2 * Copyright © 2003 Rick Bronson
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
30 #include <linux/dma-mapping.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/platform_device.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
48 #include <linux/platform_data/atmel.h>
50 static int use_dma
= 1;
51 module_param(use_dma
, int, 0);
53 static int on_flash_bbt
= 0;
54 module_param(on_flash_bbt
, int, 0);
56 /* Register access macros */
57 #define ecc_readl(add, reg) \
58 __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value) \
60 __raw_writel((value), add + ATMEL_ECC_##reg)
62 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
65 /* oob layout for large page size
66 * bad block info is on bytes 0 and 1
67 * the bytes have to be consecutives to avoid
68 * several NAND_CMD_RNDOUT during read
70 static struct nand_ecclayout atmel_oobinfo_large
= {
72 .eccpos
= {60, 61, 62, 63},
78 /* oob layout for small page size
79 * bad block info is on bytes 4 and 5
80 * the bytes have to be consecutives to avoid
81 * several NAND_CMD_RNDOUT during read
83 static struct nand_ecclayout atmel_oobinfo_small
= {
85 .eccpos
= {0, 1, 2, 3},
92 void __iomem
*base_cmd_regs
;
93 void __iomem
*hsmc_regs
;
94 void __iomem
*sram_bank0
;
95 dma_addr_t sram_bank0_phys
;
100 struct completion comp_nfc
;
102 /* Point to the sram bank which include readed data via NFC */
103 void __iomem
*data_in_sram
;
104 bool will_write_sram
;
106 static struct atmel_nfc nand_nfc
;
108 struct atmel_nand_host
{
109 struct nand_chip nand_chip
;
111 void __iomem
*io_base
;
113 struct atmel_nand_data board
;
117 struct completion comp
;
118 struct dma_chan
*dma_chan
;
120 struct atmel_nfc
*nfc
;
124 u16 pmecc_sector_size
;
125 u32 pmecc_lookup_table_offset
;
126 u32 pmecc_lookup_table_offset_512
;
127 u32 pmecc_lookup_table_offset_1024
;
129 int pmecc_bytes_per_sector
;
130 int pmecc_sector_number
;
131 int pmecc_degree
; /* Degree of remainders */
132 int pmecc_cw_len
; /* Length of codeword */
134 void __iomem
*pmerrloc_base
;
135 void __iomem
*pmecc_rom_base
;
137 /* lookup table for alpha_to and index_of */
138 void __iomem
*pmecc_alpha_to
;
139 void __iomem
*pmecc_index_of
;
141 /* data for pmecc computation */
142 int16_t *pmecc_partial_syn
;
144 int16_t *pmecc_smu
; /* Sigma table */
145 int16_t *pmecc_lmu
; /* polynomal order */
151 static struct nand_ecclayout atmel_pmecc_oobinfo
;
156 static void atmel_nand_enable(struct atmel_nand_host
*host
)
158 if (gpio_is_valid(host
->board
.enable_pin
))
159 gpio_set_value(host
->board
.enable_pin
, 0);
165 static void atmel_nand_disable(struct atmel_nand_host
*host
)
167 if (gpio_is_valid(host
->board
.enable_pin
))
168 gpio_set_value(host
->board
.enable_pin
, 1);
172 * Hardware specific access to control-lines
174 static void atmel_nand_cmd_ctrl(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
176 struct nand_chip
*nand_chip
= mtd
->priv
;
177 struct atmel_nand_host
*host
= nand_chip
->priv
;
179 if (ctrl
& NAND_CTRL_CHANGE
) {
181 atmel_nand_enable(host
);
183 atmel_nand_disable(host
);
185 if (cmd
== NAND_CMD_NONE
)
189 writeb(cmd
, host
->io_base
+ (1 << host
->board
.cle
));
191 writeb(cmd
, host
->io_base
+ (1 << host
->board
.ale
));
195 * Read the Device Ready pin.
197 static int atmel_nand_device_ready(struct mtd_info
*mtd
)
199 struct nand_chip
*nand_chip
= mtd
->priv
;
200 struct atmel_nand_host
*host
= nand_chip
->priv
;
202 return gpio_get_value(host
->board
.rdy_pin
) ^
203 !!host
->board
.rdy_pin_active_low
;
206 /* Set up for hardware ready pin and enable pin. */
207 static int atmel_nand_set_enable_ready_pins(struct mtd_info
*mtd
)
209 struct nand_chip
*chip
= mtd
->priv
;
210 struct atmel_nand_host
*host
= chip
->priv
;
213 if (gpio_is_valid(host
->board
.rdy_pin
)) {
214 res
= devm_gpio_request(host
->dev
,
215 host
->board
.rdy_pin
, "nand_rdy");
218 "can't request rdy gpio %d\n",
219 host
->board
.rdy_pin
);
223 res
= gpio_direction_input(host
->board
.rdy_pin
);
226 "can't request input direction rdy gpio %d\n",
227 host
->board
.rdy_pin
);
231 chip
->dev_ready
= atmel_nand_device_ready
;
234 if (gpio_is_valid(host
->board
.enable_pin
)) {
235 res
= devm_gpio_request(host
->dev
,
236 host
->board
.enable_pin
, "nand_enable");
239 "can't request enable gpio %d\n",
240 host
->board
.enable_pin
);
244 res
= gpio_direction_output(host
->board
.enable_pin
, 1);
247 "can't request output direction enable gpio %d\n",
248 host
->board
.enable_pin
);
256 static void memcpy32_fromio(void *trg
, const void __iomem
*src
, size_t size
)
260 const __iomem u32
*s
= src
;
262 for (i
= 0; i
< (size
>> 2); i
++)
263 *t
++ = readl_relaxed(s
++);
266 static void memcpy32_toio(void __iomem
*trg
, const void *src
, int size
)
269 u32 __iomem
*t
= trg
;
272 for (i
= 0; i
< (size
>> 2); i
++)
273 writel_relaxed(*s
++, t
++);
277 * Minimal-overhead PIO for data access.
279 static void atmel_read_buf8(struct mtd_info
*mtd
, u8
*buf
, int len
)
281 struct nand_chip
*nand_chip
= mtd
->priv
;
282 struct atmel_nand_host
*host
= nand_chip
->priv
;
284 if (host
->nfc
&& host
->nfc
->use_nfc_sram
&& host
->nfc
->data_in_sram
) {
285 memcpy32_fromio(buf
, host
->nfc
->data_in_sram
, len
);
286 host
->nfc
->data_in_sram
+= len
;
288 __raw_readsb(nand_chip
->IO_ADDR_R
, buf
, len
);
292 static void atmel_read_buf16(struct mtd_info
*mtd
, u8
*buf
, int len
)
294 struct nand_chip
*nand_chip
= mtd
->priv
;
295 struct atmel_nand_host
*host
= nand_chip
->priv
;
297 if (host
->nfc
&& host
->nfc
->use_nfc_sram
&& host
->nfc
->data_in_sram
) {
298 memcpy32_fromio(buf
, host
->nfc
->data_in_sram
, len
);
299 host
->nfc
->data_in_sram
+= len
;
301 __raw_readsw(nand_chip
->IO_ADDR_R
, buf
, len
/ 2);
305 static void atmel_write_buf8(struct mtd_info
*mtd
, const u8
*buf
, int len
)
307 struct nand_chip
*nand_chip
= mtd
->priv
;
309 __raw_writesb(nand_chip
->IO_ADDR_W
, buf
, len
);
312 static void atmel_write_buf16(struct mtd_info
*mtd
, const u8
*buf
, int len
)
314 struct nand_chip
*nand_chip
= mtd
->priv
;
316 __raw_writesw(nand_chip
->IO_ADDR_W
, buf
, len
/ 2);
319 static void dma_complete_func(void *completion
)
321 complete(completion
);
324 static int nfc_set_sram_bank(struct atmel_nand_host
*host
, unsigned int bank
)
326 /* NFC only has two banks. Must be 0 or 1 */
331 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
332 if (host
->mtd
.writesize
> 2048)
334 nfc_writel(host
->nfc
->hsmc_regs
, BANK
, ATMEL_HSMC_NFC_BANK1
);
336 nfc_writel(host
->nfc
->hsmc_regs
, BANK
, ATMEL_HSMC_NFC_BANK0
);
342 static uint
nfc_get_sram_off(struct atmel_nand_host
*host
)
344 if (nfc_readl(host
->nfc
->hsmc_regs
, BANK
) & ATMEL_HSMC_NFC_BANK1
)
345 return NFC_SRAM_BANK1_OFFSET
;
350 static dma_addr_t
nfc_sram_phys(struct atmel_nand_host
*host
)
352 if (nfc_readl(host
->nfc
->hsmc_regs
, BANK
) & ATMEL_HSMC_NFC_BANK1
)
353 return host
->nfc
->sram_bank0_phys
+ NFC_SRAM_BANK1_OFFSET
;
355 return host
->nfc
->sram_bank0_phys
;
358 static int atmel_nand_dma_op(struct mtd_info
*mtd
, void *buf
, int len
,
361 struct dma_device
*dma_dev
;
362 enum dma_ctrl_flags flags
;
363 dma_addr_t dma_src_addr
, dma_dst_addr
, phys_addr
;
364 struct dma_async_tx_descriptor
*tx
= NULL
;
366 struct nand_chip
*chip
= mtd
->priv
;
367 struct atmel_nand_host
*host
= chip
->priv
;
370 enum dma_data_direction dir
= is_read
? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
371 struct atmel_nfc
*nfc
= host
->nfc
;
373 if (buf
>= high_memory
)
376 dma_dev
= host
->dma_chan
->device
;
378 flags
= DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
| DMA_COMPL_SKIP_SRC_UNMAP
|
379 DMA_COMPL_SKIP_DEST_UNMAP
;
381 phys_addr
= dma_map_single(dma_dev
->dev
, p
, len
, dir
);
382 if (dma_mapping_error(dma_dev
->dev
, phys_addr
)) {
383 dev_err(host
->dev
, "Failed to dma_map_single\n");
388 if (nfc
&& nfc
->data_in_sram
)
389 dma_src_addr
= nfc_sram_phys(host
) + (nfc
->data_in_sram
390 - (nfc
->sram_bank0
+ nfc_get_sram_off(host
)));
392 dma_src_addr
= host
->io_phys
;
394 dma_dst_addr
= phys_addr
;
396 dma_src_addr
= phys_addr
;
398 if (nfc
&& nfc
->write_by_sram
)
399 dma_dst_addr
= nfc_sram_phys(host
);
401 dma_dst_addr
= host
->io_phys
;
404 tx
= dma_dev
->device_prep_dma_memcpy(host
->dma_chan
, dma_dst_addr
,
405 dma_src_addr
, len
, flags
);
407 dev_err(host
->dev
, "Failed to prepare DMA memcpy\n");
411 init_completion(&host
->comp
);
412 tx
->callback
= dma_complete_func
;
413 tx
->callback_param
= &host
->comp
;
415 cookie
= tx
->tx_submit(tx
);
416 if (dma_submit_error(cookie
)) {
417 dev_err(host
->dev
, "Failed to do DMA tx_submit\n");
421 dma_async_issue_pending(host
->dma_chan
);
422 wait_for_completion(&host
->comp
);
424 if (is_read
&& nfc
&& nfc
->data_in_sram
)
425 /* After read data from SRAM, need to increase the position */
426 nfc
->data_in_sram
+= len
;
431 dma_unmap_single(dma_dev
->dev
, phys_addr
, len
, dir
);
434 dev_warn(host
->dev
, "Fall back to CPU I/O\n");
438 static void atmel_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
440 struct nand_chip
*chip
= mtd
->priv
;
441 struct atmel_nand_host
*host
= chip
->priv
;
443 if (use_dma
&& len
> mtd
->oobsize
)
444 /* only use DMA for bigger than oob size: better performances */
445 if (atmel_nand_dma_op(mtd
, buf
, len
, 1) == 0)
448 if (host
->board
.bus_width_16
)
449 atmel_read_buf16(mtd
, buf
, len
);
451 atmel_read_buf8(mtd
, buf
, len
);
454 static void atmel_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
456 struct nand_chip
*chip
= mtd
->priv
;
457 struct atmel_nand_host
*host
= chip
->priv
;
459 if (use_dma
&& len
> mtd
->oobsize
)
460 /* only use DMA for bigger than oob size: better performances */
461 if (atmel_nand_dma_op(mtd
, (void *)buf
, len
, 0) == 0)
464 if (host
->board
.bus_width_16
)
465 atmel_write_buf16(mtd
, buf
, len
);
467 atmel_write_buf8(mtd
, buf
, len
);
471 * Return number of ecc bytes per sector according to sector size and
472 * correction capability
474 * Following table shows what at91 PMECC supported:
475 * Correction Capability Sector_512_bytes Sector_1024_bytes
476 * ===================== ================ =================
477 * 2-bits 4-bytes 4-bytes
478 * 4-bits 7-bytes 7-bytes
479 * 8-bits 13-bytes 14-bytes
480 * 12-bits 20-bytes 21-bytes
481 * 24-bits 39-bytes 42-bytes
483 static int pmecc_get_ecc_bytes(int cap
, int sector_size
)
485 int m
= 12 + sector_size
/ 512;
486 return (m
* cap
+ 7) / 8;
489 static void pmecc_config_ecc_layout(struct nand_ecclayout
*layout
,
490 int oobsize
, int ecc_len
)
494 layout
->eccbytes
= ecc_len
;
496 /* ECC will occupy the last ecc_len bytes continuously */
497 for (i
= 0; i
< ecc_len
; i
++)
498 layout
->eccpos
[i
] = oobsize
- ecc_len
+ i
;
500 layout
->oobfree
[0].offset
= 2;
501 layout
->oobfree
[0].length
=
502 oobsize
- ecc_len
- layout
->oobfree
[0].offset
;
505 static void __iomem
*pmecc_get_alpha_to(struct atmel_nand_host
*host
)
509 table_size
= host
->pmecc_sector_size
== 512 ?
510 PMECC_LOOKUP_TABLE_SIZE_512
: PMECC_LOOKUP_TABLE_SIZE_1024
;
512 return host
->pmecc_rom_base
+ host
->pmecc_lookup_table_offset
+
513 table_size
* sizeof(int16_t);
516 static int pmecc_data_alloc(struct atmel_nand_host
*host
)
518 const int cap
= host
->pmecc_corr_cap
;
521 size
= (2 * cap
+ 1) * sizeof(int16_t);
522 host
->pmecc_partial_syn
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
523 host
->pmecc_si
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
524 host
->pmecc_lmu
= devm_kzalloc(host
->dev
,
525 (cap
+ 1) * sizeof(int16_t), GFP_KERNEL
);
526 host
->pmecc_smu
= devm_kzalloc(host
->dev
,
527 (cap
+ 2) * size
, GFP_KERNEL
);
529 size
= (cap
+ 1) * sizeof(int);
530 host
->pmecc_mu
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
531 host
->pmecc_dmu
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
532 host
->pmecc_delta
= devm_kzalloc(host
->dev
, size
, GFP_KERNEL
);
534 if (!host
->pmecc_partial_syn
||
546 static void pmecc_gen_syndrome(struct mtd_info
*mtd
, int sector
)
548 struct nand_chip
*nand_chip
= mtd
->priv
;
549 struct atmel_nand_host
*host
= nand_chip
->priv
;
553 /* Fill odd syndromes */
554 for (i
= 0; i
< host
->pmecc_corr_cap
; i
++) {
555 value
= pmecc_readl_rem_relaxed(host
->ecc
, sector
, i
/ 2);
559 host
->pmecc_partial_syn
[(2 * i
) + 1] = (int16_t)value
;
563 static void pmecc_substitute(struct mtd_info
*mtd
)
565 struct nand_chip
*nand_chip
= mtd
->priv
;
566 struct atmel_nand_host
*host
= nand_chip
->priv
;
567 int16_t __iomem
*alpha_to
= host
->pmecc_alpha_to
;
568 int16_t __iomem
*index_of
= host
->pmecc_index_of
;
569 int16_t *partial_syn
= host
->pmecc_partial_syn
;
570 const int cap
= host
->pmecc_corr_cap
;
574 /* si[] is a table that holds the current syndrome value,
575 * an element of that table belongs to the field
579 memset(&si
[1], 0, sizeof(int16_t) * (2 * cap
- 1));
581 /* Computation 2t syndromes based on S(x) */
583 for (i
= 1; i
< 2 * cap
; i
+= 2) {
584 for (j
= 0; j
< host
->pmecc_degree
; j
++) {
585 if (partial_syn
[i
] & ((unsigned short)0x1 << j
))
586 si
[i
] = readw_relaxed(alpha_to
+ i
* j
) ^ si
[i
];
589 /* Even syndrome = (Odd syndrome) ** 2 */
590 for (i
= 2, j
= 1; j
<= cap
; i
= ++j
<< 1) {
596 tmp
= readw_relaxed(index_of
+ si
[j
]);
597 tmp
= (tmp
* 2) % host
->pmecc_cw_len
;
598 si
[i
] = readw_relaxed(alpha_to
+ tmp
);
605 static void pmecc_get_sigma(struct mtd_info
*mtd
)
607 struct nand_chip
*nand_chip
= mtd
->priv
;
608 struct atmel_nand_host
*host
= nand_chip
->priv
;
610 int16_t *lmu
= host
->pmecc_lmu
;
611 int16_t *si
= host
->pmecc_si
;
612 int *mu
= host
->pmecc_mu
;
613 int *dmu
= host
->pmecc_dmu
; /* Discrepancy */
614 int *delta
= host
->pmecc_delta
; /* Delta order */
615 int cw_len
= host
->pmecc_cw_len
;
616 const int16_t cap
= host
->pmecc_corr_cap
;
617 const int num
= 2 * cap
+ 1;
618 int16_t __iomem
*index_of
= host
->pmecc_index_of
;
619 int16_t __iomem
*alpha_to
= host
->pmecc_alpha_to
;
621 uint32_t dmu_0_count
, tmp
;
622 int16_t *smu
= host
->pmecc_smu
;
624 /* index of largest delta */
636 memset(smu
, 0, sizeof(int16_t) * num
);
639 /* discrepancy set to 1 */
641 /* polynom order set to 0 */
643 delta
[0] = (mu
[0] * 2 - lmu
[0]) >> 1;
649 /* Sigma(x) set to 1 */
650 memset(&smu
[num
], 0, sizeof(int16_t) * num
);
653 /* discrepancy set to S1 */
656 /* polynom order set to 0 */
659 delta
[1] = (mu
[1] * 2 - lmu
[1]) >> 1;
661 /* Init the Sigma(x) last row */
662 memset(&smu
[(cap
+ 1) * num
], 0, sizeof(int16_t) * num
);
664 for (i
= 1; i
<= cap
; i
++) {
666 /* Begin Computing Sigma (Mu+1) and L(mu) */
667 /* check if discrepancy is set to 0 */
671 tmp
= ((cap
- (lmu
[i
] >> 1) - 1) / 2);
672 if ((cap
- (lmu
[i
] >> 1) - 1) & 0x1)
677 if (dmu_0_count
== tmp
) {
678 for (j
= 0; j
<= (lmu
[i
] >> 1) + 1; j
++)
679 smu
[(cap
+ 1) * num
+ j
] =
682 lmu
[cap
+ 1] = lmu
[i
];
687 for (j
= 0; j
<= lmu
[i
] >> 1; j
++)
688 smu
[(i
+ 1) * num
+ j
] = smu
[i
* num
+ j
];
690 /* copy previous polynom order to the next */
695 /* find largest delta with dmu != 0 */
696 for (j
= 0; j
< i
; j
++) {
697 if ((dmu
[j
]) && (delta
[j
] > largest
)) {
703 /* compute difference */
704 diff
= (mu
[i
] - mu
[ro
]);
706 /* Compute degree of the new smu polynomial */
707 if ((lmu
[i
] >> 1) > ((lmu
[ro
] >> 1) + diff
))
710 lmu
[i
+ 1] = ((lmu
[ro
] >> 1) + diff
) * 2;
712 /* Init smu[i+1] with 0 */
713 for (k
= 0; k
< num
; k
++)
714 smu
[(i
+ 1) * num
+ k
] = 0;
716 /* Compute smu[i+1] */
717 for (k
= 0; k
<= lmu
[ro
] >> 1; k
++) {
720 if (!(smu
[ro
* num
+ k
] && dmu
[i
]))
722 a
= readw_relaxed(index_of
+ dmu
[i
]);
723 b
= readw_relaxed(index_of
+ dmu
[ro
]);
724 c
= readw_relaxed(index_of
+ smu
[ro
* num
+ k
]);
725 tmp
= a
+ (cw_len
- b
) + c
;
726 a
= readw_relaxed(alpha_to
+ tmp
% cw_len
);
727 smu
[(i
+ 1) * num
+ (k
+ diff
)] = a
;
730 for (k
= 0; k
<= lmu
[i
] >> 1; k
++)
731 smu
[(i
+ 1) * num
+ k
] ^= smu
[i
* num
+ k
];
734 /* End Computing Sigma (Mu+1) and L(mu) */
735 /* In either case compute delta */
736 delta
[i
+ 1] = (mu
[i
+ 1] * 2 - lmu
[i
+ 1]) >> 1;
738 /* Do not compute discrepancy for the last iteration */
742 for (k
= 0; k
<= (lmu
[i
+ 1] >> 1); k
++) {
745 dmu
[i
+ 1] = si
[tmp
+ 3];
746 } else if (smu
[(i
+ 1) * num
+ k
] && si
[tmp
+ 3 - k
]) {
748 a
= readw_relaxed(index_of
+
749 smu
[(i
+ 1) * num
+ k
]);
750 b
= si
[2 * (i
- 1) + 3 - k
];
751 c
= readw_relaxed(index_of
+ b
);
754 dmu
[i
+ 1] = readw_relaxed(alpha_to
+ tmp
) ^
763 static int pmecc_err_location(struct mtd_info
*mtd
)
765 struct nand_chip
*nand_chip
= mtd
->priv
;
766 struct atmel_nand_host
*host
= nand_chip
->priv
;
767 unsigned long end_time
;
768 const int cap
= host
->pmecc_corr_cap
;
769 const int num
= 2 * cap
+ 1;
770 int sector_size
= host
->pmecc_sector_size
;
771 int err_nbr
= 0; /* number of error */
772 int roots_nbr
; /* number of roots */
775 int16_t *smu
= host
->pmecc_smu
;
777 pmerrloc_writel(host
->pmerrloc_base
, ELDIS
, PMERRLOC_DISABLE
);
779 for (i
= 0; i
<= host
->pmecc_lmu
[cap
+ 1] >> 1; i
++) {
780 pmerrloc_writel_sigma_relaxed(host
->pmerrloc_base
, i
,
781 smu
[(cap
+ 1) * num
+ i
]);
785 val
= (err_nbr
- 1) << 16;
786 if (sector_size
== 1024)
789 pmerrloc_writel(host
->pmerrloc_base
, ELCFG
, val
);
790 pmerrloc_writel(host
->pmerrloc_base
, ELEN
,
791 sector_size
* 8 + host
->pmecc_degree
* cap
);
793 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
794 while (!(pmerrloc_readl_relaxed(host
->pmerrloc_base
, ELISR
)
795 & PMERRLOC_CALC_DONE
)) {
796 if (unlikely(time_after(jiffies
, end_time
))) {
797 dev_err(host
->dev
, "PMECC: Timeout to calculate error location.\n");
803 roots_nbr
= (pmerrloc_readl_relaxed(host
->pmerrloc_base
, ELISR
)
804 & PMERRLOC_ERR_NUM_MASK
) >> 8;
805 /* Number of roots == degree of smu hence <= cap */
806 if (roots_nbr
== host
->pmecc_lmu
[cap
+ 1] >> 1)
809 /* Number of roots does not match the degree of smu
810 * unable to correct error */
814 static void pmecc_correct_data(struct mtd_info
*mtd
, uint8_t *buf
, uint8_t *ecc
,
815 int sector_num
, int extra_bytes
, int err_nbr
)
817 struct nand_chip
*nand_chip
= mtd
->priv
;
818 struct atmel_nand_host
*host
= nand_chip
->priv
;
820 int byte_pos
, bit_pos
, sector_size
, pos
;
824 sector_size
= host
->pmecc_sector_size
;
827 tmp
= pmerrloc_readl_el_relaxed(host
->pmerrloc_base
, i
) - 1;
831 if (byte_pos
>= (sector_size
+ extra_bytes
))
832 BUG(); /* should never happen */
834 if (byte_pos
< sector_size
) {
835 err_byte
= *(buf
+ byte_pos
);
836 *(buf
+ byte_pos
) ^= (1 << bit_pos
);
838 pos
= sector_num
* host
->pmecc_sector_size
+ byte_pos
;
839 dev_info(host
->dev
, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
840 pos
, bit_pos
, err_byte
, *(buf
+ byte_pos
));
842 /* Bit flip in OOB area */
843 tmp
= sector_num
* host
->pmecc_bytes_per_sector
844 + (byte_pos
- sector_size
);
846 ecc
[tmp
] ^= (1 << bit_pos
);
848 pos
= tmp
+ nand_chip
->ecc
.layout
->eccpos
[0];
849 dev_info(host
->dev
, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
850 pos
, bit_pos
, err_byte
, ecc
[tmp
]);
860 static int pmecc_correction(struct mtd_info
*mtd
, u32 pmecc_stat
, uint8_t *buf
,
863 struct nand_chip
*nand_chip
= mtd
->priv
;
864 struct atmel_nand_host
*host
= nand_chip
->priv
;
865 int i
, err_nbr
, eccbytes
;
869 eccbytes
= nand_chip
->ecc
.bytes
;
870 for (i
= 0; i
< eccbytes
; i
++)
873 /* Erased page, return OK */
877 for (i
= 0; i
< host
->pmecc_sector_number
; i
++) {
879 if (pmecc_stat
& 0x1) {
880 buf_pos
= buf
+ i
* host
->pmecc_sector_size
;
882 pmecc_gen_syndrome(mtd
, i
);
883 pmecc_substitute(mtd
);
884 pmecc_get_sigma(mtd
);
886 err_nbr
= pmecc_err_location(mtd
);
888 dev_err(host
->dev
, "PMECC: Too many errors\n");
889 mtd
->ecc_stats
.failed
++;
892 pmecc_correct_data(mtd
, buf_pos
, ecc
, i
,
893 host
->pmecc_bytes_per_sector
, err_nbr
);
894 mtd
->ecc_stats
.corrected
+= err_nbr
;
895 total_err
+= err_nbr
;
904 static void pmecc_enable(struct atmel_nand_host
*host
, int ecc_op
)
908 if (ecc_op
!= NAND_ECC_READ
&& ecc_op
!= NAND_ECC_WRITE
) {
909 dev_err(host
->dev
, "atmel_nand: wrong pmecc operation type!");
913 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_RST
);
914 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
915 val
= pmecc_readl_relaxed(host
->ecc
, CFG
);
917 if (ecc_op
== NAND_ECC_READ
)
918 pmecc_writel(host
->ecc
, CFG
, (val
& ~PMECC_CFG_WRITE_OP
)
919 | PMECC_CFG_AUTO_ENABLE
);
921 pmecc_writel(host
->ecc
, CFG
, (val
| PMECC_CFG_WRITE_OP
)
922 & ~PMECC_CFG_AUTO_ENABLE
);
924 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_ENABLE
);
925 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DATA
);
928 static int atmel_nand_pmecc_read_page(struct mtd_info
*mtd
,
929 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
931 struct atmel_nand_host
*host
= chip
->priv
;
932 int eccsize
= chip
->ecc
.size
;
933 uint8_t *oob
= chip
->oob_poi
;
934 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
936 unsigned long end_time
;
939 if (!host
->nfc
|| !host
->nfc
->use_nfc_sram
)
940 pmecc_enable(host
, NAND_ECC_READ
);
942 chip
->read_buf(mtd
, buf
, eccsize
);
943 chip
->read_buf(mtd
, oob
, mtd
->oobsize
);
945 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
946 while ((pmecc_readl_relaxed(host
->ecc
, SR
) & PMECC_SR_BUSY
)) {
947 if (unlikely(time_after(jiffies
, end_time
))) {
948 dev_err(host
->dev
, "PMECC: Timeout to get error status.\n");
954 stat
= pmecc_readl_relaxed(host
->ecc
, ISR
);
956 bitflips
= pmecc_correction(mtd
, stat
, buf
, &oob
[eccpos
[0]]);
958 /* uncorrectable errors */
965 static int atmel_nand_pmecc_write_page(struct mtd_info
*mtd
,
966 struct nand_chip
*chip
, const uint8_t *buf
, int oob_required
)
968 struct atmel_nand_host
*host
= chip
->priv
;
969 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
971 unsigned long end_time
;
973 if (!host
->nfc
|| !host
->nfc
->write_by_sram
) {
974 pmecc_enable(host
, NAND_ECC_WRITE
);
975 chip
->write_buf(mtd
, (u8
*)buf
, mtd
->writesize
);
978 end_time
= jiffies
+ msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS
);
979 while ((pmecc_readl_relaxed(host
->ecc
, SR
) & PMECC_SR_BUSY
)) {
980 if (unlikely(time_after(jiffies
, end_time
))) {
981 dev_err(host
->dev
, "PMECC: Timeout to get ECC value.\n");
987 for (i
= 0; i
< host
->pmecc_sector_number
; i
++) {
988 for (j
= 0; j
< host
->pmecc_bytes_per_sector
; j
++) {
991 pos
= i
* host
->pmecc_bytes_per_sector
+ j
;
992 chip
->oob_poi
[eccpos
[pos
]] =
993 pmecc_readb_ecc_relaxed(host
->ecc
, i
, j
);
996 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1001 static void atmel_pmecc_core_init(struct mtd_info
*mtd
)
1003 struct nand_chip
*nand_chip
= mtd
->priv
;
1004 struct atmel_nand_host
*host
= nand_chip
->priv
;
1006 struct nand_ecclayout
*ecc_layout
;
1008 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_RST
);
1009 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
1011 switch (host
->pmecc_corr_cap
) {
1013 val
= PMECC_CFG_BCH_ERR2
;
1016 val
= PMECC_CFG_BCH_ERR4
;
1019 val
= PMECC_CFG_BCH_ERR8
;
1022 val
= PMECC_CFG_BCH_ERR12
;
1025 val
= PMECC_CFG_BCH_ERR24
;
1029 if (host
->pmecc_sector_size
== 512)
1030 val
|= PMECC_CFG_SECTOR512
;
1031 else if (host
->pmecc_sector_size
== 1024)
1032 val
|= PMECC_CFG_SECTOR1024
;
1034 switch (host
->pmecc_sector_number
) {
1036 val
|= PMECC_CFG_PAGE_1SECTOR
;
1039 val
|= PMECC_CFG_PAGE_2SECTORS
;
1042 val
|= PMECC_CFG_PAGE_4SECTORS
;
1045 val
|= PMECC_CFG_PAGE_8SECTORS
;
1049 val
|= (PMECC_CFG_READ_OP
| PMECC_CFG_SPARE_DISABLE
1050 | PMECC_CFG_AUTO_DISABLE
);
1051 pmecc_writel(host
->ecc
, CFG
, val
);
1053 ecc_layout
= nand_chip
->ecc
.layout
;
1054 pmecc_writel(host
->ecc
, SAREA
, mtd
->oobsize
- 1);
1055 pmecc_writel(host
->ecc
, SADDR
, ecc_layout
->eccpos
[0]);
1056 pmecc_writel(host
->ecc
, EADDR
,
1057 ecc_layout
->eccpos
[ecc_layout
->eccbytes
- 1]);
1058 /* See datasheet about PMECC Clock Control Register */
1059 pmecc_writel(host
->ecc
, CLK
, 2);
1060 pmecc_writel(host
->ecc
, IDR
, 0xff);
1061 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_ENABLE
);
1065 * Get ECC requirement in ONFI parameters, returns -1 if ONFI
1066 * parameters is not supported.
1067 * return 0 if success to get the ECC requirement.
1069 static int get_onfi_ecc_param(struct nand_chip
*chip
,
1070 int *ecc_bits
, int *sector_size
)
1072 *ecc_bits
= *sector_size
= 0;
1074 if (chip
->onfi_params
.ecc_bits
== 0xff)
1075 /* TODO: the sector_size and ecc_bits need to be find in
1076 * extended ecc parameter, currently we don't support it.
1080 *ecc_bits
= chip
->onfi_params
.ecc_bits
;
1082 /* The default sector size (ecc codeword size) is 512 */
1089 * Get ecc requirement from ONFI parameters ecc requirement.
1090 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1091 * will set them according to ONFI ecc requirement. Otherwise, use the
1092 * value in DTS file.
1093 * return 0 if success. otherwise return error code.
1095 static int pmecc_choose_ecc(struct atmel_nand_host
*host
,
1096 int *cap
, int *sector_size
)
1098 /* Get ECC requirement from ONFI parameters */
1099 *cap
= *sector_size
= 0;
1100 if (host
->nand_chip
.onfi_version
) {
1101 if (!get_onfi_ecc_param(&host
->nand_chip
, cap
, sector_size
))
1102 dev_info(host
->dev
, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
1103 *cap
, *sector_size
);
1105 dev_info(host
->dev
, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
1107 dev_info(host
->dev
, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
1109 if (*cap
== 0 && *sector_size
== 0) {
1114 /* If dts file doesn't specify then use the one in ONFI parameters */
1115 if (host
->pmecc_corr_cap
== 0) {
1116 /* use the most fitable ecc bits (the near bigger one ) */
1118 host
->pmecc_corr_cap
= 2;
1120 host
->pmecc_corr_cap
= 4;
1122 host
->pmecc_corr_cap
= 8;
1123 else if (*cap
<= 12)
1124 host
->pmecc_corr_cap
= 12;
1125 else if (*cap
<= 24)
1126 host
->pmecc_corr_cap
= 24;
1130 if (host
->pmecc_sector_size
== 0) {
1131 /* use the most fitable sector size (the near smaller one ) */
1132 if (*sector_size
>= 1024)
1133 host
->pmecc_sector_size
= 1024;
1134 else if (*sector_size
>= 512)
1135 host
->pmecc_sector_size
= 512;
1142 static int __init
atmel_pmecc_nand_init_params(struct platform_device
*pdev
,
1143 struct atmel_nand_host
*host
)
1145 struct mtd_info
*mtd
= &host
->mtd
;
1146 struct nand_chip
*nand_chip
= &host
->nand_chip
;
1147 struct resource
*regs
, *regs_pmerr
, *regs_rom
;
1148 int cap
, sector_size
, err_no
;
1150 err_no
= pmecc_choose_ecc(host
, &cap
, §or_size
);
1152 dev_err(host
->dev
, "The NAND flash's ECC requirement are not support!");
1156 if (cap
> host
->pmecc_corr_cap
||
1157 sector_size
!= host
->pmecc_sector_size
)
1158 dev_info(host
->dev
, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1160 cap
= host
->pmecc_corr_cap
;
1161 sector_size
= host
->pmecc_sector_size
;
1162 host
->pmecc_lookup_table_offset
= (sector_size
== 512) ?
1163 host
->pmecc_lookup_table_offset_512
:
1164 host
->pmecc_lookup_table_offset_1024
;
1166 dev_info(host
->dev
, "Initialize PMECC params, cap: %d, sector: %d\n",
1169 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1172 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1173 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1177 host
->ecc
= devm_ioremap_resource(&pdev
->dev
, regs
);
1178 if (IS_ERR(host
->ecc
)) {
1179 dev_err(host
->dev
, "ioremap failed\n");
1180 err_no
= PTR_ERR(host
->ecc
);
1184 regs_pmerr
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1185 host
->pmerrloc_base
= devm_ioremap_resource(&pdev
->dev
, regs_pmerr
);
1186 if (IS_ERR(host
->pmerrloc_base
)) {
1188 "Can not get I/O resource for PMECC ERRLOC controller!\n");
1189 err_no
= PTR_ERR(host
->pmerrloc_base
);
1193 regs_rom
= platform_get_resource(pdev
, IORESOURCE_MEM
, 3);
1194 host
->pmecc_rom_base
= devm_ioremap_resource(&pdev
->dev
, regs_rom
);
1195 if (IS_ERR(host
->pmecc_rom_base
)) {
1196 dev_err(host
->dev
, "Can not get I/O resource for ROM!\n");
1197 err_no
= PTR_ERR(host
->pmecc_rom_base
);
1201 /* ECC is calculated for the whole page (1 step) */
1202 nand_chip
->ecc
.size
= mtd
->writesize
;
1204 /* set ECC page size and oob layout */
1205 switch (mtd
->writesize
) {
1207 host
->pmecc_degree
= (sector_size
== 512) ?
1208 PMECC_GF_DIMENSION_13
: PMECC_GF_DIMENSION_14
;
1209 host
->pmecc_cw_len
= (1 << host
->pmecc_degree
) - 1;
1210 host
->pmecc_sector_number
= mtd
->writesize
/ sector_size
;
1211 host
->pmecc_bytes_per_sector
= pmecc_get_ecc_bytes(
1213 host
->pmecc_alpha_to
= pmecc_get_alpha_to(host
);
1214 host
->pmecc_index_of
= host
->pmecc_rom_base
+
1215 host
->pmecc_lookup_table_offset
;
1217 nand_chip
->ecc
.steps
= 1;
1218 nand_chip
->ecc
.strength
= cap
;
1219 nand_chip
->ecc
.bytes
= host
->pmecc_bytes_per_sector
*
1220 host
->pmecc_sector_number
;
1221 if (nand_chip
->ecc
.bytes
> mtd
->oobsize
- 2) {
1222 dev_err(host
->dev
, "No room for ECC bytes\n");
1226 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo
,
1228 nand_chip
->ecc
.bytes
);
1229 nand_chip
->ecc
.layout
= &atmel_pmecc_oobinfo
;
1236 "Unsupported page size for PMECC, use Software ECC\n");
1238 /* page size not handled by HW ECC */
1239 /* switching back to soft ECC */
1240 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1244 /* Allocate data for PMECC computation */
1245 err_no
= pmecc_data_alloc(host
);
1248 "Cannot allocate memory for PMECC computation!\n");
1252 nand_chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1253 nand_chip
->ecc
.read_page
= atmel_nand_pmecc_read_page
;
1254 nand_chip
->ecc
.write_page
= atmel_nand_pmecc_write_page
;
1256 atmel_pmecc_core_init(mtd
);
1267 * function called after a write
1269 * mtd: MTD block structure
1270 * dat: raw data (unused)
1271 * ecc_code: buffer for ECC
1273 static int atmel_nand_calculate(struct mtd_info
*mtd
,
1274 const u_char
*dat
, unsigned char *ecc_code
)
1276 struct nand_chip
*nand_chip
= mtd
->priv
;
1277 struct atmel_nand_host
*host
= nand_chip
->priv
;
1278 unsigned int ecc_value
;
1280 /* get the first 2 ECC bytes */
1281 ecc_value
= ecc_readl(host
->ecc
, PR
);
1283 ecc_code
[0] = ecc_value
& 0xFF;
1284 ecc_code
[1] = (ecc_value
>> 8) & 0xFF;
1286 /* get the last 2 ECC bytes */
1287 ecc_value
= ecc_readl(host
->ecc
, NPR
) & ATMEL_ECC_NPARITY
;
1289 ecc_code
[2] = ecc_value
& 0xFF;
1290 ecc_code
[3] = (ecc_value
>> 8) & 0xFF;
1296 * HW ECC read page function
1298 * mtd: mtd info structure
1299 * chip: nand chip info structure
1300 * buf: buffer to store read data
1301 * oob_required: caller expects OOB data read to chip->oob_poi
1303 static int atmel_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1304 uint8_t *buf
, int oob_required
, int page
)
1306 int eccsize
= chip
->ecc
.size
;
1307 int eccbytes
= chip
->ecc
.bytes
;
1308 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1310 uint8_t *oob
= chip
->oob_poi
;
1313 unsigned int max_bitflips
= 0;
1316 * Errata: ALE is incorrectly wired up to the ECC controller
1317 * on the AP7000, so it will include the address cycles in the
1320 * Workaround: Reset the parity registers before reading the
1323 struct atmel_nand_host
*host
= chip
->priv
;
1324 if (host
->board
.need_reset_workaround
)
1325 ecc_writel(host
->ecc
, CR
, ATMEL_ECC_RST
);
1328 chip
->read_buf(mtd
, p
, eccsize
);
1330 /* move to ECC position if needed */
1331 if (eccpos
[0] != 0) {
1332 /* This only works on large pages
1333 * because the ECC controller waits for
1334 * NAND_CMD_RNDOUTSTART after the
1336 * anyway, for small pages, the eccpos[0] == 0
1338 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1339 mtd
->writesize
+ eccpos
[0], -1);
1342 /* the ECC controller needs to read the ECC just after the data */
1343 ecc_pos
= oob
+ eccpos
[0];
1344 chip
->read_buf(mtd
, ecc_pos
, eccbytes
);
1346 /* check if there's an error */
1347 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1350 mtd
->ecc_stats
.failed
++;
1352 mtd
->ecc_stats
.corrected
+= stat
;
1353 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1356 /* get back to oob start (end of page) */
1357 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1360 chip
->read_buf(mtd
, oob
, mtd
->oobsize
);
1362 return max_bitflips
;
1368 * function called after a read
1370 * mtd: MTD block structure
1371 * dat: raw data read from the chip
1372 * read_ecc: ECC from the chip (unused)
1375 * Detect and correct a 1 bit error for a page
1377 static int atmel_nand_correct(struct mtd_info
*mtd
, u_char
*dat
,
1378 u_char
*read_ecc
, u_char
*isnull
)
1380 struct nand_chip
*nand_chip
= mtd
->priv
;
1381 struct atmel_nand_host
*host
= nand_chip
->priv
;
1382 unsigned int ecc_status
;
1383 unsigned int ecc_word
, ecc_bit
;
1385 /* get the status from the Status Register */
1386 ecc_status
= ecc_readl(host
->ecc
, SR
);
1388 /* if there's no error */
1389 if (likely(!(ecc_status
& ATMEL_ECC_RECERR
)))
1392 /* get error bit offset (4 bits) */
1393 ecc_bit
= ecc_readl(host
->ecc
, PR
) & ATMEL_ECC_BITADDR
;
1394 /* get word address (12 bits) */
1395 ecc_word
= ecc_readl(host
->ecc
, PR
) & ATMEL_ECC_WORDADDR
;
1398 /* if there are multiple errors */
1399 if (ecc_status
& ATMEL_ECC_MULERR
) {
1400 /* check if it is a freshly erased block
1401 * (filled with 0xff) */
1402 if ((ecc_bit
== ATMEL_ECC_BITADDR
)
1403 && (ecc_word
== (ATMEL_ECC_WORDADDR
>> 4))) {
1404 /* the block has just been erased, return OK */
1407 /* it doesn't seems to be a freshly
1409 * We can't correct so many errors */
1410 dev_dbg(host
->dev
, "atmel_nand : multiple errors detected."
1411 " Unable to correct.\n");
1415 /* if there's a single bit error : we can correct it */
1416 if (ecc_status
& ATMEL_ECC_ECCERR
) {
1417 /* there's nothing much to do here.
1418 * the bit error is on the ECC itself.
1420 dev_dbg(host
->dev
, "atmel_nand : one bit error on ECC code."
1421 " Nothing to correct\n");
1425 dev_dbg(host
->dev
, "atmel_nand : one bit error on data."
1426 " (word offset in the page :"
1427 " 0x%x bit offset : 0x%x)\n",
1429 /* correct the error */
1430 if (nand_chip
->options
& NAND_BUSWIDTH_16
) {
1432 ((unsigned short *) dat
)[ecc_word
] ^= (1 << ecc_bit
);
1435 dat
[ecc_word
] ^= (1 << ecc_bit
);
1437 dev_dbg(host
->dev
, "atmel_nand : error corrected\n");
1442 * Enable HW ECC : unused on most chips
1444 static void atmel_nand_hwctl(struct mtd_info
*mtd
, int mode
)
1446 struct nand_chip
*nand_chip
= mtd
->priv
;
1447 struct atmel_nand_host
*host
= nand_chip
->priv
;
1449 if (host
->board
.need_reset_workaround
)
1450 ecc_writel(host
->ecc
, CR
, ATMEL_ECC_RST
);
1453 #if defined(CONFIG_OF)
1454 static int atmel_of_init_port(struct atmel_nand_host
*host
,
1455 struct device_node
*np
)
1460 struct atmel_nand_data
*board
= &host
->board
;
1461 enum of_gpio_flags flags
;
1463 if (of_property_read_u32(np
, "atmel,nand-addr-offset", &val
) == 0) {
1465 dev_err(host
->dev
, "invalid addr-offset %u\n", val
);
1471 if (of_property_read_u32(np
, "atmel,nand-cmd-offset", &val
) == 0) {
1473 dev_err(host
->dev
, "invalid cmd-offset %u\n", val
);
1479 ecc_mode
= of_get_nand_ecc_mode(np
);
1481 board
->ecc_mode
= ecc_mode
< 0 ? NAND_ECC_SOFT
: ecc_mode
;
1483 board
->on_flash_bbt
= of_get_nand_on_flash_bbt(np
);
1485 board
->has_dma
= of_property_read_bool(np
, "atmel,nand-has-dma");
1487 if (of_get_nand_bus_width(np
) == 16)
1488 board
->bus_width_16
= 1;
1490 board
->rdy_pin
= of_get_gpio_flags(np
, 0, &flags
);
1491 board
->rdy_pin_active_low
= (flags
== OF_GPIO_ACTIVE_LOW
);
1493 board
->enable_pin
= of_get_gpio(np
, 1);
1494 board
->det_pin
= of_get_gpio(np
, 2);
1496 host
->has_pmecc
= of_property_read_bool(np
, "atmel,has-pmecc");
1498 /* load the nfc driver if there is */
1499 of_platform_populate(np
, NULL
, NULL
, host
->dev
);
1501 if (!(board
->ecc_mode
== NAND_ECC_HW
) || !host
->has_pmecc
)
1502 return 0; /* Not using PMECC */
1504 /* use PMECC, get correction capability, sector size and lookup
1506 * If correction bits and sector size are not specified, then find
1507 * them from NAND ONFI parameters.
1509 if (of_property_read_u32(np
, "atmel,pmecc-cap", &val
) == 0) {
1510 if ((val
!= 2) && (val
!= 4) && (val
!= 8) && (val
!= 12) &&
1513 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1517 host
->pmecc_corr_cap
= (u8
)val
;
1520 if (of_property_read_u32(np
, "atmel,pmecc-sector-size", &val
) == 0) {
1521 if ((val
!= 512) && (val
!= 1024)) {
1523 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1527 host
->pmecc_sector_size
= (u16
)val
;
1530 if (of_property_read_u32_array(np
, "atmel,pmecc-lookup-table-offset",
1532 dev_err(host
->dev
, "Cannot get PMECC lookup table offset\n");
1535 if (!offset
[0] && !offset
[1]) {
1536 dev_err(host
->dev
, "Invalid PMECC lookup table offset\n");
1539 host
->pmecc_lookup_table_offset_512
= offset
[0];
1540 host
->pmecc_lookup_table_offset_1024
= offset
[1];
1545 static int atmel_of_init_port(struct atmel_nand_host
*host
,
1546 struct device_node
*np
)
1552 static int __init
atmel_hw_nand_init_params(struct platform_device
*pdev
,
1553 struct atmel_nand_host
*host
)
1555 struct mtd_info
*mtd
= &host
->mtd
;
1556 struct nand_chip
*nand_chip
= &host
->nand_chip
;
1557 struct resource
*regs
;
1559 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1562 "Can't get I/O resource regs, use software ECC\n");
1563 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1567 host
->ecc
= devm_ioremap_resource(&pdev
->dev
, regs
);
1568 if (IS_ERR(host
->ecc
)) {
1569 dev_err(host
->dev
, "ioremap failed\n");
1570 return PTR_ERR(host
->ecc
);
1573 /* ECC is calculated for the whole page (1 step) */
1574 nand_chip
->ecc
.size
= mtd
->writesize
;
1576 /* set ECC page size and oob layout */
1577 switch (mtd
->writesize
) {
1579 nand_chip
->ecc
.layout
= &atmel_oobinfo_small
;
1580 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_528
);
1583 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1584 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_1056
);
1587 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1588 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_2112
);
1591 nand_chip
->ecc
.layout
= &atmel_oobinfo_large
;
1592 ecc_writel(host
->ecc
, MR
, ATMEL_ECC_PAGESIZE_4224
);
1595 /* page size not handled by HW ECC */
1596 /* switching back to soft ECC */
1597 nand_chip
->ecc
.mode
= NAND_ECC_SOFT
;
1601 /* set up for HW ECC */
1602 nand_chip
->ecc
.calculate
= atmel_nand_calculate
;
1603 nand_chip
->ecc
.correct
= atmel_nand_correct
;
1604 nand_chip
->ecc
.hwctl
= atmel_nand_hwctl
;
1605 nand_chip
->ecc
.read_page
= atmel_nand_read_page
;
1606 nand_chip
->ecc
.bytes
= 4;
1607 nand_chip
->ecc
.strength
= 1;
1612 /* SMC interrupt service routine */
1613 static irqreturn_t
hsmc_interrupt(int irq
, void *dev_id
)
1615 struct atmel_nand_host
*host
= dev_id
;
1616 u32 status
, mask
, pending
;
1617 irqreturn_t ret
= IRQ_HANDLED
;
1619 status
= nfc_readl(host
->nfc
->hsmc_regs
, SR
);
1620 mask
= nfc_readl(host
->nfc
->hsmc_regs
, IMR
);
1621 pending
= status
& mask
;
1623 if (pending
& NFC_SR_XFR_DONE
) {
1624 complete(&host
->nfc
->comp_nfc
);
1625 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, NFC_SR_XFR_DONE
);
1626 } else if (pending
& NFC_SR_RB_EDGE
) {
1627 complete(&host
->nfc
->comp_nfc
);
1628 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, NFC_SR_RB_EDGE
);
1629 } else if (pending
& NFC_SR_CMD_DONE
) {
1630 complete(&host
->nfc
->comp_nfc
);
1631 nfc_writel(host
->nfc
->hsmc_regs
, IDR
, NFC_SR_CMD_DONE
);
1639 /* NFC(Nand Flash Controller) related functions */
1640 static int nfc_wait_interrupt(struct atmel_nand_host
*host
, u32 flag
)
1642 unsigned long timeout
;
1643 init_completion(&host
->nfc
->comp_nfc
);
1645 /* Enable interrupt that need to wait for */
1646 nfc_writel(host
->nfc
->hsmc_regs
, IER
, flag
);
1648 timeout
= wait_for_completion_timeout(&host
->nfc
->comp_nfc
,
1649 msecs_to_jiffies(NFC_TIME_OUT_MS
));
1653 /* Time out to wait for the interrupt */
1654 dev_err(host
->dev
, "Time out to wait for interrupt: 0x%08x\n", flag
);
1658 static int nfc_send_command(struct atmel_nand_host
*host
,
1659 unsigned int cmd
, unsigned int addr
, unsigned char cycle0
)
1661 unsigned long timeout
;
1663 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1666 timeout
= jiffies
+ msecs_to_jiffies(NFC_TIME_OUT_MS
);
1667 while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY
, host
->nfc
->base_cmd_regs
)
1668 & NFCADDR_CMD_NFCBUSY
) {
1669 if (time_after(jiffies
, timeout
)) {
1671 "Time out to wait CMD_NFCBUSY ready!\n");
1675 nfc_writel(host
->nfc
->hsmc_regs
, CYCLE0
, cycle0
);
1676 nfc_cmd_addr1234_writel(cmd
, addr
, host
->nfc
->base_cmd_regs
);
1677 return nfc_wait_interrupt(host
, NFC_SR_CMD_DONE
);
1680 static int nfc_device_ready(struct mtd_info
*mtd
)
1682 struct nand_chip
*nand_chip
= mtd
->priv
;
1683 struct atmel_nand_host
*host
= nand_chip
->priv
;
1684 if (!nfc_wait_interrupt(host
, NFC_SR_RB_EDGE
))
1689 static void nfc_select_chip(struct mtd_info
*mtd
, int chip
)
1691 struct nand_chip
*nand_chip
= mtd
->priv
;
1692 struct atmel_nand_host
*host
= nand_chip
->priv
;
1695 nfc_writel(host
->nfc
->hsmc_regs
, CTRL
, NFC_CTRL_DISABLE
);
1697 nfc_writel(host
->nfc
->hsmc_regs
, CTRL
, NFC_CTRL_ENABLE
);
1700 static int nfc_make_addr(struct mtd_info
*mtd
, int column
, int page_addr
,
1701 unsigned int *addr1234
, unsigned int *cycle0
)
1703 struct nand_chip
*chip
= mtd
->priv
;
1706 unsigned char addr_bytes
[8];
1707 int index
= 0, bit_shift
;
1709 BUG_ON(addr1234
== NULL
|| cycle0
== NULL
);
1715 if (chip
->options
& NAND_BUSWIDTH_16
)
1717 addr_bytes
[acycle
++] = column
& 0xff;
1718 if (mtd
->writesize
> 512)
1719 addr_bytes
[acycle
++] = (column
>> 8) & 0xff;
1722 if (page_addr
!= -1) {
1723 addr_bytes
[acycle
++] = page_addr
& 0xff;
1724 addr_bytes
[acycle
++] = (page_addr
>> 8) & 0xff;
1725 if (chip
->chipsize
> (128 << 20))
1726 addr_bytes
[acycle
++] = (page_addr
>> 16) & 0xff;
1730 *cycle0
= addr_bytes
[index
++];
1732 for (bit_shift
= 0; index
< acycle
; bit_shift
+= 8)
1733 *addr1234
+= addr_bytes
[index
++] << bit_shift
;
1735 /* return acycle in cmd register */
1736 return acycle
<< NFCADDR_CMD_ACYCLE_BIT_POS
;
1739 static void nfc_nand_command(struct mtd_info
*mtd
, unsigned int command
,
1740 int column
, int page_addr
)
1742 struct nand_chip
*chip
= mtd
->priv
;
1743 struct atmel_nand_host
*host
= chip
->priv
;
1744 unsigned long timeout
;
1745 unsigned int nfc_addr_cmd
= 0;
1747 unsigned int cmd1
= command
<< NFCADDR_CMD_CMD1_BIT_POS
;
1749 /* Set default settings: no cmd2, no addr cycle. read from nand */
1750 unsigned int cmd2
= 0;
1751 unsigned int vcmd2
= 0;
1752 int acycle
= NFCADDR_CMD_ACYCLE_NONE
;
1753 int csid
= NFCADDR_CMD_CSID_3
;
1754 int dataen
= NFCADDR_CMD_DATADIS
;
1755 int nfcwr
= NFCADDR_CMD_NFCRD
;
1756 unsigned int addr1234
= 0;
1757 unsigned int cycle0
= 0;
1758 bool do_addr
= true;
1759 host
->nfc
->data_in_sram
= NULL
;
1761 dev_dbg(host
->dev
, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1762 __func__
, command
, column
, page_addr
);
1765 case NAND_CMD_RESET
:
1766 nfc_addr_cmd
= cmd1
| acycle
| csid
| dataen
| nfcwr
;
1767 nfc_send_command(host
, nfc_addr_cmd
, addr1234
, cycle0
);
1768 udelay(chip
->chip_delay
);
1770 nfc_nand_command(mtd
, NAND_CMD_STATUS
, -1, -1);
1771 timeout
= jiffies
+ msecs_to_jiffies(NFC_TIME_OUT_MS
);
1772 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
)) {
1773 if (time_after(jiffies
, timeout
)) {
1775 "Time out to wait status ready!\n");
1780 case NAND_CMD_STATUS
:
1783 case NAND_CMD_PARAM
:
1784 case NAND_CMD_READID
:
1786 acycle
= NFCADDR_CMD_ACYCLE_1
;
1790 case NAND_CMD_RNDOUT
:
1791 cmd2
= NAND_CMD_RNDOUTSTART
<< NFCADDR_CMD_CMD2_BIT_POS
;
1792 vcmd2
= NFCADDR_CMD_VCMD2
;
1794 case NAND_CMD_READ0
:
1795 case NAND_CMD_READOOB
:
1796 if (command
== NAND_CMD_READOOB
) {
1797 column
+= mtd
->writesize
;
1798 command
= NAND_CMD_READ0
; /* only READ0 is valid */
1799 cmd1
= command
<< NFCADDR_CMD_CMD1_BIT_POS
;
1801 if (host
->nfc
->use_nfc_sram
) {
1802 /* Enable Data transfer to sram */
1803 dataen
= NFCADDR_CMD_DATAEN
;
1805 /* Need enable PMECC now, since NFC will transfer
1806 * data in bus after sending nfc read command.
1808 if (chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
)
1809 pmecc_enable(host
, NAND_ECC_READ
);
1812 cmd2
= NAND_CMD_READSTART
<< NFCADDR_CMD_CMD2_BIT_POS
;
1813 vcmd2
= NFCADDR_CMD_VCMD2
;
1815 /* For prgramming command, the cmd need set to write enable */
1816 case NAND_CMD_PAGEPROG
:
1817 case NAND_CMD_SEQIN
:
1818 case NAND_CMD_RNDIN
:
1819 nfcwr
= NFCADDR_CMD_NFCWR
;
1820 if (host
->nfc
->will_write_sram
&& command
== NAND_CMD_SEQIN
)
1821 dataen
= NFCADDR_CMD_DATAEN
;
1828 acycle
= nfc_make_addr(mtd
, column
, page_addr
, &addr1234
,
1831 nfc_addr_cmd
= cmd1
| cmd2
| vcmd2
| acycle
| csid
| dataen
| nfcwr
;
1832 nfc_send_command(host
, nfc_addr_cmd
, addr1234
, cycle0
);
1834 if (dataen
== NFCADDR_CMD_DATAEN
)
1835 if (nfc_wait_interrupt(host
, NFC_SR_XFR_DONE
))
1836 dev_err(host
->dev
, "something wrong, No XFR_DONE interrupt comes.\n");
1839 * Program and erase have their own busy handlers status, sequential
1840 * in, and deplete1 need no delay.
1843 case NAND_CMD_CACHEDPROG
:
1844 case NAND_CMD_PAGEPROG
:
1845 case NAND_CMD_ERASE1
:
1846 case NAND_CMD_ERASE2
:
1847 case NAND_CMD_RNDIN
:
1848 case NAND_CMD_STATUS
:
1849 case NAND_CMD_RNDOUT
:
1850 case NAND_CMD_SEQIN
:
1851 case NAND_CMD_READID
:
1854 case NAND_CMD_READ0
:
1855 if (dataen
== NFCADDR_CMD_DATAEN
) {
1856 host
->nfc
->data_in_sram
= host
->nfc
->sram_bank0
+
1857 nfc_get_sram_off(host
);
1862 nfc_wait_interrupt(host
, NFC_SR_RB_EDGE
);
1866 static int nfc_sram_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1867 uint32_t offset
, int data_len
, const uint8_t *buf
,
1868 int oob_required
, int page
, int cached
, int raw
)
1872 struct atmel_nand_host
*host
= chip
->priv
;
1873 void __iomem
*sram
= host
->nfc
->sram_bank0
+ nfc_get_sram_off(host
);
1875 /* Subpage write is not supported */
1876 if (offset
|| (data_len
< mtd
->writesize
))
1879 cfg
= nfc_readl(host
->nfc
->hsmc_regs
, CFG
);
1880 len
= mtd
->writesize
;
1882 if (unlikely(raw
)) {
1883 len
+= mtd
->oobsize
;
1884 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg
| NFC_CFG_WSPARE
);
1886 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg
& ~NFC_CFG_WSPARE
);
1888 /* Copy page data to sram that will write to nand via NFC */
1890 if (atmel_nand_dma_op(mtd
, (void *)buf
, len
, 0) != 0)
1891 /* Fall back to use cpu copy */
1892 memcpy32_toio(sram
, buf
, len
);
1894 memcpy32_toio(sram
, buf
, len
);
1897 if (chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
)
1899 * When use NFC sram, need set up PMECC before send
1900 * NAND_CMD_SEQIN command. Since when the nand command
1901 * is sent, nfc will do transfer from sram and nand.
1903 pmecc_enable(host
, NAND_ECC_WRITE
);
1905 host
->nfc
->will_write_sram
= true;
1906 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1907 host
->nfc
->will_write_sram
= false;
1910 /* Need to write ecc into oob */
1911 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
);
1916 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1917 status
= chip
->waitfunc(mtd
, chip
);
1919 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
1920 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
, page
);
1922 if (status
& NAND_STATUS_FAIL
)
1928 static int nfc_sram_init(struct mtd_info
*mtd
)
1930 struct nand_chip
*chip
= mtd
->priv
;
1931 struct atmel_nand_host
*host
= chip
->priv
;
1934 /* Initialize the NFC CFG register */
1935 unsigned int cfg_nfc
= 0;
1937 /* set page size and oob layout */
1938 switch (mtd
->writesize
) {
1940 cfg_nfc
= NFC_CFG_PAGESIZE_512
;
1943 cfg_nfc
= NFC_CFG_PAGESIZE_1024
;
1946 cfg_nfc
= NFC_CFG_PAGESIZE_2048
;
1949 cfg_nfc
= NFC_CFG_PAGESIZE_4096
;
1952 cfg_nfc
= NFC_CFG_PAGESIZE_8192
;
1955 dev_err(host
->dev
, "Unsupported page size for NFC.\n");
1960 /* oob bytes size = (NFCSPARESIZE + 1) * 4
1961 * Max support spare size is 512 bytes. */
1962 cfg_nfc
|= (((mtd
->oobsize
/ 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1963 & NFC_CFG_NFC_SPARESIZE
);
1964 /* default set a max timeout */
1965 cfg_nfc
|= NFC_CFG_RSPARE
|
1966 NFC_CFG_NFC_DTOCYC
| NFC_CFG_NFC_DTOMUL
;
1968 nfc_writel(host
->nfc
->hsmc_regs
, CFG
, cfg_nfc
);
1970 host
->nfc
->will_write_sram
= false;
1971 nfc_set_sram_bank(host
, 0);
1973 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1974 if (host
->nfc
->write_by_sram
) {
1975 if ((chip
->ecc
.mode
== NAND_ECC_HW
&& host
->has_pmecc
) ||
1976 chip
->ecc
.mode
== NAND_ECC_NONE
)
1977 chip
->write_page
= nfc_sram_write_page
;
1979 host
->nfc
->write_by_sram
= false;
1982 dev_info(host
->dev
, "Using NFC Sram read %s\n",
1983 host
->nfc
->write_by_sram
? "and write" : "");
1987 static struct platform_driver atmel_nand_nfc_driver
;
1989 * Probe for the NAND device.
1991 static int __init
atmel_nand_probe(struct platform_device
*pdev
)
1993 struct atmel_nand_host
*host
;
1994 struct mtd_info
*mtd
;
1995 struct nand_chip
*nand_chip
;
1996 struct resource
*mem
;
1997 struct mtd_part_parser_data ppdata
= {};
2000 /* Allocate memory for the device structure (and zero it) */
2001 host
= devm_kzalloc(&pdev
->dev
, sizeof(*host
), GFP_KERNEL
);
2003 printk(KERN_ERR
"atmel_nand: failed to allocate device structure.\n");
2007 res
= platform_driver_register(&atmel_nand_nfc_driver
);
2009 dev_err(&pdev
->dev
, "atmel_nand: can't register NFC driver\n");
2011 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2012 host
->io_base
= devm_ioremap_resource(&pdev
->dev
, mem
);
2013 if (IS_ERR(host
->io_base
)) {
2014 dev_err(&pdev
->dev
, "atmel_nand: ioremap resource failed\n");
2015 res
= PTR_ERR(host
->io_base
);
2016 goto err_nand_ioremap
;
2018 host
->io_phys
= (dma_addr_t
)mem
->start
;
2021 nand_chip
= &host
->nand_chip
;
2022 host
->dev
= &pdev
->dev
;
2023 if (pdev
->dev
.of_node
) {
2024 res
= atmel_of_init_port(host
, pdev
->dev
.of_node
);
2026 goto err_nand_ioremap
;
2028 memcpy(&host
->board
, dev_get_platdata(&pdev
->dev
),
2029 sizeof(struct atmel_nand_data
));
2032 nand_chip
->priv
= host
; /* link the private data structures */
2033 mtd
->priv
= nand_chip
;
2034 mtd
->owner
= THIS_MODULE
;
2036 /* Set address of NAND IO lines */
2037 nand_chip
->IO_ADDR_R
= host
->io_base
;
2038 nand_chip
->IO_ADDR_W
= host
->io_base
;
2040 if (nand_nfc
.is_initialized
) {
2041 /* NFC driver is probed and initialized */
2042 host
->nfc
= &nand_nfc
;
2044 nand_chip
->select_chip
= nfc_select_chip
;
2045 nand_chip
->dev_ready
= nfc_device_ready
;
2046 nand_chip
->cmdfunc
= nfc_nand_command
;
2048 /* Initialize the interrupt for NFC */
2049 irq
= platform_get_irq(pdev
, 0);
2051 dev_err(host
->dev
, "Cannot get HSMC irq!\n");
2053 goto err_nand_ioremap
;
2056 res
= devm_request_irq(&pdev
->dev
, irq
, hsmc_interrupt
,
2059 dev_err(&pdev
->dev
, "Unable to request HSMC irq %d\n",
2061 goto err_nand_ioremap
;
2064 res
= atmel_nand_set_enable_ready_pins(mtd
);
2066 goto err_nand_ioremap
;
2068 nand_chip
->cmd_ctrl
= atmel_nand_cmd_ctrl
;
2071 nand_chip
->ecc
.mode
= host
->board
.ecc_mode
;
2072 nand_chip
->chip_delay
= 20; /* 20us command delay time */
2074 if (host
->board
.bus_width_16
) /* 16-bit bus width */
2075 nand_chip
->options
|= NAND_BUSWIDTH_16
;
2077 nand_chip
->read_buf
= atmel_read_buf
;
2078 nand_chip
->write_buf
= atmel_write_buf
;
2080 platform_set_drvdata(pdev
, host
);
2081 atmel_nand_enable(host
);
2083 if (gpio_is_valid(host
->board
.det_pin
)) {
2084 res
= devm_gpio_request(&pdev
->dev
,
2085 host
->board
.det_pin
, "nand_det");
2088 "can't request det gpio %d\n",
2089 host
->board
.det_pin
);
2093 res
= gpio_direction_input(host
->board
.det_pin
);
2096 "can't request input direction det gpio %d\n",
2097 host
->board
.det_pin
);
2101 if (gpio_get_value(host
->board
.det_pin
)) {
2102 printk(KERN_INFO
"No SmartMedia card inserted.\n");
2108 if (host
->board
.on_flash_bbt
|| on_flash_bbt
) {
2109 printk(KERN_INFO
"atmel_nand: Use On Flash BBT\n");
2110 nand_chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2113 if (!host
->board
.has_dma
)
2117 dma_cap_mask_t mask
;
2120 dma_cap_set(DMA_MEMCPY
, mask
);
2121 host
->dma_chan
= dma_request_channel(mask
, NULL
, NULL
);
2122 if (!host
->dma_chan
) {
2123 dev_err(host
->dev
, "Failed to request DMA channel\n");
2128 dev_info(host
->dev
, "Using %s for DMA transfers.\n",
2129 dma_chan_name(host
->dma_chan
));
2131 dev_info(host
->dev
, "No DMA support for NAND access.\n");
2133 /* first scan to find the device and get the page size */
2134 if (nand_scan_ident(mtd
, 1, NULL
)) {
2136 goto err_scan_ident
;
2139 if (nand_chip
->ecc
.mode
== NAND_ECC_HW
) {
2140 if (host
->has_pmecc
)
2141 res
= atmel_pmecc_nand_init_params(pdev
, host
);
2143 res
= atmel_hw_nand_init_params(pdev
, host
);
2149 /* initialize the nfc configuration register */
2150 if (host
->nfc
&& host
->nfc
->use_nfc_sram
) {
2151 res
= nfc_sram_init(mtd
);
2153 host
->nfc
->use_nfc_sram
= false;
2154 dev_err(host
->dev
, "Disable use nfc sram for data transfer.\n");
2158 /* second phase scan */
2159 if (nand_scan_tail(mtd
)) {
2164 mtd
->name
= "atmel_nand";
2165 ppdata
.of_node
= pdev
->dev
.of_node
;
2166 res
= mtd_device_parse_register(mtd
, NULL
, &ppdata
,
2167 host
->board
.parts
, host
->board
.num_parts
);
2172 if (host
->has_pmecc
&& host
->nand_chip
.ecc
.mode
== NAND_ECC_HW
)
2173 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
2177 atmel_nand_disable(host
);
2179 dma_release_channel(host
->dma_chan
);
2185 * Remove a NAND device.
2187 static int __exit
atmel_nand_remove(struct platform_device
*pdev
)
2189 struct atmel_nand_host
*host
= platform_get_drvdata(pdev
);
2190 struct mtd_info
*mtd
= &host
->mtd
;
2194 atmel_nand_disable(host
);
2196 if (host
->has_pmecc
&& host
->nand_chip
.ecc
.mode
== NAND_ECC_HW
) {
2197 pmecc_writel(host
->ecc
, CTRL
, PMECC_CTRL_DISABLE
);
2198 pmerrloc_writel(host
->pmerrloc_base
, ELDIS
,
2203 dma_release_channel(host
->dma_chan
);
2205 platform_driver_unregister(&atmel_nand_nfc_driver
);
2210 #if defined(CONFIG_OF)
2211 static const struct of_device_id atmel_nand_dt_ids
[] = {
2212 { .compatible
= "atmel,at91rm9200-nand" },
2216 MODULE_DEVICE_TABLE(of
, atmel_nand_dt_ids
);
2219 static int atmel_nand_nfc_probe(struct platform_device
*pdev
)
2221 struct atmel_nfc
*nfc
= &nand_nfc
;
2222 struct resource
*nfc_cmd_regs
, *nfc_hsmc_regs
, *nfc_sram
;
2224 nfc_cmd_regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2225 nfc
->base_cmd_regs
= devm_ioremap_resource(&pdev
->dev
, nfc_cmd_regs
);
2226 if (IS_ERR(nfc
->base_cmd_regs
))
2227 return PTR_ERR(nfc
->base_cmd_regs
);
2229 nfc_hsmc_regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
2230 nfc
->hsmc_regs
= devm_ioremap_resource(&pdev
->dev
, nfc_hsmc_regs
);
2231 if (IS_ERR(nfc
->hsmc_regs
))
2232 return PTR_ERR(nfc
->hsmc_regs
);
2234 nfc_sram
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
2236 nfc
->sram_bank0
= devm_ioremap_resource(&pdev
->dev
, nfc_sram
);
2237 if (IS_ERR(nfc
->sram_bank0
)) {
2238 dev_warn(&pdev
->dev
, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2239 PTR_ERR(nfc
->sram_bank0
));
2241 nfc
->use_nfc_sram
= true;
2242 nfc
->sram_bank0_phys
= (dma_addr_t
)nfc_sram
->start
;
2244 if (pdev
->dev
.of_node
)
2245 nfc
->write_by_sram
= of_property_read_bool(
2247 "atmel,write-by-sram");
2251 nfc
->is_initialized
= true;
2252 dev_info(&pdev
->dev
, "NFC is probed.\n");
2256 #if defined(CONFIG_OF)
2257 static struct of_device_id atmel_nand_nfc_match
[] = {
2258 { .compatible
= "atmel,sama5d3-nfc" },
2263 static struct platform_driver atmel_nand_nfc_driver
= {
2265 .name
= "atmel_nand_nfc",
2266 .owner
= THIS_MODULE
,
2267 .of_match_table
= of_match_ptr(atmel_nand_nfc_match
),
2269 .probe
= atmel_nand_nfc_probe
,
2272 static struct platform_driver atmel_nand_driver
= {
2273 .remove
= __exit_p(atmel_nand_remove
),
2275 .name
= "atmel_nand",
2276 .owner
= THIS_MODULE
,
2277 .of_match_table
= of_match_ptr(atmel_nand_dt_ids
),
2281 module_platform_driver_probe(atmel_nand_driver
, atmel_nand_probe
);
2283 MODULE_LICENSE("GPL");
2284 MODULE_AUTHOR("Rick Bronson");
2285 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2286 MODULE_ALIAS("platform:atmel_nand");