2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
45 static const struct vm_operations_struct xfs_file_vm_ops
;
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
56 if (type
& XFS_IOLOCK_EXCL
)
57 mutex_lock(&VFS_I(ip
)->i_mutex
);
66 xfs_iunlock(ip
, type
);
67 if (type
& XFS_IOLOCK_EXCL
)
68 mutex_unlock(&VFS_I(ip
)->i_mutex
);
76 xfs_ilock_demote(ip
, type
);
77 if (type
& XFS_IOLOCK_EXCL
)
78 mutex_unlock(&VFS_I(ip
)->i_mutex
);
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
93 struct xfs_inode
*ip
, /* inode */
94 loff_t pos
, /* offset in file */
95 size_t count
) /* size of data to zero */
98 struct address_space
*mapping
;
101 mapping
= VFS_I(ip
)->i_mapping
;
103 unsigned offset
, bytes
;
106 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
107 bytes
= PAGE_CACHE_SIZE
- offset
;
111 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
112 AOP_FLAG_UNINTERRUPTIBLE
,
117 zero_user(page
, offset
, bytes
);
119 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
121 WARN_ON(status
<= 0); /* can't return less than zero! */
131 * Fsync operations on directories are much simpler than on regular files,
132 * as there is no file data to flush, and thus also no need for explicit
133 * cache flush operations, and there are no non-transaction metadata updates
134 * on directories either.
143 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
144 struct xfs_mount
*mp
= ip
->i_mount
;
147 trace_xfs_dir_fsync(ip
);
149 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
150 if (xfs_ipincount(ip
))
151 lsn
= ip
->i_itemp
->ili_last_lsn
;
152 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
156 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
166 struct inode
*inode
= file
->f_mapping
->host
;
167 struct xfs_inode
*ip
= XFS_I(inode
);
168 struct xfs_mount
*mp
= ip
->i_mount
;
173 trace_xfs_file_fsync(ip
);
175 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
179 if (XFS_FORCED_SHUTDOWN(mp
))
180 return -XFS_ERROR(EIO
);
182 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
184 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
186 * If we have an RT and/or log subvolume we need to make sure
187 * to flush the write cache the device used for file data
188 * first. This is to ensure newly written file data make
189 * it to disk before logging the new inode size in case of
190 * an extending write.
192 if (XFS_IS_REALTIME_INODE(ip
))
193 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
194 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
195 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
199 * All metadata updates are logged, which means that we just have
200 * to flush the log up to the latest LSN that touched the inode.
202 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
203 if (xfs_ipincount(ip
)) {
205 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
206 lsn
= ip
->i_itemp
->ili_last_lsn
;
208 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
211 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
214 * If we only have a single device, and the log force about was
215 * a no-op we might have to flush the data device cache here.
216 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 * an already allocated file and thus do not have any metadata to
220 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
221 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
222 !XFS_IS_REALTIME_INODE(ip
) &&
224 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
232 const struct iovec
*iovp
,
233 unsigned long nr_segs
,
236 struct file
*file
= iocb
->ki_filp
;
237 struct inode
*inode
= file
->f_mapping
->host
;
238 struct xfs_inode
*ip
= XFS_I(inode
);
239 struct xfs_mount
*mp
= ip
->i_mount
;
245 XFS_STATS_INC(xs_read_calls
);
247 BUG_ON(iocb
->ki_pos
!= pos
);
249 if (unlikely(file
->f_flags
& O_DIRECT
))
250 ioflags
|= IO_ISDIRECT
;
251 if (file
->f_mode
& FMODE_NOCMTIME
)
254 ret
= generic_segment_checks(iovp
, &nr_segs
, &size
, VERIFY_WRITE
);
258 if (unlikely(ioflags
& IO_ISDIRECT
)) {
259 xfs_buftarg_t
*target
=
260 XFS_IS_REALTIME_INODE(ip
) ?
261 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
262 if ((pos
& target
->bt_smask
) || (size
& target
->bt_smask
)) {
263 if (pos
== i_size_read(inode
))
265 return -XFS_ERROR(EINVAL
);
269 n
= mp
->m_super
->s_maxbytes
- pos
;
270 if (n
<= 0 || size
== 0)
276 if (XFS_FORCED_SHUTDOWN(mp
))
280 * Locking is a bit tricky here. If we take an exclusive lock
281 * for direct IO, we effectively serialise all new concurrent
282 * read IO to this file and block it behind IO that is currently in
283 * progress because IO in progress holds the IO lock shared. We only
284 * need to hold the lock exclusive to blow away the page cache, so
285 * only take lock exclusively if the page cache needs invalidation.
286 * This allows the normal direct IO case of no page cache pages to
287 * proceeed concurrently without serialisation.
289 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
290 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
291 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
292 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
294 if (inode
->i_mapping
->nrpages
) {
295 ret
= -filemap_write_and_wait_range(
296 VFS_I(ip
)->i_mapping
,
299 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
304 * Invalidate whole pages. This can return an error if
305 * we fail to invalidate a page, but this should never
306 * happen on XFS. Warn if it does fail.
308 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
309 pos
>> PAGE_CACHE_SHIFT
, -1);
313 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
316 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
318 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, pos
);
320 XFS_STATS_ADD(xs_read_bytes
, ret
);
322 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
327 xfs_file_splice_read(
330 struct pipe_inode_info
*pipe
,
334 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
338 XFS_STATS_INC(xs_read_calls
);
340 if (infilp
->f_mode
& FMODE_NOCMTIME
)
343 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
346 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
348 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
350 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
352 XFS_STATS_ADD(xs_read_bytes
, ret
);
354 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
359 * xfs_file_splice_write() does not use xfs_rw_ilock() because
360 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
361 * couuld cause lock inversions between the aio_write path and the splice path
362 * if someone is doing concurrent splice(2) based writes and write(2) based
363 * writes to the same inode. The only real way to fix this is to re-implement
364 * the generic code here with correct locking orders.
367 xfs_file_splice_write(
368 struct pipe_inode_info
*pipe
,
369 struct file
*outfilp
,
374 struct inode
*inode
= outfilp
->f_mapping
->host
;
375 struct xfs_inode
*ip
= XFS_I(inode
);
379 XFS_STATS_INC(xs_write_calls
);
381 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
384 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
387 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
389 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
391 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
393 XFS_STATS_ADD(xs_write_bytes
, ret
);
395 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
400 * This routine is called to handle zeroing any space in the last block of the
401 * file that is beyond the EOF. We do this since the size is being increased
402 * without writing anything to that block and we don't want to read the
403 * garbage on the disk.
405 STATIC
int /* error (positive) */
407 struct xfs_inode
*ip
,
411 struct xfs_mount
*mp
= ip
->i_mount
;
412 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
413 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
417 struct xfs_bmbt_irec imap
;
419 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
420 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
421 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
428 * If the block underlying isize is just a hole, then there
429 * is nothing to zero.
431 if (imap
.br_startblock
== HOLESTARTBLOCK
)
434 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
435 if (isize
+ zero_len
> offset
)
436 zero_len
= offset
- isize
;
437 return xfs_iozero(ip
, isize
, zero_len
);
441 * Zero any on disk space between the current EOF and the new, larger EOF.
443 * This handles the normal case of zeroing the remainder of the last block in
444 * the file and the unusual case of zeroing blocks out beyond the size of the
445 * file. This second case only happens with fixed size extents and when the
446 * system crashes before the inode size was updated but after blocks were
449 * Expects the iolock to be held exclusive, and will take the ilock internally.
451 int /* error (positive) */
453 struct xfs_inode
*ip
,
454 xfs_off_t offset
, /* starting I/O offset */
455 xfs_fsize_t isize
) /* current inode size */
457 struct xfs_mount
*mp
= ip
->i_mount
;
458 xfs_fileoff_t start_zero_fsb
;
459 xfs_fileoff_t end_zero_fsb
;
460 xfs_fileoff_t zero_count_fsb
;
461 xfs_fileoff_t last_fsb
;
462 xfs_fileoff_t zero_off
;
463 xfs_fsize_t zero_len
;
466 struct xfs_bmbt_irec imap
;
468 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
469 ASSERT(offset
> isize
);
472 * First handle zeroing the block on which isize resides.
474 * We only zero a part of that block so it is handled specially.
476 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
477 error
= xfs_zero_last_block(ip
, offset
, isize
);
483 * Calculate the range between the new size and the old where blocks
484 * needing to be zeroed may exist.
486 * To get the block where the last byte in the file currently resides,
487 * we need to subtract one from the size and truncate back to a block
488 * boundary. We subtract 1 in case the size is exactly on a block
491 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
492 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
493 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
494 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
495 if (last_fsb
== end_zero_fsb
) {
497 * The size was only incremented on its last block.
498 * We took care of that above, so just return.
503 ASSERT(start_zero_fsb
<= end_zero_fsb
);
504 while (start_zero_fsb
<= end_zero_fsb
) {
506 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
508 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
509 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
511 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
517 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
518 imap
.br_startblock
== HOLESTARTBLOCK
) {
519 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
520 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
525 * There are blocks we need to zero.
527 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
528 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
530 if ((zero_off
+ zero_len
) > offset
)
531 zero_len
= offset
- zero_off
;
533 error
= xfs_iozero(ip
, zero_off
, zero_len
);
537 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
538 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
545 * Common pre-write limit and setup checks.
547 * Called with the iolocked held either shared and exclusive according to
548 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
549 * if called for a direct write beyond i_size.
552 xfs_file_aio_write_checks(
558 struct inode
*inode
= file
->f_mapping
->host
;
559 struct xfs_inode
*ip
= XFS_I(inode
);
563 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
568 * If the offset is beyond the size of the file, we need to zero any
569 * blocks that fall between the existing EOF and the start of this
570 * write. If zeroing is needed and we are currently holding the
571 * iolock shared, we need to update it to exclusive which implies
572 * having to redo all checks before.
574 if (*pos
> i_size_read(inode
)) {
575 if (*iolock
== XFS_IOLOCK_SHARED
) {
576 xfs_rw_iunlock(ip
, *iolock
);
577 *iolock
= XFS_IOLOCK_EXCL
;
578 xfs_rw_ilock(ip
, *iolock
);
581 error
= -xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
587 * Updating the timestamps will grab the ilock again from
588 * xfs_fs_dirty_inode, so we have to call it after dropping the
589 * lock above. Eventually we should look into a way to avoid
590 * the pointless lock roundtrip.
592 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
593 error
= file_update_time(file
);
599 * If we're writing the file then make sure to clear the setuid and
600 * setgid bits if the process is not being run by root. This keeps
601 * people from modifying setuid and setgid binaries.
603 return file_remove_suid(file
);
607 * xfs_file_dio_aio_write - handle direct IO writes
609 * Lock the inode appropriately to prepare for and issue a direct IO write.
610 * By separating it from the buffered write path we remove all the tricky to
611 * follow locking changes and looping.
613 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
614 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
615 * pages are flushed out.
617 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
618 * allowing them to be done in parallel with reads and other direct IO writes.
619 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
620 * needs to do sub-block zeroing and that requires serialisation against other
621 * direct IOs to the same block. In this case we need to serialise the
622 * submission of the unaligned IOs so that we don't get racing block zeroing in
623 * the dio layer. To avoid the problem with aio, we also need to wait for
624 * outstanding IOs to complete so that unwritten extent conversion is completed
625 * before we try to map the overlapping block. This is currently implemented by
626 * hitting it with a big hammer (i.e. inode_dio_wait()).
628 * Returns with locks held indicated by @iolock and errors indicated by
629 * negative return values.
632 xfs_file_dio_aio_write(
634 const struct iovec
*iovp
,
635 unsigned long nr_segs
,
639 struct file
*file
= iocb
->ki_filp
;
640 struct address_space
*mapping
= file
->f_mapping
;
641 struct inode
*inode
= mapping
->host
;
642 struct xfs_inode
*ip
= XFS_I(inode
);
643 struct xfs_mount
*mp
= ip
->i_mount
;
645 size_t count
= ocount
;
646 int unaligned_io
= 0;
648 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
649 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
651 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
))
652 return -XFS_ERROR(EINVAL
);
654 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
658 * We don't need to take an exclusive lock unless there page cache needs
659 * to be invalidated or unaligned IO is being executed. We don't need to
660 * consider the EOF extension case here because
661 * xfs_file_aio_write_checks() will relock the inode as necessary for
662 * EOF zeroing cases and fill out the new inode size as appropriate.
664 if (unaligned_io
|| mapping
->nrpages
)
665 iolock
= XFS_IOLOCK_EXCL
;
667 iolock
= XFS_IOLOCK_SHARED
;
668 xfs_rw_ilock(ip
, iolock
);
671 * Recheck if there are cached pages that need invalidate after we got
672 * the iolock to protect against other threads adding new pages while
673 * we were waiting for the iolock.
675 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
676 xfs_rw_iunlock(ip
, iolock
);
677 iolock
= XFS_IOLOCK_EXCL
;
678 xfs_rw_ilock(ip
, iolock
);
681 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
685 if (mapping
->nrpages
) {
686 ret
= -filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
691 * Invalidate whole pages. This can return an error if
692 * we fail to invalidate a page, but this should never
693 * happen on XFS. Warn if it does fail.
695 ret
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
696 pos
>> PAGE_CACHE_SHIFT
, -1);
702 * If we are doing unaligned IO, wait for all other IO to drain,
703 * otherwise demote the lock if we had to flush cached pages
706 inode_dio_wait(inode
);
707 else if (iolock
== XFS_IOLOCK_EXCL
) {
708 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
709 iolock
= XFS_IOLOCK_SHARED
;
712 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
713 ret
= generic_file_direct_write(iocb
, iovp
,
714 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
717 xfs_rw_iunlock(ip
, iolock
);
719 /* No fallback to buffered IO on errors for XFS. */
720 ASSERT(ret
< 0 || ret
== count
);
725 xfs_file_buffered_aio_write(
727 const struct iovec
*iovp
,
728 unsigned long nr_segs
,
732 struct file
*file
= iocb
->ki_filp
;
733 struct address_space
*mapping
= file
->f_mapping
;
734 struct inode
*inode
= mapping
->host
;
735 struct xfs_inode
*ip
= XFS_I(inode
);
738 int iolock
= XFS_IOLOCK_EXCL
;
739 size_t count
= ocount
;
741 xfs_rw_ilock(ip
, iolock
);
743 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
747 /* We can write back this queue in page reclaim */
748 current
->backing_dev_info
= mapping
->backing_dev_info
;
751 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
752 ret
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
753 pos
, &iocb
->ki_pos
, count
, 0);
756 * If we just got an ENOSPC, try to write back all dirty inodes to
757 * convert delalloc space to free up some of the excess reserved
760 if (ret
== -ENOSPC
&& !enospc
) {
762 xfs_flush_inodes(ip
->i_mount
);
766 current
->backing_dev_info
= NULL
;
768 xfs_rw_iunlock(ip
, iolock
);
775 const struct iovec
*iovp
,
776 unsigned long nr_segs
,
779 struct file
*file
= iocb
->ki_filp
;
780 struct address_space
*mapping
= file
->f_mapping
;
781 struct inode
*inode
= mapping
->host
;
782 struct xfs_inode
*ip
= XFS_I(inode
);
786 XFS_STATS_INC(xs_write_calls
);
788 BUG_ON(iocb
->ki_pos
!= pos
);
790 ret
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
797 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
802 if (unlikely(file
->f_flags
& O_DIRECT
))
803 ret
= xfs_file_dio_aio_write(iocb
, iovp
, nr_segs
, pos
, ocount
);
805 ret
= xfs_file_buffered_aio_write(iocb
, iovp
, nr_segs
, pos
,
811 XFS_STATS_ADD(xs_write_bytes
, ret
);
813 /* Handle various SYNC-type writes */
814 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
830 struct inode
*inode
= file_inode(file
);
834 xfs_inode_t
*ip
= XFS_I(inode
);
835 int cmd
= XFS_IOC_RESVSP
;
836 int attr_flags
= XFS_ATTR_NOLOCK
;
838 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
845 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
847 if (mode
& FALLOC_FL_PUNCH_HOLE
)
848 cmd
= XFS_IOC_UNRESVSP
;
850 /* check the new inode size is valid before allocating */
851 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
852 offset
+ len
> i_size_read(inode
)) {
853 new_size
= offset
+ len
;
854 error
= inode_newsize_ok(inode
, new_size
);
859 if (file
->f_flags
& O_DSYNC
)
860 attr_flags
|= XFS_ATTR_SYNC
;
862 error
= -xfs_change_file_space(ip
, cmd
, &bf
, 0, attr_flags
);
866 /* Change file size if needed */
870 iattr
.ia_valid
= ATTR_SIZE
;
871 iattr
.ia_size
= new_size
;
872 error
= -xfs_setattr_size(ip
, &iattr
, XFS_ATTR_NOLOCK
);
876 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
886 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
888 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
898 struct xfs_inode
*ip
= XFS_I(inode
);
902 error
= xfs_file_open(inode
, file
);
907 * If there are any blocks, read-ahead block 0 as we're almost
908 * certain to have the next operation be a read there.
910 mode
= xfs_ilock_map_shared(ip
);
911 if (ip
->i_d
.di_nextents
> 0)
912 xfs_dir3_data_readahead(NULL
, ip
, 0, -1);
913 xfs_iunlock(ip
, mode
);
922 return -xfs_release(XFS_I(inode
));
928 struct dir_context
*ctx
)
930 struct inode
*inode
= file_inode(file
);
931 xfs_inode_t
*ip
= XFS_I(inode
);
936 * The Linux API doesn't pass down the total size of the buffer
937 * we read into down to the filesystem. With the filldir concept
938 * it's not needed for correct information, but the XFS dir2 leaf
939 * code wants an estimate of the buffer size to calculate it's
940 * readahead window and size the buffers used for mapping to
943 * Try to give it an estimate that's good enough, maybe at some
944 * point we can change the ->readdir prototype to include the
945 * buffer size. For now we use the current glibc buffer size.
947 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
949 error
= xfs_readdir(ip
, ctx
, bufsize
);
958 struct vm_area_struct
*vma
)
960 vma
->vm_ops
= &xfs_file_vm_ops
;
967 * mmap()d file has taken write protection fault and is being made
968 * writable. We can set the page state up correctly for a writable
969 * page, which means we can do correct delalloc accounting (ENOSPC
970 * checking!) and unwritten extent mapping.
974 struct vm_area_struct
*vma
,
975 struct vm_fault
*vmf
)
977 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
981 * This type is designed to indicate the type of offset we would like
982 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
990 * Lookup the desired type of offset from the given page.
992 * On success, return true and the offset argument will point to the
993 * start of the region that was found. Otherwise this function will
994 * return false and keep the offset argument unchanged.
997 xfs_lookup_buffer_offset(
1002 loff_t lastoff
= page_offset(page
);
1004 struct buffer_head
*bh
, *head
;
1006 bh
= head
= page_buffers(page
);
1009 * Unwritten extents that have data in the page
1010 * cache covering them can be identified by the
1011 * BH_Unwritten state flag. Pages with multiple
1012 * buffers might have a mix of holes, data and
1013 * unwritten extents - any buffer with valid
1014 * data in it should have BH_Uptodate flag set
1017 if (buffer_unwritten(bh
) ||
1018 buffer_uptodate(bh
)) {
1019 if (type
== DATA_OFF
)
1022 if (type
== HOLE_OFF
)
1030 lastoff
+= bh
->b_size
;
1031 } while ((bh
= bh
->b_this_page
) != head
);
1037 * This routine is called to find out and return a data or hole offset
1038 * from the page cache for unwritten extents according to the desired
1039 * type for xfs_seek_data() or xfs_seek_hole().
1041 * The argument offset is used to tell where we start to search from the
1042 * page cache. Map is used to figure out the end points of the range to
1045 * Return true if the desired type of offset was found, and the argument
1046 * offset is filled with that address. Otherwise, return false and keep
1050 xfs_find_get_desired_pgoff(
1051 struct inode
*inode
,
1052 struct xfs_bmbt_irec
*map
,
1056 struct xfs_inode
*ip
= XFS_I(inode
);
1057 struct xfs_mount
*mp
= ip
->i_mount
;
1058 struct pagevec pvec
;
1062 loff_t startoff
= *offset
;
1063 loff_t lastoff
= startoff
;
1066 pagevec_init(&pvec
, 0);
1068 index
= startoff
>> PAGE_CACHE_SHIFT
;
1069 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1070 end
= endoff
>> PAGE_CACHE_SHIFT
;
1076 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1077 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1080 * No page mapped into given range. If we are searching holes
1081 * and if this is the first time we got into the loop, it means
1082 * that the given offset is landed in a hole, return it.
1084 * If we have already stepped through some block buffers to find
1085 * holes but they all contains data. In this case, the last
1086 * offset is already updated and pointed to the end of the last
1087 * mapped page, if it does not reach the endpoint to search,
1088 * that means there should be a hole between them.
1090 if (nr_pages
== 0) {
1091 /* Data search found nothing */
1092 if (type
== DATA_OFF
)
1095 ASSERT(type
== HOLE_OFF
);
1096 if (lastoff
== startoff
|| lastoff
< endoff
) {
1104 * At lease we found one page. If this is the first time we
1105 * step into the loop, and if the first page index offset is
1106 * greater than the given search offset, a hole was found.
1108 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1109 lastoff
< page_offset(pvec
.pages
[0])) {
1114 for (i
= 0; i
< nr_pages
; i
++) {
1115 struct page
*page
= pvec
.pages
[i
];
1119 * At this point, the page may be truncated or
1120 * invalidated (changing page->mapping to NULL),
1121 * or even swizzled back from swapper_space to tmpfs
1122 * file mapping. However, page->index will not change
1123 * because we have a reference on the page.
1125 * Searching done if the page index is out of range.
1126 * If the current offset is not reaches the end of
1127 * the specified search range, there should be a hole
1130 if (page
->index
> end
) {
1131 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1140 * Page truncated or invalidated(page->mapping == NULL).
1141 * We can freely skip it and proceed to check the next
1144 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1149 if (!page_has_buffers(page
)) {
1154 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1157 * The found offset may be less than the start
1158 * point to search if this is the first time to
1161 *offset
= max_t(loff_t
, startoff
, b_offset
);
1167 * We either searching data but nothing was found, or
1168 * searching hole but found a data buffer. In either
1169 * case, probably the next page contains the desired
1170 * things, update the last offset to it so.
1172 lastoff
= page_offset(page
) + PAGE_SIZE
;
1177 * The number of returned pages less than our desired, search
1178 * done. In this case, nothing was found for searching data,
1179 * but we found a hole behind the last offset.
1181 if (nr_pages
< want
) {
1182 if (type
== HOLE_OFF
) {
1189 index
= pvec
.pages
[i
- 1]->index
+ 1;
1190 pagevec_release(&pvec
);
1191 } while (index
<= end
);
1194 pagevec_release(&pvec
);
1203 struct inode
*inode
= file
->f_mapping
->host
;
1204 struct xfs_inode
*ip
= XFS_I(inode
);
1205 struct xfs_mount
*mp
= ip
->i_mount
;
1206 loff_t
uninitialized_var(offset
);
1208 xfs_fileoff_t fsbno
;
1213 lock
= xfs_ilock_map_shared(ip
);
1215 isize
= i_size_read(inode
);
1216 if (start
>= isize
) {
1222 * Try to read extents from the first block indicated
1223 * by fsbno to the end block of the file.
1225 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1226 end
= XFS_B_TO_FSB(mp
, isize
);
1228 struct xfs_bmbt_irec map
[2];
1232 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1237 /* No extents at given offset, must be beyond EOF */
1243 for (i
= 0; i
< nmap
; i
++) {
1244 offset
= max_t(loff_t
, start
,
1245 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1247 /* Landed in a data extent */
1248 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1249 (map
[i
].br_state
== XFS_EXT_NORM
&&
1250 !isnullstartblock(map
[i
].br_startblock
)))
1254 * Landed in an unwritten extent, try to search data
1257 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1258 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1265 * map[0] is hole or its an unwritten extent but
1266 * without data in page cache. Probably means that
1267 * we are reading after EOF if nothing in map[1].
1277 * Nothing was found, proceed to the next round of search
1278 * if reading offset not beyond or hit EOF.
1280 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1281 start
= XFS_FSB_TO_B(mp
, fsbno
);
1282 if (start
>= isize
) {
1289 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1292 xfs_iunlock_map_shared(ip
, lock
);
1304 struct inode
*inode
= file
->f_mapping
->host
;
1305 struct xfs_inode
*ip
= XFS_I(inode
);
1306 struct xfs_mount
*mp
= ip
->i_mount
;
1307 loff_t
uninitialized_var(offset
);
1309 xfs_fileoff_t fsbno
;
1314 if (XFS_FORCED_SHUTDOWN(mp
))
1315 return -XFS_ERROR(EIO
);
1317 lock
= xfs_ilock_map_shared(ip
);
1319 isize
= i_size_read(inode
);
1320 if (start
>= isize
) {
1325 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1326 end
= XFS_B_TO_FSB(mp
, isize
);
1329 struct xfs_bmbt_irec map
[2];
1333 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1338 /* No extents at given offset, must be beyond EOF */
1344 for (i
= 0; i
< nmap
; i
++) {
1345 offset
= max_t(loff_t
, start
,
1346 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1348 /* Landed in a hole */
1349 if (map
[i
].br_startblock
== HOLESTARTBLOCK
)
1353 * Landed in an unwritten extent, try to search hole
1356 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1357 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1364 * map[0] contains data or its unwritten but contains
1365 * data in page cache, probably means that we are
1366 * reading after EOF. We should fix offset to point
1367 * to the end of the file(i.e., there is an implicit
1368 * hole at the end of any file).
1378 * Both mappings contains data, proceed to the next round of
1379 * search if the current reading offset not beyond or hit EOF.
1381 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1382 start
= XFS_FSB_TO_B(mp
, fsbno
);
1383 if (start
>= isize
) {
1391 * At this point, we must have found a hole. However, the returned
1392 * offset may be bigger than the file size as it may be aligned to
1393 * page boundary for unwritten extents, we need to deal with this
1394 * situation in particular.
1396 offset
= min_t(loff_t
, offset
, isize
);
1397 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
1400 xfs_iunlock_map_shared(ip
, lock
);
1417 return generic_file_llseek(file
, offset
, origin
);
1419 return xfs_seek_data(file
, offset
);
1421 return xfs_seek_hole(file
, offset
);
1427 const struct file_operations xfs_file_operations
= {
1428 .llseek
= xfs_file_llseek
,
1429 .read
= do_sync_read
,
1430 .write
= do_sync_write
,
1431 .aio_read
= xfs_file_aio_read
,
1432 .aio_write
= xfs_file_aio_write
,
1433 .splice_read
= xfs_file_splice_read
,
1434 .splice_write
= xfs_file_splice_write
,
1435 .unlocked_ioctl
= xfs_file_ioctl
,
1436 #ifdef CONFIG_COMPAT
1437 .compat_ioctl
= xfs_file_compat_ioctl
,
1439 .mmap
= xfs_file_mmap
,
1440 .open
= xfs_file_open
,
1441 .release
= xfs_file_release
,
1442 .fsync
= xfs_file_fsync
,
1443 .fallocate
= xfs_file_fallocate
,
1446 const struct file_operations xfs_dir_file_operations
= {
1447 .open
= xfs_dir_open
,
1448 .read
= generic_read_dir
,
1449 .iterate
= xfs_file_readdir
,
1450 .llseek
= generic_file_llseek
,
1451 .unlocked_ioctl
= xfs_file_ioctl
,
1452 #ifdef CONFIG_COMPAT
1453 .compat_ioctl
= xfs_file_compat_ioctl
,
1455 .fsync
= xfs_dir_fsync
,
1458 static const struct vm_operations_struct xfs_file_vm_ops
= {
1459 .fault
= filemap_fault
,
1460 .page_mkwrite
= xfs_vm_page_mkwrite
,
1461 .remap_pages
= generic_file_remap_pages
,