2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
22 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
24 unsigned long data
, text
, lib
, swap
;
25 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
34 hiwater_vm
= total_vm
= mm
->total_vm
;
35 if (hiwater_vm
< mm
->hiwater_vm
)
36 hiwater_vm
= mm
->hiwater_vm
;
37 hiwater_rss
= total_rss
= get_mm_rss(mm
);
38 if (hiwater_rss
< mm
->hiwater_rss
)
39 hiwater_rss
= mm
->hiwater_rss
;
41 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
42 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
43 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
44 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
58 hiwater_vm
<< (PAGE_SHIFT
-10),
59 total_vm
<< (PAGE_SHIFT
-10),
60 mm
->locked_vm
<< (PAGE_SHIFT
-10),
61 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
62 hiwater_rss
<< (PAGE_SHIFT
-10),
63 total_rss
<< (PAGE_SHIFT
-10),
64 data
<< (PAGE_SHIFT
-10),
65 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
66 (PTRS_PER_PTE
*sizeof(pte_t
)*mm
->nr_ptes
) >> 10,
67 swap
<< (PAGE_SHIFT
-10));
70 unsigned long task_vsize(struct mm_struct
*mm
)
72 return PAGE_SIZE
* mm
->total_vm
;
75 unsigned long task_statm(struct mm_struct
*mm
,
76 unsigned long *shared
, unsigned long *text
,
77 unsigned long *data
, unsigned long *resident
)
79 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
80 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
82 *data
= mm
->total_vm
- mm
->shared_vm
;
83 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
87 static void pad_len_spaces(struct seq_file
*m
, int len
)
89 len
= 25 + sizeof(void*) * 6 - len
;
92 seq_printf(m
, "%*c", len
, ' ');
97 * These functions are for numa_maps but called in generic **maps seq_file
98 * ->start(), ->stop() ops.
100 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
101 * Each mempolicy object is controlled by reference counting. The problem here
102 * is how to avoid accessing dead mempolicy object.
104 * Because we're holding mmap_sem while reading seq_file, it's safe to access
105 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
107 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
108 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
109 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
110 * gurantee the task never exits under us. But taking task_lock() around
111 * get_vma_plicy() causes lock order problem.
113 * To access task->mempolicy without lock, we hold a reference count of an
114 * object pointed by task->mempolicy and remember it. This will guarantee
115 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
117 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
119 struct task_struct
*task
= priv
->task
;
122 priv
->task_mempolicy
= task
->mempolicy
;
123 mpol_get(priv
->task_mempolicy
);
126 static void release_task_mempolicy(struct proc_maps_private
*priv
)
128 mpol_put(priv
->task_mempolicy
);
131 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
134 static void release_task_mempolicy(struct proc_maps_private
*priv
)
139 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
141 if (vma
&& vma
!= priv
->tail_vma
) {
142 struct mm_struct
*mm
= vma
->vm_mm
;
143 release_task_mempolicy(priv
);
144 up_read(&mm
->mmap_sem
);
149 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
151 struct proc_maps_private
*priv
= m
->private;
152 unsigned long last_addr
= m
->version
;
153 struct mm_struct
*mm
;
154 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
157 /* Clear the per syscall fields in priv */
159 priv
->tail_vma
= NULL
;
162 * We remember last_addr rather than next_addr to hit with
163 * vmacache most of the time. We have zero last_addr at
164 * the beginning and also after lseek. We will have -1 last_addr
165 * after the end of the vmas.
168 if (last_addr
== -1UL)
171 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
173 return ERR_PTR(-ESRCH
);
175 mm
= mm_access(priv
->task
, PTRACE_MODE_READ
);
176 if (!mm
|| IS_ERR(mm
))
178 down_read(&mm
->mmap_sem
);
180 tail_vma
= get_gate_vma(priv
->task
->mm
);
181 priv
->tail_vma
= tail_vma
;
182 hold_task_mempolicy(priv
);
183 /* Start with last addr hint */
184 vma
= find_vma(mm
, last_addr
);
185 if (last_addr
&& vma
) {
191 * Check the vma index is within the range and do
192 * sequential scan until m_index.
195 if ((unsigned long)l
< mm
->map_count
) {
202 if (l
!= mm
->map_count
)
203 tail_vma
= NULL
; /* After gate vma */
209 release_task_mempolicy(priv
);
210 /* End of vmas has been reached */
211 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
212 up_read(&mm
->mmap_sem
);
217 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
219 struct proc_maps_private
*priv
= m
->private;
220 struct vm_area_struct
*vma
= v
;
221 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
224 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
227 return (vma
!= tail_vma
)? tail_vma
: NULL
;
230 static void m_stop(struct seq_file
*m
, void *v
)
232 struct proc_maps_private
*priv
= m
->private;
233 struct vm_area_struct
*vma
= v
;
238 put_task_struct(priv
->task
);
241 static int do_maps_open(struct inode
*inode
, struct file
*file
,
242 const struct seq_operations
*ops
)
244 struct proc_maps_private
*priv
;
246 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
248 priv
->pid
= proc_pid(inode
);
249 ret
= seq_open(file
, ops
);
251 struct seq_file
*m
= file
->private_data
;
261 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
263 struct mm_struct
*mm
= vma
->vm_mm
;
264 struct file
*file
= vma
->vm_file
;
265 struct proc_maps_private
*priv
= m
->private;
266 struct task_struct
*task
= priv
->task
;
267 vm_flags_t flags
= vma
->vm_flags
;
268 unsigned long ino
= 0;
269 unsigned long long pgoff
= 0;
270 unsigned long start
, end
;
273 const char *name
= NULL
;
276 struct inode
*inode
= file_inode(vma
->vm_file
);
277 dev
= inode
->i_sb
->s_dev
;
279 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
282 /* We don't show the stack guard page in /proc/maps */
283 start
= vma
->vm_start
;
284 if (stack_guard_page_start(vma
, start
))
287 if (stack_guard_page_end(vma
, end
))
290 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
293 flags
& VM_READ
? 'r' : '-',
294 flags
& VM_WRITE
? 'w' : '-',
295 flags
& VM_EXEC
? 'x' : '-',
296 flags
& VM_MAYSHARE
? 's' : 'p',
298 MAJOR(dev
), MINOR(dev
), ino
, &len
);
301 * Print the dentry name for named mappings, and a
302 * special [heap] marker for the heap:
305 pad_len_spaces(m
, len
);
306 seq_path(m
, &file
->f_path
, "\n");
310 name
= arch_vma_name(vma
);
319 if (vma
->vm_start
<= mm
->brk
&&
320 vma
->vm_end
>= mm
->start_brk
) {
325 tid
= vm_is_stack(task
, vma
, is_pid
);
329 * Thread stack in /proc/PID/task/TID/maps or
330 * the main process stack.
332 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
333 vma
->vm_end
>= mm
->start_stack
)) {
336 /* Thread stack in /proc/PID/maps */
337 pad_len_spaces(m
, len
);
338 seq_printf(m
, "[stack:%d]", tid
);
345 pad_len_spaces(m
, len
);
351 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
353 struct vm_area_struct
*vma
= v
;
354 struct proc_maps_private
*priv
= m
->private;
355 struct task_struct
*task
= priv
->task
;
357 show_map_vma(m
, vma
, is_pid
);
359 if (m
->count
< m
->size
) /* vma is copied successfully */
360 m
->version
= (vma
!= get_gate_vma(task
->mm
))
365 static int show_pid_map(struct seq_file
*m
, void *v
)
367 return show_map(m
, v
, 1);
370 static int show_tid_map(struct seq_file
*m
, void *v
)
372 return show_map(m
, v
, 0);
375 static const struct seq_operations proc_pid_maps_op
= {
382 static const struct seq_operations proc_tid_maps_op
= {
389 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
391 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
394 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
396 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
399 const struct file_operations proc_pid_maps_operations
= {
400 .open
= pid_maps_open
,
403 .release
= seq_release_private
,
406 const struct file_operations proc_tid_maps_operations
= {
407 .open
= tid_maps_open
,
410 .release
= seq_release_private
,
414 * Proportional Set Size(PSS): my share of RSS.
416 * PSS of a process is the count of pages it has in memory, where each
417 * page is divided by the number of processes sharing it. So if a
418 * process has 1000 pages all to itself, and 1000 shared with one other
419 * process, its PSS will be 1500.
421 * To keep (accumulated) division errors low, we adopt a 64bit
422 * fixed-point pss counter to minimize division errors. So (pss >>
423 * PSS_SHIFT) would be the real byte count.
425 * A shift of 12 before division means (assuming 4K page size):
426 * - 1M 3-user-pages add up to 8KB errors;
427 * - supports mapcount up to 2^24, or 16M;
428 * - supports PSS up to 2^52 bytes, or 4PB.
432 #ifdef CONFIG_PROC_PAGE_MONITOR
433 struct mem_size_stats
{
434 struct vm_area_struct
*vma
;
435 unsigned long resident
;
436 unsigned long shared_clean
;
437 unsigned long shared_dirty
;
438 unsigned long private_clean
;
439 unsigned long private_dirty
;
440 unsigned long referenced
;
441 unsigned long anonymous
;
442 unsigned long anonymous_thp
;
444 unsigned long nonlinear
;
449 static void smaps_pte_entry(pte_t ptent
, unsigned long addr
,
450 unsigned long ptent_size
, struct mm_walk
*walk
)
452 struct mem_size_stats
*mss
= walk
->private;
453 struct vm_area_struct
*vma
= mss
->vma
;
454 pgoff_t pgoff
= linear_page_index(vma
, addr
);
455 struct page
*page
= NULL
;
458 if (pte_present(ptent
)) {
459 page
= vm_normal_page(vma
, addr
, ptent
);
460 } else if (is_swap_pte(ptent
)) {
461 swp_entry_t swpent
= pte_to_swp_entry(ptent
);
463 if (!non_swap_entry(swpent
))
464 mss
->swap
+= ptent_size
;
465 else if (is_migration_entry(swpent
))
466 page
= migration_entry_to_page(swpent
);
467 } else if (pte_file(ptent
)) {
468 if (pte_to_pgoff(ptent
) != pgoff
)
469 mss
->nonlinear
+= ptent_size
;
476 mss
->anonymous
+= ptent_size
;
478 if (page
->index
!= pgoff
)
479 mss
->nonlinear
+= ptent_size
;
481 mss
->resident
+= ptent_size
;
482 /* Accumulate the size in pages that have been accessed. */
483 if (pte_young(ptent
) || PageReferenced(page
))
484 mss
->referenced
+= ptent_size
;
485 mapcount
= page_mapcount(page
);
487 if (pte_dirty(ptent
) || PageDirty(page
))
488 mss
->shared_dirty
+= ptent_size
;
490 mss
->shared_clean
+= ptent_size
;
491 mss
->pss
+= (ptent_size
<< PSS_SHIFT
) / mapcount
;
493 if (pte_dirty(ptent
) || PageDirty(page
))
494 mss
->private_dirty
+= ptent_size
;
496 mss
->private_clean
+= ptent_size
;
497 mss
->pss
+= (ptent_size
<< PSS_SHIFT
);
501 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
502 struct mm_walk
*walk
)
504 struct mem_size_stats
*mss
= walk
->private;
505 struct vm_area_struct
*vma
= mss
->vma
;
509 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
510 smaps_pte_entry(*(pte_t
*)pmd
, addr
, HPAGE_PMD_SIZE
, walk
);
511 spin_unlock(&walk
->mm
->page_table_lock
);
512 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
516 if (pmd_trans_unstable(pmd
))
519 * The mmap_sem held all the way back in m_start() is what
520 * keeps khugepaged out of here and from collapsing things
523 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
524 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
525 smaps_pte_entry(*pte
, addr
, PAGE_SIZE
, walk
);
526 pte_unmap_unlock(pte
- 1, ptl
);
531 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
534 * Don't forget to update Documentation/ on changes.
536 static const char mnemonics
[BITS_PER_LONG
][2] = {
538 * In case if we meet a flag we don't know about.
540 [0 ... (BITS_PER_LONG
-1)] = "??",
542 [ilog2(VM_READ
)] = "rd",
543 [ilog2(VM_WRITE
)] = "wr",
544 [ilog2(VM_EXEC
)] = "ex",
545 [ilog2(VM_SHARED
)] = "sh",
546 [ilog2(VM_MAYREAD
)] = "mr",
547 [ilog2(VM_MAYWRITE
)] = "mw",
548 [ilog2(VM_MAYEXEC
)] = "me",
549 [ilog2(VM_MAYSHARE
)] = "ms",
550 [ilog2(VM_GROWSDOWN
)] = "gd",
551 [ilog2(VM_PFNMAP
)] = "pf",
552 [ilog2(VM_DENYWRITE
)] = "dw",
553 [ilog2(VM_LOCKED
)] = "lo",
554 [ilog2(VM_IO
)] = "io",
555 [ilog2(VM_SEQ_READ
)] = "sr",
556 [ilog2(VM_RAND_READ
)] = "rr",
557 [ilog2(VM_DONTCOPY
)] = "dc",
558 [ilog2(VM_DONTEXPAND
)] = "de",
559 [ilog2(VM_ACCOUNT
)] = "ac",
560 [ilog2(VM_NORESERVE
)] = "nr",
561 [ilog2(VM_HUGETLB
)] = "ht",
562 [ilog2(VM_NONLINEAR
)] = "nl",
563 [ilog2(VM_ARCH_1
)] = "ar",
564 [ilog2(VM_DONTDUMP
)] = "dd",
565 [ilog2(VM_MIXEDMAP
)] = "mm",
566 [ilog2(VM_HUGEPAGE
)] = "hg",
567 [ilog2(VM_NOHUGEPAGE
)] = "nh",
568 [ilog2(VM_MERGEABLE
)] = "mg",
572 seq_puts(m
, "VmFlags: ");
573 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
574 if (vma
->vm_flags
& (1UL << i
)) {
575 seq_printf(m
, "%c%c ",
576 mnemonics
[i
][0], mnemonics
[i
][1]);
582 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
584 struct proc_maps_private
*priv
= m
->private;
585 struct task_struct
*task
= priv
->task
;
586 struct vm_area_struct
*vma
= v
;
587 struct mem_size_stats mss
;
588 struct mm_walk smaps_walk
= {
589 .pmd_entry
= smaps_pte_range
,
594 memset(&mss
, 0, sizeof mss
);
596 /* mmap_sem is held in m_start */
597 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
598 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
600 show_map_vma(m
, vma
, is_pid
);
606 "Shared_Clean: %8lu kB\n"
607 "Shared_Dirty: %8lu kB\n"
608 "Private_Clean: %8lu kB\n"
609 "Private_Dirty: %8lu kB\n"
610 "Referenced: %8lu kB\n"
611 "Anonymous: %8lu kB\n"
612 "AnonHugePages: %8lu kB\n"
614 "KernelPageSize: %8lu kB\n"
615 "MMUPageSize: %8lu kB\n"
617 (vma
->vm_end
- vma
->vm_start
) >> 10,
619 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
620 mss
.shared_clean
>> 10,
621 mss
.shared_dirty
>> 10,
622 mss
.private_clean
>> 10,
623 mss
.private_dirty
>> 10,
624 mss
.referenced
>> 10,
626 mss
.anonymous_thp
>> 10,
628 vma_kernel_pagesize(vma
) >> 10,
629 vma_mmu_pagesize(vma
) >> 10,
630 (vma
->vm_flags
& VM_LOCKED
) ?
631 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
633 if (vma
->vm_flags
& VM_NONLINEAR
)
634 seq_printf(m
, "Nonlinear: %8lu kB\n",
635 mss
.nonlinear
>> 10);
637 show_smap_vma_flags(m
, vma
);
639 if (m
->count
< m
->size
) /* vma is copied successfully */
640 m
->version
= (vma
!= get_gate_vma(task
->mm
))
645 static int show_pid_smap(struct seq_file
*m
, void *v
)
647 return show_smap(m
, v
, 1);
650 static int show_tid_smap(struct seq_file
*m
, void *v
)
652 return show_smap(m
, v
, 0);
655 static const struct seq_operations proc_pid_smaps_op
= {
659 .show
= show_pid_smap
662 static const struct seq_operations proc_tid_smaps_op
= {
666 .show
= show_tid_smap
669 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
671 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
674 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
676 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
679 const struct file_operations proc_pid_smaps_operations
= {
680 .open
= pid_smaps_open
,
683 .release
= seq_release_private
,
686 const struct file_operations proc_tid_smaps_operations
= {
687 .open
= tid_smaps_open
,
690 .release
= seq_release_private
,
694 * We do not want to have constant page-shift bits sitting in
695 * pagemap entries and are about to reuse them some time soon.
697 * Here's the "migration strategy":
698 * 1. when the system boots these bits remain what they are,
699 * but a warning about future change is printed in log;
700 * 2. once anyone clears soft-dirty bits via clear_refs file,
701 * these flag is set to denote, that user is aware of the
702 * new API and those page-shift bits change their meaning.
703 * The respective warning is printed in dmesg;
704 * 3. In a couple of releases we will remove all the mentions
705 * of page-shift in pagemap entries.
708 static bool soft_dirty_cleared __read_mostly
;
710 enum clear_refs_types
{
714 CLEAR_REFS_SOFT_DIRTY
,
718 struct clear_refs_private
{
719 struct vm_area_struct
*vma
;
720 enum clear_refs_types type
;
723 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
724 unsigned long addr
, pte_t
*pte
)
726 #ifdef CONFIG_MEM_SOFT_DIRTY
728 * The soft-dirty tracker uses #PF-s to catch writes
729 * to pages, so write-protect the pte as well. See the
730 * Documentation/vm/soft-dirty.txt for full description
731 * of how soft-dirty works.
735 if (pte_present(ptent
)) {
736 ptent
= pte_wrprotect(ptent
);
737 ptent
= pte_clear_flags(ptent
, _PAGE_SOFT_DIRTY
);
738 } else if (is_swap_pte(ptent
)) {
739 ptent
= pte_swp_clear_soft_dirty(ptent
);
740 } else if (pte_file(ptent
)) {
741 ptent
= pte_file_clear_soft_dirty(ptent
);
744 if (vma
->vm_flags
& VM_SOFTDIRTY
)
745 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
747 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
751 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
752 unsigned long end
, struct mm_walk
*walk
)
754 struct clear_refs_private
*cp
= walk
->private;
755 struct vm_area_struct
*vma
= cp
->vma
;
760 split_huge_page_pmd(vma
, addr
, pmd
);
761 if (pmd_trans_unstable(pmd
))
764 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
765 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
768 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
769 clear_soft_dirty(vma
, addr
, pte
);
773 if (!pte_present(ptent
))
776 page
= vm_normal_page(vma
, addr
, ptent
);
780 /* Clear accessed and referenced bits. */
781 ptep_test_and_clear_young(vma
, addr
, pte
);
782 ClearPageReferenced(page
);
784 pte_unmap_unlock(pte
- 1, ptl
);
789 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
790 size_t count
, loff_t
*ppos
)
792 struct task_struct
*task
;
793 char buffer
[PROC_NUMBUF
];
794 struct mm_struct
*mm
;
795 struct vm_area_struct
*vma
;
796 enum clear_refs_types type
;
800 memset(buffer
, 0, sizeof(buffer
));
801 if (count
> sizeof(buffer
) - 1)
802 count
= sizeof(buffer
) - 1;
803 if (copy_from_user(buffer
, buf
, count
))
805 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
808 type
= (enum clear_refs_types
)itype
;
809 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
812 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
813 soft_dirty_cleared
= true;
814 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
815 "See the linux/Documentation/vm/pagemap.txt for details.\n");
818 task
= get_proc_task(file_inode(file
));
821 mm
= get_task_mm(task
);
823 struct clear_refs_private cp
= {
826 struct mm_walk clear_refs_walk
= {
827 .pmd_entry
= clear_refs_pte_range
,
831 down_read(&mm
->mmap_sem
);
832 if (type
== CLEAR_REFS_SOFT_DIRTY
)
833 mmu_notifier_invalidate_range_start(mm
, 0, -1);
834 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
836 if (is_vm_hugetlb_page(vma
))
839 * Writing 1 to /proc/pid/clear_refs affects all pages.
841 * Writing 2 to /proc/pid/clear_refs only affects
844 * Writing 3 to /proc/pid/clear_refs only affects file
847 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
849 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
851 walk_page_range(vma
->vm_start
, vma
->vm_end
,
854 if (type
== CLEAR_REFS_SOFT_DIRTY
)
855 mmu_notifier_invalidate_range_end(mm
, 0, -1);
857 up_read(&mm
->mmap_sem
);
860 put_task_struct(task
);
865 const struct file_operations proc_clear_refs_operations
= {
866 .write
= clear_refs_write
,
867 .llseek
= noop_llseek
,
875 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
876 pagemap_entry_t
*buffer
;
880 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
881 #define PAGEMAP_WALK_MASK (PMD_MASK)
883 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
884 #define PM_STATUS_BITS 3
885 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
886 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
887 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
888 #define PM_PSHIFT_BITS 6
889 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
890 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
891 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
892 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
893 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
894 /* in "new" pagemap pshift bits are occupied with more status bits */
895 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
897 #define __PM_SOFT_DIRTY (1LL)
898 #define PM_PRESENT PM_STATUS(4LL)
899 #define PM_SWAP PM_STATUS(2LL)
900 #define PM_FILE PM_STATUS(1LL)
901 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
902 #define PM_END_OF_BUFFER 1
904 static inline pagemap_entry_t
make_pme(u64 val
)
906 return (pagemap_entry_t
) { .pme
= val
};
909 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
910 struct pagemapread
*pm
)
912 pm
->buffer
[pm
->pos
++] = *pme
;
913 if (pm
->pos
>= pm
->len
)
914 return PM_END_OF_BUFFER
;
918 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
919 struct mm_walk
*walk
)
921 struct pagemapread
*pm
= walk
->private;
924 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
926 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
927 err
= add_to_pagemap(addr
, &pme
, pm
);
934 static void pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
935 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
938 struct page
*page
= NULL
;
941 if (pte_present(pte
)) {
942 frame
= pte_pfn(pte
);
944 page
= vm_normal_page(vma
, addr
, pte
);
945 if (pte_soft_dirty(pte
))
946 flags2
|= __PM_SOFT_DIRTY
;
947 } else if (is_swap_pte(pte
)) {
949 if (pte_swp_soft_dirty(pte
))
950 flags2
|= __PM_SOFT_DIRTY
;
951 entry
= pte_to_swp_entry(pte
);
952 frame
= swp_type(entry
) |
953 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
955 if (is_migration_entry(entry
))
956 page
= migration_entry_to_page(entry
);
958 if (vma
->vm_flags
& VM_SOFTDIRTY
)
959 flags2
|= __PM_SOFT_DIRTY
;
960 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, flags2
));
964 if (page
&& !PageAnon(page
))
966 if ((vma
->vm_flags
& VM_SOFTDIRTY
))
967 flags2
|= __PM_SOFT_DIRTY
;
969 *pme
= make_pme(PM_PFRAME(frame
) | PM_STATUS2(pm
->v2
, flags2
) | flags
);
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 static void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
974 pmd_t pmd
, int offset
, int pmd_flags2
)
977 * Currently pmd for thp is always present because thp can not be
978 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
979 * This if-check is just to prepare for future implementation.
981 if (pmd_present(pmd
))
982 *pme
= make_pme(PM_PFRAME(pmd_pfn(pmd
) + offset
)
983 | PM_STATUS2(pm
->v2
, pmd_flags2
) | PM_PRESENT
);
985 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, pmd_flags2
));
988 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
989 pmd_t pmd
, int offset
, int pmd_flags2
)
994 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
995 struct mm_walk
*walk
)
997 struct vm_area_struct
*vma
;
998 struct pagemapread
*pm
= walk
->private;
1001 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
1003 /* find the first VMA at or above 'addr' */
1004 vma
= find_vma(walk
->mm
, addr
);
1005 if (vma
&& pmd_trans_huge_lock(pmd
, vma
) == 1) {
1008 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(*pmd
))
1009 pmd_flags2
= __PM_SOFT_DIRTY
;
1013 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1014 unsigned long offset
;
1016 offset
= (addr
& ~PAGEMAP_WALK_MASK
) >>
1018 thp_pmd_to_pagemap_entry(&pme
, pm
, *pmd
, offset
, pmd_flags2
);
1019 err
= add_to_pagemap(addr
, &pme
, pm
);
1023 spin_unlock(&walk
->mm
->page_table_lock
);
1027 if (pmd_trans_unstable(pmd
))
1029 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1032 /* check to see if we've left 'vma' behind
1033 * and need a new, higher one */
1034 if (vma
&& (addr
>= vma
->vm_end
)) {
1035 vma
= find_vma(walk
->mm
, addr
);
1036 if (vma
&& (vma
->vm_flags
& VM_SOFTDIRTY
))
1037 flags2
= __PM_SOFT_DIRTY
;
1040 pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, flags2
));
1043 /* check that 'vma' actually covers this address,
1044 * and that it isn't a huge page vma */
1045 if (vma
&& (vma
->vm_start
<= addr
) &&
1046 !is_vm_hugetlb_page(vma
)) {
1047 pte
= pte_offset_map(pmd
, addr
);
1048 pte_to_pagemap_entry(&pme
, pm
, vma
, addr
, *pte
);
1049 /* unmap before userspace copy */
1052 err
= add_to_pagemap(addr
, &pme
, pm
);
1062 #ifdef CONFIG_HUGETLB_PAGE
1063 static void huge_pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
1064 pte_t pte
, int offset
, int flags2
)
1066 if (pte_present(pte
))
1067 *pme
= make_pme(PM_PFRAME(pte_pfn(pte
) + offset
) |
1068 PM_STATUS2(pm
->v2
, flags2
) |
1071 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) |
1072 PM_STATUS2(pm
->v2
, flags2
));
1075 /* This function walks within one hugetlb entry in the single call */
1076 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
1077 unsigned long addr
, unsigned long end
,
1078 struct mm_walk
*walk
)
1080 struct pagemapread
*pm
= walk
->private;
1081 struct vm_area_struct
*vma
;
1084 pagemap_entry_t pme
;
1086 vma
= find_vma(walk
->mm
, addr
);
1089 if (vma
&& (vma
->vm_flags
& VM_SOFTDIRTY
))
1090 flags2
= __PM_SOFT_DIRTY
;
1094 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1095 int offset
= (addr
& ~hmask
) >> PAGE_SHIFT
;
1096 huge_pte_to_pagemap_entry(&pme
, pm
, *pte
, offset
, flags2
);
1097 err
= add_to_pagemap(addr
, &pme
, pm
);
1106 #endif /* HUGETLB_PAGE */
1109 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1111 * For each page in the address space, this file contains one 64-bit entry
1112 * consisting of the following:
1114 * Bits 0-54 page frame number (PFN) if present
1115 * Bits 0-4 swap type if swapped
1116 * Bits 5-54 swap offset if swapped
1117 * Bits 55-60 page shift (page size = 1<<page shift)
1118 * Bit 61 page is file-page or shared-anon
1119 * Bit 62 page swapped
1120 * Bit 63 page present
1122 * If the page is not present but in swap, then the PFN contains an
1123 * encoding of the swap file number and the page's offset into the
1124 * swap. Unmapped pages return a null PFN. This allows determining
1125 * precisely which pages are mapped (or in swap) and comparing mapped
1126 * pages between processes.
1128 * Efficient users of this interface will use /proc/pid/maps to
1129 * determine which areas of memory are actually mapped and llseek to
1130 * skip over unmapped regions.
1132 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1133 size_t count
, loff_t
*ppos
)
1135 struct task_struct
*task
= get_proc_task(file_inode(file
));
1136 struct mm_struct
*mm
;
1137 struct pagemapread pm
;
1139 struct mm_walk pagemap_walk
= {};
1141 unsigned long svpfn
;
1142 unsigned long start_vaddr
;
1143 unsigned long end_vaddr
;
1150 /* file position must be aligned */
1151 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1158 pm
.v2
= soft_dirty_cleared
;
1159 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1160 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1165 mm
= mm_access(task
, PTRACE_MODE_READ
);
1167 if (!mm
|| IS_ERR(mm
))
1170 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
1171 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1172 #ifdef CONFIG_HUGETLB_PAGE
1173 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1175 pagemap_walk
.mm
= mm
;
1176 pagemap_walk
.private = &pm
;
1179 svpfn
= src
/ PM_ENTRY_BYTES
;
1180 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1181 end_vaddr
= TASK_SIZE_OF(task
);
1183 /* watch out for wraparound */
1184 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
1185 start_vaddr
= end_vaddr
;
1188 * The odds are that this will stop walking way
1189 * before end_vaddr, because the length of the
1190 * user buffer is tracked in "pm", and the walk
1191 * will stop when we hit the end of the buffer.
1194 while (count
&& (start_vaddr
< end_vaddr
)) {
1199 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1201 if (end
< start_vaddr
|| end
> end_vaddr
)
1203 down_read(&mm
->mmap_sem
);
1204 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1205 up_read(&mm
->mmap_sem
);
1208 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1209 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1218 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1226 put_task_struct(task
);
1231 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1233 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1234 "to stop being page-shift some time soon. See the "
1235 "linux/Documentation/vm/pagemap.txt for details.\n");
1239 const struct file_operations proc_pagemap_operations
= {
1240 .llseek
= mem_lseek
, /* borrow this */
1241 .read
= pagemap_read
,
1242 .open
= pagemap_open
,
1244 #endif /* CONFIG_PROC_PAGE_MONITOR */
1249 struct vm_area_struct
*vma
;
1250 unsigned long pages
;
1252 unsigned long active
;
1253 unsigned long writeback
;
1254 unsigned long mapcount_max
;
1255 unsigned long dirty
;
1256 unsigned long swapcache
;
1257 unsigned long node
[MAX_NUMNODES
];
1260 struct numa_maps_private
{
1261 struct proc_maps_private proc_maps
;
1262 struct numa_maps md
;
1265 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1266 unsigned long nr_pages
)
1268 int count
= page_mapcount(page
);
1270 md
->pages
+= nr_pages
;
1271 if (pte_dirty
|| PageDirty(page
))
1272 md
->dirty
+= nr_pages
;
1274 if (PageSwapCache(page
))
1275 md
->swapcache
+= nr_pages
;
1277 if (PageActive(page
) || PageUnevictable(page
))
1278 md
->active
+= nr_pages
;
1280 if (PageWriteback(page
))
1281 md
->writeback
+= nr_pages
;
1284 md
->anon
+= nr_pages
;
1286 if (count
> md
->mapcount_max
)
1287 md
->mapcount_max
= count
;
1289 md
->node
[page_to_nid(page
)] += nr_pages
;
1292 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1298 if (!pte_present(pte
))
1301 page
= vm_normal_page(vma
, addr
, pte
);
1305 if (PageReserved(page
))
1308 nid
= page_to_nid(page
);
1309 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1315 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1316 unsigned long end
, struct mm_walk
*walk
)
1318 struct numa_maps
*md
;
1325 if (pmd_trans_huge_lock(pmd
, md
->vma
) == 1) {
1326 pte_t huge_pte
= *(pte_t
*)pmd
;
1329 page
= can_gather_numa_stats(huge_pte
, md
->vma
, addr
);
1331 gather_stats(page
, md
, pte_dirty(huge_pte
),
1332 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1333 spin_unlock(&walk
->mm
->page_table_lock
);
1337 if (pmd_trans_unstable(pmd
))
1339 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1341 struct page
*page
= can_gather_numa_stats(*pte
, md
->vma
, addr
);
1344 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1346 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1347 pte_unmap_unlock(orig_pte
, ptl
);
1350 #ifdef CONFIG_HUGETLB_PAGE
1351 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1352 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1354 struct numa_maps
*md
;
1357 if (!pte_present(*pte
))
1360 page
= pte_page(*pte
);
1365 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1370 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1371 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1378 * Display pages allocated per node and memory policy via /proc.
1380 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1382 struct numa_maps_private
*numa_priv
= m
->private;
1383 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1384 struct vm_area_struct
*vma
= v
;
1385 struct numa_maps
*md
= &numa_priv
->md
;
1386 struct file
*file
= vma
->vm_file
;
1387 struct task_struct
*task
= proc_priv
->task
;
1388 struct mm_struct
*mm
= vma
->vm_mm
;
1389 struct mm_walk walk
= {};
1390 struct mempolicy
*pol
;
1397 /* Ensure we start with an empty set of numa_maps statistics. */
1398 memset(md
, 0, sizeof(*md
));
1402 walk
.hugetlb_entry
= gather_hugetbl_stats
;
1403 walk
.pmd_entry
= gather_pte_stats
;
1407 pol
= get_vma_policy(task
, vma
, vma
->vm_start
);
1408 n
= mpol_to_str(buffer
, sizeof(buffer
), pol
);
1413 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1416 seq_printf(m
, " file=");
1417 seq_path(m
, &file
->f_path
, "\n\t= ");
1418 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1419 seq_printf(m
, " heap");
1421 pid_t tid
= vm_is_stack(task
, vma
, is_pid
);
1424 * Thread stack in /proc/PID/task/TID/maps or
1425 * the main process stack.
1427 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
1428 vma
->vm_end
>= mm
->start_stack
))
1429 seq_printf(m
, " stack");
1431 seq_printf(m
, " stack:%d", tid
);
1435 if (is_vm_hugetlb_page(vma
))
1436 seq_printf(m
, " huge");
1438 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
1444 seq_printf(m
, " anon=%lu", md
->anon
);
1447 seq_printf(m
, " dirty=%lu", md
->dirty
);
1449 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1450 seq_printf(m
, " mapped=%lu", md
->pages
);
1452 if (md
->mapcount_max
> 1)
1453 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1456 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1458 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1459 seq_printf(m
, " active=%lu", md
->active
);
1462 seq_printf(m
, " writeback=%lu", md
->writeback
);
1464 for_each_node_state(n
, N_MEMORY
)
1466 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
1470 if (m
->count
< m
->size
)
1471 m
->version
= (vma
!= proc_priv
->tail_vma
) ? vma
->vm_start
: 0;
1475 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1477 return show_numa_map(m
, v
, 1);
1480 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1482 return show_numa_map(m
, v
, 0);
1485 static const struct seq_operations proc_pid_numa_maps_op
= {
1489 .show
= show_pid_numa_map
,
1492 static const struct seq_operations proc_tid_numa_maps_op
= {
1496 .show
= show_tid_numa_map
,
1499 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1500 const struct seq_operations
*ops
)
1502 struct numa_maps_private
*priv
;
1504 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1506 priv
->proc_maps
.pid
= proc_pid(inode
);
1507 ret
= seq_open(file
, ops
);
1509 struct seq_file
*m
= file
->private_data
;
1518 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1520 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1523 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1525 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1528 const struct file_operations proc_pid_numa_maps_operations
= {
1529 .open
= pid_numa_maps_open
,
1531 .llseek
= seq_lseek
,
1532 .release
= seq_release_private
,
1535 const struct file_operations proc_tid_numa_maps_operations
= {
1536 .open
= tid_numa_maps_open
,
1538 .llseek
= seq_lseek
,
1539 .release
= seq_release_private
,
1541 #endif /* CONFIG_NUMA */