Linux 3.12.39
[linux/fpc-iii.git] / drivers / platform / x86 / intel_scu_ipc.c
blob9215ed72bece39361da1c14e568401d38008108d
1 /*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
4 * (C) Copyright 2008-2010 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/mrst.h>
29 #include <asm/intel_scu_ipc.h>
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W 0 /* Register write */
40 #define IPC_CMD_PCNTRL_R 1 /* Register read */
41 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
44 * IPC register summary
46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
47 * To read or write information to the SCU, driver writes to IPC-1 memory
48 * mapped registers (base address 0xFF11C000). The following is the IPC
49 * mechanism
51 * 1. IA core cDMI interface claims this transaction and converts it to a
52 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
54 * 2. South Complex cDMI block receives this message and writes it to
55 * the IPC-1 register block, causing an interrupt to the SCU
57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
58 * message handler is called within firmware.
61 #define IPC_BASE_ADDR 0xFF11C000 /* IPC1 base register address */
62 #define IPC_MAX_ADDR 0x100 /* Maximum IPC regisers */
63 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
64 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
65 #define IPC_I2C_BASE 0xFF12B000 /* I2C control register base address */
66 #define IPC_I2C_MAX_ADDR 0x10 /* Maximum I2C regisers */
68 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
69 static void ipc_remove(struct pci_dev *pdev);
71 struct intel_scu_ipc_dev {
72 struct pci_dev *pdev;
73 void __iomem *ipc_base;
74 void __iomem *i2c_base;
77 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
79 static int platform; /* Platform type */
82 * IPC Read Buffer (Read Only):
83 * 16 byte buffer for receiving data from SCU, if IPC command
84 * processing results in response data
86 #define IPC_READ_BUFFER 0x90
88 #define IPC_I2C_CNTRL_ADDR 0
89 #define I2C_DATA_ADDR 0x04
91 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
94 * Command Register (Write Only):
95 * A write to this register results in an interrupt to the SCU core processor
96 * Format:
97 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
99 static inline void ipc_command(u32 cmd) /* Send ipc command */
101 writel(cmd, ipcdev.ipc_base);
105 * IPC Write Buffer (Write Only):
106 * 16-byte buffer for sending data associated with IPC command to
107 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
109 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
111 writel(data, ipcdev.ipc_base + 0x80 + offset);
115 * Status Register (Read Only):
116 * Driver will read this register to get the ready/busy status of the IPC
117 * block and error status of the IPC command that was just processed by SCU
118 * Format:
119 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
122 static inline u8 ipc_read_status(void)
124 return __raw_readl(ipcdev.ipc_base + 0x04);
127 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
129 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
132 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
134 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
137 static inline int busy_loop(void) /* Wait till scu status is busy */
139 u32 status = 0;
140 u32 loop_count = 0;
142 status = ipc_read_status();
143 while (status & 1) {
144 udelay(1); /* scu processing time is in few u secods */
145 status = ipc_read_status();
146 loop_count++;
147 /* break if scu doesn't reset busy bit after huge retry */
148 if (loop_count > 100000) {
149 dev_err(&ipcdev.pdev->dev, "IPC timed out");
150 return -ETIMEDOUT;
153 if ((status >> 1) & 1)
154 return -EIO;
156 return 0;
159 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
160 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
162 int nc;
163 u32 offset = 0;
164 int err;
165 u8 cbuf[IPC_WWBUF_SIZE] = { };
166 u32 *wbuf = (u32 *)&cbuf;
168 mutex_lock(&ipclock);
170 memset(cbuf, 0, sizeof(cbuf));
172 if (ipcdev.pdev == NULL) {
173 mutex_unlock(&ipclock);
174 return -ENODEV;
177 for (nc = 0; nc < count; nc++, offset += 2) {
178 cbuf[offset] = addr[nc];
179 cbuf[offset + 1] = addr[nc] >> 8;
182 if (id == IPC_CMD_PCNTRL_R) {
183 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
184 ipc_data_writel(wbuf[nc], offset);
185 ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
186 } else if (id == IPC_CMD_PCNTRL_W) {
187 for (nc = 0; nc < count; nc++, offset += 1)
188 cbuf[offset] = data[nc];
189 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
190 ipc_data_writel(wbuf[nc], offset);
191 ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
192 } else if (id == IPC_CMD_PCNTRL_M) {
193 cbuf[offset] = data[0];
194 cbuf[offset + 1] = data[1];
195 ipc_data_writel(wbuf[0], 0); /* Write wbuff */
196 ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
199 err = busy_loop();
200 if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
201 /* Workaround: values are read as 0 without memcpy_fromio */
202 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
203 for (nc = 0; nc < count; nc++)
204 data[nc] = ipc_data_readb(nc);
206 mutex_unlock(&ipclock);
207 return err;
211 * intel_scu_ipc_ioread8 - read a word via the SCU
212 * @addr: register on SCU
213 * @data: return pointer for read byte
215 * Read a single register. Returns 0 on success or an error code. All
216 * locking between SCU accesses is handled for the caller.
218 * This function may sleep.
220 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
222 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
224 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
227 * intel_scu_ipc_ioread16 - read a word via the SCU
228 * @addr: register on SCU
229 * @data: return pointer for read word
231 * Read a register pair. Returns 0 on success or an error code. All
232 * locking between SCU accesses is handled for the caller.
234 * This function may sleep.
236 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
238 u16 x[2] = {addr, addr + 1 };
239 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
241 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
244 * intel_scu_ipc_ioread32 - read a dword via the SCU
245 * @addr: register on SCU
246 * @data: return pointer for read dword
248 * Read four registers. Returns 0 on success or an error code. All
249 * locking between SCU accesses is handled for the caller.
251 * This function may sleep.
253 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
255 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
256 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
258 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
261 * intel_scu_ipc_iowrite8 - write a byte via the SCU
262 * @addr: register on SCU
263 * @data: byte to write
265 * Write a single register. Returns 0 on success or an error code. All
266 * locking between SCU accesses is handled for the caller.
268 * This function may sleep.
270 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
272 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
274 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
277 * intel_scu_ipc_iowrite16 - write a word via the SCU
278 * @addr: register on SCU
279 * @data: word to write
281 * Write two registers. Returns 0 on success or an error code. All
282 * locking between SCU accesses is handled for the caller.
284 * This function may sleep.
286 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
288 u16 x[2] = {addr, addr + 1 };
289 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
291 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
294 * intel_scu_ipc_iowrite32 - write a dword via the SCU
295 * @addr: register on SCU
296 * @data: dword to write
298 * Write four registers. Returns 0 on success or an error code. All
299 * locking between SCU accesses is handled for the caller.
301 * This function may sleep.
303 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
305 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
306 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
308 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
311 * intel_scu_ipc_readvv - read a set of registers
312 * @addr: register list
313 * @data: bytes to return
314 * @len: length of array
316 * Read registers. Returns 0 on success or an error code. All
317 * locking between SCU accesses is handled for the caller.
319 * The largest array length permitted by the hardware is 5 items.
321 * This function may sleep.
323 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
325 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
327 EXPORT_SYMBOL(intel_scu_ipc_readv);
330 * intel_scu_ipc_writev - write a set of registers
331 * @addr: register list
332 * @data: bytes to write
333 * @len: length of array
335 * Write registers. Returns 0 on success or an error code. All
336 * locking between SCU accesses is handled for the caller.
338 * The largest array length permitted by the hardware is 5 items.
340 * This function may sleep.
343 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
345 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
347 EXPORT_SYMBOL(intel_scu_ipc_writev);
351 * intel_scu_ipc_update_register - r/m/w a register
352 * @addr: register address
353 * @bits: bits to update
354 * @mask: mask of bits to update
356 * Read-modify-write power control unit register. The first data argument
357 * must be register value and second is mask value
358 * mask is a bitmap that indicates which bits to update.
359 * 0 = masked. Don't modify this bit, 1 = modify this bit.
360 * returns 0 on success or an error code.
362 * This function may sleep. Locking between SCU accesses is handled
363 * for the caller.
365 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
367 u8 data[2] = { bits, mask };
368 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
370 EXPORT_SYMBOL(intel_scu_ipc_update_register);
373 * intel_scu_ipc_simple_command - send a simple command
374 * @cmd: command
375 * @sub: sub type
377 * Issue a simple command to the SCU. Do not use this interface if
378 * you must then access data as any data values may be overwritten
379 * by another SCU access by the time this function returns.
381 * This function may sleep. Locking for SCU accesses is handled for
382 * the caller.
384 int intel_scu_ipc_simple_command(int cmd, int sub)
386 int err;
388 mutex_lock(&ipclock);
389 if (ipcdev.pdev == NULL) {
390 mutex_unlock(&ipclock);
391 return -ENODEV;
393 ipc_command(sub << 12 | cmd);
394 err = busy_loop();
395 mutex_unlock(&ipclock);
396 return err;
398 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
401 * intel_scu_ipc_command - command with data
402 * @cmd: command
403 * @sub: sub type
404 * @in: input data
405 * @inlen: input length in dwords
406 * @out: output data
407 * @outlein: output length in dwords
409 * Issue a command to the SCU which involves data transfers. Do the
410 * data copies under the lock but leave it for the caller to interpret
413 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
414 u32 *out, int outlen)
416 int i, err;
418 mutex_lock(&ipclock);
419 if (ipcdev.pdev == NULL) {
420 mutex_unlock(&ipclock);
421 return -ENODEV;
424 for (i = 0; i < inlen; i++)
425 ipc_data_writel(*in++, 4 * i);
427 ipc_command((inlen << 16) | (sub << 12) | cmd);
428 err = busy_loop();
430 for (i = 0; i < outlen; i++)
431 *out++ = ipc_data_readl(4 * i);
433 mutex_unlock(&ipclock);
434 return err;
436 EXPORT_SYMBOL(intel_scu_ipc_command);
438 /*I2C commands */
439 #define IPC_I2C_WRITE 1 /* I2C Write command */
440 #define IPC_I2C_READ 2 /* I2C Read command */
443 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
444 * @addr: I2C address + command bits
445 * @data: data to read/write
447 * Perform an an I2C read/write operation via the SCU. All locking is
448 * handled for the caller. This function may sleep.
450 * Returns an error code or 0 on success.
452 * This has to be in the IPC driver for the locking.
454 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
456 u32 cmd = 0;
458 mutex_lock(&ipclock);
459 if (ipcdev.pdev == NULL) {
460 mutex_unlock(&ipclock);
461 return -ENODEV;
463 cmd = (addr >> 24) & 0xFF;
464 if (cmd == IPC_I2C_READ) {
465 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
466 /* Write not getting updated without delay */
467 mdelay(1);
468 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
469 } else if (cmd == IPC_I2C_WRITE) {
470 writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
471 mdelay(1);
472 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
473 } else {
474 dev_err(&ipcdev.pdev->dev,
475 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
477 mutex_unlock(&ipclock);
478 return -EIO;
480 mutex_unlock(&ipclock);
481 return 0;
483 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
486 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
487 * When ioc bit is set to 1, caller api must wait for interrupt handler called
488 * which in turn unlocks the caller api. Currently this is not used
490 * This is edge triggered so we need take no action to clear anything
492 static irqreturn_t ioc(int irq, void *dev_id)
494 return IRQ_HANDLED;
498 * ipc_probe - probe an Intel SCU IPC
499 * @dev: the PCI device matching
500 * @id: entry in the match table
502 * Enable and install an intel SCU IPC. This appears in the PCI space
503 * but uses some hard coded addresses as well.
505 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
507 int err;
508 resource_size_t pci_resource;
510 if (ipcdev.pdev) /* We support only one SCU */
511 return -EBUSY;
513 ipcdev.pdev = pci_dev_get(dev);
515 err = pci_enable_device(dev);
516 if (err)
517 return err;
519 err = pci_request_regions(dev, "intel_scu_ipc");
520 if (err)
521 return err;
523 pci_resource = pci_resource_start(dev, 0);
524 if (!pci_resource)
525 return -ENOMEM;
527 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
528 return -EBUSY;
530 ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
531 if (!ipcdev.ipc_base)
532 return -ENOMEM;
534 ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
535 if (!ipcdev.i2c_base) {
536 iounmap(ipcdev.ipc_base);
537 return -ENOMEM;
540 intel_scu_devices_create();
542 return 0;
546 * ipc_remove - remove a bound IPC device
547 * @pdev: PCI device
549 * In practice the SCU is not removable but this function is also
550 * called for each device on a module unload or cleanup which is the
551 * path that will get used.
553 * Free up the mappings and release the PCI resources
555 static void ipc_remove(struct pci_dev *pdev)
557 free_irq(pdev->irq, &ipcdev);
558 pci_release_regions(pdev);
559 pci_dev_put(ipcdev.pdev);
560 iounmap(ipcdev.ipc_base);
561 iounmap(ipcdev.i2c_base);
562 ipcdev.pdev = NULL;
563 intel_scu_devices_destroy();
566 static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
567 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
568 { 0,}
570 MODULE_DEVICE_TABLE(pci, pci_ids);
572 static struct pci_driver ipc_driver = {
573 .name = "intel_scu_ipc",
574 .id_table = pci_ids,
575 .probe = ipc_probe,
576 .remove = ipc_remove,
580 static int __init intel_scu_ipc_init(void)
582 platform = mrst_identify_cpu();
583 if (platform == 0)
584 return -ENODEV;
585 return pci_register_driver(&ipc_driver);
588 static void __exit intel_scu_ipc_exit(void)
590 pci_unregister_driver(&ipc_driver);
593 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
594 MODULE_DESCRIPTION("Intel SCU IPC driver");
595 MODULE_LICENSE("GPL");
597 module_init(intel_scu_ipc_init);
598 module_exit(intel_scu_ipc_exit);