Linux 3.12.39
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blobaa606453a0f88a7cdf32e5668876e98adff8b85d
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
45 static const struct vm_operations_struct xfs_file_vm_ops;
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 static inline void
52 xfs_rw_ilock(
53 struct xfs_inode *ip,
54 int type)
56 if (type & XFS_IOLOCK_EXCL)
57 mutex_lock(&VFS_I(ip)->i_mutex);
58 xfs_ilock(ip, type);
61 static inline void
62 xfs_rw_iunlock(
63 struct xfs_inode *ip,
64 int type)
66 xfs_iunlock(ip, type);
67 if (type & XFS_IOLOCK_EXCL)
68 mutex_unlock(&VFS_I(ip)->i_mutex);
71 static inline void
72 xfs_rw_ilock_demote(
73 struct xfs_inode *ip,
74 int type)
76 xfs_ilock_demote(ip, type);
77 if (type & XFS_IOLOCK_EXCL)
78 mutex_unlock(&VFS_I(ip)->i_mutex);
82 * xfs_iozero
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
91 int
92 xfs_iozero(
93 struct xfs_inode *ip, /* inode */
94 loff_t pos, /* offset in file */
95 size_t count) /* size of data to zero */
97 struct page *page;
98 struct address_space *mapping;
99 int status;
101 mapping = VFS_I(ip)->i_mapping;
102 do {
103 unsigned offset, bytes;
104 void *fsdata;
106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 bytes = PAGE_CACHE_SIZE - offset;
108 if (bytes > count)
109 bytes = count;
111 status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 AOP_FLAG_UNINTERRUPTIBLE,
113 &page, &fsdata);
114 if (status)
115 break;
117 zero_user(page, offset, bytes);
119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 page, fsdata);
121 WARN_ON(status <= 0); /* can't return less than zero! */
122 pos += bytes;
123 count -= bytes;
124 status = 0;
125 } while (count);
127 return (-status);
131 * Fsync operations on directories are much simpler than on regular files,
132 * as there is no file data to flush, and thus also no need for explicit
133 * cache flush operations, and there are no non-transaction metadata updates
134 * on directories either.
136 STATIC int
137 xfs_dir_fsync(
138 struct file *file,
139 loff_t start,
140 loff_t end,
141 int datasync)
143 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
144 struct xfs_mount *mp = ip->i_mount;
145 xfs_lsn_t lsn = 0;
147 trace_xfs_dir_fsync(ip);
149 xfs_ilock(ip, XFS_ILOCK_SHARED);
150 if (xfs_ipincount(ip))
151 lsn = ip->i_itemp->ili_last_lsn;
152 xfs_iunlock(ip, XFS_ILOCK_SHARED);
154 if (!lsn)
155 return 0;
156 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 STATIC int
160 xfs_file_fsync(
161 struct file *file,
162 loff_t start,
163 loff_t end,
164 int datasync)
166 struct inode *inode = file->f_mapping->host;
167 struct xfs_inode *ip = XFS_I(inode);
168 struct xfs_mount *mp = ip->i_mount;
169 int error = 0;
170 int log_flushed = 0;
171 xfs_lsn_t lsn = 0;
173 trace_xfs_file_fsync(ip);
175 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
176 if (error)
177 return error;
179 if (XFS_FORCED_SHUTDOWN(mp))
180 return -XFS_ERROR(EIO);
182 xfs_iflags_clear(ip, XFS_ITRUNCATED);
184 if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 * If we have an RT and/or log subvolume we need to make sure
187 * to flush the write cache the device used for file data
188 * first. This is to ensure newly written file data make
189 * it to disk before logging the new inode size in case of
190 * an extending write.
192 if (XFS_IS_REALTIME_INODE(ip))
193 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
194 else if (mp->m_logdev_targp != mp->m_ddev_targp)
195 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199 * All metadata updates are logged, which means that we just have
200 * to flush the log up to the latest LSN that touched the inode.
202 xfs_ilock(ip, XFS_ILOCK_SHARED);
203 if (xfs_ipincount(ip)) {
204 if (!datasync ||
205 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
206 lsn = ip->i_itemp->ili_last_lsn;
208 xfs_iunlock(ip, XFS_ILOCK_SHARED);
210 if (lsn)
211 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214 * If we only have a single device, and the log force about was
215 * a no-op we might have to flush the data device cache here.
216 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 * an already allocated file and thus do not have any metadata to
218 * commit.
220 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
221 mp->m_logdev_targp == mp->m_ddev_targp &&
222 !XFS_IS_REALTIME_INODE(ip) &&
223 !log_flushed)
224 xfs_blkdev_issue_flush(mp->m_ddev_targp);
226 return -error;
229 STATIC ssize_t
230 xfs_file_aio_read(
231 struct kiocb *iocb,
232 const struct iovec *iovp,
233 unsigned long nr_segs,
234 loff_t pos)
236 struct file *file = iocb->ki_filp;
237 struct inode *inode = file->f_mapping->host;
238 struct xfs_inode *ip = XFS_I(inode);
239 struct xfs_mount *mp = ip->i_mount;
240 size_t size = 0;
241 ssize_t ret = 0;
242 int ioflags = 0;
243 xfs_fsize_t n;
245 XFS_STATS_INC(xs_read_calls);
247 BUG_ON(iocb->ki_pos != pos);
249 if (unlikely(file->f_flags & O_DIRECT))
250 ioflags |= IO_ISDIRECT;
251 if (file->f_mode & FMODE_NOCMTIME)
252 ioflags |= IO_INVIS;
254 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
255 if (ret < 0)
256 return ret;
258 if (unlikely(ioflags & IO_ISDIRECT)) {
259 xfs_buftarg_t *target =
260 XFS_IS_REALTIME_INODE(ip) ?
261 mp->m_rtdev_targp : mp->m_ddev_targp;
262 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
263 if (pos == i_size_read(inode))
264 return 0;
265 return -XFS_ERROR(EINVAL);
269 n = mp->m_super->s_maxbytes - pos;
270 if (n <= 0 || size == 0)
271 return 0;
273 if (n < size)
274 size = n;
276 if (XFS_FORCED_SHUTDOWN(mp))
277 return -EIO;
280 * Locking is a bit tricky here. If we take an exclusive lock
281 * for direct IO, we effectively serialise all new concurrent
282 * read IO to this file and block it behind IO that is currently in
283 * progress because IO in progress holds the IO lock shared. We only
284 * need to hold the lock exclusive to blow away the page cache, so
285 * only take lock exclusively if the page cache needs invalidation.
286 * This allows the normal direct IO case of no page cache pages to
287 * proceeed concurrently without serialisation.
289 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
290 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
291 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
292 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
294 if (inode->i_mapping->nrpages) {
295 ret = -filemap_write_and_wait_range(
296 VFS_I(ip)->i_mapping,
297 pos, -1);
298 if (ret) {
299 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
300 return ret;
304 * Invalidate whole pages. This can return an error if
305 * we fail to invalidate a page, but this should never
306 * happen on XFS. Warn if it does fail.
308 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
309 pos >> PAGE_CACHE_SHIFT, -1);
310 WARN_ON_ONCE(ret);
311 ret = 0;
313 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
316 trace_xfs_file_read(ip, size, pos, ioflags);
318 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
319 if (ret > 0)
320 XFS_STATS_ADD(xs_read_bytes, ret);
322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 return ret;
326 STATIC ssize_t
327 xfs_file_splice_read(
328 struct file *infilp,
329 loff_t *ppos,
330 struct pipe_inode_info *pipe,
331 size_t count,
332 unsigned int flags)
334 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
335 int ioflags = 0;
336 ssize_t ret;
338 XFS_STATS_INC(xs_read_calls);
340 if (infilp->f_mode & FMODE_NOCMTIME)
341 ioflags |= IO_INVIS;
343 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
344 return -EIO;
346 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
348 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
350 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
351 if (ret > 0)
352 XFS_STATS_ADD(xs_read_bytes, ret);
354 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
355 return ret;
359 * xfs_file_splice_write() does not use xfs_rw_ilock() because
360 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
361 * couuld cause lock inversions between the aio_write path and the splice path
362 * if someone is doing concurrent splice(2) based writes and write(2) based
363 * writes to the same inode. The only real way to fix this is to re-implement
364 * the generic code here with correct locking orders.
366 STATIC ssize_t
367 xfs_file_splice_write(
368 struct pipe_inode_info *pipe,
369 struct file *outfilp,
370 loff_t *ppos,
371 size_t count,
372 unsigned int flags)
374 struct inode *inode = outfilp->f_mapping->host;
375 struct xfs_inode *ip = XFS_I(inode);
376 int ioflags = 0;
377 ssize_t ret;
379 XFS_STATS_INC(xs_write_calls);
381 if (outfilp->f_mode & FMODE_NOCMTIME)
382 ioflags |= IO_INVIS;
384 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
385 return -EIO;
387 xfs_ilock(ip, XFS_IOLOCK_EXCL);
389 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
391 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
392 if (ret > 0)
393 XFS_STATS_ADD(xs_write_bytes, ret);
395 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
396 return ret;
400 * This routine is called to handle zeroing any space in the last block of the
401 * file that is beyond the EOF. We do this since the size is being increased
402 * without writing anything to that block and we don't want to read the
403 * garbage on the disk.
405 STATIC int /* error (positive) */
406 xfs_zero_last_block(
407 struct xfs_inode *ip,
408 xfs_fsize_t offset,
409 xfs_fsize_t isize)
411 struct xfs_mount *mp = ip->i_mount;
412 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
413 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
414 int zero_len;
415 int nimaps = 1;
416 int error = 0;
417 struct xfs_bmbt_irec imap;
419 xfs_ilock(ip, XFS_ILOCK_EXCL);
420 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
421 xfs_iunlock(ip, XFS_ILOCK_EXCL);
422 if (error)
423 return error;
425 ASSERT(nimaps > 0);
428 * If the block underlying isize is just a hole, then there
429 * is nothing to zero.
431 if (imap.br_startblock == HOLESTARTBLOCK)
432 return 0;
434 zero_len = mp->m_sb.sb_blocksize - zero_offset;
435 if (isize + zero_len > offset)
436 zero_len = offset - isize;
437 return xfs_iozero(ip, isize, zero_len);
441 * Zero any on disk space between the current EOF and the new, larger EOF.
443 * This handles the normal case of zeroing the remainder of the last block in
444 * the file and the unusual case of zeroing blocks out beyond the size of the
445 * file. This second case only happens with fixed size extents and when the
446 * system crashes before the inode size was updated but after blocks were
447 * allocated.
449 * Expects the iolock to be held exclusive, and will take the ilock internally.
451 int /* error (positive) */
452 xfs_zero_eof(
453 struct xfs_inode *ip,
454 xfs_off_t offset, /* starting I/O offset */
455 xfs_fsize_t isize) /* current inode size */
457 struct xfs_mount *mp = ip->i_mount;
458 xfs_fileoff_t start_zero_fsb;
459 xfs_fileoff_t end_zero_fsb;
460 xfs_fileoff_t zero_count_fsb;
461 xfs_fileoff_t last_fsb;
462 xfs_fileoff_t zero_off;
463 xfs_fsize_t zero_len;
464 int nimaps;
465 int error = 0;
466 struct xfs_bmbt_irec imap;
468 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
469 ASSERT(offset > isize);
472 * First handle zeroing the block on which isize resides.
474 * We only zero a part of that block so it is handled specially.
476 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
477 error = xfs_zero_last_block(ip, offset, isize);
478 if (error)
479 return error;
483 * Calculate the range between the new size and the old where blocks
484 * needing to be zeroed may exist.
486 * To get the block where the last byte in the file currently resides,
487 * we need to subtract one from the size and truncate back to a block
488 * boundary. We subtract 1 in case the size is exactly on a block
489 * boundary.
491 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
492 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
493 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
494 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
495 if (last_fsb == end_zero_fsb) {
497 * The size was only incremented on its last block.
498 * We took care of that above, so just return.
500 return 0;
503 ASSERT(start_zero_fsb <= end_zero_fsb);
504 while (start_zero_fsb <= end_zero_fsb) {
505 nimaps = 1;
506 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
508 xfs_ilock(ip, XFS_ILOCK_EXCL);
509 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
510 &imap, &nimaps, 0);
511 xfs_iunlock(ip, XFS_ILOCK_EXCL);
512 if (error)
513 return error;
515 ASSERT(nimaps > 0);
517 if (imap.br_state == XFS_EXT_UNWRITTEN ||
518 imap.br_startblock == HOLESTARTBLOCK) {
519 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
520 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
521 continue;
525 * There are blocks we need to zero.
527 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
528 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
530 if ((zero_off + zero_len) > offset)
531 zero_len = offset - zero_off;
533 error = xfs_iozero(ip, zero_off, zero_len);
534 if (error)
535 return error;
537 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
538 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
541 return 0;
545 * Common pre-write limit and setup checks.
547 * Called with the iolocked held either shared and exclusive according to
548 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
549 * if called for a direct write beyond i_size.
551 STATIC ssize_t
552 xfs_file_aio_write_checks(
553 struct file *file,
554 loff_t *pos,
555 size_t *count,
556 int *iolock)
558 struct inode *inode = file->f_mapping->host;
559 struct xfs_inode *ip = XFS_I(inode);
560 int error = 0;
562 restart:
563 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
564 if (error)
565 return error;
568 * If the offset is beyond the size of the file, we need to zero any
569 * blocks that fall between the existing EOF and the start of this
570 * write. If zeroing is needed and we are currently holding the
571 * iolock shared, we need to update it to exclusive which implies
572 * having to redo all checks before.
574 if (*pos > i_size_read(inode)) {
575 if (*iolock == XFS_IOLOCK_SHARED) {
576 xfs_rw_iunlock(ip, *iolock);
577 *iolock = XFS_IOLOCK_EXCL;
578 xfs_rw_ilock(ip, *iolock);
579 goto restart;
581 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
582 if (error)
583 return error;
587 * Updating the timestamps will grab the ilock again from
588 * xfs_fs_dirty_inode, so we have to call it after dropping the
589 * lock above. Eventually we should look into a way to avoid
590 * the pointless lock roundtrip.
592 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
593 error = file_update_time(file);
594 if (error)
595 return error;
599 * If we're writing the file then make sure to clear the setuid and
600 * setgid bits if the process is not being run by root. This keeps
601 * people from modifying setuid and setgid binaries.
603 return file_remove_suid(file);
607 * xfs_file_dio_aio_write - handle direct IO writes
609 * Lock the inode appropriately to prepare for and issue a direct IO write.
610 * By separating it from the buffered write path we remove all the tricky to
611 * follow locking changes and looping.
613 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
614 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
615 * pages are flushed out.
617 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
618 * allowing them to be done in parallel with reads and other direct IO writes.
619 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
620 * needs to do sub-block zeroing and that requires serialisation against other
621 * direct IOs to the same block. In this case we need to serialise the
622 * submission of the unaligned IOs so that we don't get racing block zeroing in
623 * the dio layer. To avoid the problem with aio, we also need to wait for
624 * outstanding IOs to complete so that unwritten extent conversion is completed
625 * before we try to map the overlapping block. This is currently implemented by
626 * hitting it with a big hammer (i.e. inode_dio_wait()).
628 * Returns with locks held indicated by @iolock and errors indicated by
629 * negative return values.
631 STATIC ssize_t
632 xfs_file_dio_aio_write(
633 struct kiocb *iocb,
634 const struct iovec *iovp,
635 unsigned long nr_segs,
636 loff_t pos,
637 size_t ocount)
639 struct file *file = iocb->ki_filp;
640 struct address_space *mapping = file->f_mapping;
641 struct inode *inode = mapping->host;
642 struct xfs_inode *ip = XFS_I(inode);
643 struct xfs_mount *mp = ip->i_mount;
644 ssize_t ret = 0;
645 size_t count = ocount;
646 int unaligned_io = 0;
647 int iolock;
648 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
649 mp->m_rtdev_targp : mp->m_ddev_targp;
651 if ((pos & target->bt_smask) || (count & target->bt_smask))
652 return -XFS_ERROR(EINVAL);
654 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
655 unaligned_io = 1;
658 * We don't need to take an exclusive lock unless there page cache needs
659 * to be invalidated or unaligned IO is being executed. We don't need to
660 * consider the EOF extension case here because
661 * xfs_file_aio_write_checks() will relock the inode as necessary for
662 * EOF zeroing cases and fill out the new inode size as appropriate.
664 if (unaligned_io || mapping->nrpages)
665 iolock = XFS_IOLOCK_EXCL;
666 else
667 iolock = XFS_IOLOCK_SHARED;
668 xfs_rw_ilock(ip, iolock);
671 * Recheck if there are cached pages that need invalidate after we got
672 * the iolock to protect against other threads adding new pages while
673 * we were waiting for the iolock.
675 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
676 xfs_rw_iunlock(ip, iolock);
677 iolock = XFS_IOLOCK_EXCL;
678 xfs_rw_ilock(ip, iolock);
681 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
682 if (ret)
683 goto out;
685 if (mapping->nrpages) {
686 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
687 pos, -1);
688 if (ret)
689 goto out;
691 * Invalidate whole pages. This can return an error if
692 * we fail to invalidate a page, but this should never
693 * happen on XFS. Warn if it does fail.
695 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
696 pos >> PAGE_CACHE_SHIFT, -1);
697 WARN_ON_ONCE(ret);
698 ret = 0;
702 * If we are doing unaligned IO, wait for all other IO to drain,
703 * otherwise demote the lock if we had to flush cached pages
705 if (unaligned_io)
706 inode_dio_wait(inode);
707 else if (iolock == XFS_IOLOCK_EXCL) {
708 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
709 iolock = XFS_IOLOCK_SHARED;
712 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
713 ret = generic_file_direct_write(iocb, iovp,
714 &nr_segs, pos, &iocb->ki_pos, count, ocount);
716 out:
717 xfs_rw_iunlock(ip, iolock);
719 /* No fallback to buffered IO on errors for XFS. */
720 ASSERT(ret < 0 || ret == count);
721 return ret;
724 STATIC ssize_t
725 xfs_file_buffered_aio_write(
726 struct kiocb *iocb,
727 const struct iovec *iovp,
728 unsigned long nr_segs,
729 loff_t pos,
730 size_t ocount)
732 struct file *file = iocb->ki_filp;
733 struct address_space *mapping = file->f_mapping;
734 struct inode *inode = mapping->host;
735 struct xfs_inode *ip = XFS_I(inode);
736 ssize_t ret;
737 int enospc = 0;
738 int iolock = XFS_IOLOCK_EXCL;
739 size_t count = ocount;
741 xfs_rw_ilock(ip, iolock);
743 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
744 if (ret)
745 goto out;
747 /* We can write back this queue in page reclaim */
748 current->backing_dev_info = mapping->backing_dev_info;
750 write_retry:
751 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
752 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
753 pos, &iocb->ki_pos, count, 0);
756 * If we just got an ENOSPC, try to write back all dirty inodes to
757 * convert delalloc space to free up some of the excess reserved
758 * metadata space.
760 if (ret == -ENOSPC && !enospc) {
761 enospc = 1;
762 xfs_flush_inodes(ip->i_mount);
763 goto write_retry;
766 current->backing_dev_info = NULL;
767 out:
768 xfs_rw_iunlock(ip, iolock);
769 return ret;
772 STATIC ssize_t
773 xfs_file_aio_write(
774 struct kiocb *iocb,
775 const struct iovec *iovp,
776 unsigned long nr_segs,
777 loff_t pos)
779 struct file *file = iocb->ki_filp;
780 struct address_space *mapping = file->f_mapping;
781 struct inode *inode = mapping->host;
782 struct xfs_inode *ip = XFS_I(inode);
783 ssize_t ret;
784 size_t ocount = 0;
786 XFS_STATS_INC(xs_write_calls);
788 BUG_ON(iocb->ki_pos != pos);
790 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
791 if (ret)
792 return ret;
794 if (ocount == 0)
795 return 0;
797 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
798 ret = -EIO;
799 goto out;
802 if (unlikely(file->f_flags & O_DIRECT))
803 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
804 else
805 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
806 ocount);
808 if (ret > 0) {
809 ssize_t err;
811 XFS_STATS_ADD(xs_write_bytes, ret);
813 /* Handle various SYNC-type writes */
814 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
815 if (err < 0)
816 ret = err;
819 out:
820 return ret;
823 STATIC long
824 xfs_file_fallocate(
825 struct file *file,
826 int mode,
827 loff_t offset,
828 loff_t len)
830 struct inode *inode = file_inode(file);
831 long error;
832 loff_t new_size = 0;
833 xfs_flock64_t bf;
834 xfs_inode_t *ip = XFS_I(inode);
835 int cmd = XFS_IOC_RESVSP;
836 int attr_flags = XFS_ATTR_NOLOCK;
838 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
839 return -EOPNOTSUPP;
841 bf.l_whence = 0;
842 bf.l_start = offset;
843 bf.l_len = len;
845 xfs_ilock(ip, XFS_IOLOCK_EXCL);
847 if (mode & FALLOC_FL_PUNCH_HOLE)
848 cmd = XFS_IOC_UNRESVSP;
850 /* check the new inode size is valid before allocating */
851 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
852 offset + len > i_size_read(inode)) {
853 new_size = offset + len;
854 error = inode_newsize_ok(inode, new_size);
855 if (error)
856 goto out_unlock;
859 if (file->f_flags & O_DSYNC)
860 attr_flags |= XFS_ATTR_SYNC;
862 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
863 if (error)
864 goto out_unlock;
866 /* Change file size if needed */
867 if (new_size) {
868 struct iattr iattr;
870 iattr.ia_valid = ATTR_SIZE;
871 iattr.ia_size = new_size;
872 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
875 out_unlock:
876 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
877 return error;
881 STATIC int
882 xfs_file_open(
883 struct inode *inode,
884 struct file *file)
886 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
887 return -EFBIG;
888 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
889 return -EIO;
890 return 0;
893 STATIC int
894 xfs_dir_open(
895 struct inode *inode,
896 struct file *file)
898 struct xfs_inode *ip = XFS_I(inode);
899 int mode;
900 int error;
902 error = xfs_file_open(inode, file);
903 if (error)
904 return error;
907 * If there are any blocks, read-ahead block 0 as we're almost
908 * certain to have the next operation be a read there.
910 mode = xfs_ilock_map_shared(ip);
911 if (ip->i_d.di_nextents > 0)
912 xfs_dir3_data_readahead(NULL, ip, 0, -1);
913 xfs_iunlock(ip, mode);
914 return 0;
917 STATIC int
918 xfs_file_release(
919 struct inode *inode,
920 struct file *filp)
922 return -xfs_release(XFS_I(inode));
925 STATIC int
926 xfs_file_readdir(
927 struct file *file,
928 struct dir_context *ctx)
930 struct inode *inode = file_inode(file);
931 xfs_inode_t *ip = XFS_I(inode);
932 int error;
933 size_t bufsize;
936 * The Linux API doesn't pass down the total size of the buffer
937 * we read into down to the filesystem. With the filldir concept
938 * it's not needed for correct information, but the XFS dir2 leaf
939 * code wants an estimate of the buffer size to calculate it's
940 * readahead window and size the buffers used for mapping to
941 * physical blocks.
943 * Try to give it an estimate that's good enough, maybe at some
944 * point we can change the ->readdir prototype to include the
945 * buffer size. For now we use the current glibc buffer size.
947 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
949 error = xfs_readdir(ip, ctx, bufsize);
950 if (error)
951 return -error;
952 return 0;
955 STATIC int
956 xfs_file_mmap(
957 struct file *filp,
958 struct vm_area_struct *vma)
960 vma->vm_ops = &xfs_file_vm_ops;
962 file_accessed(filp);
963 return 0;
967 * mmap()d file has taken write protection fault and is being made
968 * writable. We can set the page state up correctly for a writable
969 * page, which means we can do correct delalloc accounting (ENOSPC
970 * checking!) and unwritten extent mapping.
972 STATIC int
973 xfs_vm_page_mkwrite(
974 struct vm_area_struct *vma,
975 struct vm_fault *vmf)
977 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
981 * This type is designed to indicate the type of offset we would like
982 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
984 enum {
985 HOLE_OFF = 0,
986 DATA_OFF,
990 * Lookup the desired type of offset from the given page.
992 * On success, return true and the offset argument will point to the
993 * start of the region that was found. Otherwise this function will
994 * return false and keep the offset argument unchanged.
996 STATIC bool
997 xfs_lookup_buffer_offset(
998 struct page *page,
999 loff_t *offset,
1000 unsigned int type)
1002 loff_t lastoff = page_offset(page);
1003 bool found = false;
1004 struct buffer_head *bh, *head;
1006 bh = head = page_buffers(page);
1007 do {
1009 * Unwritten extents that have data in the page
1010 * cache covering them can be identified by the
1011 * BH_Unwritten state flag. Pages with multiple
1012 * buffers might have a mix of holes, data and
1013 * unwritten extents - any buffer with valid
1014 * data in it should have BH_Uptodate flag set
1015 * on it.
1017 if (buffer_unwritten(bh) ||
1018 buffer_uptodate(bh)) {
1019 if (type == DATA_OFF)
1020 found = true;
1021 } else {
1022 if (type == HOLE_OFF)
1023 found = true;
1026 if (found) {
1027 *offset = lastoff;
1028 break;
1030 lastoff += bh->b_size;
1031 } while ((bh = bh->b_this_page) != head);
1033 return found;
1037 * This routine is called to find out and return a data or hole offset
1038 * from the page cache for unwritten extents according to the desired
1039 * type for xfs_seek_data() or xfs_seek_hole().
1041 * The argument offset is used to tell where we start to search from the
1042 * page cache. Map is used to figure out the end points of the range to
1043 * lookup pages.
1045 * Return true if the desired type of offset was found, and the argument
1046 * offset is filled with that address. Otherwise, return false and keep
1047 * offset unchanged.
1049 STATIC bool
1050 xfs_find_get_desired_pgoff(
1051 struct inode *inode,
1052 struct xfs_bmbt_irec *map,
1053 unsigned int type,
1054 loff_t *offset)
1056 struct xfs_inode *ip = XFS_I(inode);
1057 struct xfs_mount *mp = ip->i_mount;
1058 struct pagevec pvec;
1059 pgoff_t index;
1060 pgoff_t end;
1061 loff_t endoff;
1062 loff_t startoff = *offset;
1063 loff_t lastoff = startoff;
1064 bool found = false;
1066 pagevec_init(&pvec, 0);
1068 index = startoff >> PAGE_CACHE_SHIFT;
1069 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1070 end = endoff >> PAGE_CACHE_SHIFT;
1071 do {
1072 int want;
1073 unsigned nr_pages;
1074 unsigned int i;
1076 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1077 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1078 want);
1080 * No page mapped into given range. If we are searching holes
1081 * and if this is the first time we got into the loop, it means
1082 * that the given offset is landed in a hole, return it.
1084 * If we have already stepped through some block buffers to find
1085 * holes but they all contains data. In this case, the last
1086 * offset is already updated and pointed to the end of the last
1087 * mapped page, if it does not reach the endpoint to search,
1088 * that means there should be a hole between them.
1090 if (nr_pages == 0) {
1091 /* Data search found nothing */
1092 if (type == DATA_OFF)
1093 break;
1095 ASSERT(type == HOLE_OFF);
1096 if (lastoff == startoff || lastoff < endoff) {
1097 found = true;
1098 *offset = lastoff;
1100 break;
1104 * At lease we found one page. If this is the first time we
1105 * step into the loop, and if the first page index offset is
1106 * greater than the given search offset, a hole was found.
1108 if (type == HOLE_OFF && lastoff == startoff &&
1109 lastoff < page_offset(pvec.pages[0])) {
1110 found = true;
1111 break;
1114 for (i = 0; i < nr_pages; i++) {
1115 struct page *page = pvec.pages[i];
1116 loff_t b_offset;
1119 * At this point, the page may be truncated or
1120 * invalidated (changing page->mapping to NULL),
1121 * or even swizzled back from swapper_space to tmpfs
1122 * file mapping. However, page->index will not change
1123 * because we have a reference on the page.
1125 * Searching done if the page index is out of range.
1126 * If the current offset is not reaches the end of
1127 * the specified search range, there should be a hole
1128 * between them.
1130 if (page->index > end) {
1131 if (type == HOLE_OFF && lastoff < endoff) {
1132 *offset = lastoff;
1133 found = true;
1135 goto out;
1138 lock_page(page);
1140 * Page truncated or invalidated(page->mapping == NULL).
1141 * We can freely skip it and proceed to check the next
1142 * page.
1144 if (unlikely(page->mapping != inode->i_mapping)) {
1145 unlock_page(page);
1146 continue;
1149 if (!page_has_buffers(page)) {
1150 unlock_page(page);
1151 continue;
1154 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1155 if (found) {
1157 * The found offset may be less than the start
1158 * point to search if this is the first time to
1159 * come here.
1161 *offset = max_t(loff_t, startoff, b_offset);
1162 unlock_page(page);
1163 goto out;
1167 * We either searching data but nothing was found, or
1168 * searching hole but found a data buffer. In either
1169 * case, probably the next page contains the desired
1170 * things, update the last offset to it so.
1172 lastoff = page_offset(page) + PAGE_SIZE;
1173 unlock_page(page);
1177 * The number of returned pages less than our desired, search
1178 * done. In this case, nothing was found for searching data,
1179 * but we found a hole behind the last offset.
1181 if (nr_pages < want) {
1182 if (type == HOLE_OFF) {
1183 *offset = lastoff;
1184 found = true;
1186 break;
1189 index = pvec.pages[i - 1]->index + 1;
1190 pagevec_release(&pvec);
1191 } while (index <= end);
1193 out:
1194 pagevec_release(&pvec);
1195 return found;
1198 STATIC loff_t
1199 xfs_seek_data(
1200 struct file *file,
1201 loff_t start)
1203 struct inode *inode = file->f_mapping->host;
1204 struct xfs_inode *ip = XFS_I(inode);
1205 struct xfs_mount *mp = ip->i_mount;
1206 loff_t uninitialized_var(offset);
1207 xfs_fsize_t isize;
1208 xfs_fileoff_t fsbno;
1209 xfs_filblks_t end;
1210 uint lock;
1211 int error;
1213 lock = xfs_ilock_map_shared(ip);
1215 isize = i_size_read(inode);
1216 if (start >= isize) {
1217 error = ENXIO;
1218 goto out_unlock;
1222 * Try to read extents from the first block indicated
1223 * by fsbno to the end block of the file.
1225 fsbno = XFS_B_TO_FSBT(mp, start);
1226 end = XFS_B_TO_FSB(mp, isize);
1227 for (;;) {
1228 struct xfs_bmbt_irec map[2];
1229 int nmap = 2;
1230 unsigned int i;
1232 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1233 XFS_BMAPI_ENTIRE);
1234 if (error)
1235 goto out_unlock;
1237 /* No extents at given offset, must be beyond EOF */
1238 if (nmap == 0) {
1239 error = ENXIO;
1240 goto out_unlock;
1243 for (i = 0; i < nmap; i++) {
1244 offset = max_t(loff_t, start,
1245 XFS_FSB_TO_B(mp, map[i].br_startoff));
1247 /* Landed in a data extent */
1248 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1249 (map[i].br_state == XFS_EXT_NORM &&
1250 !isnullstartblock(map[i].br_startblock)))
1251 goto out;
1254 * Landed in an unwritten extent, try to search data
1255 * from page cache.
1257 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1258 if (xfs_find_get_desired_pgoff(inode, &map[i],
1259 DATA_OFF, &offset))
1260 goto out;
1265 * map[0] is hole or its an unwritten extent but
1266 * without data in page cache. Probably means that
1267 * we are reading after EOF if nothing in map[1].
1269 if (nmap == 1) {
1270 error = ENXIO;
1271 goto out_unlock;
1274 ASSERT(i > 1);
1277 * Nothing was found, proceed to the next round of search
1278 * if reading offset not beyond or hit EOF.
1280 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1281 start = XFS_FSB_TO_B(mp, fsbno);
1282 if (start >= isize) {
1283 error = ENXIO;
1284 goto out_unlock;
1288 out:
1289 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1291 out_unlock:
1292 xfs_iunlock_map_shared(ip, lock);
1294 if (error)
1295 return -error;
1296 return offset;
1299 STATIC loff_t
1300 xfs_seek_hole(
1301 struct file *file,
1302 loff_t start)
1304 struct inode *inode = file->f_mapping->host;
1305 struct xfs_inode *ip = XFS_I(inode);
1306 struct xfs_mount *mp = ip->i_mount;
1307 loff_t uninitialized_var(offset);
1308 xfs_fsize_t isize;
1309 xfs_fileoff_t fsbno;
1310 xfs_filblks_t end;
1311 uint lock;
1312 int error;
1314 if (XFS_FORCED_SHUTDOWN(mp))
1315 return -XFS_ERROR(EIO);
1317 lock = xfs_ilock_map_shared(ip);
1319 isize = i_size_read(inode);
1320 if (start >= isize) {
1321 error = ENXIO;
1322 goto out_unlock;
1325 fsbno = XFS_B_TO_FSBT(mp, start);
1326 end = XFS_B_TO_FSB(mp, isize);
1328 for (;;) {
1329 struct xfs_bmbt_irec map[2];
1330 int nmap = 2;
1331 unsigned int i;
1333 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1334 XFS_BMAPI_ENTIRE);
1335 if (error)
1336 goto out_unlock;
1338 /* No extents at given offset, must be beyond EOF */
1339 if (nmap == 0) {
1340 error = ENXIO;
1341 goto out_unlock;
1344 for (i = 0; i < nmap; i++) {
1345 offset = max_t(loff_t, start,
1346 XFS_FSB_TO_B(mp, map[i].br_startoff));
1348 /* Landed in a hole */
1349 if (map[i].br_startblock == HOLESTARTBLOCK)
1350 goto out;
1353 * Landed in an unwritten extent, try to search hole
1354 * from page cache.
1356 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1357 if (xfs_find_get_desired_pgoff(inode, &map[i],
1358 HOLE_OFF, &offset))
1359 goto out;
1364 * map[0] contains data or its unwritten but contains
1365 * data in page cache, probably means that we are
1366 * reading after EOF. We should fix offset to point
1367 * to the end of the file(i.e., there is an implicit
1368 * hole at the end of any file).
1370 if (nmap == 1) {
1371 offset = isize;
1372 break;
1375 ASSERT(i > 1);
1378 * Both mappings contains data, proceed to the next round of
1379 * search if the current reading offset not beyond or hit EOF.
1381 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1382 start = XFS_FSB_TO_B(mp, fsbno);
1383 if (start >= isize) {
1384 offset = isize;
1385 break;
1389 out:
1391 * At this point, we must have found a hole. However, the returned
1392 * offset may be bigger than the file size as it may be aligned to
1393 * page boundary for unwritten extents, we need to deal with this
1394 * situation in particular.
1396 offset = min_t(loff_t, offset, isize);
1397 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1399 out_unlock:
1400 xfs_iunlock_map_shared(ip, lock);
1402 if (error)
1403 return -error;
1404 return offset;
1407 STATIC loff_t
1408 xfs_file_llseek(
1409 struct file *file,
1410 loff_t offset,
1411 int origin)
1413 switch (origin) {
1414 case SEEK_END:
1415 case SEEK_CUR:
1416 case SEEK_SET:
1417 return generic_file_llseek(file, offset, origin);
1418 case SEEK_DATA:
1419 return xfs_seek_data(file, offset);
1420 case SEEK_HOLE:
1421 return xfs_seek_hole(file, offset);
1422 default:
1423 return -EINVAL;
1427 const struct file_operations xfs_file_operations = {
1428 .llseek = xfs_file_llseek,
1429 .read = do_sync_read,
1430 .write = do_sync_write,
1431 .aio_read = xfs_file_aio_read,
1432 .aio_write = xfs_file_aio_write,
1433 .splice_read = xfs_file_splice_read,
1434 .splice_write = xfs_file_splice_write,
1435 .unlocked_ioctl = xfs_file_ioctl,
1436 #ifdef CONFIG_COMPAT
1437 .compat_ioctl = xfs_file_compat_ioctl,
1438 #endif
1439 .mmap = xfs_file_mmap,
1440 .open = xfs_file_open,
1441 .release = xfs_file_release,
1442 .fsync = xfs_file_fsync,
1443 .fallocate = xfs_file_fallocate,
1446 const struct file_operations xfs_dir_file_operations = {
1447 .open = xfs_dir_open,
1448 .read = generic_read_dir,
1449 .iterate = xfs_file_readdir,
1450 .llseek = generic_file_llseek,
1451 .unlocked_ioctl = xfs_file_ioctl,
1452 #ifdef CONFIG_COMPAT
1453 .compat_ioctl = xfs_file_compat_ioctl,
1454 #endif
1455 .fsync = xfs_dir_fsync,
1458 static const struct vm_operations_struct xfs_file_vm_ops = {
1459 .fault = filemap_fault,
1460 .page_mkwrite = xfs_vm_page_mkwrite,
1461 .remap_pages = generic_file_remap_pages,