2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
4 * mtd nand driver for M-Systems DiskOnChip G4
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
17 * Mechanism for management of password-protected areas
19 * Hamming ecc when reading oob only
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
49 * In "reliable mode" consecutive 2k pages are used in parallel (in some
50 * fashion) to store the same data. The data can be read back from the
51 * even-numbered pages in the normal manner; odd-numbered pages will appear to
52 * contain junk. Systems that boot from the docg4 typically write the secondary
53 * program loader (SPL) code in this mode. The SPL is loaded by the initial
54 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
55 * to the reset vector address). This module parameter enables you to use this
56 * driver to write the SPL. When in this mode, no more than 2k of data can be
57 * written at a time, because the addresses do not increment in the normal
58 * manner, and the starting offset must be within an even-numbered 2k region;
59 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
60 * 0x1a00, ... Reliable mode is a special case and should not be used unless
61 * you know what you're doing.
63 static bool reliable_mode
;
64 module_param(reliable_mode
, bool, 0);
65 MODULE_PARM_DESC(reliable_mode
, "pages are programmed in reliable mode");
68 * You'll want to ignore badblocks if you're reading a partition that contains
69 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
70 * it does not use mtd nand's method for marking bad blocks (using oob area).
71 * This will also skip the check of the "page written" flag.
73 static bool ignore_badblocks
;
74 module_param(ignore_badblocks
, bool, 0);
75 MODULE_PARM_DESC(ignore_badblocks
, "no badblock checking performed");
80 void __iomem
*virtadr
;
90 struct bch_control
*bch
;
94 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
95 * shared with other diskonchip devices (P3, G3 at least).
97 * Functions with names prefixed with docg4_ are mtd / nand interface functions
98 * (though they may also be called internally). All others are internal.
101 #define DOC_IOSPACE_DATA 0x0800
103 /* register offsets */
104 #define DOC_CHIPID 0x1000
105 #define DOC_DEVICESELECT 0x100a
106 #define DOC_ASICMODE 0x100c
107 #define DOC_DATAEND 0x101e
108 #define DOC_NOP 0x103e
110 #define DOC_FLASHSEQUENCE 0x1032
111 #define DOC_FLASHCOMMAND 0x1034
112 #define DOC_FLASHADDRESS 0x1036
113 #define DOC_FLASHCONTROL 0x1038
114 #define DOC_ECCCONF0 0x1040
115 #define DOC_ECCCONF1 0x1042
116 #define DOC_HAMMINGPARITY 0x1046
117 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
119 #define DOC_ASICMODECONFIRM 0x1072
120 #define DOC_CHIPID_INV 0x1074
121 #define DOC_POWERMODE 0x107c
123 #define DOCG4_MYSTERY_REG 0x1050
125 /* apparently used only to write oob bytes 6 and 7 */
126 #define DOCG4_OOB_6_7 0x1052
128 /* DOC_FLASHSEQUENCE register commands */
129 #define DOC_SEQ_RESET 0x00
130 #define DOCG4_SEQ_PAGE_READ 0x03
131 #define DOCG4_SEQ_FLUSH 0x29
132 #define DOCG4_SEQ_PAGEWRITE 0x16
133 #define DOCG4_SEQ_PAGEPROG 0x1e
134 #define DOCG4_SEQ_BLOCKERASE 0x24
135 #define DOCG4_SEQ_SETMODE 0x45
137 /* DOC_FLASHCOMMAND register commands */
138 #define DOCG4_CMD_PAGE_READ 0x00
139 #define DOC_CMD_ERASECYCLE2 0xd0
140 #define DOCG4_CMD_FLUSH 0x70
141 #define DOCG4_CMD_READ2 0x30
142 #define DOC_CMD_PROG_BLOCK_ADDR 0x60
143 #define DOCG4_CMD_PAGEWRITE 0x80
144 #define DOC_CMD_PROG_CYCLE2 0x10
145 #define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
146 #define DOC_CMD_RELIABLE_MODE 0x22
147 #define DOC_CMD_RESET 0xff
149 /* DOC_POWERMODE register bits */
150 #define DOC_POWERDOWN_READY 0x80
152 /* DOC_FLASHCONTROL register bits */
153 #define DOC_CTRL_CE 0x10
154 #define DOC_CTRL_UNKNOWN 0x40
155 #define DOC_CTRL_FLASHREADY 0x01
157 /* DOC_ECCCONF0 register bits */
158 #define DOC_ECCCONF0_READ_MODE 0x8000
159 #define DOC_ECCCONF0_UNKNOWN 0x2000
160 #define DOC_ECCCONF0_ECC_ENABLE 0x1000
161 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
163 /* DOC_ECCCONF1 register bits */
164 #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
165 #define DOC_ECCCONF1_ECC_ENABLE 0x07
166 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
168 /* DOC_ASICMODE register bits */
169 #define DOC_ASICMODE_RESET 0x00
170 #define DOC_ASICMODE_NORMAL 0x01
171 #define DOC_ASICMODE_POWERDOWN 0x02
172 #define DOC_ASICMODE_MDWREN 0x04
173 #define DOC_ASICMODE_BDETCT_RESET 0x08
174 #define DOC_ASICMODE_RSTIN_RESET 0x10
175 #define DOC_ASICMODE_RAM_WE 0x20
177 /* good status values read after read/write/erase operations */
178 #define DOCG4_PROGSTATUS_GOOD 0x51
179 #define DOCG4_PROGSTATUS_GOOD_2 0xe0
182 * On read operations (page and oob-only), the first byte read from I/O reg is a
183 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
184 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
186 #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
188 /* anatomy of the device */
189 #define DOCG4_CHIP_SIZE 0x8000000
190 #define DOCG4_PAGE_SIZE 0x200
191 #define DOCG4_PAGES_PER_BLOCK 0x200
192 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
193 #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
194 #define DOCG4_OOB_SIZE 0x10
195 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
196 #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
197 #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
199 /* all but the last byte is included in ecc calculation */
200 #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
202 #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
204 /* expected values from the ID registers */
205 #define DOCG4_IDREG1_VALUE 0x0400
206 #define DOCG4_IDREG2_VALUE 0xfbff
208 /* primitive polynomial used to build the Galois field used by hw ecc gen */
209 #define DOCG4_PRIMITIVE_POLY 0x4443
211 #define DOCG4_M 14 /* Galois field is of order 2^14 */
212 #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
214 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
215 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
218 * Bytes 0, 1 are used as badblock marker.
219 * Bytes 2 - 6 are available to the user.
220 * Byte 7 is hamming ecc for first 7 oob bytes only.
221 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
222 * Byte 15 (the last) is used by the driver as a "page written" flag.
224 static struct nand_ecclayout docg4_oobinfo
= {
226 .eccpos
= {7, 8, 9, 10, 11, 12, 13, 14, 15},
228 .oobfree
= { {.offset
= 2, .length
= 5} }
232 * The device has a nop register which M-Sys claims is for the purpose of
233 * inserting precise delays. But beware; at least some operations fail if the
234 * nop writes are replaced with a generic delay!
236 static inline void write_nop(void __iomem
*docptr
)
238 writew(0, docptr
+ DOC_NOP
);
241 static void docg4_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
244 struct nand_chip
*nand
= mtd
->priv
;
245 uint16_t *p
= (uint16_t *) buf
;
248 for (i
= 0; i
< len
; i
++)
249 p
[i
] = readw(nand
->IO_ADDR_R
);
252 static void docg4_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
255 struct nand_chip
*nand
= mtd
->priv
;
256 uint16_t *p
= (uint16_t *) buf
;
259 for (i
= 0; i
< len
; i
++)
260 writew(p
[i
], nand
->IO_ADDR_W
);
263 static int poll_status(struct docg4_priv
*doc
)
266 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
267 * register. Operations known to take a long time (e.g., block erase)
268 * should sleep for a while before calling this.
271 uint16_t flash_status
;
273 void __iomem
*docptr
= doc
->virtadr
;
275 dev_dbg(doc
->dev
, "%s...\n", __func__
);
277 /* hardware quirk requires reading twice initially */
278 flash_status
= readw(docptr
+ DOC_FLASHCONTROL
);
283 flash_status
= readb(docptr
+ DOC_FLASHCONTROL
);
284 } while (!(flash_status
& DOC_CTRL_FLASHREADY
) && --timeo
);
288 dev_err(doc
->dev
, "%s: timed out!\n", __func__
);
289 return NAND_STATUS_FAIL
;
292 if (unlikely(timeo
< 50))
293 dev_warn(doc
->dev
, "%s: nearly timed out; %d remaining\n",
300 static int docg4_wait(struct mtd_info
*mtd
, struct nand_chip
*nand
)
303 struct docg4_priv
*doc
= nand
->priv
;
304 int status
= NAND_STATUS_WP
; /* inverse logic?? */
305 dev_dbg(doc
->dev
, "%s...\n", __func__
);
307 /* report any previously unreported error */
309 status
|= doc
->status
;
314 status
|= poll_status(doc
);
318 static void docg4_select_chip(struct mtd_info
*mtd
, int chip
)
321 * Select among multiple cascaded chips ("floors"). Multiple floors are
322 * not yet supported, so the only valid non-negative value is 0.
324 struct nand_chip
*nand
= mtd
->priv
;
325 struct docg4_priv
*doc
= nand
->priv
;
326 void __iomem
*docptr
= doc
->virtadr
;
328 dev_dbg(doc
->dev
, "%s: chip %d\n", __func__
, chip
);
331 return; /* deselected */
334 dev_warn(doc
->dev
, "multiple floors currently unsupported\n");
336 writew(0, docptr
+ DOC_DEVICESELECT
);
339 static void reset(struct mtd_info
*mtd
)
341 /* full device reset */
343 struct nand_chip
*nand
= mtd
->priv
;
344 struct docg4_priv
*doc
= nand
->priv
;
345 void __iomem
*docptr
= doc
->virtadr
;
347 writew(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
,
348 docptr
+ DOC_ASICMODE
);
349 writew(~(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
),
350 docptr
+ DOC_ASICMODECONFIRM
);
353 writew(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
,
354 docptr
+ DOC_ASICMODE
);
355 writew(~(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
),
356 docptr
+ DOC_ASICMODECONFIRM
);
358 writew(DOC_ECCCONF1_ECC_ENABLE
, docptr
+ DOC_ECCCONF1
);
363 static void read_hw_ecc(void __iomem
*docptr
, uint8_t *ecc_buf
)
365 /* read the 7 hw-generated ecc bytes */
368 for (i
= 0; i
< 7; i
++) { /* hw quirk; read twice */
369 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
370 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
374 static int correct_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
377 * Called after a page read when hardware reports bitflips.
378 * Up to four bitflips can be corrected.
381 struct nand_chip
*nand
= mtd
->priv
;
382 struct docg4_priv
*doc
= nand
->priv
;
383 void __iomem
*docptr
= doc
->virtadr
;
384 int i
, numerrs
, errpos
[4];
385 const uint8_t blank_read_hwecc
[8] = {
386 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
388 read_hw_ecc(docptr
, doc
->ecc_buf
); /* read 7 hw-generated ecc bytes */
390 /* check if read error is due to a blank page */
391 if (!memcmp(doc
->ecc_buf
, blank_read_hwecc
, 7))
394 /* skip additional check of "written flag" if ignore_badblocks */
395 if (ignore_badblocks
== false) {
398 * If the hw ecc bytes are not those of a blank page, there's
399 * still a chance that the page is blank, but was read with
400 * errors. Check the "written flag" in last oob byte, which
401 * is set to zero when a page is written. If more than half
402 * the bits are set, assume a blank page. Unfortunately, the
403 * bit flips(s) are not reported in stats.
406 if (nand
->oob_poi
[15]) {
407 int bit
, numsetbits
= 0;
408 unsigned long written_flag
= nand
->oob_poi
[15];
409 for_each_set_bit(bit
, &written_flag
, 8)
411 if (numsetbits
> 4) { /* assume blank */
413 "error(s) in blank page "
415 page
* DOCG4_PAGE_SIZE
);
422 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
423 * algorithm is used to decode this. However the hw operates on page
424 * data in a bit order that is the reverse of that of the bch alg,
425 * requiring that the bits be reversed on the result. Thanks to Ivan
426 * Djelic for his analysis!
428 for (i
= 0; i
< 7; i
++)
429 doc
->ecc_buf
[i
] = bitrev8(doc
->ecc_buf
[i
]);
431 numerrs
= decode_bch(doc
->bch
, NULL
, DOCG4_USERDATA_LEN
, NULL
,
432 doc
->ecc_buf
, NULL
, errpos
);
434 if (numerrs
== -EBADMSG
) {
435 dev_warn(doc
->dev
, "uncorrectable errors at offset %08x\n",
436 page
* DOCG4_PAGE_SIZE
);
440 BUG_ON(numerrs
< 0); /* -EINVAL, or anything other than -EBADMSG */
442 /* undo last step in BCH alg (modulo mirroring not needed) */
443 for (i
= 0; i
< numerrs
; i
++)
444 errpos
[i
] = (errpos
[i
] & ~7)|(7-(errpos
[i
] & 7));
447 for (i
= 0; i
< numerrs
; i
++) {
449 /* ignore if error within oob ecc bytes */
450 if (errpos
[i
] > DOCG4_USERDATA_LEN
* 8)
453 /* if error within oob area preceeding ecc bytes... */
454 if (errpos
[i
] > DOCG4_PAGE_SIZE
* 8)
455 change_bit(errpos
[i
] - DOCG4_PAGE_SIZE
* 8,
456 (unsigned long *)nand
->oob_poi
);
458 else /* error in page data */
459 change_bit(errpos
[i
], (unsigned long *)buf
);
462 dev_notice(doc
->dev
, "%d error(s) corrected at offset %08x\n",
463 numerrs
, page
* DOCG4_PAGE_SIZE
);
468 static uint8_t docg4_read_byte(struct mtd_info
*mtd
)
470 struct nand_chip
*nand
= mtd
->priv
;
471 struct docg4_priv
*doc
= nand
->priv
;
473 dev_dbg(doc
->dev
, "%s\n", __func__
);
475 if (doc
->last_command
.command
== NAND_CMD_STATUS
) {
479 * Previous nand command was status request, so nand
480 * infrastructure code expects to read the status here. If an
481 * error occurred in a previous operation, report it.
483 doc
->last_command
.command
= 0;
486 status
= doc
->status
;
490 /* why is NAND_STATUS_WP inverse logic?? */
492 status
= NAND_STATUS_WP
| NAND_STATUS_READY
;
497 dev_warn(doc
->dev
, "unexpectd call to read_byte()\n");
502 static void write_addr(struct docg4_priv
*doc
, uint32_t docg4_addr
)
504 /* write the four address bytes packed in docg4_addr to the device */
506 void __iomem
*docptr
= doc
->virtadr
;
507 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
509 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
511 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
513 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
516 static int read_progstatus(struct docg4_priv
*doc
)
519 * This apparently checks the status of programming. Done after an
520 * erasure, and after page data is written. On error, the status is
521 * saved, to be later retrieved by the nand infrastructure code.
523 void __iomem
*docptr
= doc
->virtadr
;
525 /* status is read from the I/O reg */
526 uint16_t status1
= readw(docptr
+ DOC_IOSPACE_DATA
);
527 uint16_t status2
= readw(docptr
+ DOC_IOSPACE_DATA
);
528 uint16_t status3
= readw(docptr
+ DOCG4_MYSTERY_REG
);
530 dev_dbg(doc
->dev
, "docg4: %s: %02x %02x %02x\n",
531 __func__
, status1
, status2
, status3
);
533 if (status1
!= DOCG4_PROGSTATUS_GOOD
534 || status2
!= DOCG4_PROGSTATUS_GOOD_2
535 || status3
!= DOCG4_PROGSTATUS_GOOD_2
) {
536 doc
->status
= NAND_STATUS_FAIL
;
537 dev_warn(doc
->dev
, "read_progstatus failed: "
538 "%02x, %02x, %02x\n", status1
, status2
, status3
);
544 static int pageprog(struct mtd_info
*mtd
)
547 * Final step in writing a page. Writes the contents of its
548 * internal buffer out to the flash array, or some such.
551 struct nand_chip
*nand
= mtd
->priv
;
552 struct docg4_priv
*doc
= nand
->priv
;
553 void __iomem
*docptr
= doc
->virtadr
;
556 dev_dbg(doc
->dev
, "docg4: %s\n", __func__
);
558 writew(DOCG4_SEQ_PAGEPROG
, docptr
+ DOC_FLASHSEQUENCE
);
559 writew(DOC_CMD_PROG_CYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
563 /* Just busy-wait; usleep_range() slows things down noticeably. */
566 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
567 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
568 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
575 retval
= read_progstatus(doc
);
576 writew(0, docptr
+ DOC_DATAEND
);
584 static void sequence_reset(struct mtd_info
*mtd
)
586 /* common starting sequence for all operations */
588 struct nand_chip
*nand
= mtd
->priv
;
589 struct docg4_priv
*doc
= nand
->priv
;
590 void __iomem
*docptr
= doc
->virtadr
;
592 writew(DOC_CTRL_UNKNOWN
| DOC_CTRL_CE
, docptr
+ DOC_FLASHCONTROL
);
593 writew(DOC_SEQ_RESET
, docptr
+ DOC_FLASHSEQUENCE
);
594 writew(DOC_CMD_RESET
, docptr
+ DOC_FLASHCOMMAND
);
601 static void read_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
603 /* first step in reading a page */
605 struct nand_chip
*nand
= mtd
->priv
;
606 struct docg4_priv
*doc
= nand
->priv
;
607 void __iomem
*docptr
= doc
->virtadr
;
610 "docg4: %s: g4 page %08x\n", __func__
, docg4_addr
);
614 writew(DOCG4_SEQ_PAGE_READ
, docptr
+ DOC_FLASHSEQUENCE
);
615 writew(DOCG4_CMD_PAGE_READ
, docptr
+ DOC_FLASHCOMMAND
);
618 write_addr(doc
, docg4_addr
);
621 writew(DOCG4_CMD_READ2
, docptr
+ DOC_FLASHCOMMAND
);
628 static void write_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
630 /* first step in writing a page */
632 struct nand_chip
*nand
= mtd
->priv
;
633 struct docg4_priv
*doc
= nand
->priv
;
634 void __iomem
*docptr
= doc
->virtadr
;
637 "docg4: %s: g4 addr: %x\n", __func__
, docg4_addr
);
640 if (unlikely(reliable_mode
)) {
641 writew(DOCG4_SEQ_SETMODE
, docptr
+ DOC_FLASHSEQUENCE
);
642 writew(DOCG4_CMD_FAST_MODE
, docptr
+ DOC_FLASHCOMMAND
);
643 writew(DOC_CMD_RELIABLE_MODE
, docptr
+ DOC_FLASHCOMMAND
);
647 writew(DOCG4_SEQ_PAGEWRITE
, docptr
+ DOC_FLASHSEQUENCE
);
648 writew(DOCG4_CMD_PAGEWRITE
, docptr
+ DOC_FLASHCOMMAND
);
650 write_addr(doc
, docg4_addr
);
656 static uint32_t mtd_to_docg4_address(int page
, int column
)
659 * Convert mtd address to format used by the device, 32 bit packed.
661 * Some notes on G4 addressing... The M-Sys documentation on this device
662 * claims that pages are 2K in length, and indeed, the format of the
663 * address used by the device reflects that. But within each page are
664 * four 512 byte "sub-pages", each with its own oob data that is
665 * read/written immediately after the 512 bytes of page data. This oob
666 * data contains the ecc bytes for the preceeding 512 bytes.
668 * Rather than tell the mtd nand infrastructure that page size is 2k,
669 * with four sub-pages each, we engage in a little subterfuge and tell
670 * the infrastructure code that pages are 512 bytes in size. This is
671 * done because during the course of reverse-engineering the device, I
672 * never observed an instance where an entire 2K "page" was read or
673 * written as a unit. Each "sub-page" is always addressed individually,
674 * its data read/written, and ecc handled before the next "sub-page" is
677 * This requires us to convert addresses passed by the mtd nand
678 * infrastructure code to those used by the device.
680 * The address that is written to the device consists of four bytes: the
681 * first two are the 2k page number, and the second is the index into
682 * the page. The index is in terms of 16-bit half-words and includes
683 * the preceeding oob data, so e.g., the index into the second
684 * "sub-page" is 0x108, and the full device address of the start of mtd
685 * page 0x201 is 0x00800108.
687 int g4_page
= page
/ 4; /* device's 2K page */
688 int g4_index
= (page
% 4) * 0x108 + column
/2; /* offset into page */
689 return (g4_page
<< 16) | g4_index
; /* pack */
692 static void docg4_command(struct mtd_info
*mtd
, unsigned command
, int column
,
695 /* handle standard nand commands */
697 struct nand_chip
*nand
= mtd
->priv
;
698 struct docg4_priv
*doc
= nand
->priv
;
699 uint32_t g4_addr
= mtd_to_docg4_address(page_addr
, column
);
701 dev_dbg(doc
->dev
, "%s %x, page_addr=%x, column=%x\n",
702 __func__
, command
, page_addr
, column
);
705 * Save the command and its arguments. This enables emulation of
706 * standard flash devices, and also some optimizations.
708 doc
->last_command
.command
= command
;
709 doc
->last_command
.column
= column
;
710 doc
->last_command
.page
= page_addr
;
719 read_page_prologue(mtd
, g4_addr
);
722 case NAND_CMD_STATUS
:
723 /* next call to read_byte() will expect a status */
727 if (unlikely(reliable_mode
)) {
728 uint16_t g4_page
= g4_addr
>> 16;
730 /* writes to odd-numbered 2k pages are invalid */
733 "invalid reliable mode address\n");
736 write_page_prologue(mtd
, g4_addr
);
738 /* hack for deferred write of oob bytes */
739 if (doc
->oob_page
== page_addr
)
740 memcpy(nand
->oob_poi
, doc
->oob_buf
, 16);
743 case NAND_CMD_PAGEPROG
:
747 /* we don't expect these, based on review of nand_base.c */
748 case NAND_CMD_READOOB
:
749 case NAND_CMD_READID
:
750 case NAND_CMD_ERASE1
:
751 case NAND_CMD_ERASE2
:
752 dev_warn(doc
->dev
, "docg4_command: "
753 "unexpected nand command 0x%x\n", command
);
759 static int read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
760 uint8_t *buf
, int page
, bool use_ecc
)
762 struct docg4_priv
*doc
= nand
->priv
;
763 void __iomem
*docptr
= doc
->virtadr
;
764 uint16_t status
, edc_err
, *buf16
;
765 int bits_corrected
= 0;
767 dev_dbg(doc
->dev
, "%s: page %08x\n", __func__
, page
);
769 writew(DOC_ECCCONF0_READ_MODE
|
770 DOC_ECCCONF0_ECC_ENABLE
|
771 DOC_ECCCONF0_UNKNOWN
|
773 docptr
+ DOC_ECCCONF0
);
780 /* the 1st byte from the I/O reg is a status; the rest is page data */
781 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
782 if (status
& DOCG4_READ_ERROR
) {
784 "docg4_read_page: bad status: 0x%02x\n", status
);
785 writew(0, docptr
+ DOC_DATAEND
);
789 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
791 docg4_read_buf(mtd
, buf
, DOCG4_PAGE_SIZE
); /* read the page data */
793 /* this device always reads oob after page data */
794 /* first 14 oob bytes read from I/O reg */
795 docg4_read_buf(mtd
, nand
->oob_poi
, 14);
797 /* last 2 read from another reg */
798 buf16
= (uint16_t *)(nand
->oob_poi
+ 14);
799 *buf16
= readw(docptr
+ DOCG4_MYSTERY_REG
);
803 if (likely(use_ecc
== true)) {
805 /* read the register that tells us if bitflip(s) detected */
806 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
807 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
808 dev_dbg(doc
->dev
, "%s: edc_err = 0x%02x\n", __func__
, edc_err
);
810 /* If bitflips are reported, attempt to correct with ecc */
811 if (edc_err
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) {
812 bits_corrected
= correct_data(mtd
, buf
, page
);
813 if (bits_corrected
== -EBADMSG
)
814 mtd
->ecc_stats
.failed
++;
816 mtd
->ecc_stats
.corrected
+= bits_corrected
;
820 writew(0, docptr
+ DOC_DATAEND
);
821 if (bits_corrected
== -EBADMSG
) /* uncorrectable errors */
823 return bits_corrected
;
827 static int docg4_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
828 uint8_t *buf
, int oob_required
, int page
)
830 return read_page(mtd
, nand
, buf
, page
, false);
833 static int docg4_read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
834 uint8_t *buf
, int oob_required
, int page
)
836 return read_page(mtd
, nand
, buf
, page
, true);
839 static int docg4_read_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
842 struct docg4_priv
*doc
= nand
->priv
;
843 void __iomem
*docptr
= doc
->virtadr
;
846 dev_dbg(doc
->dev
, "%s: page %x\n", __func__
, page
);
848 docg4_command(mtd
, NAND_CMD_READ0
, nand
->ecc
.size
, page
);
850 writew(DOC_ECCCONF0_READ_MODE
| DOCG4_OOB_SIZE
, docptr
+ DOC_ECCCONF0
);
857 /* the 1st byte from the I/O reg is a status; the rest is oob data */
858 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
859 if (status
& DOCG4_READ_ERROR
) {
861 "docg4_read_oob failed: status = 0x%02x\n", status
);
865 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
867 docg4_read_buf(mtd
, nand
->oob_poi
, 16);
872 writew(0, docptr
+ DOC_DATAEND
);
878 static void docg4_erase_block(struct mtd_info
*mtd
, int page
)
880 struct nand_chip
*nand
= mtd
->priv
;
881 struct docg4_priv
*doc
= nand
->priv
;
882 void __iomem
*docptr
= doc
->virtadr
;
885 dev_dbg(doc
->dev
, "%s: page %04x\n", __func__
, page
);
889 writew(DOCG4_SEQ_BLOCKERASE
, docptr
+ DOC_FLASHSEQUENCE
);
890 writew(DOC_CMD_PROG_BLOCK_ADDR
, docptr
+ DOC_FLASHCOMMAND
);
893 /* only 2 bytes of address are written to specify erase block */
894 g4_page
= (uint16_t)(page
/ 4); /* to g4's 2k page addressing */
895 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
897 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
900 /* start the erasure */
901 writew(DOC_CMD_ERASECYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
905 usleep_range(500, 1000); /* erasure is long; take a snooze */
907 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
908 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
909 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
916 read_progstatus(doc
);
918 writew(0, docptr
+ DOC_DATAEND
);
924 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
925 const uint8_t *buf
, bool use_ecc
)
927 struct docg4_priv
*doc
= nand
->priv
;
928 void __iomem
*docptr
= doc
->virtadr
;
931 dev_dbg(doc
->dev
, "%s...\n", __func__
);
933 writew(DOC_ECCCONF0_ECC_ENABLE
|
934 DOC_ECCCONF0_UNKNOWN
|
936 docptr
+ DOC_ECCCONF0
);
939 /* write the page data */
940 docg4_write_buf16(mtd
, buf
, DOCG4_PAGE_SIZE
);
942 /* oob bytes 0 through 5 are written to I/O reg */
943 docg4_write_buf16(mtd
, nand
->oob_poi
, 6);
945 /* oob byte 6 written to a separate reg */
946 writew(nand
->oob_poi
[6], docptr
+ DOCG4_OOB_6_7
);
951 /* write hw-generated ecc bytes to oob */
952 if (likely(use_ecc
== true)) {
953 /* oob byte 7 is hamming code */
954 uint8_t hamming
= readb(docptr
+ DOC_HAMMINGPARITY
);
955 hamming
= readb(docptr
+ DOC_HAMMINGPARITY
); /* 2nd read */
956 writew(hamming
, docptr
+ DOCG4_OOB_6_7
);
959 /* read the 7 bch bytes from ecc regs */
960 read_hw_ecc(docptr
, ecc_buf
);
961 ecc_buf
[7] = 0; /* clear the "page written" flag */
964 /* write user-supplied bytes to oob */
966 writew(nand
->oob_poi
[7], docptr
+ DOCG4_OOB_6_7
);
968 memcpy(ecc_buf
, &nand
->oob_poi
[8], 8);
971 docg4_write_buf16(mtd
, ecc_buf
, 8);
974 writew(0, docptr
+ DOC_DATAEND
);
980 static int docg4_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
981 const uint8_t *buf
, int oob_required
)
983 return write_page(mtd
, nand
, buf
, false);
986 static int docg4_write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
987 const uint8_t *buf
, int oob_required
)
989 return write_page(mtd
, nand
, buf
, true);
992 static int docg4_write_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
996 * Writing oob-only is not really supported, because MLC nand must write
997 * oob bytes at the same time as page data. Nonetheless, we save the
998 * oob buffer contents here, and then write it along with the page data
999 * if the same page is subsequently written. This allows user space
1000 * utilities that write the oob data prior to the page data to work
1001 * (e.g., nandwrite). The disdvantage is that, if the intention was to
1002 * write oob only, the operation is quietly ignored. Also, oob can get
1003 * corrupted if two concurrent processes are running nandwrite.
1006 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1007 struct docg4_priv
*doc
= nand
->priv
;
1008 doc
->oob_page
= page
;
1009 memcpy(doc
->oob_buf
, nand
->oob_poi
, 16);
1013 static int __init
read_factory_bbt(struct mtd_info
*mtd
)
1016 * The device contains a read-only factory bad block table. Read it and
1017 * update the memory-based bbt accordingly.
1020 struct nand_chip
*nand
= mtd
->priv
;
1021 struct docg4_priv
*doc
= nand
->priv
;
1022 uint32_t g4_addr
= mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE
, 0);
1025 __u32 eccfailed_stats
= mtd
->ecc_stats
.failed
;
1027 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1031 read_page_prologue(mtd
, g4_addr
);
1032 docg4_read_page(mtd
, nand
, buf
, 0, DOCG4_FACTORY_BBT_PAGE
);
1035 * If no memory-based bbt was created, exit. This will happen if module
1036 * parameter ignore_badblocks is set. Then why even call this function?
1037 * For an unknown reason, block erase always fails if it's the first
1038 * operation after device power-up. The above read ensures it never is.
1041 if (nand
->bbt
== NULL
) /* no memory-based bbt */
1044 if (mtd
->ecc_stats
.failed
> eccfailed_stats
) {
1046 * Whoops, an ecc failure ocurred reading the factory bbt.
1047 * It is stored redundantly, so we get another chance.
1049 eccfailed_stats
= mtd
->ecc_stats
.failed
;
1050 docg4_read_page(mtd
, nand
, buf
, 0, DOCG4_REDUNDANT_BBT_PAGE
);
1051 if (mtd
->ecc_stats
.failed
> eccfailed_stats
) {
1053 "The factory bbt could not be read!\n");
1059 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1060 * simple: one bit per block, block numbers increase left to right (msb
1061 * to lsb). Bit clear means bad block.
1063 for (i
= block
= 0; block
< DOCG4_NUMBLOCKS
; block
+= 8, i
++) {
1065 unsigned long bits
= ~buf
[i
];
1066 for_each_set_bit(bitnum
, &bits
, 8) {
1067 int badblock
= block
+ 7 - bitnum
;
1068 nand
->bbt
[badblock
/ 4] |=
1069 0x03 << ((badblock
% 4) * 2);
1070 mtd
->ecc_stats
.badblocks
++;
1071 dev_notice(doc
->dev
, "factory-marked bad block: %d\n",
1080 static int docg4_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1083 * Mark a block as bad. Bad blocks are marked in the oob area of the
1084 * first page of the block. The default scan_bbt() in the nand
1085 * infrastructure code works fine for building the memory-based bbt
1086 * during initialization, as does the nand infrastructure function that
1087 * checks if a block is bad by reading the bbt. This function replaces
1088 * the nand default because writes to oob-only are not supported.
1093 struct nand_chip
*nand
= mtd
->priv
;
1094 struct docg4_priv
*doc
= nand
->priv
;
1095 struct nand_bbt_descr
*bbtd
= nand
->badblock_pattern
;
1096 int page
= (int)(ofs
>> nand
->page_shift
);
1097 uint32_t g4_addr
= mtd_to_docg4_address(page
, 0);
1099 dev_dbg(doc
->dev
, "%s: %08llx\n", __func__
, ofs
);
1101 if (unlikely(ofs
& (DOCG4_BLOCK_SIZE
- 1)))
1102 dev_warn(doc
->dev
, "%s: ofs %llx not start of block!\n",
1105 /* allocate blank buffer for page data */
1106 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1110 /* write bit-wise negation of pattern to oob buffer */
1111 memset(nand
->oob_poi
, 0xff, mtd
->oobsize
);
1112 for (i
= 0; i
< bbtd
->len
; i
++)
1113 nand
->oob_poi
[bbtd
->offs
+ i
] = ~bbtd
->pattern
[i
];
1115 /* write first page of block */
1116 write_page_prologue(mtd
, g4_addr
);
1117 docg4_write_page(mtd
, nand
, buf
, 1);
1118 ret
= pageprog(mtd
);
1125 static int docg4_block_neverbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
1127 /* only called when module_param ignore_badblocks is set */
1131 static int docg4_suspend(struct platform_device
*pdev
, pm_message_t state
)
1134 * Put the device into "deep power-down" mode. Note that CE# must be
1135 * deasserted for this to take effect. The xscale, e.g., can be
1136 * configured to float this signal when the processor enters power-down,
1137 * and a suitable pull-up ensures its deassertion.
1142 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1143 void __iomem
*docptr
= doc
->virtadr
;
1145 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1147 /* poll the register that tells us we're ready to go to sleep */
1148 for (i
= 0; i
< 10; i
++) {
1149 pwr_down
= readb(docptr
+ DOC_POWERMODE
);
1150 if (pwr_down
& DOC_POWERDOWN_READY
)
1152 usleep_range(1000, 4000);
1155 if (pwr_down
& DOC_POWERDOWN_READY
) {
1156 dev_err(doc
->dev
, "suspend failed; "
1157 "timeout polling DOC_POWERDOWN_READY\n");
1161 writew(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
,
1162 docptr
+ DOC_ASICMODE
);
1163 writew(~(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
),
1164 docptr
+ DOC_ASICMODECONFIRM
);
1171 static int docg4_resume(struct platform_device
*pdev
)
1175 * Exit power-down. Twelve consecutive reads of the address below
1176 * accomplishes this, assuming CE# has been asserted.
1179 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1180 void __iomem
*docptr
= doc
->virtadr
;
1183 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1185 for (i
= 0; i
< 12; i
++)
1186 readb(docptr
+ 0x1fff);
1191 static void __init
init_mtd_structs(struct mtd_info
*mtd
)
1193 /* initialize mtd and nand data structures */
1196 * Note that some of the following initializations are not usually
1197 * required within a nand driver because they are performed by the nand
1198 * infrastructure code as part of nand_scan(). In this case they need
1199 * to be initialized here because we skip call to nand_scan_ident() (the
1200 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1201 * because for this device the chip id is not read in the manner of a
1202 * standard nand device. Unfortunately, nand_scan_ident() does other
1203 * things as well, such as call nand_set_defaults().
1206 struct nand_chip
*nand
= mtd
->priv
;
1207 struct docg4_priv
*doc
= nand
->priv
;
1209 mtd
->size
= DOCG4_CHIP_SIZE
;
1210 mtd
->name
= "Msys_Diskonchip_G4";
1211 mtd
->writesize
= DOCG4_PAGE_SIZE
;
1212 mtd
->erasesize
= DOCG4_BLOCK_SIZE
;
1213 mtd
->oobsize
= DOCG4_OOB_SIZE
;
1214 nand
->chipsize
= DOCG4_CHIP_SIZE
;
1215 nand
->chip_shift
= DOCG4_CHIP_SHIFT
;
1216 nand
->bbt_erase_shift
= nand
->phys_erase_shift
= DOCG4_ERASE_SHIFT
;
1217 nand
->chip_delay
= 20;
1218 nand
->page_shift
= DOCG4_PAGE_SHIFT
;
1219 nand
->pagemask
= 0x3ffff;
1220 nand
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
1221 nand
->badblockbits
= 8;
1222 nand
->ecc
.layout
= &docg4_oobinfo
;
1223 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1224 nand
->ecc
.size
= DOCG4_PAGE_SIZE
;
1225 nand
->ecc
.prepad
= 8;
1226 nand
->ecc
.bytes
= 8;
1227 nand
->ecc
.strength
= DOCG4_T
;
1228 nand
->options
= NAND_BUSWIDTH_16
| NAND_NO_SUBPAGE_WRITE
;
1229 nand
->IO_ADDR_R
= nand
->IO_ADDR_W
= doc
->virtadr
+ DOC_IOSPACE_DATA
;
1230 nand
->controller
= &nand
->hwcontrol
;
1231 spin_lock_init(&nand
->controller
->lock
);
1232 init_waitqueue_head(&nand
->controller
->wq
);
1235 nand
->cmdfunc
= docg4_command
;
1236 nand
->waitfunc
= docg4_wait
;
1237 nand
->select_chip
= docg4_select_chip
;
1238 nand
->read_byte
= docg4_read_byte
;
1239 nand
->block_markbad
= docg4_block_markbad
;
1240 nand
->read_buf
= docg4_read_buf
;
1241 nand
->write_buf
= docg4_write_buf16
;
1242 nand
->scan_bbt
= nand_default_bbt
;
1243 nand
->erase_cmd
= docg4_erase_block
;
1244 nand
->ecc
.read_page
= docg4_read_page
;
1245 nand
->ecc
.write_page
= docg4_write_page
;
1246 nand
->ecc
.read_page_raw
= docg4_read_page_raw
;
1247 nand
->ecc
.write_page_raw
= docg4_write_page_raw
;
1248 nand
->ecc
.read_oob
= docg4_read_oob
;
1249 nand
->ecc
.write_oob
= docg4_write_oob
;
1252 * The way the nand infrastructure code is written, a memory-based bbt
1253 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1254 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1255 * scan and define a dummy block_bad() which always returns 0.
1257 if (ignore_badblocks
) {
1258 nand
->options
|= NAND_SKIP_BBTSCAN
;
1259 nand
->block_bad
= docg4_block_neverbad
;
1264 static int __init
read_id_reg(struct mtd_info
*mtd
)
1266 struct nand_chip
*nand
= mtd
->priv
;
1267 struct docg4_priv
*doc
= nand
->priv
;
1268 void __iomem
*docptr
= doc
->virtadr
;
1271 /* check for presence of g4 chip by reading id registers */
1272 id1
= readw(docptr
+ DOC_CHIPID
);
1273 id1
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1274 id2
= readw(docptr
+ DOC_CHIPID_INV
);
1275 id2
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1277 if (id1
== DOCG4_IDREG1_VALUE
&& id2
== DOCG4_IDREG2_VALUE
) {
1279 "NAND device: 128MiB Diskonchip G4 detected\n");
1286 static char const *part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
1288 static int __init
probe_docg4(struct platform_device
*pdev
)
1290 struct mtd_info
*mtd
;
1291 struct nand_chip
*nand
;
1292 void __iomem
*virtadr
;
1293 struct docg4_priv
*doc
;
1296 struct device
*dev
= &pdev
->dev
;
1298 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1300 dev_err(dev
, "no io memory resource defined!\n");
1304 virtadr
= ioremap(r
->start
, resource_size(r
));
1306 dev_err(dev
, "Diskonchip ioremap failed: %pR\n", r
);
1310 len
= sizeof(struct mtd_info
) + sizeof(struct nand_chip
) +
1311 sizeof(struct docg4_priv
);
1312 mtd
= kzalloc(len
, GFP_KERNEL
);
1317 nand
= (struct nand_chip
*) (mtd
+ 1);
1318 doc
= (struct docg4_priv
*) (nand
+ 1);
1321 mtd
->owner
= THIS_MODULE
;
1322 doc
->virtadr
= virtadr
;
1325 init_mtd_structs(mtd
);
1327 /* initialize kernel bch algorithm */
1328 doc
->bch
= init_bch(DOCG4_M
, DOCG4_T
, DOCG4_PRIMITIVE_POLY
);
1329 if (doc
->bch
== NULL
) {
1334 platform_set_drvdata(pdev
, doc
);
1337 retval
= read_id_reg(mtd
);
1338 if (retval
== -ENODEV
) {
1339 dev_warn(dev
, "No diskonchip G4 device found.\n");
1343 retval
= nand_scan_tail(mtd
);
1347 retval
= read_factory_bbt(mtd
);
1351 retval
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
, 0);
1361 /* re-declarations avoid compiler warning */
1362 struct nand_chip
*nand
= mtd
->priv
;
1363 struct docg4_priv
*doc
= nand
->priv
;
1364 nand_release(mtd
); /* deletes partitions and mtd devices */
1372 static int __exit
cleanup_docg4(struct platform_device
*pdev
)
1374 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1375 nand_release(doc
->mtd
);
1378 iounmap(doc
->virtadr
);
1382 static struct platform_driver docg4_driver
= {
1385 .owner
= THIS_MODULE
,
1387 .suspend
= docg4_suspend
,
1388 .resume
= docg4_resume
,
1389 .remove
= __exit_p(cleanup_docg4
),
1392 module_platform_driver_probe(docg4_driver
, probe_docg4
);
1394 MODULE_LICENSE("GPL");
1395 MODULE_AUTHOR("Mike Dunn");
1396 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");