2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
45 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
46 #define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
47 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
48 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
49 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
50 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
52 /* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
53 #define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
54 #define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
55 #define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
56 #define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
58 /* Used for SST flashes only. */
59 #define OPCODE_BP 0x02 /* Byte program */
60 #define OPCODE_WRDI 0x04 /* Write disable */
61 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
63 /* Used for Macronix and Winbond flashes. */
64 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
65 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
67 /* Used for Spansion flashes only. */
68 #define OPCODE_BRWR 0x17 /* Bank register write */
70 /* Status Register bits. */
71 #define SR_WIP 1 /* Write in progress */
72 #define SR_WEL 2 /* Write enable latch */
73 /* meaning of other SR_* bits may differ between vendors */
74 #define SR_BP0 4 /* Block protect 0 */
75 #define SR_BP1 8 /* Block protect 1 */
76 #define SR_BP2 0x10 /* Block protect 2 */
77 #define SR_SRWD 0x80 /* SR write protect */
79 /* Define max times to check status register before we give up. */
80 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
81 #define MAX_CMD_SIZE 6
83 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
85 /****************************************************************************/
88 struct spi_device
*spi
;
100 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
102 return container_of(mtd
, struct m25p
, mtd
);
105 /****************************************************************************/
108 * Internal helper functions
112 * Read the status register, returning its value in the location
113 * Return the status register value.
114 * Returns negative if error occurred.
116 static int read_sr(struct m25p
*flash
)
119 u8 code
= OPCODE_RDSR
;
122 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
125 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
134 * Write status register 1 byte
135 * Returns negative if error occurred.
137 static int write_sr(struct m25p
*flash
, u8 val
)
139 flash
->command
[0] = OPCODE_WRSR
;
140 flash
->command
[1] = val
;
142 return spi_write(flash
->spi
, flash
->command
, 2);
146 * Set write enable latch with Write Enable command.
147 * Returns negative if error occurred.
149 static inline int write_enable(struct m25p
*flash
)
151 u8 code
= OPCODE_WREN
;
153 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
157 * Send write disble instruction to the chip.
159 static inline int write_disable(struct m25p
*flash
)
161 u8 code
= OPCODE_WRDI
;
163 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
167 * Enable/disable 4-byte addressing mode.
169 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
172 bool need_wren
= false;
174 switch (JEDEC_MFR(jedec_id
)) {
175 case CFI_MFR_ST
: /* Micron, actually */
176 /* Some Micron need WREN command; all will accept it */
178 case CFI_MFR_MACRONIX
:
179 case 0xEF /* winbond */:
183 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
184 status
= spi_write(flash
->spi
, flash
->command
, 1);
187 write_disable(flash
);
192 flash
->command
[0] = OPCODE_BRWR
;
193 flash
->command
[1] = enable
<< 7;
194 return spi_write(flash
->spi
, flash
->command
, 2);
199 * Service routine to read status register until ready, or timeout occurs.
200 * Returns non-zero if error.
202 static int wait_till_ready(struct m25p
*flash
)
204 unsigned long deadline
;
207 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
210 if ((sr
= read_sr(flash
)) < 0)
212 else if (!(sr
& SR_WIP
))
217 } while (!time_after_eq(jiffies
, deadline
));
223 * Erase the whole flash memory
225 * Returns 0 if successful, non-zero otherwise.
227 static int erase_chip(struct m25p
*flash
)
229 pr_debug("%s: %s %lldKiB\n", dev_name(&flash
->spi
->dev
), __func__
,
230 (long long)(flash
->mtd
.size
>> 10));
232 /* Wait until finished previous write command. */
233 if (wait_till_ready(flash
))
236 /* Send write enable, then erase commands. */
239 /* Set up command buffer. */
240 flash
->command
[0] = OPCODE_CHIP_ERASE
;
242 spi_write(flash
->spi
, flash
->command
, 1);
247 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
249 /* opcode is in cmd[0] */
250 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
251 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
252 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
253 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
256 static int m25p_cmdsz(struct m25p
*flash
)
258 return 1 + flash
->addr_width
;
262 * Erase one sector of flash memory at offset ``offset'' which is any
263 * address within the sector which should be erased.
265 * Returns 0 if successful, non-zero otherwise.
267 static int erase_sector(struct m25p
*flash
, u32 offset
)
269 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash
->spi
->dev
),
270 __func__
, flash
->mtd
.erasesize
/ 1024, offset
);
272 /* Wait until finished previous write command. */
273 if (wait_till_ready(flash
))
276 /* Send write enable, then erase commands. */
279 /* Set up command buffer. */
280 flash
->command
[0] = flash
->erase_opcode
;
281 m25p_addr2cmd(flash
, offset
, flash
->command
);
283 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
288 /****************************************************************************/
295 * Erase an address range on the flash chip. The address range may extend
296 * one or more erase sectors. Return an error is there is a problem erasing.
298 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
300 struct m25p
*flash
= mtd_to_m25p(mtd
);
304 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash
->spi
->dev
),
305 __func__
, (long long)instr
->addr
,
306 (long long)instr
->len
);
308 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
315 mutex_lock(&flash
->lock
);
317 /* whole-chip erase? */
318 if (len
== flash
->mtd
.size
) {
319 if (erase_chip(flash
)) {
320 instr
->state
= MTD_ERASE_FAILED
;
321 mutex_unlock(&flash
->lock
);
325 /* REVISIT in some cases we could speed up erasing large regions
326 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
327 * to use "small sector erase", but that's not always optimal.
330 /* "sector"-at-a-time erase */
333 if (erase_sector(flash
, addr
)) {
334 instr
->state
= MTD_ERASE_FAILED
;
335 mutex_unlock(&flash
->lock
);
339 addr
+= mtd
->erasesize
;
340 len
-= mtd
->erasesize
;
344 mutex_unlock(&flash
->lock
);
346 instr
->state
= MTD_ERASE_DONE
;
347 mtd_erase_callback(instr
);
353 * Read an address range from the flash chip. The address range
354 * may be any size provided it is within the physical boundaries.
356 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
357 size_t *retlen
, u_char
*buf
)
359 struct m25p
*flash
= mtd_to_m25p(mtd
);
360 struct spi_transfer t
[2];
361 struct spi_message m
;
364 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
365 __func__
, (u32
)from
, len
);
367 spi_message_init(&m
);
368 memset(t
, 0, (sizeof t
));
371 * OPCODE_FAST_READ (if available) is faster.
372 * Should add 1 byte DUMMY_BYTE.
374 t
[0].tx_buf
= flash
->command
;
375 t
[0].len
= m25p_cmdsz(flash
) + (flash
->fast_read
? 1 : 0);
376 spi_message_add_tail(&t
[0], &m
);
380 spi_message_add_tail(&t
[1], &m
);
382 mutex_lock(&flash
->lock
);
384 /* Wait till previous write/erase is done. */
385 if (wait_till_ready(flash
)) {
386 /* REVISIT status return?? */
387 mutex_unlock(&flash
->lock
);
391 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
392 * clocks; and at this writing, every chip this driver handles
393 * supports that opcode.
396 /* Set up the write data buffer. */
397 opcode
= flash
->read_opcode
;
398 flash
->command
[0] = opcode
;
399 m25p_addr2cmd(flash
, from
, flash
->command
);
401 spi_sync(flash
->spi
, &m
);
403 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) -
404 (flash
->fast_read
? 1 : 0);
406 mutex_unlock(&flash
->lock
);
412 * Write an address range to the flash chip. Data must be written in
413 * FLASH_PAGESIZE chunks. The address range may be any size provided
414 * it is within the physical boundaries.
416 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
417 size_t *retlen
, const u_char
*buf
)
419 struct m25p
*flash
= mtd_to_m25p(mtd
);
420 u32 page_offset
, page_size
;
421 struct spi_transfer t
[2];
422 struct spi_message m
;
424 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
425 __func__
, (u32
)to
, len
);
427 spi_message_init(&m
);
428 memset(t
, 0, (sizeof t
));
430 t
[0].tx_buf
= flash
->command
;
431 t
[0].len
= m25p_cmdsz(flash
);
432 spi_message_add_tail(&t
[0], &m
);
435 spi_message_add_tail(&t
[1], &m
);
437 mutex_lock(&flash
->lock
);
439 /* Wait until finished previous write command. */
440 if (wait_till_ready(flash
)) {
441 mutex_unlock(&flash
->lock
);
447 /* Set up the opcode in the write buffer. */
448 flash
->command
[0] = flash
->program_opcode
;
449 m25p_addr2cmd(flash
, to
, flash
->command
);
451 page_offset
= to
& (flash
->page_size
- 1);
453 /* do all the bytes fit onto one page? */
454 if (page_offset
+ len
<= flash
->page_size
) {
457 spi_sync(flash
->spi
, &m
);
459 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
463 /* the size of data remaining on the first page */
464 page_size
= flash
->page_size
- page_offset
;
466 t
[1].len
= page_size
;
467 spi_sync(flash
->spi
, &m
);
469 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
471 /* write everything in flash->page_size chunks */
472 for (i
= page_size
; i
< len
; i
+= page_size
) {
474 if (page_size
> flash
->page_size
)
475 page_size
= flash
->page_size
;
477 /* write the next page to flash */
478 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
480 t
[1].tx_buf
= buf
+ i
;
481 t
[1].len
= page_size
;
483 wait_till_ready(flash
);
487 spi_sync(flash
->spi
, &m
);
489 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
493 mutex_unlock(&flash
->lock
);
498 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
499 size_t *retlen
, const u_char
*buf
)
501 struct m25p
*flash
= mtd_to_m25p(mtd
);
502 struct spi_transfer t
[2];
503 struct spi_message m
;
507 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
508 __func__
, (u32
)to
, len
);
510 spi_message_init(&m
);
511 memset(t
, 0, (sizeof t
));
513 t
[0].tx_buf
= flash
->command
;
514 t
[0].len
= m25p_cmdsz(flash
);
515 spi_message_add_tail(&t
[0], &m
);
518 spi_message_add_tail(&t
[1], &m
);
520 mutex_lock(&flash
->lock
);
522 /* Wait until finished previous write command. */
523 ret
= wait_till_ready(flash
);
530 /* Start write from odd address. */
532 flash
->command
[0] = OPCODE_BP
;
533 m25p_addr2cmd(flash
, to
, flash
->command
);
535 /* write one byte. */
537 spi_sync(flash
->spi
, &m
);
538 ret
= wait_till_ready(flash
);
541 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
545 flash
->command
[0] = OPCODE_AAI_WP
;
546 m25p_addr2cmd(flash
, to
, flash
->command
);
548 /* Write out most of the data here. */
549 cmd_sz
= m25p_cmdsz(flash
);
550 for (; actual
< len
- 1; actual
+= 2) {
552 /* write two bytes. */
554 t
[1].tx_buf
= buf
+ actual
;
556 spi_sync(flash
->spi
, &m
);
557 ret
= wait_till_ready(flash
);
560 *retlen
+= m
.actual_length
- cmd_sz
;
564 write_disable(flash
);
565 ret
= wait_till_ready(flash
);
569 /* Write out trailing byte if it exists. */
572 flash
->command
[0] = OPCODE_BP
;
573 m25p_addr2cmd(flash
, to
, flash
->command
);
574 t
[0].len
= m25p_cmdsz(flash
);
576 t
[1].tx_buf
= buf
+ actual
;
578 spi_sync(flash
->spi
, &m
);
579 ret
= wait_till_ready(flash
);
582 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
583 write_disable(flash
);
587 mutex_unlock(&flash
->lock
);
591 static int m25p80_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
593 struct m25p
*flash
= mtd_to_m25p(mtd
);
594 uint32_t offset
= ofs
;
595 uint8_t status_old
, status_new
;
598 mutex_lock(&flash
->lock
);
599 /* Wait until finished previous command */
600 if (wait_till_ready(flash
)) {
605 status_old
= read_sr(flash
);
607 if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/2))
608 status_new
= status_old
| SR_BP2
| SR_BP1
| SR_BP0
;
609 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/4))
610 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
611 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/8))
612 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
613 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/16))
614 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
615 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/32))
616 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
617 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/64))
618 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
620 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
622 /* Only modify protection if it will not unlock other areas */
623 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) >
624 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
626 if (write_sr(flash
, status_new
) < 0) {
632 err
: mutex_unlock(&flash
->lock
);
636 static int m25p80_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
638 struct m25p
*flash
= mtd_to_m25p(mtd
);
639 uint32_t offset
= ofs
;
640 uint8_t status_old
, status_new
;
643 mutex_lock(&flash
->lock
);
644 /* Wait until finished previous command */
645 if (wait_till_ready(flash
)) {
650 status_old
= read_sr(flash
);
652 if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/64))
653 status_new
= status_old
& ~(SR_BP2
|SR_BP1
|SR_BP0
);
654 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/32))
655 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
656 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/16))
657 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
658 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/8))
659 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
660 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/4))
661 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
662 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/2))
663 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
665 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
667 /* Only modify protection if it will not lock other areas */
668 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) <
669 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
671 if (write_sr(flash
, status_new
) < 0) {
677 err
: mutex_unlock(&flash
->lock
);
681 /****************************************************************************/
684 * SPI device driver setup and teardown
688 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
689 * a high byte of zero plus three data bytes: the manufacturer id,
690 * then a two byte device id.
695 /* The size listed here is what works with OPCODE_SE, which isn't
696 * necessarily called a "sector" by the vendor.
698 unsigned sector_size
;
705 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
706 #define M25P_NO_ERASE 0x02 /* No erase command needed */
707 #define SST_WRITE 0x04 /* use SST byte programming */
708 #define M25P_NO_FR 0x08 /* Can't do fastread */
709 #define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */
712 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
713 ((kernel_ulong_t)&(struct flash_info) { \
714 .jedec_id = (_jedec_id), \
715 .ext_id = (_ext_id), \
716 .sector_size = (_sector_size), \
717 .n_sectors = (_n_sectors), \
722 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
723 ((kernel_ulong_t)&(struct flash_info) { \
724 .sector_size = (_sector_size), \
725 .n_sectors = (_n_sectors), \
726 .page_size = (_page_size), \
727 .addr_width = (_addr_width), \
731 /* NOTE: double check command sets and memory organization when you add
732 * more flash chips. This current list focusses on newer chips, which
733 * have been converging on command sets which including JEDEC ID.
735 static const struct spi_device_id m25p_ids
[] = {
736 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
737 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
738 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
740 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
741 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
742 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
744 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
745 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
746 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
747 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
749 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
752 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
753 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
754 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
755 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
756 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
757 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
760 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
761 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE
| M25P_NO_FR
) },
764 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K
) },
765 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K
) },
767 /* Intel/Numonyx -- xxxs33b */
768 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
769 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
770 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
773 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
774 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
775 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
776 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
777 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
778 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
779 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
780 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
781 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
782 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
783 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
786 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
787 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
788 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
789 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
) },
792 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
793 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
794 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
796 /* Spansion -- single (large) sector size only, at least
797 * for the chips listed here (without boot sectors).
799 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
800 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
801 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
802 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
803 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
804 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
805 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
806 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
807 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
808 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
809 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
810 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
811 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
812 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
813 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
814 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
815 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
817 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
818 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
819 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
820 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
821 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
822 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
823 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
824 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
825 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
826 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
828 /* ST Microelectronics -- newer production may have feature updates */
829 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
830 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
831 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
832 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
833 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
834 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
835 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
836 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
837 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
838 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
840 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
841 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
842 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
843 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
844 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
845 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
846 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
847 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
848 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
850 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
851 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
852 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
854 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
855 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
856 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
858 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
859 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
860 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
861 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
863 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
864 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
865 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
866 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
867 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
868 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
869 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
870 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
871 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K
) },
872 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
873 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
874 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
875 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
876 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
877 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
878 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
) },
880 /* Catalyst / On Semiconductor -- non-JEDEC */
881 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE
| M25P_NO_FR
) },
882 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
883 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
884 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
885 { "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
888 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
890 static const struct spi_device_id
*jedec_probe(struct spi_device
*spi
)
893 u8 code
= OPCODE_RDID
;
897 struct flash_info
*info
;
899 /* JEDEC also defines an optional "extended device information"
900 * string for after vendor-specific data, after the three bytes
901 * we use here. Supporting some chips might require using it.
903 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
905 pr_debug("%s: error %d reading JEDEC ID\n",
906 dev_name(&spi
->dev
), tmp
);
915 ext_jedec
= id
[3] << 8 | id
[4];
917 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
918 info
= (void *)m25p_ids
[tmp
].driver_data
;
919 if (info
->jedec_id
== jedec
) {
920 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
922 return &m25p_ids
[tmp
];
925 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
926 return ERR_PTR(-ENODEV
);
931 * board specific setup should have ensured the SPI clock used here
932 * matches what the READ command supports, at least until this driver
933 * understands FAST_READ (for clocks over 25 MHz).
935 static int m25p_probe(struct spi_device
*spi
)
937 const struct spi_device_id
*id
= spi_get_device_id(spi
);
938 struct flash_platform_data
*data
;
940 struct flash_info
*info
;
942 struct mtd_part_parser_data ppdata
;
943 struct device_node __maybe_unused
*np
= spi
->dev
.of_node
;
945 #ifdef CONFIG_MTD_OF_PARTS
946 if (!of_device_is_available(np
))
950 /* Platform data helps sort out which chip type we have, as
951 * well as how this board partitions it. If we don't have
952 * a chip ID, try the JEDEC id commands; they'll work for most
953 * newer chips, even if we don't recognize the particular chip.
955 data
= dev_get_platdata(&spi
->dev
);
956 if (data
&& data
->type
) {
957 const struct spi_device_id
*plat_id
;
959 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
960 plat_id
= &m25p_ids
[i
];
961 if (strcmp(data
->type
, plat_id
->name
))
966 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
969 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
972 info
= (void *)id
->driver_data
;
974 if (info
->jedec_id
) {
975 const struct spi_device_id
*jid
;
977 jid
= jedec_probe(spi
);
980 } else if (jid
!= id
) {
982 * JEDEC knows better, so overwrite platform ID. We
983 * can't trust partitions any longer, but we'll let
984 * mtd apply them anyway, since some partitions may be
985 * marked read-only, and we don't want to lose that
986 * information, even if it's not 100% accurate.
988 dev_warn(&spi
->dev
, "found %s, expected %s\n",
989 jid
->name
, id
->name
);
991 info
= (void *)jid
->driver_data
;
995 flash
= devm_kzalloc(&spi
->dev
, sizeof(*flash
), GFP_KERNEL
);
999 flash
->command
= devm_kzalloc(&spi
->dev
, MAX_CMD_SIZE
, GFP_KERNEL
);
1000 if (!flash
->command
)
1004 mutex_init(&flash
->lock
);
1005 spi_set_drvdata(spi
, flash
);
1008 * Atmel, SST and Intel/Numonyx serial flash tend to power
1009 * up with the software protection bits set
1012 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
1013 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
1014 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
1015 write_enable(flash
);
1019 if (data
&& data
->name
)
1020 flash
->mtd
.name
= data
->name
;
1022 flash
->mtd
.name
= dev_name(&spi
->dev
);
1024 flash
->mtd
.type
= MTD_NORFLASH
;
1025 flash
->mtd
.writesize
= 1;
1026 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
1027 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
1028 flash
->mtd
._erase
= m25p80_erase
;
1029 flash
->mtd
._read
= m25p80_read
;
1031 /* flash protection support for STmicro chips */
1032 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ST
) {
1033 flash
->mtd
._lock
= m25p80_lock
;
1034 flash
->mtd
._unlock
= m25p80_unlock
;
1037 /* sst flash chips use AAI word program */
1038 if (info
->flags
& SST_WRITE
)
1039 flash
->mtd
._write
= sst_write
;
1041 flash
->mtd
._write
= m25p80_write
;
1043 /* prefer "small sector" erase if possible */
1044 if (info
->flags
& SECT_4K
) {
1045 flash
->erase_opcode
= OPCODE_BE_4K
;
1046 flash
->mtd
.erasesize
= 4096;
1047 } else if (info
->flags
& SECT_4K_PMC
) {
1048 flash
->erase_opcode
= OPCODE_BE_4K_PMC
;
1049 flash
->mtd
.erasesize
= 4096;
1051 flash
->erase_opcode
= OPCODE_SE
;
1052 flash
->mtd
.erasesize
= info
->sector_size
;
1055 if (info
->flags
& M25P_NO_ERASE
)
1056 flash
->mtd
.flags
|= MTD_NO_ERASE
;
1058 ppdata
.of_node
= spi
->dev
.of_node
;
1059 flash
->mtd
.dev
.parent
= &spi
->dev
;
1060 flash
->page_size
= info
->page_size
;
1061 flash
->mtd
.writebufsize
= flash
->page_size
;
1063 flash
->fast_read
= false;
1064 if (np
&& of_property_read_bool(np
, "m25p,fast-read"))
1065 flash
->fast_read
= true;
1067 #ifdef CONFIG_M25PXX_USE_FAST_READ
1068 flash
->fast_read
= true;
1070 if (info
->flags
& M25P_NO_FR
)
1071 flash
->fast_read
= false;
1073 /* Default commands */
1074 if (flash
->fast_read
)
1075 flash
->read_opcode
= OPCODE_FAST_READ
;
1077 flash
->read_opcode
= OPCODE_NORM_READ
;
1079 flash
->program_opcode
= OPCODE_PP
;
1081 if (info
->addr_width
)
1082 flash
->addr_width
= info
->addr_width
;
1083 else if (flash
->mtd
.size
> 0x1000000) {
1084 /* enable 4-byte addressing if the device exceeds 16MiB */
1085 flash
->addr_width
= 4;
1086 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_AMD
) {
1087 /* Dedicated 4-byte command set */
1088 flash
->read_opcode
= flash
->fast_read
?
1089 OPCODE_FAST_READ_4B
:
1090 OPCODE_NORM_READ_4B
;
1091 flash
->program_opcode
= OPCODE_PP_4B
;
1092 /* No small sector erase for 4-byte command set */
1093 flash
->erase_opcode
= OPCODE_SE_4B
;
1094 flash
->mtd
.erasesize
= info
->sector_size
;
1096 set_4byte(flash
, info
->jedec_id
, 1);
1098 flash
->addr_width
= 3;
1101 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
1102 (long long)flash
->mtd
.size
>> 10);
1104 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1105 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1107 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
1108 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
1109 flash
->mtd
.numeraseregions
);
1111 if (flash
->mtd
.numeraseregions
)
1112 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
1113 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1114 ".erasesize = 0x%.8x (%uKiB), "
1115 ".numblocks = %d }\n",
1116 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
1117 flash
->mtd
.eraseregions
[i
].erasesize
,
1118 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
1119 flash
->mtd
.eraseregions
[i
].numblocks
);
1122 /* partitions should match sector boundaries; and it may be good to
1123 * use readonly partitions for writeprotected sectors (BP2..BP0).
1125 return mtd_device_parse_register(&flash
->mtd
, NULL
, &ppdata
,
1126 data
? data
->parts
: NULL
,
1127 data
? data
->nr_parts
: 0);
1131 static int m25p_remove(struct spi_device
*spi
)
1133 struct m25p
*flash
= spi_get_drvdata(spi
);
1135 /* Clean up MTD stuff. */
1136 mtd_device_unregister(&flash
->mtd
);
1142 static struct spi_driver m25p80_driver
= {
1145 .owner
= THIS_MODULE
,
1147 .id_table
= m25p_ids
,
1148 .probe
= m25p_probe
,
1149 .remove
= m25p_remove
,
1151 /* REVISIT: many of these chips have deep power-down modes, which
1152 * should clearly be entered on suspend() to minimize power use.
1153 * And also when they're otherwise idle...
1157 module_spi_driver(m25p80_driver
);
1159 MODULE_LICENSE("GPL");
1160 MODULE_AUTHOR("Mike Lavender");
1161 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");