2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw
*ah
,
22 struct ath9k_tx_queue_info
*qi
)
24 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah
->txok_interrupt_mask
, ah
->txerr_interrupt_mask
,
27 ah
->txdesc_interrupt_mask
, ah
->txeol_interrupt_mask
,
28 ah
->txurn_interrupt_mask
);
30 ENABLE_REGWRITE_BUFFER(ah
);
32 REG_WRITE(ah
, AR_IMR_S0
,
33 SM(ah
->txok_interrupt_mask
, AR_IMR_S0_QCU_TXOK
)
34 | SM(ah
->txdesc_interrupt_mask
, AR_IMR_S0_QCU_TXDESC
));
35 REG_WRITE(ah
, AR_IMR_S1
,
36 SM(ah
->txerr_interrupt_mask
, AR_IMR_S1_QCU_TXERR
)
37 | SM(ah
->txeol_interrupt_mask
, AR_IMR_S1_QCU_TXEOL
));
39 ah
->imrs2_reg
&= ~AR_IMR_S2_QCU_TXURN
;
40 ah
->imrs2_reg
|= (ah
->txurn_interrupt_mask
& AR_IMR_S2_QCU_TXURN
);
41 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
43 REGWRITE_BUFFER_FLUSH(ah
);
46 u32
ath9k_hw_gettxbuf(struct ath_hw
*ah
, u32 q
)
48 return REG_READ(ah
, AR_QTXDP(q
));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf
);
52 void ath9k_hw_puttxbuf(struct ath_hw
*ah
, u32 q
, u32 txdp
)
54 REG_WRITE(ah
, AR_QTXDP(q
), txdp
);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf
);
58 void ath9k_hw_txstart(struct ath_hw
*ah
, u32 q
)
60 ath_dbg(ath9k_hw_common(ah
), QUEUE
, "Enable TXE on queue: %u\n", q
);
61 REG_WRITE(ah
, AR_Q_TXE
, 1 << q
);
63 EXPORT_SYMBOL(ath9k_hw_txstart
);
65 u32
ath9k_hw_numtxpending(struct ath_hw
*ah
, u32 q
)
69 npend
= REG_READ(ah
, AR_QSTS(q
)) & AR_Q_STS_PEND_FR_CNT
;
72 if (REG_READ(ah
, AR_Q_TXE
) & (1 << q
))
78 EXPORT_SYMBOL(ath9k_hw_numtxpending
);
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw
*ah
, bool bIncTrigLevel
)
107 u32 txcfg
, curLevel
, newLevel
;
109 if (ah
->tx_trig_level
>= ah
->config
.max_txtrig_level
)
112 ath9k_hw_disable_interrupts(ah
);
114 txcfg
= REG_READ(ah
, AR_TXCFG
);
115 curLevel
= MS(txcfg
, AR_FTRIG
);
118 if (curLevel
< ah
->config
.max_txtrig_level
)
120 } else if (curLevel
> MIN_TX_FIFO_THRESHOLD
)
122 if (newLevel
!= curLevel
)
123 REG_WRITE(ah
, AR_TXCFG
,
124 (txcfg
& ~AR_FTRIG
) | SM(newLevel
, AR_FTRIG
));
126 ath9k_hw_enable_interrupts(ah
);
128 ah
->tx_trig_level
= newLevel
;
130 return newLevel
!= curLevel
;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel
);
134 void ath9k_hw_abort_tx_dma(struct ath_hw
*ah
)
140 if (IS_CHAN_HALF_RATE(ah
->curchan
))
142 else if (IS_CHAN_QUARTER_RATE(ah
->curchan
))
146 REG_WRITE(ah
, AR_Q_TXD
, AR_Q_TXD_M
);
148 REG_SET_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
149 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
150 REG_SET_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
152 for (q
= 0; q
< AR_NUM_QCU
; q
++) {
153 for (i
= 0; i
< maxdelay
; i
++) {
157 if (!ath9k_hw_numtxpending(ah
, q
))
162 REG_CLR_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
163 REG_CLR_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
164 REG_CLR_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
166 REG_WRITE(ah
, AR_Q_TXD
, 0);
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma
);
170 bool ath9k_hw_stop_dma_queue(struct ath_hw
*ah
, u32 q
)
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time
= ATH9K_TX_STOP_DMA_TIMEOUT
/ ATH9K_TIME_QUANTUM
;
177 REG_WRITE(ah
, AR_Q_TXD
, 1 << q
);
179 for (wait
= wait_time
; wait
!= 0; wait
--) {
180 if (wait
!= wait_time
)
181 udelay(ATH9K_TIME_QUANTUM
);
183 if (ath9k_hw_numtxpending(ah
, q
) == 0)
187 REG_WRITE(ah
, AR_Q_TXD
, 0);
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue
);
196 bool ath9k_hw_set_txq_props(struct ath_hw
*ah
, int q
,
197 const struct ath9k_tx_queue_info
*qinfo
)
200 struct ath_common
*common
= ath9k_hw_common(ah
);
201 struct ath9k_tx_queue_info
*qi
;
204 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
205 ath_dbg(common
, QUEUE
,
206 "Set TXQ properties, inactive queue: %u\n", q
);
210 ath_dbg(common
, QUEUE
, "Set queue properties for: %u\n", q
);
212 qi
->tqi_ver
= qinfo
->tqi_ver
;
213 qi
->tqi_subtype
= qinfo
->tqi_subtype
;
214 qi
->tqi_qflags
= qinfo
->tqi_qflags
;
215 qi
->tqi_priority
= qinfo
->tqi_priority
;
216 if (qinfo
->tqi_aifs
!= ATH9K_TXQ_USEDEFAULT
)
217 qi
->tqi_aifs
= min(qinfo
->tqi_aifs
, 255U);
219 qi
->tqi_aifs
= INIT_AIFS
;
220 if (qinfo
->tqi_cwmin
!= ATH9K_TXQ_USEDEFAULT
) {
221 cw
= min(qinfo
->tqi_cwmin
, 1024U);
223 while (qi
->tqi_cwmin
< cw
)
224 qi
->tqi_cwmin
= (qi
->tqi_cwmin
<< 1) | 1;
226 qi
->tqi_cwmin
= qinfo
->tqi_cwmin
;
227 if (qinfo
->tqi_cwmax
!= ATH9K_TXQ_USEDEFAULT
) {
228 cw
= min(qinfo
->tqi_cwmax
, 1024U);
230 while (qi
->tqi_cwmax
< cw
)
231 qi
->tqi_cwmax
= (qi
->tqi_cwmax
<< 1) | 1;
233 qi
->tqi_cwmax
= INIT_CWMAX
;
235 if (qinfo
->tqi_shretry
!= 0)
236 qi
->tqi_shretry
= min((u32
) qinfo
->tqi_shretry
, 15U);
238 qi
->tqi_shretry
= INIT_SH_RETRY
;
239 if (qinfo
->tqi_lgretry
!= 0)
240 qi
->tqi_lgretry
= min((u32
) qinfo
->tqi_lgretry
, 15U);
242 qi
->tqi_lgretry
= INIT_LG_RETRY
;
243 qi
->tqi_cbrPeriod
= qinfo
->tqi_cbrPeriod
;
244 qi
->tqi_cbrOverflowLimit
= qinfo
->tqi_cbrOverflowLimit
;
245 qi
->tqi_burstTime
= qinfo
->tqi_burstTime
;
246 qi
->tqi_readyTime
= qinfo
->tqi_readyTime
;
248 switch (qinfo
->tqi_subtype
) {
250 if (qi
->tqi_type
== ATH9K_TX_QUEUE_DATA
)
251 qi
->tqi_intFlags
= ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
;
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props
);
261 bool ath9k_hw_get_txq_props(struct ath_hw
*ah
, int q
,
262 struct ath9k_tx_queue_info
*qinfo
)
264 struct ath_common
*common
= ath9k_hw_common(ah
);
265 struct ath9k_tx_queue_info
*qi
;
268 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
269 ath_dbg(common
, QUEUE
,
270 "Get TXQ properties, inactive queue: %u\n", q
);
274 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
275 qinfo
->tqi_ver
= qi
->tqi_ver
;
276 qinfo
->tqi_subtype
= qi
->tqi_subtype
;
277 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
278 qinfo
->tqi_priority
= qi
->tqi_priority
;
279 qinfo
->tqi_aifs
= qi
->tqi_aifs
;
280 qinfo
->tqi_cwmin
= qi
->tqi_cwmin
;
281 qinfo
->tqi_cwmax
= qi
->tqi_cwmax
;
282 qinfo
->tqi_shretry
= qi
->tqi_shretry
;
283 qinfo
->tqi_lgretry
= qi
->tqi_lgretry
;
284 qinfo
->tqi_cbrPeriod
= qi
->tqi_cbrPeriod
;
285 qinfo
->tqi_cbrOverflowLimit
= qi
->tqi_cbrOverflowLimit
;
286 qinfo
->tqi_burstTime
= qi
->tqi_burstTime
;
287 qinfo
->tqi_readyTime
= qi
->tqi_readyTime
;
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props
);
293 int ath9k_hw_setuptxqueue(struct ath_hw
*ah
, enum ath9k_tx_queue type
,
294 const struct ath9k_tx_queue_info
*qinfo
)
296 struct ath_common
*common
= ath9k_hw_common(ah
);
297 struct ath9k_tx_queue_info
*qi
;
301 case ATH9K_TX_QUEUE_BEACON
:
302 q
= ATH9K_NUM_TX_QUEUES
- 1;
304 case ATH9K_TX_QUEUE_CAB
:
305 q
= ATH9K_NUM_TX_QUEUES
- 2;
307 case ATH9K_TX_QUEUE_PSPOLL
:
310 case ATH9K_TX_QUEUE_UAPSD
:
311 q
= ATH9K_NUM_TX_QUEUES
- 3;
313 case ATH9K_TX_QUEUE_DATA
:
314 q
= qinfo
->tqi_subtype
;
317 ath_err(common
, "Invalid TX queue type: %u\n", type
);
321 ath_dbg(common
, QUEUE
, "Setup TX queue: %u\n", q
);
324 if (qi
->tqi_type
!= ATH9K_TX_QUEUE_INACTIVE
) {
325 ath_err(common
, "TX queue: %u already active\n", q
);
328 memset(qi
, 0, sizeof(struct ath9k_tx_queue_info
));
330 qi
->tqi_physCompBuf
= qinfo
->tqi_physCompBuf
;
331 (void) ath9k_hw_set_txq_props(ah
, q
, qinfo
);
335 EXPORT_SYMBOL(ath9k_hw_setuptxqueue
);
337 static void ath9k_hw_clear_queue_interrupts(struct ath_hw
*ah
, u32 q
)
339 ah
->txok_interrupt_mask
&= ~(1 << q
);
340 ah
->txerr_interrupt_mask
&= ~(1 << q
);
341 ah
->txdesc_interrupt_mask
&= ~(1 << q
);
342 ah
->txeol_interrupt_mask
&= ~(1 << q
);
343 ah
->txurn_interrupt_mask
&= ~(1 << q
);
346 bool ath9k_hw_releasetxqueue(struct ath_hw
*ah
, u32 q
)
348 struct ath_common
*common
= ath9k_hw_common(ah
);
349 struct ath9k_tx_queue_info
*qi
;
352 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
353 ath_dbg(common
, QUEUE
, "Release TXQ, inactive queue: %u\n", q
);
357 ath_dbg(common
, QUEUE
, "Release TX queue: %u\n", q
);
359 qi
->tqi_type
= ATH9K_TX_QUEUE_INACTIVE
;
360 ath9k_hw_clear_queue_interrupts(ah
, q
);
361 ath9k_hw_set_txq_interrupts(ah
, qi
);
365 EXPORT_SYMBOL(ath9k_hw_releasetxqueue
);
367 bool ath9k_hw_resettxqueue(struct ath_hw
*ah
, u32 q
)
369 struct ath_common
*common
= ath9k_hw_common(ah
);
370 struct ath9k_channel
*chan
= ah
->curchan
;
371 struct ath9k_tx_queue_info
*qi
;
372 u32 cwMin
, chanCwMin
, value
;
375 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
376 ath_dbg(common
, QUEUE
, "Reset TXQ, inactive queue: %u\n", q
);
380 ath_dbg(common
, QUEUE
, "Reset TX queue: %u\n", q
);
382 if (qi
->tqi_cwmin
== ATH9K_TXQ_USEDEFAULT
) {
383 if (chan
&& IS_CHAN_B(chan
))
384 chanCwMin
= INIT_CWMIN_11B
;
386 chanCwMin
= INIT_CWMIN
;
388 for (cwMin
= 1; cwMin
< chanCwMin
; cwMin
= (cwMin
<< 1) | 1);
390 cwMin
= qi
->tqi_cwmin
;
392 ENABLE_REGWRITE_BUFFER(ah
);
394 REG_WRITE(ah
, AR_DLCL_IFS(q
),
395 SM(cwMin
, AR_D_LCL_IFS_CWMIN
) |
396 SM(qi
->tqi_cwmax
, AR_D_LCL_IFS_CWMAX
) |
397 SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
399 REG_WRITE(ah
, AR_DRETRY_LIMIT(q
),
400 SM(INIT_SSH_RETRY
, AR_D_RETRY_LIMIT_STA_SH
) |
401 SM(INIT_SLG_RETRY
, AR_D_RETRY_LIMIT_STA_LG
) |
402 SM(qi
->tqi_shretry
, AR_D_RETRY_LIMIT_FR_SH
));
404 REG_WRITE(ah
, AR_QMISC(q
), AR_Q_MISC_DCU_EARLY_TERM_REQ
);
406 if (AR_SREV_9340(ah
) && !AR_SREV_9340_13_OR_LATER(ah
))
407 REG_WRITE(ah
, AR_DMISC(q
),
408 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x1);
410 REG_WRITE(ah
, AR_DMISC(q
),
411 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x2);
413 if (qi
->tqi_cbrPeriod
) {
414 REG_WRITE(ah
, AR_QCBRCFG(q
),
415 SM(qi
->tqi_cbrPeriod
, AR_Q_CBRCFG_INTERVAL
) |
416 SM(qi
->tqi_cbrOverflowLimit
, AR_Q_CBRCFG_OVF_THRESH
));
417 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_FSP_CBR
|
418 (qi
->tqi_cbrOverflowLimit
?
419 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
: 0));
421 if (qi
->tqi_readyTime
&& (qi
->tqi_type
!= ATH9K_TX_QUEUE_CAB
)) {
422 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
423 SM(qi
->tqi_readyTime
, AR_Q_RDYTIMECFG_DURATION
) |
427 REG_WRITE(ah
, AR_DCHNTIME(q
),
428 SM(qi
->tqi_burstTime
, AR_D_CHNTIME_DUR
) |
429 (qi
->tqi_burstTime
? AR_D_CHNTIME_EN
: 0));
431 if (qi
->tqi_burstTime
432 && (qi
->tqi_qflags
& TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE
))
433 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_RDYTIME_EXP_POLICY
);
435 if (qi
->tqi_qflags
& TXQ_FLAG_BACKOFF_DISABLE
)
436 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
438 REGWRITE_BUFFER_FLUSH(ah
);
440 if (qi
->tqi_qflags
& TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE
)
441 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_FRAG_BKOFF_EN
);
443 switch (qi
->tqi_type
) {
444 case ATH9K_TX_QUEUE_BEACON
:
445 ENABLE_REGWRITE_BUFFER(ah
);
447 REG_SET_BIT(ah
, AR_QMISC(q
),
448 AR_Q_MISC_FSP_DBA_GATED
449 | AR_Q_MISC_BEACON_USE
450 | AR_Q_MISC_CBR_INCR_DIS1
);
452 REG_SET_BIT(ah
, AR_DMISC(q
),
453 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
454 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
)
455 | AR_D_MISC_BEACON_USE
456 | AR_D_MISC_POST_FR_BKOFF_DIS
);
458 REGWRITE_BUFFER_FLUSH(ah
);
461 * cwmin and cwmax should be 0 for beacon queue
462 * but not for IBSS as we would create an imbalance
463 * on beaconing fairness for participating nodes.
465 if (AR_SREV_9300_20_OR_LATER(ah
) &&
466 ah
->opmode
!= NL80211_IFTYPE_ADHOC
) {
467 REG_WRITE(ah
, AR_DLCL_IFS(q
), SM(0, AR_D_LCL_IFS_CWMIN
)
468 | SM(0, AR_D_LCL_IFS_CWMAX
)
469 | SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
472 case ATH9K_TX_QUEUE_CAB
:
473 ENABLE_REGWRITE_BUFFER(ah
);
475 REG_SET_BIT(ah
, AR_QMISC(q
),
476 AR_Q_MISC_FSP_DBA_GATED
477 | AR_Q_MISC_CBR_INCR_DIS1
478 | AR_Q_MISC_CBR_INCR_DIS0
);
479 value
= (qi
->tqi_readyTime
-
480 (ah
->config
.sw_beacon_response_time
-
481 ah
->config
.dma_beacon_response_time
) -
482 ah
->config
.additional_swba_backoff
) * 1024;
483 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
484 value
| AR_Q_RDYTIMECFG_EN
);
485 REG_SET_BIT(ah
, AR_DMISC(q
),
486 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
487 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
));
489 REGWRITE_BUFFER_FLUSH(ah
);
492 case ATH9K_TX_QUEUE_PSPOLL
:
493 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_CBR_INCR_DIS1
);
495 case ATH9K_TX_QUEUE_UAPSD
:
496 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
502 if (qi
->tqi_intFlags
& ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
) {
503 REG_SET_BIT(ah
, AR_DMISC(q
),
504 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
,
505 AR_D_MISC_ARB_LOCKOUT_CNTRL
) |
506 AR_D_MISC_POST_FR_BKOFF_DIS
);
509 if (AR_SREV_9300_20_OR_LATER(ah
))
510 REG_WRITE(ah
, AR_Q_DESC_CRCCHK
, AR_Q_DESC_CRCCHK_EN
);
512 ath9k_hw_clear_queue_interrupts(ah
, q
);
513 if (qi
->tqi_qflags
& TXQ_FLAG_TXINT_ENABLE
) {
514 ah
->txok_interrupt_mask
|= 1 << q
;
515 ah
->txerr_interrupt_mask
|= 1 << q
;
517 if (qi
->tqi_qflags
& TXQ_FLAG_TXDESCINT_ENABLE
)
518 ah
->txdesc_interrupt_mask
|= 1 << q
;
519 if (qi
->tqi_qflags
& TXQ_FLAG_TXEOLINT_ENABLE
)
520 ah
->txeol_interrupt_mask
|= 1 << q
;
521 if (qi
->tqi_qflags
& TXQ_FLAG_TXURNINT_ENABLE
)
522 ah
->txurn_interrupt_mask
|= 1 << q
;
523 ath9k_hw_set_txq_interrupts(ah
, qi
);
527 EXPORT_SYMBOL(ath9k_hw_resettxqueue
);
529 int ath9k_hw_rxprocdesc(struct ath_hw
*ah
, struct ath_desc
*ds
,
530 struct ath_rx_status
*rs
)
532 struct ar5416_desc ads
;
533 struct ar5416_desc
*adsp
= AR5416DESC(ds
);
536 if ((adsp
->ds_rxstatus8
& AR_RxDone
) == 0)
539 ads
.u
.rx
= adsp
->u
.rx
;
545 rs
->rs_datalen
= ads
.ds_rxstatus1
& AR_DataLen
;
546 rs
->rs_tstamp
= ads
.AR_RcvTimestamp
;
548 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
) {
549 rs
->rs_rssi
= ATH9K_RSSI_BAD
;
550 rs
->rs_rssi_ctl0
= ATH9K_RSSI_BAD
;
551 rs
->rs_rssi_ctl1
= ATH9K_RSSI_BAD
;
552 rs
->rs_rssi_ctl2
= ATH9K_RSSI_BAD
;
553 rs
->rs_rssi_ext0
= ATH9K_RSSI_BAD
;
554 rs
->rs_rssi_ext1
= ATH9K_RSSI_BAD
;
555 rs
->rs_rssi_ext2
= ATH9K_RSSI_BAD
;
557 rs
->rs_rssi
= MS(ads
.ds_rxstatus4
, AR_RxRSSICombined
);
558 rs
->rs_rssi_ctl0
= MS(ads
.ds_rxstatus0
,
560 rs
->rs_rssi_ctl1
= MS(ads
.ds_rxstatus0
,
562 rs
->rs_rssi_ctl2
= MS(ads
.ds_rxstatus0
,
564 rs
->rs_rssi_ext0
= MS(ads
.ds_rxstatus4
,
566 rs
->rs_rssi_ext1
= MS(ads
.ds_rxstatus4
,
568 rs
->rs_rssi_ext2
= MS(ads
.ds_rxstatus4
,
571 if (ads
.ds_rxstatus8
& AR_RxKeyIdxValid
)
572 rs
->rs_keyix
= MS(ads
.ds_rxstatus8
, AR_KeyIdx
);
574 rs
->rs_keyix
= ATH9K_RXKEYIX_INVALID
;
576 rs
->rs_rate
= MS(ads
.ds_rxstatus0
, AR_RxRate
);
577 rs
->rs_more
= (ads
.ds_rxstatus1
& AR_RxMore
) ? 1 : 0;
579 rs
->rs_firstaggr
= (ads
.ds_rxstatus8
& AR_RxFirstAggr
) ? 1 : 0;
580 rs
->rs_isaggr
= (ads
.ds_rxstatus8
& AR_RxAggr
) ? 1 : 0;
581 rs
->rs_moreaggr
= (ads
.ds_rxstatus8
& AR_RxMoreAggr
) ? 1 : 0;
582 rs
->rs_antenna
= MS(ads
.ds_rxstatus3
, AR_RxAntenna
);
584 /* directly mapped flags for ieee80211_rx_status */
586 (ads
.ds_rxstatus3
& AR_GI
) ? RX_FLAG_SHORT_GI
: 0;
588 (ads
.ds_rxstatus3
& AR_2040
) ? RX_FLAG_40MHZ
: 0;
589 if (AR_SREV_9280_20_OR_LATER(ah
))
591 (ads
.ds_rxstatus3
& AR_STBC
) ?
592 /* we can only Nss=1 STBC */
593 (1 << RX_FLAG_STBC_SHIFT
) : 0;
595 if (ads
.ds_rxstatus8
& AR_PreDelimCRCErr
)
596 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_PRE
;
597 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
)
598 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_POST
;
599 if (ads
.ds_rxstatus8
& AR_DecryptBusyErr
)
600 rs
->rs_flags
|= ATH9K_RX_DECRYPT_BUSY
;
602 if ((ads
.ds_rxstatus8
& AR_RxFrameOK
) == 0) {
604 * Treat these errors as mutually exclusive to avoid spurious
605 * extra error reports from the hardware. If a CRC error is
606 * reported, then decryption and MIC errors are irrelevant,
607 * the frame is going to be dropped either way
609 if (ads
.ds_rxstatus8
& AR_PHYErr
) {
610 rs
->rs_status
|= ATH9K_RXERR_PHY
;
611 phyerr
= MS(ads
.ds_rxstatus8
, AR_PHYErrCode
);
612 rs
->rs_phyerr
= phyerr
;
613 } else if (ads
.ds_rxstatus8
& AR_CRCErr
)
614 rs
->rs_status
|= ATH9K_RXERR_CRC
;
615 else if (ads
.ds_rxstatus8
& AR_DecryptCRCErr
)
616 rs
->rs_status
|= ATH9K_RXERR_DECRYPT
;
617 else if (ads
.ds_rxstatus8
& AR_MichaelErr
)
618 rs
->rs_status
|= ATH9K_RXERR_MIC
;
620 if (ads
.ds_rxstatus8
&
621 (AR_CRCErr
| AR_PHYErr
| AR_DecryptCRCErr
| AR_MichaelErr
))
622 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
624 /* Only up to MCS16 supported, everything above is invalid */
625 if (rs
->rs_rate
>= 0x90)
626 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
629 if (ads
.ds_rxstatus8
& AR_KeyMiss
)
630 rs
->rs_status
|= ATH9K_RXERR_KEYMISS
;
634 EXPORT_SYMBOL(ath9k_hw_rxprocdesc
);
637 * This can stop or re-enables RX.
639 * If bool is set this will kill any frame which is currently being
640 * transferred between the MAC and baseband and also prevent any new
641 * frames from getting started.
643 bool ath9k_hw_setrxabort(struct ath_hw
*ah
, bool set
)
648 REG_SET_BIT(ah
, AR_DIAG_SW
,
649 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
651 if (!ath9k_hw_wait(ah
, AR_OBS_BUS_1
, AR_OBS_BUS_1_RX_STATE
,
652 0, AH_WAIT_TIMEOUT
)) {
653 REG_CLR_BIT(ah
, AR_DIAG_SW
,
657 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
658 ath_err(ath9k_hw_common(ah
),
659 "RX failed to go idle in 10 ms RXSM=0x%x\n",
665 REG_CLR_BIT(ah
, AR_DIAG_SW
,
666 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
671 EXPORT_SYMBOL(ath9k_hw_setrxabort
);
673 void ath9k_hw_putrxbuf(struct ath_hw
*ah
, u32 rxdp
)
675 REG_WRITE(ah
, AR_RXDP
, rxdp
);
677 EXPORT_SYMBOL(ath9k_hw_putrxbuf
);
679 void ath9k_hw_startpcureceive(struct ath_hw
*ah
, bool is_scanning
)
681 ath9k_enable_mib_counters(ah
);
683 ath9k_ani_reset(ah
, is_scanning
);
685 REG_CLR_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
687 EXPORT_SYMBOL(ath9k_hw_startpcureceive
);
689 void ath9k_hw_abortpcurecv(struct ath_hw
*ah
)
691 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_RX_ABORT
| AR_DIAG_RX_DIS
);
693 ath9k_hw_disable_mib_counters(ah
);
695 EXPORT_SYMBOL(ath9k_hw_abortpcurecv
);
697 bool ath9k_hw_stopdmarecv(struct ath_hw
*ah
, bool *reset
)
699 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
700 struct ath_common
*common
= ath9k_hw_common(ah
);
701 u32 mac_status
, last_mac_status
= 0;
704 /* Enable access to the DMA observation bus */
705 REG_WRITE(ah
, AR_MACMISC
,
706 ((AR_MACMISC_DMA_OBS_LINE_8
<< AR_MACMISC_DMA_OBS_S
) |
707 (AR_MACMISC_MISC_OBS_BUS_1
<<
708 AR_MACMISC_MISC_OBS_BUS_MSB_S
)));
710 REG_WRITE(ah
, AR_CR
, AR_CR_RXD
);
712 /* Wait for rx enable bit to go low */
713 for (i
= AH_RX_STOP_DMA_TIMEOUT
/ AH_TIME_QUANTUM
; i
!= 0; i
--) {
714 if ((REG_READ(ah
, AR_CR
) & AR_CR_RXE
) == 0)
717 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
718 mac_status
= REG_READ(ah
, AR_DMADBG_7
) & 0x7f0;
719 if (mac_status
== 0x1c0 && mac_status
== last_mac_status
) {
724 last_mac_status
= mac_status
;
727 udelay(AH_TIME_QUANTUM
);
732 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
733 AH_RX_STOP_DMA_TIMEOUT
/ 1000,
735 REG_READ(ah
, AR_DIAG_SW
),
736 REG_READ(ah
, AR_DMADBG_7
));
742 #undef AH_RX_STOP_DMA_TIMEOUT
744 EXPORT_SYMBOL(ath9k_hw_stopdmarecv
);
746 int ath9k_hw_beaconq_setup(struct ath_hw
*ah
)
748 struct ath9k_tx_queue_info qi
;
750 memset(&qi
, 0, sizeof(qi
));
755 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
756 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
758 return ath9k_hw_setuptxqueue(ah
, ATH9K_TX_QUEUE_BEACON
, &qi
);
760 EXPORT_SYMBOL(ath9k_hw_beaconq_setup
);
762 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
766 if (AR_SREV_9100(ah
))
769 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
771 if (((host_isr
& AR_INTR_MAC_IRQ
) ||
772 (host_isr
& AR_INTR_ASYNC_MASK_MCI
)) &&
773 (host_isr
!= AR_INTR_SPURIOUS
))
776 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
777 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
778 && (host_isr
!= AR_INTR_SPURIOUS
))
783 EXPORT_SYMBOL(ath9k_hw_intrpend
);
785 void ath9k_hw_kill_interrupts(struct ath_hw
*ah
)
787 struct ath_common
*common
= ath9k_hw_common(ah
);
789 ath_dbg(common
, INTERRUPT
, "disable IER\n");
790 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
791 (void) REG_READ(ah
, AR_IER
);
792 if (!AR_SREV_9100(ah
)) {
793 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
794 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
796 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
797 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
800 EXPORT_SYMBOL(ath9k_hw_kill_interrupts
);
802 void ath9k_hw_disable_interrupts(struct ath_hw
*ah
)
804 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
805 atomic_set(&ah
->intr_ref_cnt
, -1);
807 atomic_dec(&ah
->intr_ref_cnt
);
809 ath9k_hw_kill_interrupts(ah
);
811 EXPORT_SYMBOL(ath9k_hw_disable_interrupts
);
813 void ath9k_hw_enable_interrupts(struct ath_hw
*ah
)
815 struct ath_common
*common
= ath9k_hw_common(ah
);
816 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
819 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
822 if (!atomic_inc_and_test(&ah
->intr_ref_cnt
)) {
823 ath_dbg(common
, INTERRUPT
, "Do not enable IER ref count %d\n",
824 atomic_read(&ah
->intr_ref_cnt
));
828 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
))
829 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
831 async_mask
= AR_INTR_MAC_IRQ
;
833 if (ah
->imask
& ATH9K_INT_MCI
)
834 async_mask
|= AR_INTR_ASYNC_MASK_MCI
;
836 ath_dbg(common
, INTERRUPT
, "enable IER\n");
837 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
838 if (!AR_SREV_9100(ah
)) {
839 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, async_mask
);
840 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, async_mask
);
842 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
843 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, sync_default
);
845 ath_dbg(common
, INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
846 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
848 EXPORT_SYMBOL(ath9k_hw_enable_interrupts
);
850 void ath9k_hw_set_interrupts(struct ath_hw
*ah
)
852 enum ath9k_int ints
= ah
->imask
;
854 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
855 struct ath_common
*common
= ath9k_hw_common(ah
);
857 if (!(ints
& ATH9K_INT_GLOBAL
))
858 ath9k_hw_disable_interrupts(ah
);
860 ath_dbg(common
, INTERRUPT
, "New interrupt mask 0x%x\n", ints
);
862 mask
= ints
& ATH9K_INT_COMMON
;
865 if (ints
& ATH9K_INT_TX
) {
866 if (ah
->config
.tx_intr_mitigation
)
867 mask
|= AR_IMR_TXMINTR
| AR_IMR_TXINTM
;
869 if (ah
->txok_interrupt_mask
)
871 if (ah
->txdesc_interrupt_mask
)
872 mask
|= AR_IMR_TXDESC
;
874 if (ah
->txerr_interrupt_mask
)
875 mask
|= AR_IMR_TXERR
;
876 if (ah
->txeol_interrupt_mask
)
877 mask
|= AR_IMR_TXEOL
;
879 if (ints
& ATH9K_INT_RX
) {
880 if (AR_SREV_9300_20_OR_LATER(ah
)) {
881 mask
|= AR_IMR_RXERR
| AR_IMR_RXOK_HP
;
882 if (ah
->config
.rx_intr_mitigation
) {
883 mask
&= ~AR_IMR_RXOK_LP
;
884 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
886 mask
|= AR_IMR_RXOK_LP
;
889 if (ah
->config
.rx_intr_mitigation
)
890 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
892 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
894 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
895 mask
|= AR_IMR_GENTMR
;
898 if (ints
& ATH9K_INT_GENTIMER
)
899 mask
|= AR_IMR_GENTMR
;
901 if (ints
& (ATH9K_INT_BMISC
)) {
902 mask
|= AR_IMR_BCNMISC
;
903 if (ints
& ATH9K_INT_TIM
)
904 mask2
|= AR_IMR_S2_TIM
;
905 if (ints
& ATH9K_INT_DTIM
)
906 mask2
|= AR_IMR_S2_DTIM
;
907 if (ints
& ATH9K_INT_DTIMSYNC
)
908 mask2
|= AR_IMR_S2_DTIMSYNC
;
909 if (ints
& ATH9K_INT_CABEND
)
910 mask2
|= AR_IMR_S2_CABEND
;
911 if (ints
& ATH9K_INT_TSFOOR
)
912 mask2
|= AR_IMR_S2_TSFOOR
;
915 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
916 mask
|= AR_IMR_BCNMISC
;
917 if (ints
& ATH9K_INT_GTT
)
918 mask2
|= AR_IMR_S2_GTT
;
919 if (ints
& ATH9K_INT_CST
)
920 mask2
|= AR_IMR_S2_CST
;
923 ath_dbg(common
, INTERRUPT
, "new IMR 0x%x\n", mask
);
924 REG_WRITE(ah
, AR_IMR
, mask
);
925 ah
->imrs2_reg
&= ~(AR_IMR_S2_TIM
| AR_IMR_S2_DTIM
| AR_IMR_S2_DTIMSYNC
|
926 AR_IMR_S2_CABEND
| AR_IMR_S2_CABTO
|
927 AR_IMR_S2_TSFOOR
| AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
928 ah
->imrs2_reg
|= mask2
;
929 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
931 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
932 if (ints
& ATH9K_INT_TIM_TIMER
)
933 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
935 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
940 EXPORT_SYMBOL(ath9k_hw_set_interrupts
);