_ir_tx_shutdown(sd
);
887 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
890 mutex_lock(&state
->tx_params_lock
);
892 o
->shutdown
= p
->shutdown
;
894 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
896 o
->bytes_per_data_element
= p
->bytes_per_data_element
897 = sizeof(union cx23888_ir_fifo_rec
);
899 /* Before we tweak the hardware, we have to disable the transmitter */
900 irqenable_tx(dev
, 0);
901 control_tx_enable(dev
, false);
903 control_tx_modulation_enable(dev
, p
->modulation
);
904 o
->modulation
= p
->modulation
;
907 p
->carrier_freq
= txclk_tx_s_carrier(dev
, p
->carrier_freq
,
909 o
->carrier_freq
= p
->carrier_freq
;
911 p
->duty_cycle
= cduty_tx_s_duty_cycle(dev
, p
->duty_cycle
);
912 o
->duty_cycle
= p
->duty_cycle
;
915 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
918 txclk_tx_s_max_pulse_width(dev
, p
->max_pulse_width
,
921 o
->max_pulse_width
= p
->max_pulse_width
;
922 atomic_set(&state
->txclk_divider
, txclk_divider
);
924 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
925 o
->resolution
= p
->resolution
;
927 /* FIXME - make this dependent on resolution for better performance */
928 control_tx_irq_watermark(dev
, TX_FIFO_HALF_EMPTY
);
930 control_tx_polarity_invert(dev
, p
->invert_carrier_sense
);
931 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
933 control_tx_level_invert(dev
, p
->invert_level
);
934 o
->invert_level
= p
->invert_level
;
936 o
->interrupt_enable
= p
->interrupt_enable
;
937 o
->enable
= p
->enable
;
939 if (p
->interrupt_enable
)
940 irqenable_tx(dev
, IRQEN_TSE
);
941 control_tx_enable(dev
, p
->enable
);
944 mutex_unlock(&state
->tx_params_lock
);
950 * V4L2 Subdevice Core Ops
952 static int cx23888_ir_log_status(struct v4l2_subdev
*sd
)
954 struct cx23888_ir_state
*state
= to_state(sd
);
955 struct cx23885_dev
*dev
= state
->dev
;
959 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
960 u32 txclk
= cx23888_ir_read4(dev
, CX23888_IR_TXCLK_REG
) & TXCLK_TCD
;
961 u32 rxclk
= cx23888_ir_read4(dev
, CX23888_IR_RXCLK_REG
) & RXCLK_RCD
;
962 u32 cduty
= cx23888_ir_read4(dev
, CX23888_IR_CDUTY_REG
) & CDUTY_CDC
;
963 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
964 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
965 u32 filtr
= cx23888_ir_read4(dev
, CX23888_IR_FILTR_REG
) & FILTR_LPF
;
967 v4l2_info(sd
, "IR Receiver:\n");
968 v4l2_info(sd
, "\tEnabled: %s\n",
969 cntrl
& CNTRL_RXE
? "yes" : "no");
970 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
971 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
972 v4l2_info(sd
, "\tFIFO: %s\n",
973 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
974 switch (cntrl
& CNTRL_EDG
) {
985 s
= "rising & falling edges";
991 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
992 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
993 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
994 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
995 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
996 v4l2_info(sd
, "\tLoopback mode: %s\n",
997 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
998 if (cntrl
& CNTRL_DMD
) {
999 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
1000 clock_divider_to_carrier_freq(rxclk
));
1001 switch (cntrl
& CNTRL_WIN
) {
1023 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks "
1024 "-%1d/+%1d, %u to %u Hz\n", i
, j
,
1025 clock_divider_to_freq(rxclk
, 16 + j
),
1026 clock_divider_to_freq(rxclk
, 16 - i
));
1028 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1029 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1030 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1031 v4l2_info(sd
, "\tLow pass filter: %s\n",
1032 filtr
? "enabled" : "disabled");
1034 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, "
1036 lpf_count_to_us(filtr
),
1037 lpf_count_to_ns(filtr
));
1038 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1039 stats
& STATS_RTO
? "yes" : "no");
1040 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1041 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1042 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1043 stats
& STATS_ROR
? "yes" : "no");
1044 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1045 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1046 v4l2_info(sd
, "\tBusy: %s\n",
1047 stats
& STATS_RBY
? "yes" : "no");
1048 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1049 stats
& STATS_RSR
? "yes" : "no");
1050 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1051 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1053 v4l2_info(sd
, "IR Transmitter:\n");
1054 v4l2_info(sd
, "\tEnabled: %s\n",
1055 cntrl
& CNTRL_TXE
? "yes" : "no");
1056 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1057 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1058 v4l2_info(sd
, "\tFIFO: %s\n",
1059 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1060 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1061 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1062 v4l2_info(sd
, "\tOutput pin level inversion %s\n",
1063 cntrl
& CNTRL_IVO
? "yes" : "no");
1064 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1065 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1066 : "space:noburst mark:burst");
1067 if (cntrl
& CNTRL_MOD
) {
1068 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1069 clock_divider_to_carrier_freq(txclk
));
1070 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1073 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1074 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1075 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1076 v4l2_info(sd
, "\tBusy: %s\n",
1077 stats
& STATS_TBY
? "yes" : "no");
1078 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1079 stats
& STATS_TSR
? "yes" : "no");
1080 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1081 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1086 #ifdef CONFIG_VIDEO_ADV_DEBUG
1087 static int cx23888_ir_g_register(struct v4l2_subdev
*sd
,
1088 struct v4l2_dbg_register
*reg
)
1090 struct cx23888_ir_state
*state
= to_state(sd
);
1091 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1093 if ((addr
& 0x3) != 0)
1095 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1098 reg
->val
= cx23888_ir_read4(state
->dev
, addr
);
1102 static int cx23888_ir_s_register(struct v4l2_subdev
*sd
,
1103 const struct v4l2_dbg_register
*reg
)
1105 struct cx23888_ir_state
*state
= to_state(sd
);
1106 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1108 if ((addr
& 0x3) != 0)
1110 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1112 cx23888_ir_write4(state
->dev
, addr
, reg
->val
);
1117 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops
= {
1118 .log_status
= cx23888_ir_log_status
,
1119 #ifdef CONFIG_VIDEO_ADV_DEBUG
1120 .g_register
= cx23888_ir_g_register
,
1121 .s_register
= cx23888_ir_s_register
,
1123 .interrupt_service_routine
= cx23888_ir_irq_handler
,
1126 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops
= {
1127 .rx_read
= cx23888_ir_rx_read
,
1128 .rx_g_parameters
= cx23888_ir_rx_g_parameters
,
1129 .rx_s_parameters
= cx23888_ir_rx_s_parameters
,
1131 .tx_write
= cx23888_ir_tx_write
,
1132 .tx_g_parameters
= cx23888_ir_tx_g_parameters
,
1133 .tx_s_parameters
= cx23888_ir_tx_s_parameters
,
1136 static const struct v4l2_subdev_ops cx23888_ir_controller_ops
= {
1137 .core
= &cx23888_ir_core_ops
,
1138 .ir
= &cx23888_ir_ir_ops
,
1141 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1142 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1143 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1146 .interrupt_enable
= false,
1150 .carrier_freq
= 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1152 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1153 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1154 .noise_filter_min_width
= 333333, /* ns */
1155 .carrier_range_lower
= 35000,
1156 .carrier_range_upper
= 37000,
1157 .invert_level
= false,
1160 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1161 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1162 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1165 .interrupt_enable
= false,
1169 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1170 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1171 .invert_level
= false,
1172 .invert_carrier_sense
= false,
1175 int cx23888_ir_probe(struct cx23885_dev
*dev
)
1177 struct cx23888_ir_state
*state
;
1178 struct v4l2_subdev
*sd
;
1179 struct v4l2_subdev_ir_parameters default_params
;
1182 state
= kzalloc(sizeof(struct cx23888_ir_state
), GFP_KERNEL
);
1186 spin_lock_init(&state
->rx_kfifo_lock
);
1187 if (kfifo_alloc(&state
->rx_kfifo
, CX23888_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1193 v4l2_subdev_init(sd
, &cx23888_ir_controller_ops
);
1194 v4l2_set_subdevdata(sd
, state
);
1195 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1196 snprintf(sd
->name
, sizeof(sd
->name
), "%s/888-ir", dev
->name
);
1197 sd
->grp_id
= CX23885_HW_888_IR
;
1199 ret
= v4l2_device_register_subdev(&dev
->v4l2_dev
, sd
);
1202 * Ensure no interrupts arrive from '888 specific conditions,
1203 * since we ignore them in this driver to have commonality with
1204 * similar IR controller cores.
1206 cx23888_ir_write4(dev
, CX23888_IR_IRQEN_REG
, 0);
1208 mutex_init(&state
->rx_params_lock
);
1209 default_params
= default_rx_params
;
1210 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1212 mutex_init(&state
->tx_params_lock
);
1213 default_params
= default_tx_params
;
1214 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1216 kfifo_free(&state
->rx_kfifo
);
1221 int cx23888_ir_remove(struct cx23885_dev
*dev
)
1223 struct v4l2_subdev
*sd
;
1224 struct cx23888_ir_state
*state
;
1226 sd
= cx23885_find_hw(dev
, CX23885_HW_888_IR
);
1230 cx23888_ir_rx_shutdown(sd
);
1231 cx23888_ir_tx_shutdown(sd
);
1233 state
= to_state(sd
);
1234 v4l2_device_unregister_subdev(sd
);
1235 kfifo_free(&state
->rx_kfifo
);
1237 /* Nothing more to free() as state held the actual v4l2_subdev object */