Linux 3.12.39
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blob7724fbdf443f58d29852331ee8b4dc7595a4b687
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 unsigned long data, text, lib, swap;
25 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
34 hiwater_vm = total_vm = mm->total_vm;
35 if (hiwater_vm < mm->hiwater_vm)
36 hiwater_vm = mm->hiwater_vm;
37 hiwater_rss = total_rss = get_mm_rss(mm);
38 if (hiwater_rss < mm->hiwater_rss)
39 hiwater_rss = mm->hiwater_rss;
41 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 swap = get_mm_counter(mm, MM_SWAPENTS);
45 seq_printf(m,
46 "VmPeak:\t%8lu kB\n"
47 "VmSize:\t%8lu kB\n"
48 "VmLck:\t%8lu kB\n"
49 "VmPin:\t%8lu kB\n"
50 "VmHWM:\t%8lu kB\n"
51 "VmRSS:\t%8lu kB\n"
52 "VmData:\t%8lu kB\n"
53 "VmStk:\t%8lu kB\n"
54 "VmExe:\t%8lu kB\n"
55 "VmLib:\t%8lu kB\n"
56 "VmPTE:\t%8lu kB\n"
57 "VmSwap:\t%8lu kB\n",
58 hiwater_vm << (PAGE_SHIFT-10),
59 total_vm << (PAGE_SHIFT-10),
60 mm->locked_vm << (PAGE_SHIFT-10),
61 mm->pinned_vm << (PAGE_SHIFT-10),
62 hiwater_rss << (PAGE_SHIFT-10),
63 total_rss << (PAGE_SHIFT-10),
64 data << (PAGE_SHIFT-10),
65 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
67 swap << (PAGE_SHIFT-10));
70 unsigned long task_vsize(struct mm_struct *mm)
72 return PAGE_SIZE * mm->total_vm;
75 unsigned long task_statm(struct mm_struct *mm,
76 unsigned long *shared, unsigned long *text,
77 unsigned long *data, unsigned long *resident)
79 *shared = get_mm_counter(mm, MM_FILEPAGES);
80 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
81 >> PAGE_SHIFT;
82 *data = mm->total_vm - mm->shared_vm;
83 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
84 return mm->total_vm;
87 static void pad_len_spaces(struct seq_file *m, int len)
89 len = 25 + sizeof(void*) * 6 - len;
90 if (len < 1)
91 len = 1;
92 seq_printf(m, "%*c", len, ' ');
95 #ifdef CONFIG_NUMA
97 * These functions are for numa_maps but called in generic **maps seq_file
98 * ->start(), ->stop() ops.
100 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
101 * Each mempolicy object is controlled by reference counting. The problem here
102 * is how to avoid accessing dead mempolicy object.
104 * Because we're holding mmap_sem while reading seq_file, it's safe to access
105 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
107 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
108 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
109 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
110 * gurantee the task never exits under us. But taking task_lock() around
111 * get_vma_plicy() causes lock order problem.
113 * To access task->mempolicy without lock, we hold a reference count of an
114 * object pointed by task->mempolicy and remember it. This will guarantee
115 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
117 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 struct task_struct *task = priv->task;
121 task_lock(task);
122 priv->task_mempolicy = task->mempolicy;
123 mpol_get(priv->task_mempolicy);
124 task_unlock(task);
126 static void release_task_mempolicy(struct proc_maps_private *priv)
128 mpol_put(priv->task_mempolicy);
130 #else
131 static void hold_task_mempolicy(struct proc_maps_private *priv)
134 static void release_task_mempolicy(struct proc_maps_private *priv)
137 #endif
139 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 if (vma && vma != priv->tail_vma) {
142 struct mm_struct *mm = vma->vm_mm;
143 release_task_mempolicy(priv);
144 up_read(&mm->mmap_sem);
145 mmput(mm);
149 static void *m_start(struct seq_file *m, loff_t *pos)
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma, *tail_vma = NULL;
155 loff_t l = *pos;
157 /* Clear the per syscall fields in priv */
158 priv->task = NULL;
159 priv->tail_vma = NULL;
162 * We remember last_addr rather than next_addr to hit with
163 * vmacache most of the time. We have zero last_addr at
164 * the beginning and also after lseek. We will have -1 last_addr
165 * after the end of the vmas.
168 if (last_addr == -1UL)
169 return NULL;
171 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
172 if (!priv->task)
173 return ERR_PTR(-ESRCH);
175 mm = mm_access(priv->task, PTRACE_MODE_READ);
176 if (!mm || IS_ERR(mm))
177 return mm;
178 down_read(&mm->mmap_sem);
180 tail_vma = get_gate_vma(priv->task->mm);
181 priv->tail_vma = tail_vma;
182 hold_task_mempolicy(priv);
183 /* Start with last addr hint */
184 vma = find_vma(mm, last_addr);
185 if (last_addr && vma) {
186 vma = vma->vm_next;
187 goto out;
191 * Check the vma index is within the range and do
192 * sequential scan until m_index.
194 vma = NULL;
195 if ((unsigned long)l < mm->map_count) {
196 vma = mm->mmap;
197 while (l-- && vma)
198 vma = vma->vm_next;
199 goto out;
202 if (l != mm->map_count)
203 tail_vma = NULL; /* After gate vma */
205 out:
206 if (vma)
207 return vma;
209 release_task_mempolicy(priv);
210 /* End of vmas has been reached */
211 m->version = (tail_vma != NULL)? 0: -1UL;
212 up_read(&mm->mmap_sem);
213 mmput(mm);
214 return tail_vma;
217 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
219 struct proc_maps_private *priv = m->private;
220 struct vm_area_struct *vma = v;
221 struct vm_area_struct *tail_vma = priv->tail_vma;
223 (*pos)++;
224 if (vma && (vma != tail_vma) && vma->vm_next)
225 return vma->vm_next;
226 vma_stop(priv, vma);
227 return (vma != tail_vma)? tail_vma: NULL;
230 static void m_stop(struct seq_file *m, void *v)
232 struct proc_maps_private *priv = m->private;
233 struct vm_area_struct *vma = v;
235 if (!IS_ERR(vma))
236 vma_stop(priv, vma);
237 if (priv->task)
238 put_task_struct(priv->task);
241 static int do_maps_open(struct inode *inode, struct file *file,
242 const struct seq_operations *ops)
244 struct proc_maps_private *priv;
245 int ret = -ENOMEM;
246 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
247 if (priv) {
248 priv->pid = proc_pid(inode);
249 ret = seq_open(file, ops);
250 if (!ret) {
251 struct seq_file *m = file->private_data;
252 m->private = priv;
253 } else {
254 kfree(priv);
257 return ret;
260 static void
261 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
263 struct mm_struct *mm = vma->vm_mm;
264 struct file *file = vma->vm_file;
265 struct proc_maps_private *priv = m->private;
266 struct task_struct *task = priv->task;
267 vm_flags_t flags = vma->vm_flags;
268 unsigned long ino = 0;
269 unsigned long long pgoff = 0;
270 unsigned long start, end;
271 dev_t dev = 0;
272 int len;
273 const char *name = NULL;
275 if (file) {
276 struct inode *inode = file_inode(vma->vm_file);
277 dev = inode->i_sb->s_dev;
278 ino = inode->i_ino;
279 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
282 /* We don't show the stack guard page in /proc/maps */
283 start = vma->vm_start;
284 if (stack_guard_page_start(vma, start))
285 start += PAGE_SIZE;
286 end = vma->vm_end;
287 if (stack_guard_page_end(vma, end))
288 end -= PAGE_SIZE;
290 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
291 start,
292 end,
293 flags & VM_READ ? 'r' : '-',
294 flags & VM_WRITE ? 'w' : '-',
295 flags & VM_EXEC ? 'x' : '-',
296 flags & VM_MAYSHARE ? 's' : 'p',
297 pgoff,
298 MAJOR(dev), MINOR(dev), ino, &len);
301 * Print the dentry name for named mappings, and a
302 * special [heap] marker for the heap:
304 if (file) {
305 pad_len_spaces(m, len);
306 seq_path(m, &file->f_path, "\n");
307 goto done;
310 name = arch_vma_name(vma);
311 if (!name) {
312 pid_t tid;
314 if (!mm) {
315 name = "[vdso]";
316 goto done;
319 if (vma->vm_start <= mm->brk &&
320 vma->vm_end >= mm->start_brk) {
321 name = "[heap]";
322 goto done;
325 tid = vm_is_stack(task, vma, is_pid);
327 if (tid != 0) {
329 * Thread stack in /proc/PID/task/TID/maps or
330 * the main process stack.
332 if (!is_pid || (vma->vm_start <= mm->start_stack &&
333 vma->vm_end >= mm->start_stack)) {
334 name = "[stack]";
335 } else {
336 /* Thread stack in /proc/PID/maps */
337 pad_len_spaces(m, len);
338 seq_printf(m, "[stack:%d]", tid);
343 done:
344 if (name) {
345 pad_len_spaces(m, len);
346 seq_puts(m, name);
348 seq_putc(m, '\n');
351 static int show_map(struct seq_file *m, void *v, int is_pid)
353 struct vm_area_struct *vma = v;
354 struct proc_maps_private *priv = m->private;
355 struct task_struct *task = priv->task;
357 show_map_vma(m, vma, is_pid);
359 if (m->count < m->size) /* vma is copied successfully */
360 m->version = (vma != get_gate_vma(task->mm))
361 ? vma->vm_start : 0;
362 return 0;
365 static int show_pid_map(struct seq_file *m, void *v)
367 return show_map(m, v, 1);
370 static int show_tid_map(struct seq_file *m, void *v)
372 return show_map(m, v, 0);
375 static const struct seq_operations proc_pid_maps_op = {
376 .start = m_start,
377 .next = m_next,
378 .stop = m_stop,
379 .show = show_pid_map
382 static const struct seq_operations proc_tid_maps_op = {
383 .start = m_start,
384 .next = m_next,
385 .stop = m_stop,
386 .show = show_tid_map
389 static int pid_maps_open(struct inode *inode, struct file *file)
391 return do_maps_open(inode, file, &proc_pid_maps_op);
394 static int tid_maps_open(struct inode *inode, struct file *file)
396 return do_maps_open(inode, file, &proc_tid_maps_op);
399 const struct file_operations proc_pid_maps_operations = {
400 .open = pid_maps_open,
401 .read = seq_read,
402 .llseek = seq_lseek,
403 .release = seq_release_private,
406 const struct file_operations proc_tid_maps_operations = {
407 .open = tid_maps_open,
408 .read = seq_read,
409 .llseek = seq_lseek,
410 .release = seq_release_private,
414 * Proportional Set Size(PSS): my share of RSS.
416 * PSS of a process is the count of pages it has in memory, where each
417 * page is divided by the number of processes sharing it. So if a
418 * process has 1000 pages all to itself, and 1000 shared with one other
419 * process, its PSS will be 1500.
421 * To keep (accumulated) division errors low, we adopt a 64bit
422 * fixed-point pss counter to minimize division errors. So (pss >>
423 * PSS_SHIFT) would be the real byte count.
425 * A shift of 12 before division means (assuming 4K page size):
426 * - 1M 3-user-pages add up to 8KB errors;
427 * - supports mapcount up to 2^24, or 16M;
428 * - supports PSS up to 2^52 bytes, or 4PB.
430 #define PSS_SHIFT 12
432 #ifdef CONFIG_PROC_PAGE_MONITOR
433 struct mem_size_stats {
434 struct vm_area_struct *vma;
435 unsigned long resident;
436 unsigned long shared_clean;
437 unsigned long shared_dirty;
438 unsigned long private_clean;
439 unsigned long private_dirty;
440 unsigned long referenced;
441 unsigned long anonymous;
442 unsigned long anonymous_thp;
443 unsigned long swap;
444 unsigned long nonlinear;
445 u64 pss;
449 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
450 unsigned long ptent_size, struct mm_walk *walk)
452 struct mem_size_stats *mss = walk->private;
453 struct vm_area_struct *vma = mss->vma;
454 pgoff_t pgoff = linear_page_index(vma, addr);
455 struct page *page = NULL;
456 int mapcount;
458 if (pte_present(ptent)) {
459 page = vm_normal_page(vma, addr, ptent);
460 } else if (is_swap_pte(ptent)) {
461 swp_entry_t swpent = pte_to_swp_entry(ptent);
463 if (!non_swap_entry(swpent))
464 mss->swap += ptent_size;
465 else if (is_migration_entry(swpent))
466 page = migration_entry_to_page(swpent);
467 } else if (pte_file(ptent)) {
468 if (pte_to_pgoff(ptent) != pgoff)
469 mss->nonlinear += ptent_size;
472 if (!page)
473 return;
475 if (PageAnon(page))
476 mss->anonymous += ptent_size;
478 if (page->index != pgoff)
479 mss->nonlinear += ptent_size;
481 mss->resident += ptent_size;
482 /* Accumulate the size in pages that have been accessed. */
483 if (pte_young(ptent) || PageReferenced(page))
484 mss->referenced += ptent_size;
485 mapcount = page_mapcount(page);
486 if (mapcount >= 2) {
487 if (pte_dirty(ptent) || PageDirty(page))
488 mss->shared_dirty += ptent_size;
489 else
490 mss->shared_clean += ptent_size;
491 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
492 } else {
493 if (pte_dirty(ptent) || PageDirty(page))
494 mss->private_dirty += ptent_size;
495 else
496 mss->private_clean += ptent_size;
497 mss->pss += (ptent_size << PSS_SHIFT);
501 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
502 struct mm_walk *walk)
504 struct mem_size_stats *mss = walk->private;
505 struct vm_area_struct *vma = mss->vma;
506 pte_t *pte;
507 spinlock_t *ptl;
509 if (pmd_trans_huge_lock(pmd, vma) == 1) {
510 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
511 spin_unlock(&walk->mm->page_table_lock);
512 mss->anonymous_thp += HPAGE_PMD_SIZE;
513 return 0;
516 if (pmd_trans_unstable(pmd))
517 return 0;
519 * The mmap_sem held all the way back in m_start() is what
520 * keeps khugepaged out of here and from collapsing things
521 * in here.
523 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE)
525 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
526 pte_unmap_unlock(pte - 1, ptl);
527 cond_resched();
528 return 0;
531 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
534 * Don't forget to update Documentation/ on changes.
536 static const char mnemonics[BITS_PER_LONG][2] = {
538 * In case if we meet a flag we don't know about.
540 [0 ... (BITS_PER_LONG-1)] = "??",
542 [ilog2(VM_READ)] = "rd",
543 [ilog2(VM_WRITE)] = "wr",
544 [ilog2(VM_EXEC)] = "ex",
545 [ilog2(VM_SHARED)] = "sh",
546 [ilog2(VM_MAYREAD)] = "mr",
547 [ilog2(VM_MAYWRITE)] = "mw",
548 [ilog2(VM_MAYEXEC)] = "me",
549 [ilog2(VM_MAYSHARE)] = "ms",
550 [ilog2(VM_GROWSDOWN)] = "gd",
551 [ilog2(VM_PFNMAP)] = "pf",
552 [ilog2(VM_DENYWRITE)] = "dw",
553 [ilog2(VM_LOCKED)] = "lo",
554 [ilog2(VM_IO)] = "io",
555 [ilog2(VM_SEQ_READ)] = "sr",
556 [ilog2(VM_RAND_READ)] = "rr",
557 [ilog2(VM_DONTCOPY)] = "dc",
558 [ilog2(VM_DONTEXPAND)] = "de",
559 [ilog2(VM_ACCOUNT)] = "ac",
560 [ilog2(VM_NORESERVE)] = "nr",
561 [ilog2(VM_HUGETLB)] = "ht",
562 [ilog2(VM_NONLINEAR)] = "nl",
563 [ilog2(VM_ARCH_1)] = "ar",
564 [ilog2(VM_DONTDUMP)] = "dd",
565 [ilog2(VM_MIXEDMAP)] = "mm",
566 [ilog2(VM_HUGEPAGE)] = "hg",
567 [ilog2(VM_NOHUGEPAGE)] = "nh",
568 [ilog2(VM_MERGEABLE)] = "mg",
570 size_t i;
572 seq_puts(m, "VmFlags: ");
573 for (i = 0; i < BITS_PER_LONG; i++) {
574 if (vma->vm_flags & (1UL << i)) {
575 seq_printf(m, "%c%c ",
576 mnemonics[i][0], mnemonics[i][1]);
579 seq_putc(m, '\n');
582 static int show_smap(struct seq_file *m, void *v, int is_pid)
584 struct proc_maps_private *priv = m->private;
585 struct task_struct *task = priv->task;
586 struct vm_area_struct *vma = v;
587 struct mem_size_stats mss;
588 struct mm_walk smaps_walk = {
589 .pmd_entry = smaps_pte_range,
590 .mm = vma->vm_mm,
591 .private = &mss,
594 memset(&mss, 0, sizeof mss);
595 mss.vma = vma;
596 /* mmap_sem is held in m_start */
597 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
598 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
600 show_map_vma(m, vma, is_pid);
602 seq_printf(m,
603 "Size: %8lu kB\n"
604 "Rss: %8lu kB\n"
605 "Pss: %8lu kB\n"
606 "Shared_Clean: %8lu kB\n"
607 "Shared_Dirty: %8lu kB\n"
608 "Private_Clean: %8lu kB\n"
609 "Private_Dirty: %8lu kB\n"
610 "Referenced: %8lu kB\n"
611 "Anonymous: %8lu kB\n"
612 "AnonHugePages: %8lu kB\n"
613 "Swap: %8lu kB\n"
614 "KernelPageSize: %8lu kB\n"
615 "MMUPageSize: %8lu kB\n"
616 "Locked: %8lu kB\n",
617 (vma->vm_end - vma->vm_start) >> 10,
618 mss.resident >> 10,
619 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
620 mss.shared_clean >> 10,
621 mss.shared_dirty >> 10,
622 mss.private_clean >> 10,
623 mss.private_dirty >> 10,
624 mss.referenced >> 10,
625 mss.anonymous >> 10,
626 mss.anonymous_thp >> 10,
627 mss.swap >> 10,
628 vma_kernel_pagesize(vma) >> 10,
629 vma_mmu_pagesize(vma) >> 10,
630 (vma->vm_flags & VM_LOCKED) ?
631 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
633 if (vma->vm_flags & VM_NONLINEAR)
634 seq_printf(m, "Nonlinear: %8lu kB\n",
635 mss.nonlinear >> 10);
637 show_smap_vma_flags(m, vma);
639 if (m->count < m->size) /* vma is copied successfully */
640 m->version = (vma != get_gate_vma(task->mm))
641 ? vma->vm_start : 0;
642 return 0;
645 static int show_pid_smap(struct seq_file *m, void *v)
647 return show_smap(m, v, 1);
650 static int show_tid_smap(struct seq_file *m, void *v)
652 return show_smap(m, v, 0);
655 static const struct seq_operations proc_pid_smaps_op = {
656 .start = m_start,
657 .next = m_next,
658 .stop = m_stop,
659 .show = show_pid_smap
662 static const struct seq_operations proc_tid_smaps_op = {
663 .start = m_start,
664 .next = m_next,
665 .stop = m_stop,
666 .show = show_tid_smap
669 static int pid_smaps_open(struct inode *inode, struct file *file)
671 return do_maps_open(inode, file, &proc_pid_smaps_op);
674 static int tid_smaps_open(struct inode *inode, struct file *file)
676 return do_maps_open(inode, file, &proc_tid_smaps_op);
679 const struct file_operations proc_pid_smaps_operations = {
680 .open = pid_smaps_open,
681 .read = seq_read,
682 .llseek = seq_lseek,
683 .release = seq_release_private,
686 const struct file_operations proc_tid_smaps_operations = {
687 .open = tid_smaps_open,
688 .read = seq_read,
689 .llseek = seq_lseek,
690 .release = seq_release_private,
694 * We do not want to have constant page-shift bits sitting in
695 * pagemap entries and are about to reuse them some time soon.
697 * Here's the "migration strategy":
698 * 1. when the system boots these bits remain what they are,
699 * but a warning about future change is printed in log;
700 * 2. once anyone clears soft-dirty bits via clear_refs file,
701 * these flag is set to denote, that user is aware of the
702 * new API and those page-shift bits change their meaning.
703 * The respective warning is printed in dmesg;
704 * 3. In a couple of releases we will remove all the mentions
705 * of page-shift in pagemap entries.
708 static bool soft_dirty_cleared __read_mostly;
710 enum clear_refs_types {
711 CLEAR_REFS_ALL = 1,
712 CLEAR_REFS_ANON,
713 CLEAR_REFS_MAPPED,
714 CLEAR_REFS_SOFT_DIRTY,
715 CLEAR_REFS_LAST,
718 struct clear_refs_private {
719 struct vm_area_struct *vma;
720 enum clear_refs_types type;
723 static inline void clear_soft_dirty(struct vm_area_struct *vma,
724 unsigned long addr, pte_t *pte)
726 #ifdef CONFIG_MEM_SOFT_DIRTY
728 * The soft-dirty tracker uses #PF-s to catch writes
729 * to pages, so write-protect the pte as well. See the
730 * Documentation/vm/soft-dirty.txt for full description
731 * of how soft-dirty works.
733 pte_t ptent = *pte;
735 if (pte_present(ptent)) {
736 ptent = pte_wrprotect(ptent);
737 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
738 } else if (is_swap_pte(ptent)) {
739 ptent = pte_swp_clear_soft_dirty(ptent);
740 } else if (pte_file(ptent)) {
741 ptent = pte_file_clear_soft_dirty(ptent);
744 if (vma->vm_flags & VM_SOFTDIRTY)
745 vma->vm_flags &= ~VM_SOFTDIRTY;
747 set_pte_at(vma->vm_mm, addr, pte, ptent);
748 #endif
751 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
752 unsigned long end, struct mm_walk *walk)
754 struct clear_refs_private *cp = walk->private;
755 struct vm_area_struct *vma = cp->vma;
756 pte_t *pte, ptent;
757 spinlock_t *ptl;
758 struct page *page;
760 split_huge_page_pmd(vma, addr, pmd);
761 if (pmd_trans_unstable(pmd))
762 return 0;
764 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
765 for (; addr != end; pte++, addr += PAGE_SIZE) {
766 ptent = *pte;
768 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
769 clear_soft_dirty(vma, addr, pte);
770 continue;
773 if (!pte_present(ptent))
774 continue;
776 page = vm_normal_page(vma, addr, ptent);
777 if (!page)
778 continue;
780 /* Clear accessed and referenced bits. */
781 ptep_test_and_clear_young(vma, addr, pte);
782 ClearPageReferenced(page);
784 pte_unmap_unlock(pte - 1, ptl);
785 cond_resched();
786 return 0;
789 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
790 size_t count, loff_t *ppos)
792 struct task_struct *task;
793 char buffer[PROC_NUMBUF];
794 struct mm_struct *mm;
795 struct vm_area_struct *vma;
796 enum clear_refs_types type;
797 int itype;
798 int rv;
800 memset(buffer, 0, sizeof(buffer));
801 if (count > sizeof(buffer) - 1)
802 count = sizeof(buffer) - 1;
803 if (copy_from_user(buffer, buf, count))
804 return -EFAULT;
805 rv = kstrtoint(strstrip(buffer), 10, &itype);
806 if (rv < 0)
807 return rv;
808 type = (enum clear_refs_types)itype;
809 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
810 return -EINVAL;
812 if (type == CLEAR_REFS_SOFT_DIRTY) {
813 soft_dirty_cleared = true;
814 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
815 "See the linux/Documentation/vm/pagemap.txt for details.\n");
818 task = get_proc_task(file_inode(file));
819 if (!task)
820 return -ESRCH;
821 mm = get_task_mm(task);
822 if (mm) {
823 struct clear_refs_private cp = {
824 .type = type,
826 struct mm_walk clear_refs_walk = {
827 .pmd_entry = clear_refs_pte_range,
828 .mm = mm,
829 .private = &cp,
831 down_read(&mm->mmap_sem);
832 if (type == CLEAR_REFS_SOFT_DIRTY)
833 mmu_notifier_invalidate_range_start(mm, 0, -1);
834 for (vma = mm->mmap; vma; vma = vma->vm_next) {
835 cp.vma = vma;
836 if (is_vm_hugetlb_page(vma))
837 continue;
839 * Writing 1 to /proc/pid/clear_refs affects all pages.
841 * Writing 2 to /proc/pid/clear_refs only affects
842 * Anonymous pages.
844 * Writing 3 to /proc/pid/clear_refs only affects file
845 * mapped pages.
847 if (type == CLEAR_REFS_ANON && vma->vm_file)
848 continue;
849 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
850 continue;
851 walk_page_range(vma->vm_start, vma->vm_end,
852 &clear_refs_walk);
854 if (type == CLEAR_REFS_SOFT_DIRTY)
855 mmu_notifier_invalidate_range_end(mm, 0, -1);
856 flush_tlb_mm(mm);
857 up_read(&mm->mmap_sem);
858 mmput(mm);
860 put_task_struct(task);
862 return count;
865 const struct file_operations proc_clear_refs_operations = {
866 .write = clear_refs_write,
867 .llseek = noop_llseek,
870 typedef struct {
871 u64 pme;
872 } pagemap_entry_t;
874 struct pagemapread {
875 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
876 pagemap_entry_t *buffer;
877 bool v2;
880 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
881 #define PAGEMAP_WALK_MASK (PMD_MASK)
883 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
884 #define PM_STATUS_BITS 3
885 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
886 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
887 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
888 #define PM_PSHIFT_BITS 6
889 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
890 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
891 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
892 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
893 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
894 /* in "new" pagemap pshift bits are occupied with more status bits */
895 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
897 #define __PM_SOFT_DIRTY (1LL)
898 #define PM_PRESENT PM_STATUS(4LL)
899 #define PM_SWAP PM_STATUS(2LL)
900 #define PM_FILE PM_STATUS(1LL)
901 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
902 #define PM_END_OF_BUFFER 1
904 static inline pagemap_entry_t make_pme(u64 val)
906 return (pagemap_entry_t) { .pme = val };
909 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
910 struct pagemapread *pm)
912 pm->buffer[pm->pos++] = *pme;
913 if (pm->pos >= pm->len)
914 return PM_END_OF_BUFFER;
915 return 0;
918 static int pagemap_pte_hole(unsigned long start, unsigned long end,
919 struct mm_walk *walk)
921 struct pagemapread *pm = walk->private;
922 unsigned long addr;
923 int err = 0;
924 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
926 for (addr = start; addr < end; addr += PAGE_SIZE) {
927 err = add_to_pagemap(addr, &pme, pm);
928 if (err)
929 break;
931 return err;
934 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
935 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
937 u64 frame, flags;
938 struct page *page = NULL;
939 int flags2 = 0;
941 if (pte_present(pte)) {
942 frame = pte_pfn(pte);
943 flags = PM_PRESENT;
944 page = vm_normal_page(vma, addr, pte);
945 if (pte_soft_dirty(pte))
946 flags2 |= __PM_SOFT_DIRTY;
947 } else if (is_swap_pte(pte)) {
948 swp_entry_t entry;
949 if (pte_swp_soft_dirty(pte))
950 flags2 |= __PM_SOFT_DIRTY;
951 entry = pte_to_swp_entry(pte);
952 frame = swp_type(entry) |
953 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
954 flags = PM_SWAP;
955 if (is_migration_entry(entry))
956 page = migration_entry_to_page(entry);
957 } else {
958 if (vma->vm_flags & VM_SOFTDIRTY)
959 flags2 |= __PM_SOFT_DIRTY;
960 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
961 return;
964 if (page && !PageAnon(page))
965 flags |= PM_FILE;
966 if ((vma->vm_flags & VM_SOFTDIRTY))
967 flags2 |= __PM_SOFT_DIRTY;
969 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
974 pmd_t pmd, int offset, int pmd_flags2)
977 * Currently pmd for thp is always present because thp can not be
978 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
979 * This if-check is just to prepare for future implementation.
981 if (pmd_present(pmd))
982 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
983 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
984 else
985 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
987 #else
988 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
989 pmd_t pmd, int offset, int pmd_flags2)
992 #endif
994 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
995 struct mm_walk *walk)
997 struct vm_area_struct *vma;
998 struct pagemapread *pm = walk->private;
999 pte_t *pte;
1000 int err = 0;
1001 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1003 /* find the first VMA at or above 'addr' */
1004 vma = find_vma(walk->mm, addr);
1005 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1006 int pmd_flags2;
1008 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1009 pmd_flags2 = __PM_SOFT_DIRTY;
1010 else
1011 pmd_flags2 = 0;
1013 for (; addr != end; addr += PAGE_SIZE) {
1014 unsigned long offset;
1016 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1017 PAGE_SHIFT;
1018 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1019 err = add_to_pagemap(addr, &pme, pm);
1020 if (err)
1021 break;
1023 spin_unlock(&walk->mm->page_table_lock);
1024 return err;
1027 if (pmd_trans_unstable(pmd))
1028 return 0;
1029 for (; addr != end; addr += PAGE_SIZE) {
1030 int flags2;
1032 /* check to see if we've left 'vma' behind
1033 * and need a new, higher one */
1034 if (vma && (addr >= vma->vm_end)) {
1035 vma = find_vma(walk->mm, addr);
1036 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1037 flags2 = __PM_SOFT_DIRTY;
1038 else
1039 flags2 = 0;
1040 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1043 /* check that 'vma' actually covers this address,
1044 * and that it isn't a huge page vma */
1045 if (vma && (vma->vm_start <= addr) &&
1046 !is_vm_hugetlb_page(vma)) {
1047 pte = pte_offset_map(pmd, addr);
1048 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1049 /* unmap before userspace copy */
1050 pte_unmap(pte);
1052 err = add_to_pagemap(addr, &pme, pm);
1053 if (err)
1054 return err;
1057 cond_resched();
1059 return err;
1062 #ifdef CONFIG_HUGETLB_PAGE
1063 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1064 pte_t pte, int offset, int flags2)
1066 if (pte_present(pte))
1067 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1068 PM_STATUS2(pm->v2, flags2) |
1069 PM_PRESENT);
1070 else
1071 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1072 PM_STATUS2(pm->v2, flags2));
1075 /* This function walks within one hugetlb entry in the single call */
1076 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1077 unsigned long addr, unsigned long end,
1078 struct mm_walk *walk)
1080 struct pagemapread *pm = walk->private;
1081 struct vm_area_struct *vma;
1082 int err = 0;
1083 int flags2;
1084 pagemap_entry_t pme;
1086 vma = find_vma(walk->mm, addr);
1087 WARN_ON_ONCE(!vma);
1089 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1090 flags2 = __PM_SOFT_DIRTY;
1091 else
1092 flags2 = 0;
1094 for (; addr != end; addr += PAGE_SIZE) {
1095 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1096 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1097 err = add_to_pagemap(addr, &pme, pm);
1098 if (err)
1099 return err;
1102 cond_resched();
1104 return err;
1106 #endif /* HUGETLB_PAGE */
1109 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1111 * For each page in the address space, this file contains one 64-bit entry
1112 * consisting of the following:
1114 * Bits 0-54 page frame number (PFN) if present
1115 * Bits 0-4 swap type if swapped
1116 * Bits 5-54 swap offset if swapped
1117 * Bits 55-60 page shift (page size = 1<<page shift)
1118 * Bit 61 page is file-page or shared-anon
1119 * Bit 62 page swapped
1120 * Bit 63 page present
1122 * If the page is not present but in swap, then the PFN contains an
1123 * encoding of the swap file number and the page's offset into the
1124 * swap. Unmapped pages return a null PFN. This allows determining
1125 * precisely which pages are mapped (or in swap) and comparing mapped
1126 * pages between processes.
1128 * Efficient users of this interface will use /proc/pid/maps to
1129 * determine which areas of memory are actually mapped and llseek to
1130 * skip over unmapped regions.
1132 static ssize_t pagemap_read(struct file *file, char __user *buf,
1133 size_t count, loff_t *ppos)
1135 struct task_struct *task = get_proc_task(file_inode(file));
1136 struct mm_struct *mm;
1137 struct pagemapread pm;
1138 int ret = -ESRCH;
1139 struct mm_walk pagemap_walk = {};
1140 unsigned long src;
1141 unsigned long svpfn;
1142 unsigned long start_vaddr;
1143 unsigned long end_vaddr;
1144 int copied = 0;
1146 if (!task)
1147 goto out;
1149 ret = -EINVAL;
1150 /* file position must be aligned */
1151 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1152 goto out_task;
1154 ret = 0;
1155 if (!count)
1156 goto out_task;
1158 pm.v2 = soft_dirty_cleared;
1159 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1160 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1161 ret = -ENOMEM;
1162 if (!pm.buffer)
1163 goto out_task;
1165 mm = mm_access(task, PTRACE_MODE_READ);
1166 ret = PTR_ERR(mm);
1167 if (!mm || IS_ERR(mm))
1168 goto out_free;
1170 pagemap_walk.pmd_entry = pagemap_pte_range;
1171 pagemap_walk.pte_hole = pagemap_pte_hole;
1172 #ifdef CONFIG_HUGETLB_PAGE
1173 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1174 #endif
1175 pagemap_walk.mm = mm;
1176 pagemap_walk.private = &pm;
1178 src = *ppos;
1179 svpfn = src / PM_ENTRY_BYTES;
1180 start_vaddr = svpfn << PAGE_SHIFT;
1181 end_vaddr = TASK_SIZE_OF(task);
1183 /* watch out for wraparound */
1184 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1185 start_vaddr = end_vaddr;
1188 * The odds are that this will stop walking way
1189 * before end_vaddr, because the length of the
1190 * user buffer is tracked in "pm", and the walk
1191 * will stop when we hit the end of the buffer.
1193 ret = 0;
1194 while (count && (start_vaddr < end_vaddr)) {
1195 int len;
1196 unsigned long end;
1198 pm.pos = 0;
1199 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1200 /* overflow ? */
1201 if (end < start_vaddr || end > end_vaddr)
1202 end = end_vaddr;
1203 down_read(&mm->mmap_sem);
1204 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1205 up_read(&mm->mmap_sem);
1206 start_vaddr = end;
1208 len = min(count, PM_ENTRY_BYTES * pm.pos);
1209 if (copy_to_user(buf, pm.buffer, len)) {
1210 ret = -EFAULT;
1211 goto out_mm;
1213 copied += len;
1214 buf += len;
1215 count -= len;
1217 *ppos += copied;
1218 if (!ret || ret == PM_END_OF_BUFFER)
1219 ret = copied;
1221 out_mm:
1222 mmput(mm);
1223 out_free:
1224 kfree(pm.buffer);
1225 out_task:
1226 put_task_struct(task);
1227 out:
1228 return ret;
1231 static int pagemap_open(struct inode *inode, struct file *file)
1233 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1234 "to stop being page-shift some time soon. See the "
1235 "linux/Documentation/vm/pagemap.txt for details.\n");
1236 return 0;
1239 const struct file_operations proc_pagemap_operations = {
1240 .llseek = mem_lseek, /* borrow this */
1241 .read = pagemap_read,
1242 .open = pagemap_open,
1244 #endif /* CONFIG_PROC_PAGE_MONITOR */
1246 #ifdef CONFIG_NUMA
1248 struct numa_maps {
1249 struct vm_area_struct *vma;
1250 unsigned long pages;
1251 unsigned long anon;
1252 unsigned long active;
1253 unsigned long writeback;
1254 unsigned long mapcount_max;
1255 unsigned long dirty;
1256 unsigned long swapcache;
1257 unsigned long node[MAX_NUMNODES];
1260 struct numa_maps_private {
1261 struct proc_maps_private proc_maps;
1262 struct numa_maps md;
1265 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1266 unsigned long nr_pages)
1268 int count = page_mapcount(page);
1270 md->pages += nr_pages;
1271 if (pte_dirty || PageDirty(page))
1272 md->dirty += nr_pages;
1274 if (PageSwapCache(page))
1275 md->swapcache += nr_pages;
1277 if (PageActive(page) || PageUnevictable(page))
1278 md->active += nr_pages;
1280 if (PageWriteback(page))
1281 md->writeback += nr_pages;
1283 if (PageAnon(page))
1284 md->anon += nr_pages;
1286 if (count > md->mapcount_max)
1287 md->mapcount_max = count;
1289 md->node[page_to_nid(page)] += nr_pages;
1292 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1293 unsigned long addr)
1295 struct page *page;
1296 int nid;
1298 if (!pte_present(pte))
1299 return NULL;
1301 page = vm_normal_page(vma, addr, pte);
1302 if (!page)
1303 return NULL;
1305 if (PageReserved(page))
1306 return NULL;
1308 nid = page_to_nid(page);
1309 if (!node_isset(nid, node_states[N_MEMORY]))
1310 return NULL;
1312 return page;
1315 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1316 unsigned long end, struct mm_walk *walk)
1318 struct numa_maps *md;
1319 spinlock_t *ptl;
1320 pte_t *orig_pte;
1321 pte_t *pte;
1323 md = walk->private;
1325 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1326 pte_t huge_pte = *(pte_t *)pmd;
1327 struct page *page;
1329 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1330 if (page)
1331 gather_stats(page, md, pte_dirty(huge_pte),
1332 HPAGE_PMD_SIZE/PAGE_SIZE);
1333 spin_unlock(&walk->mm->page_table_lock);
1334 return 0;
1337 if (pmd_trans_unstable(pmd))
1338 return 0;
1339 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1340 do {
1341 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1342 if (!page)
1343 continue;
1344 gather_stats(page, md, pte_dirty(*pte), 1);
1346 } while (pte++, addr += PAGE_SIZE, addr != end);
1347 pte_unmap_unlock(orig_pte, ptl);
1348 return 0;
1350 #ifdef CONFIG_HUGETLB_PAGE
1351 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1352 unsigned long addr, unsigned long end, struct mm_walk *walk)
1354 struct numa_maps *md;
1355 struct page *page;
1357 if (!pte_present(*pte))
1358 return 0;
1360 page = pte_page(*pte);
1361 if (!page)
1362 return 0;
1364 md = walk->private;
1365 gather_stats(page, md, pte_dirty(*pte), 1);
1366 return 0;
1369 #else
1370 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1371 unsigned long addr, unsigned long end, struct mm_walk *walk)
1373 return 0;
1375 #endif
1378 * Display pages allocated per node and memory policy via /proc.
1380 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1382 struct numa_maps_private *numa_priv = m->private;
1383 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1384 struct vm_area_struct *vma = v;
1385 struct numa_maps *md = &numa_priv->md;
1386 struct file *file = vma->vm_file;
1387 struct task_struct *task = proc_priv->task;
1388 struct mm_struct *mm = vma->vm_mm;
1389 struct mm_walk walk = {};
1390 struct mempolicy *pol;
1391 int n;
1392 char buffer[50];
1394 if (!mm)
1395 return 0;
1397 /* Ensure we start with an empty set of numa_maps statistics. */
1398 memset(md, 0, sizeof(*md));
1400 md->vma = vma;
1402 walk.hugetlb_entry = gather_hugetbl_stats;
1403 walk.pmd_entry = gather_pte_stats;
1404 walk.private = md;
1405 walk.mm = mm;
1407 pol = get_vma_policy(task, vma, vma->vm_start);
1408 n = mpol_to_str(buffer, sizeof(buffer), pol);
1409 mpol_cond_put(pol);
1410 if (n < 0)
1411 return n;
1413 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1415 if (file) {
1416 seq_printf(m, " file=");
1417 seq_path(m, &file->f_path, "\n\t= ");
1418 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1419 seq_printf(m, " heap");
1420 } else {
1421 pid_t tid = vm_is_stack(task, vma, is_pid);
1422 if (tid != 0) {
1424 * Thread stack in /proc/PID/task/TID/maps or
1425 * the main process stack.
1427 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1428 vma->vm_end >= mm->start_stack))
1429 seq_printf(m, " stack");
1430 else
1431 seq_printf(m, " stack:%d", tid);
1435 if (is_vm_hugetlb_page(vma))
1436 seq_printf(m, " huge");
1438 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1440 if (!md->pages)
1441 goto out;
1443 if (md->anon)
1444 seq_printf(m, " anon=%lu", md->anon);
1446 if (md->dirty)
1447 seq_printf(m, " dirty=%lu", md->dirty);
1449 if (md->pages != md->anon && md->pages != md->dirty)
1450 seq_printf(m, " mapped=%lu", md->pages);
1452 if (md->mapcount_max > 1)
1453 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1455 if (md->swapcache)
1456 seq_printf(m, " swapcache=%lu", md->swapcache);
1458 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1459 seq_printf(m, " active=%lu", md->active);
1461 if (md->writeback)
1462 seq_printf(m, " writeback=%lu", md->writeback);
1464 for_each_node_state(n, N_MEMORY)
1465 if (md->node[n])
1466 seq_printf(m, " N%d=%lu", n, md->node[n]);
1467 out:
1468 seq_putc(m, '\n');
1470 if (m->count < m->size)
1471 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1472 return 0;
1475 static int show_pid_numa_map(struct seq_file *m, void *v)
1477 return show_numa_map(m, v, 1);
1480 static int show_tid_numa_map(struct seq_file *m, void *v)
1482 return show_numa_map(m, v, 0);
1485 static const struct seq_operations proc_pid_numa_maps_op = {
1486 .start = m_start,
1487 .next = m_next,
1488 .stop = m_stop,
1489 .show = show_pid_numa_map,
1492 static const struct seq_operations proc_tid_numa_maps_op = {
1493 .start = m_start,
1494 .next = m_next,
1495 .stop = m_stop,
1496 .show = show_tid_numa_map,
1499 static int numa_maps_open(struct inode *inode, struct file *file,
1500 const struct seq_operations *ops)
1502 struct numa_maps_private *priv;
1503 int ret = -ENOMEM;
1504 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1505 if (priv) {
1506 priv->proc_maps.pid = proc_pid(inode);
1507 ret = seq_open(file, ops);
1508 if (!ret) {
1509 struct seq_file *m = file->private_data;
1510 m->private = priv;
1511 } else {
1512 kfree(priv);
1515 return ret;
1518 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1520 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1523 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1525 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1528 const struct file_operations proc_pid_numa_maps_operations = {
1529 .open = pid_numa_maps_open,
1530 .read = seq_read,
1531 .llseek = seq_lseek,
1532 .release = seq_release_private,
1535 const struct file_operations proc_tid_numa_maps_operations = {
1536 .open = tid_numa_maps_open,
1537 .read = seq_read,
1538 .llseek = seq_lseek,
1539 .release = seq_release_private,
1541 #endif /* CONFIG_NUMA */