Linux 3.12.39
[linux/fpc-iii.git] / fs / xfs / xfs_log_recover.c
blob5b166a07d55e762e5a636c5d55708d4d0200f78b
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_icreate_item.h"
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
57 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
59 STATIC int
60 xlog_find_zeroed(
61 struct xlog *,
62 xfs_daddr_t *);
63 STATIC int
64 xlog_clear_stale_blocks(
65 struct xlog *,
66 xfs_lsn_t);
67 #if defined(DEBUG)
68 STATIC void
69 xlog_recover_check_summary(
70 struct xlog *);
71 #else
72 #define xlog_recover_check_summary(log)
73 #endif
76 * This structure is used during recovery to record the buf log items which
77 * have been canceled and should not be replayed.
79 struct xfs_buf_cancel {
80 xfs_daddr_t bc_blkno;
81 uint bc_len;
82 int bc_refcount;
83 struct list_head bc_list;
87 * Sector aligned buffer routines for buffer create/read/write/access
91 * Verify the given count of basic blocks is valid number of blocks
92 * to specify for an operation involving the given XFS log buffer.
93 * Returns nonzero if the count is valid, 0 otherwise.
96 static inline int
97 xlog_buf_bbcount_valid(
98 struct xlog *log,
99 int bbcount)
101 return bbcount > 0 && bbcount <= log->l_logBBsize;
105 * Allocate a buffer to hold log data. The buffer needs to be able
106 * to map to a range of nbblks basic blocks at any valid (basic
107 * block) offset within the log.
109 STATIC xfs_buf_t *
110 xlog_get_bp(
111 struct xlog *log,
112 int nbblks)
114 struct xfs_buf *bp;
116 if (!xlog_buf_bbcount_valid(log, nbblks)) {
117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
118 nbblks);
119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
120 return NULL;
124 * We do log I/O in units of log sectors (a power-of-2
125 * multiple of the basic block size), so we round up the
126 * requested size to accommodate the basic blocks required
127 * for complete log sectors.
129 * In addition, the buffer may be used for a non-sector-
130 * aligned block offset, in which case an I/O of the
131 * requested size could extend beyond the end of the
132 * buffer. If the requested size is only 1 basic block it
133 * will never straddle a sector boundary, so this won't be
134 * an issue. Nor will this be a problem if the log I/O is
135 * done in basic blocks (sector size 1). But otherwise we
136 * extend the buffer by one extra log sector to ensure
137 * there's space to accommodate this possibility.
139 if (nbblks > 1 && log->l_sectBBsize > 1)
140 nbblks += log->l_sectBBsize;
141 nbblks = round_up(nbblks, log->l_sectBBsize);
143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
144 if (bp)
145 xfs_buf_unlock(bp);
146 return bp;
149 STATIC void
150 xlog_put_bp(
151 xfs_buf_t *bp)
153 xfs_buf_free(bp);
157 * Return the address of the start of the given block number's data
158 * in a log buffer. The buffer covers a log sector-aligned region.
160 STATIC xfs_caddr_t
161 xlog_align(
162 struct xlog *log,
163 xfs_daddr_t blk_no,
164 int nbblks,
165 struct xfs_buf *bp)
167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
169 ASSERT(offset + nbblks <= bp->b_length);
170 return bp->b_addr + BBTOB(offset);
175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
177 STATIC int
178 xlog_bread_noalign(
179 struct xlog *log,
180 xfs_daddr_t blk_no,
181 int nbblks,
182 struct xfs_buf *bp)
184 int error;
186 if (!xlog_buf_bbcount_valid(log, nbblks)) {
187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
188 nbblks);
189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
190 return EFSCORRUPTED;
193 blk_no = round_down(blk_no, log->l_sectBBsize);
194 nbblks = round_up(nbblks, log->l_sectBBsize);
196 ASSERT(nbblks > 0);
197 ASSERT(nbblks <= bp->b_length);
199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 XFS_BUF_READ(bp);
201 bp->b_io_length = nbblks;
202 bp->b_error = 0;
204 xfsbdstrat(log->l_mp, bp);
205 error = xfs_buf_iowait(bp);
206 if (error)
207 xfs_buf_ioerror_alert(bp, __func__);
208 return error;
211 STATIC int
212 xlog_bread(
213 struct xlog *log,
214 xfs_daddr_t blk_no,
215 int nbblks,
216 struct xfs_buf *bp,
217 xfs_caddr_t *offset)
219 int error;
221 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 if (error)
223 return error;
225 *offset = xlog_align(log, blk_no, nbblks, bp);
226 return 0;
230 * Read at an offset into the buffer. Returns with the buffer in it's original
231 * state regardless of the result of the read.
233 STATIC int
234 xlog_bread_offset(
235 struct xlog *log,
236 xfs_daddr_t blk_no, /* block to read from */
237 int nbblks, /* blocks to read */
238 struct xfs_buf *bp,
239 xfs_caddr_t offset)
241 xfs_caddr_t orig_offset = bp->b_addr;
242 int orig_len = BBTOB(bp->b_length);
243 int error, error2;
245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
246 if (error)
247 return error;
249 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
251 /* must reset buffer pointer even on error */
252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
253 if (error)
254 return error;
255 return error2;
259 * Write out the buffer at the given block for the given number of blocks.
260 * The buffer is kept locked across the write and is returned locked.
261 * This can only be used for synchronous log writes.
263 STATIC int
264 xlog_bwrite(
265 struct xlog *log,
266 xfs_daddr_t blk_no,
267 int nbblks,
268 struct xfs_buf *bp)
270 int error;
272 if (!xlog_buf_bbcount_valid(log, nbblks)) {
273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
274 nbblks);
275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
276 return EFSCORRUPTED;
279 blk_no = round_down(blk_no, log->l_sectBBsize);
280 nbblks = round_up(nbblks, log->l_sectBBsize);
282 ASSERT(nbblks > 0);
283 ASSERT(nbblks <= bp->b_length);
285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 XFS_BUF_ZEROFLAGS(bp);
287 xfs_buf_hold(bp);
288 xfs_buf_lock(bp);
289 bp->b_io_length = nbblks;
290 bp->b_error = 0;
292 error = xfs_bwrite(bp);
293 if (error)
294 xfs_buf_ioerror_alert(bp, __func__);
295 xfs_buf_relse(bp);
296 return error;
299 #ifdef DEBUG
301 * dump debug superblock and log record information
303 STATIC void
304 xlog_header_check_dump(
305 xfs_mount_t *mp,
306 xlog_rec_header_t *head)
308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
313 #else
314 #define xlog_header_check_dump(mp, head)
315 #endif
318 * check log record header for recovery
320 STATIC int
321 xlog_header_check_recover(
322 xfs_mount_t *mp,
323 xlog_rec_header_t *head)
325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
328 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 * a dirty log created in IRIX.
332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
333 xfs_warn(mp,
334 "dirty log written in incompatible format - can't recover");
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return XFS_ERROR(EFSCORRUPTED);
339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
340 xfs_warn(mp,
341 "dirty log entry has mismatched uuid - can't recover");
342 xlog_header_check_dump(mp, head);
343 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 XFS_ERRLEVEL_HIGH, mp);
345 return XFS_ERROR(EFSCORRUPTED);
347 return 0;
351 * read the head block of the log and check the header
353 STATIC int
354 xlog_header_check_mount(
355 xfs_mount_t *mp,
356 xlog_rec_header_t *head)
358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
360 if (uuid_is_nil(&head->h_fs_uuid)) {
362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 * h_fs_uuid is nil, we assume this log was last mounted
364 * by IRIX and continue.
366 xfs_warn(mp, "nil uuid in log - IRIX style log");
367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
368 xfs_warn(mp, "log has mismatched uuid - can't recover");
369 xlog_header_check_dump(mp, head);
370 XFS_ERROR_REPORT("xlog_header_check_mount",
371 XFS_ERRLEVEL_HIGH, mp);
372 return XFS_ERROR(EFSCORRUPTED);
374 return 0;
377 STATIC void
378 xlog_recover_iodone(
379 struct xfs_buf *bp)
381 if (bp->b_error) {
383 * We're not going to bother about retrying
384 * this during recovery. One strike!
386 xfs_buf_ioerror_alert(bp, __func__);
387 xfs_force_shutdown(bp->b_target->bt_mount,
388 SHUTDOWN_META_IO_ERROR);
390 bp->b_iodone = NULL;
391 xfs_buf_ioend(bp, 0);
395 * This routine finds (to an approximation) the first block in the physical
396 * log which contains the given cycle. It uses a binary search algorithm.
397 * Note that the algorithm can not be perfect because the disk will not
398 * necessarily be perfect.
400 STATIC int
401 xlog_find_cycle_start(
402 struct xlog *log,
403 struct xfs_buf *bp,
404 xfs_daddr_t first_blk,
405 xfs_daddr_t *last_blk,
406 uint cycle)
408 xfs_caddr_t offset;
409 xfs_daddr_t mid_blk;
410 xfs_daddr_t end_blk;
411 uint mid_cycle;
412 int error;
414 end_blk = *last_blk;
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 while (mid_blk != first_blk && mid_blk != end_blk) {
417 error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 if (error)
419 return error;
420 mid_cycle = xlog_get_cycle(offset);
421 if (mid_cycle == cycle)
422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
423 else
424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 mid_blk = BLK_AVG(first_blk, end_blk);
427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 (mid_blk == end_blk && mid_blk-1 == first_blk));
430 *last_blk = end_blk;
432 return 0;
436 * Check that a range of blocks does not contain stop_on_cycle_no.
437 * Fill in *new_blk with the block offset where such a block is
438 * found, or with -1 (an invalid block number) if there is no such
439 * block in the range. The scan needs to occur from front to back
440 * and the pointer into the region must be updated since a later
441 * routine will need to perform another test.
443 STATIC int
444 xlog_find_verify_cycle(
445 struct xlog *log,
446 xfs_daddr_t start_blk,
447 int nbblks,
448 uint stop_on_cycle_no,
449 xfs_daddr_t *new_blk)
451 xfs_daddr_t i, j;
452 uint cycle;
453 xfs_buf_t *bp;
454 xfs_daddr_t bufblks;
455 xfs_caddr_t buf = NULL;
456 int error = 0;
459 * Greedily allocate a buffer big enough to handle the full
460 * range of basic blocks we'll be examining. If that fails,
461 * try a smaller size. We need to be able to read at least
462 * a log sector, or we're out of luck.
464 bufblks = 1 << ffs(nbblks);
465 while (bufblks > log->l_logBBsize)
466 bufblks >>= 1;
467 while (!(bp = xlog_get_bp(log, bufblks))) {
468 bufblks >>= 1;
469 if (bufblks < log->l_sectBBsize)
470 return ENOMEM;
473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 int bcount;
476 bcount = min(bufblks, (start_blk + nbblks - i));
478 error = xlog_bread(log, i, bcount, bp, &buf);
479 if (error)
480 goto out;
482 for (j = 0; j < bcount; j++) {
483 cycle = xlog_get_cycle(buf);
484 if (cycle == stop_on_cycle_no) {
485 *new_blk = i+j;
486 goto out;
489 buf += BBSIZE;
493 *new_blk = -1;
495 out:
496 xlog_put_bp(bp);
497 return error;
501 * Potentially backup over partial log record write.
503 * In the typical case, last_blk is the number of the block directly after
504 * a good log record. Therefore, we subtract one to get the block number
505 * of the last block in the given buffer. extra_bblks contains the number
506 * of blocks we would have read on a previous read. This happens when the
507 * last log record is split over the end of the physical log.
509 * extra_bblks is the number of blocks potentially verified on a previous
510 * call to this routine.
512 STATIC int
513 xlog_find_verify_log_record(
514 struct xlog *log,
515 xfs_daddr_t start_blk,
516 xfs_daddr_t *last_blk,
517 int extra_bblks)
519 xfs_daddr_t i;
520 xfs_buf_t *bp;
521 xfs_caddr_t offset = NULL;
522 xlog_rec_header_t *head = NULL;
523 int error = 0;
524 int smallmem = 0;
525 int num_blks = *last_blk - start_blk;
526 int xhdrs;
528 ASSERT(start_blk != 0 || *last_blk != start_blk);
530 if (!(bp = xlog_get_bp(log, num_blks))) {
531 if (!(bp = xlog_get_bp(log, 1)))
532 return ENOMEM;
533 smallmem = 1;
534 } else {
535 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 if (error)
537 goto out;
538 offset += ((num_blks - 1) << BBSHIFT);
541 for (i = (*last_blk) - 1; i >= 0; i--) {
542 if (i < start_blk) {
543 /* valid log record not found */
544 xfs_warn(log->l_mp,
545 "Log inconsistent (didn't find previous header)");
546 ASSERT(0);
547 error = XFS_ERROR(EIO);
548 goto out;
551 if (smallmem) {
552 error = xlog_bread(log, i, 1, bp, &offset);
553 if (error)
554 goto out;
557 head = (xlog_rec_header_t *)offset;
559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
560 break;
562 if (!smallmem)
563 offset -= BBSIZE;
567 * We hit the beginning of the physical log & still no header. Return
568 * to caller. If caller can handle a return of -1, then this routine
569 * will be called again for the end of the physical log.
571 if (i == -1) {
572 error = -1;
573 goto out;
577 * We have the final block of the good log (the first block
578 * of the log record _before_ the head. So we check the uuid.
580 if ((error = xlog_header_check_mount(log->l_mp, head)))
581 goto out;
584 * We may have found a log record header before we expected one.
585 * last_blk will be the 1st block # with a given cycle #. We may end
586 * up reading an entire log record. In this case, we don't want to
587 * reset last_blk. Only when last_blk points in the middle of a log
588 * record do we update last_blk.
590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
591 uint h_size = be32_to_cpu(head->h_size);
593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 xhdrs++;
596 } else {
597 xhdrs = 1;
600 if (*last_blk - i + extra_bblks !=
601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
602 *last_blk = i;
604 out:
605 xlog_put_bp(bp);
606 return error;
610 * Head is defined to be the point of the log where the next log write
611 * could go. This means that incomplete LR writes at the end are
612 * eliminated when calculating the head. We aren't guaranteed that previous
613 * LR have complete transactions. We only know that a cycle number of
614 * current cycle number -1 won't be present in the log if we start writing
615 * from our current block number.
617 * last_blk contains the block number of the first block with a given
618 * cycle number.
620 * Return: zero if normal, non-zero if error.
622 STATIC int
623 xlog_find_head(
624 struct xlog *log,
625 xfs_daddr_t *return_head_blk)
627 xfs_buf_t *bp;
628 xfs_caddr_t offset;
629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
630 int num_scan_bblks;
631 uint first_half_cycle, last_half_cycle;
632 uint stop_on_cycle;
633 int error, log_bbnum = log->l_logBBsize;
635 /* Is the end of the log device zeroed? */
636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 *return_head_blk = first_blk;
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
645 xfs_warn(log->l_mp, "totally zeroed log");
648 return 0;
649 } else if (error) {
650 xfs_warn(log->l_mp, "empty log check failed");
651 return error;
654 first_blk = 0; /* get cycle # of 1st block */
655 bp = xlog_get_bp(log, 1);
656 if (!bp)
657 return ENOMEM;
659 error = xlog_bread(log, 0, 1, bp, &offset);
660 if (error)
661 goto bp_err;
663 first_half_cycle = xlog_get_cycle(offset);
665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
666 error = xlog_bread(log, last_blk, 1, bp, &offset);
667 if (error)
668 goto bp_err;
670 last_half_cycle = xlog_get_cycle(offset);
671 ASSERT(last_half_cycle != 0);
674 * If the 1st half cycle number is equal to the last half cycle number,
675 * then the entire log is stamped with the same cycle number. In this
676 * case, head_blk can't be set to zero (which makes sense). The below
677 * math doesn't work out properly with head_blk equal to zero. Instead,
678 * we set it to log_bbnum which is an invalid block number, but this
679 * value makes the math correct. If head_blk doesn't changed through
680 * all the tests below, *head_blk is set to zero at the very end rather
681 * than log_bbnum. In a sense, log_bbnum and zero are the same block
682 * in a circular file.
684 if (first_half_cycle == last_half_cycle) {
686 * In this case we believe that the entire log should have
687 * cycle number last_half_cycle. We need to scan backwards
688 * from the end verifying that there are no holes still
689 * containing last_half_cycle - 1. If we find such a hole,
690 * then the start of that hole will be the new head. The
691 * simple case looks like
692 * x | x ... | x - 1 | x
693 * Another case that fits this picture would be
694 * x | x + 1 | x ... | x
695 * In this case the head really is somewhere at the end of the
696 * log, as one of the latest writes at the beginning was
697 * incomplete.
698 * One more case is
699 * x | x + 1 | x ... | x - 1 | x
700 * This is really the combination of the above two cases, and
701 * the head has to end up at the start of the x-1 hole at the
702 * end of the log.
704 * In the 256k log case, we will read from the beginning to the
705 * end of the log and search for cycle numbers equal to x-1.
706 * We don't worry about the x+1 blocks that we encounter,
707 * because we know that they cannot be the head since the log
708 * started with x.
710 head_blk = log_bbnum;
711 stop_on_cycle = last_half_cycle - 1;
712 } else {
714 * In this case we want to find the first block with cycle
715 * number matching last_half_cycle. We expect the log to be
716 * some variation on
717 * x + 1 ... | x ... | x
718 * The first block with cycle number x (last_half_cycle) will
719 * be where the new head belongs. First we do a binary search
720 * for the first occurrence of last_half_cycle. The binary
721 * search may not be totally accurate, so then we scan back
722 * from there looking for occurrences of last_half_cycle before
723 * us. If that backwards scan wraps around the beginning of
724 * the log, then we look for occurrences of last_half_cycle - 1
725 * at the end of the log. The cases we're looking for look
726 * like
727 * v binary search stopped here
728 * x + 1 ... | x | x + 1 | x ... | x
729 * ^ but we want to locate this spot
730 * or
731 * <---------> less than scan distance
732 * x + 1 ... | x ... | x - 1 | x
733 * ^ we want to locate this spot
735 stop_on_cycle = last_half_cycle;
736 if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 &head_blk, last_half_cycle)))
738 goto bp_err;
742 * Now validate the answer. Scan back some number of maximum possible
743 * blocks and make sure each one has the expected cycle number. The
744 * maximum is determined by the total possible amount of buffering
745 * in the in-core log. The following number can be made tighter if
746 * we actually look at the block size of the filesystem.
748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 if (head_blk >= num_scan_bblks) {
751 * We are guaranteed that the entire check can be performed
752 * in one buffer.
754 start_blk = head_blk - num_scan_bblks;
755 if ((error = xlog_find_verify_cycle(log,
756 start_blk, num_scan_bblks,
757 stop_on_cycle, &new_blk)))
758 goto bp_err;
759 if (new_blk != -1)
760 head_blk = new_blk;
761 } else { /* need to read 2 parts of log */
763 * We are going to scan backwards in the log in two parts.
764 * First we scan the physical end of the log. In this part
765 * of the log, we are looking for blocks with cycle number
766 * last_half_cycle - 1.
767 * If we find one, then we know that the log starts there, as
768 * we've found a hole that didn't get written in going around
769 * the end of the physical log. The simple case for this is
770 * x + 1 ... | x ... | x - 1 | x
771 * <---------> less than scan distance
772 * If all of the blocks at the end of the log have cycle number
773 * last_half_cycle, then we check the blocks at the start of
774 * the log looking for occurrences of last_half_cycle. If we
775 * find one, then our current estimate for the location of the
776 * first occurrence of last_half_cycle is wrong and we move
777 * back to the hole we've found. This case looks like
778 * x + 1 ... | x | x + 1 | x ...
779 * ^ binary search stopped here
780 * Another case we need to handle that only occurs in 256k
781 * logs is
782 * x + 1 ... | x ... | x+1 | x ...
783 * ^ binary search stops here
784 * In a 256k log, the scan at the end of the log will see the
785 * x + 1 blocks. We need to skip past those since that is
786 * certainly not the head of the log. By searching for
787 * last_half_cycle-1 we accomplish that.
789 ASSERT(head_blk <= INT_MAX &&
790 (xfs_daddr_t) num_scan_bblks >= head_blk);
791 start_blk = log_bbnum - (num_scan_bblks - head_blk);
792 if ((error = xlog_find_verify_cycle(log, start_blk,
793 num_scan_bblks - (int)head_blk,
794 (stop_on_cycle - 1), &new_blk)))
795 goto bp_err;
796 if (new_blk != -1) {
797 head_blk = new_blk;
798 goto validate_head;
802 * Scan beginning of log now. The last part of the physical
803 * log is good. This scan needs to verify that it doesn't find
804 * the last_half_cycle.
806 start_blk = 0;
807 ASSERT(head_blk <= INT_MAX);
808 if ((error = xlog_find_verify_cycle(log,
809 start_blk, (int)head_blk,
810 stop_on_cycle, &new_blk)))
811 goto bp_err;
812 if (new_blk != -1)
813 head_blk = new_blk;
816 validate_head:
818 * Now we need to make sure head_blk is not pointing to a block in
819 * the middle of a log record.
821 num_scan_bblks = XLOG_REC_SHIFT(log);
822 if (head_blk >= num_scan_bblks) {
823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
825 /* start ptr at last block ptr before head_blk */
826 if ((error = xlog_find_verify_log_record(log, start_blk,
827 &head_blk, 0)) == -1) {
828 error = XFS_ERROR(EIO);
829 goto bp_err;
830 } else if (error)
831 goto bp_err;
832 } else {
833 start_blk = 0;
834 ASSERT(head_blk <= INT_MAX);
835 if ((error = xlog_find_verify_log_record(log, start_blk,
836 &head_blk, 0)) == -1) {
837 /* We hit the beginning of the log during our search */
838 start_blk = log_bbnum - (num_scan_bblks - head_blk);
839 new_blk = log_bbnum;
840 ASSERT(start_blk <= INT_MAX &&
841 (xfs_daddr_t) log_bbnum-start_blk >= 0);
842 ASSERT(head_blk <= INT_MAX);
843 if ((error = xlog_find_verify_log_record(log,
844 start_blk, &new_blk,
845 (int)head_blk)) == -1) {
846 error = XFS_ERROR(EIO);
847 goto bp_err;
848 } else if (error)
849 goto bp_err;
850 if (new_blk != log_bbnum)
851 head_blk = new_blk;
852 } else if (error)
853 goto bp_err;
856 xlog_put_bp(bp);
857 if (head_blk == log_bbnum)
858 *return_head_blk = 0;
859 else
860 *return_head_blk = head_blk;
862 * When returning here, we have a good block number. Bad block
863 * means that during a previous crash, we didn't have a clean break
864 * from cycle number N to cycle number N-1. In this case, we need
865 * to find the first block with cycle number N-1.
867 return 0;
869 bp_err:
870 xlog_put_bp(bp);
872 if (error)
873 xfs_warn(log->l_mp, "failed to find log head");
874 return error;
878 * Find the sync block number or the tail of the log.
880 * This will be the block number of the last record to have its
881 * associated buffers synced to disk. Every log record header has
882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
883 * to get a sync block number. The only concern is to figure out which
884 * log record header to believe.
886 * The following algorithm uses the log record header with the largest
887 * lsn. The entire log record does not need to be valid. We only care
888 * that the header is valid.
890 * We could speed up search by using current head_blk buffer, but it is not
891 * available.
893 STATIC int
894 xlog_find_tail(
895 struct xlog *log,
896 xfs_daddr_t *head_blk,
897 xfs_daddr_t *tail_blk)
899 xlog_rec_header_t *rhead;
900 xlog_op_header_t *op_head;
901 xfs_caddr_t offset = NULL;
902 xfs_buf_t *bp;
903 int error, i, found;
904 xfs_daddr_t umount_data_blk;
905 xfs_daddr_t after_umount_blk;
906 xfs_lsn_t tail_lsn;
907 int hblks;
909 found = 0;
912 * Find previous log record
914 if ((error = xlog_find_head(log, head_blk)))
915 return error;
917 bp = xlog_get_bp(log, 1);
918 if (!bp)
919 return ENOMEM;
920 if (*head_blk == 0) { /* special case */
921 error = xlog_bread(log, 0, 1, bp, &offset);
922 if (error)
923 goto done;
925 if (xlog_get_cycle(offset) == 0) {
926 *tail_blk = 0;
927 /* leave all other log inited values alone */
928 goto done;
933 * Search backwards looking for log record header block
935 ASSERT(*head_blk < INT_MAX);
936 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
939 goto done;
941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 found = 1;
943 break;
947 * If we haven't found the log record header block, start looking
948 * again from the end of the physical log. XXXmiken: There should be
949 * a check here to make sure we didn't search more than N blocks in
950 * the previous code.
952 if (!found) {
953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
954 error = xlog_bread(log, i, 1, bp, &offset);
955 if (error)
956 goto done;
958 if (*(__be32 *)offset ==
959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
960 found = 2;
961 break;
965 if (!found) {
966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
967 xlog_put_bp(bp);
968 ASSERT(0);
969 return XFS_ERROR(EIO);
972 /* find blk_no of tail of log */
973 rhead = (xlog_rec_header_t *)offset;
974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
977 * Reset log values according to the state of the log when we
978 * crashed. In the case where head_blk == 0, we bump curr_cycle
979 * one because the next write starts a new cycle rather than
980 * continuing the cycle of the last good log record. At this
981 * point we have guaranteed that all partial log records have been
982 * accounted for. Therefore, we know that the last good log record
983 * written was complete and ended exactly on the end boundary
984 * of the physical log.
986 log->l_prev_block = i;
987 log->l_curr_block = (int)*head_blk;
988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
989 if (found == 2)
990 log->l_curr_cycle++;
991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
994 BBTOB(log->l_curr_block));
995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
996 BBTOB(log->l_curr_block));
999 * Look for unmount record. If we find it, then we know there
1000 * was a clean unmount. Since 'i' could be the last block in
1001 * the physical log, we convert to a log block before comparing
1002 * to the head_blk.
1004 * Save the current tail lsn to use to pass to
1005 * xlog_clear_stale_blocks() below. We won't want to clear the
1006 * unmount record if there is one, so we pass the lsn of the
1007 * unmount record rather than the block after it.
1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1010 int h_size = be32_to_cpu(rhead->h_size);
1011 int h_version = be32_to_cpu(rhead->h_version);
1013 if ((h_version & XLOG_VERSION_2) &&
1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 hblks++;
1018 } else {
1019 hblks = 1;
1021 } else {
1022 hblks = 1;
1024 after_umount_blk = (i + hblks + (int)
1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1026 tail_lsn = atomic64_read(&log->l_tail_lsn);
1027 if (*head_blk == after_umount_blk &&
1028 be32_to_cpu(rhead->h_num_logops) == 1) {
1029 umount_data_blk = (i + hblks) % log->l_logBBsize;
1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 if (error)
1032 goto done;
1034 op_head = (xlog_op_header_t *)offset;
1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1037 * Set tail and last sync so that newly written
1038 * log records will point recovery to after the
1039 * current unmount record.
1041 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 log->l_curr_cycle, after_umount_blk);
1045 *tail_blk = after_umount_blk;
1048 * Note that the unmount was clean. If the unmount
1049 * was not clean, we need to know this to rebuild the
1050 * superblock counters from the perag headers if we
1051 * have a filesystem using non-persistent counters.
1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1058 * Make sure that there are no blocks in front of the head
1059 * with the same cycle number as the head. This can happen
1060 * because we allow multiple outstanding log writes concurrently,
1061 * and the later writes might make it out before earlier ones.
1063 * We use the lsn from before modifying it so that we'll never
1064 * overwrite the unmount record after a clean unmount.
1066 * Do this only if we are going to recover the filesystem
1068 * NOTE: This used to say "if (!readonly)"
1069 * However on Linux, we can & do recover a read-only filesystem.
1070 * We only skip recovery if NORECOVERY is specified on mount,
1071 * in which case we would not be here.
1073 * But... if the -device- itself is readonly, just skip this.
1074 * We can't recover this device anyway, so it won't matter.
1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1077 error = xlog_clear_stale_blocks(log, tail_lsn);
1079 done:
1080 xlog_put_bp(bp);
1082 if (error)
1083 xfs_warn(log->l_mp, "failed to locate log tail");
1084 return error;
1088 * Is the log zeroed at all?
1090 * The last binary search should be changed to perform an X block read
1091 * once X becomes small enough. You can then search linearly through
1092 * the X blocks. This will cut down on the number of reads we need to do.
1094 * If the log is partially zeroed, this routine will pass back the blkno
1095 * of the first block with cycle number 0. It won't have a complete LR
1096 * preceding it.
1098 * Return:
1099 * 0 => the log is completely written to
1100 * -1 => use *blk_no as the first block of the log
1101 * >0 => error has occurred
1103 STATIC int
1104 xlog_find_zeroed(
1105 struct xlog *log,
1106 xfs_daddr_t *blk_no)
1108 xfs_buf_t *bp;
1109 xfs_caddr_t offset;
1110 uint first_cycle, last_cycle;
1111 xfs_daddr_t new_blk, last_blk, start_blk;
1112 xfs_daddr_t num_scan_bblks;
1113 int error, log_bbnum = log->l_logBBsize;
1115 *blk_no = 0;
1117 /* check totally zeroed log */
1118 bp = xlog_get_bp(log, 1);
1119 if (!bp)
1120 return ENOMEM;
1121 error = xlog_bread(log, 0, 1, bp, &offset);
1122 if (error)
1123 goto bp_err;
1125 first_cycle = xlog_get_cycle(offset);
1126 if (first_cycle == 0) { /* completely zeroed log */
1127 *blk_no = 0;
1128 xlog_put_bp(bp);
1129 return -1;
1132 /* check partially zeroed log */
1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 if (error)
1135 goto bp_err;
1137 last_cycle = xlog_get_cycle(offset);
1138 if (last_cycle != 0) { /* log completely written to */
1139 xlog_put_bp(bp);
1140 return 0;
1141 } else if (first_cycle != 1) {
1143 * If the cycle of the last block is zero, the cycle of
1144 * the first block must be 1. If it's not, maybe we're
1145 * not looking at a log... Bail out.
1147 xfs_warn(log->l_mp,
1148 "Log inconsistent or not a log (last==0, first!=1)");
1149 error = XFS_ERROR(EINVAL);
1150 goto bp_err;
1153 /* we have a partially zeroed log */
1154 last_blk = log_bbnum-1;
1155 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1156 goto bp_err;
1159 * Validate the answer. Because there is no way to guarantee that
1160 * the entire log is made up of log records which are the same size,
1161 * we scan over the defined maximum blocks. At this point, the maximum
1162 * is not chosen to mean anything special. XXXmiken
1164 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1165 ASSERT(num_scan_bblks <= INT_MAX);
1167 if (last_blk < num_scan_bblks)
1168 num_scan_bblks = last_blk;
1169 start_blk = last_blk - num_scan_bblks;
1172 * We search for any instances of cycle number 0 that occur before
1173 * our current estimate of the head. What we're trying to detect is
1174 * 1 ... | 0 | 1 | 0...
1175 * ^ binary search ends here
1177 if ((error = xlog_find_verify_cycle(log, start_blk,
1178 (int)num_scan_bblks, 0, &new_blk)))
1179 goto bp_err;
1180 if (new_blk != -1)
1181 last_blk = new_blk;
1184 * Potentially backup over partial log record write. We don't need
1185 * to search the end of the log because we know it is zero.
1187 if ((error = xlog_find_verify_log_record(log, start_blk,
1188 &last_blk, 0)) == -1) {
1189 error = XFS_ERROR(EIO);
1190 goto bp_err;
1191 } else if (error)
1192 goto bp_err;
1194 *blk_no = last_blk;
1195 bp_err:
1196 xlog_put_bp(bp);
1197 if (error)
1198 return error;
1199 return -1;
1203 * These are simple subroutines used by xlog_clear_stale_blocks() below
1204 * to initialize a buffer full of empty log record headers and write
1205 * them into the log.
1207 STATIC void
1208 xlog_add_record(
1209 struct xlog *log,
1210 xfs_caddr_t buf,
1211 int cycle,
1212 int block,
1213 int tail_cycle,
1214 int tail_block)
1216 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1218 memset(buf, 0, BBSIZE);
1219 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 recp->h_cycle = cpu_to_be32(cycle);
1221 recp->h_version = cpu_to_be32(
1222 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1223 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1224 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1225 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1226 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1229 STATIC int
1230 xlog_write_log_records(
1231 struct xlog *log,
1232 int cycle,
1233 int start_block,
1234 int blocks,
1235 int tail_cycle,
1236 int tail_block)
1238 xfs_caddr_t offset;
1239 xfs_buf_t *bp;
1240 int balign, ealign;
1241 int sectbb = log->l_sectBBsize;
1242 int end_block = start_block + blocks;
1243 int bufblks;
1244 int error = 0;
1245 int i, j = 0;
1248 * Greedily allocate a buffer big enough to handle the full
1249 * range of basic blocks to be written. If that fails, try
1250 * a smaller size. We need to be able to write at least a
1251 * log sector, or we're out of luck.
1253 bufblks = 1 << ffs(blocks);
1254 while (bufblks > log->l_logBBsize)
1255 bufblks >>= 1;
1256 while (!(bp = xlog_get_bp(log, bufblks))) {
1257 bufblks >>= 1;
1258 if (bufblks < sectbb)
1259 return ENOMEM;
1262 /* We may need to do a read at the start to fill in part of
1263 * the buffer in the starting sector not covered by the first
1264 * write below.
1266 balign = round_down(start_block, sectbb);
1267 if (balign != start_block) {
1268 error = xlog_bread_noalign(log, start_block, 1, bp);
1269 if (error)
1270 goto out_put_bp;
1272 j = start_block - balign;
1275 for (i = start_block; i < end_block; i += bufblks) {
1276 int bcount, endcount;
1278 bcount = min(bufblks, end_block - start_block);
1279 endcount = bcount - j;
1281 /* We may need to do a read at the end to fill in part of
1282 * the buffer in the final sector not covered by the write.
1283 * If this is the same sector as the above read, skip it.
1285 ealign = round_down(end_block, sectbb);
1286 if (j == 0 && (start_block + endcount > ealign)) {
1287 offset = bp->b_addr + BBTOB(ealign - start_block);
1288 error = xlog_bread_offset(log, ealign, sectbb,
1289 bp, offset);
1290 if (error)
1291 break;
1295 offset = xlog_align(log, start_block, endcount, bp);
1296 for (; j < endcount; j++) {
1297 xlog_add_record(log, offset, cycle, i+j,
1298 tail_cycle, tail_block);
1299 offset += BBSIZE;
1301 error = xlog_bwrite(log, start_block, endcount, bp);
1302 if (error)
1303 break;
1304 start_block += endcount;
1305 j = 0;
1308 out_put_bp:
1309 xlog_put_bp(bp);
1310 return error;
1314 * This routine is called to blow away any incomplete log writes out
1315 * in front of the log head. We do this so that we won't become confused
1316 * if we come up, write only a little bit more, and then crash again.
1317 * If we leave the partial log records out there, this situation could
1318 * cause us to think those partial writes are valid blocks since they
1319 * have the current cycle number. We get rid of them by overwriting them
1320 * with empty log records with the old cycle number rather than the
1321 * current one.
1323 * The tail lsn is passed in rather than taken from
1324 * the log so that we will not write over the unmount record after a
1325 * clean unmount in a 512 block log. Doing so would leave the log without
1326 * any valid log records in it until a new one was written. If we crashed
1327 * during that time we would not be able to recover.
1329 STATIC int
1330 xlog_clear_stale_blocks(
1331 struct xlog *log,
1332 xfs_lsn_t tail_lsn)
1334 int tail_cycle, head_cycle;
1335 int tail_block, head_block;
1336 int tail_distance, max_distance;
1337 int distance;
1338 int error;
1340 tail_cycle = CYCLE_LSN(tail_lsn);
1341 tail_block = BLOCK_LSN(tail_lsn);
1342 head_cycle = log->l_curr_cycle;
1343 head_block = log->l_curr_block;
1346 * Figure out the distance between the new head of the log
1347 * and the tail. We want to write over any blocks beyond the
1348 * head that we may have written just before the crash, but
1349 * we don't want to overwrite the tail of the log.
1351 if (head_cycle == tail_cycle) {
1353 * The tail is behind the head in the physical log,
1354 * so the distance from the head to the tail is the
1355 * distance from the head to the end of the log plus
1356 * the distance from the beginning of the log to the
1357 * tail.
1359 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1364 tail_distance = tail_block + (log->l_logBBsize - head_block);
1365 } else {
1367 * The head is behind the tail in the physical log,
1368 * so the distance from the head to the tail is just
1369 * the tail block minus the head block.
1371 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1372 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1373 XFS_ERRLEVEL_LOW, log->l_mp);
1374 return XFS_ERROR(EFSCORRUPTED);
1376 tail_distance = tail_block - head_block;
1380 * If the head is right up against the tail, we can't clear
1381 * anything.
1383 if (tail_distance <= 0) {
1384 ASSERT(tail_distance == 0);
1385 return 0;
1388 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1390 * Take the smaller of the maximum amount of outstanding I/O
1391 * we could have and the distance to the tail to clear out.
1392 * We take the smaller so that we don't overwrite the tail and
1393 * we don't waste all day writing from the head to the tail
1394 * for no reason.
1396 max_distance = MIN(max_distance, tail_distance);
1398 if ((head_block + max_distance) <= log->l_logBBsize) {
1400 * We can stomp all the blocks we need to without
1401 * wrapping around the end of the log. Just do it
1402 * in a single write. Use the cycle number of the
1403 * current cycle minus one so that the log will look like:
1404 * n ... | n - 1 ...
1406 error = xlog_write_log_records(log, (head_cycle - 1),
1407 head_block, max_distance, tail_cycle,
1408 tail_block);
1409 if (error)
1410 return error;
1411 } else {
1413 * We need to wrap around the end of the physical log in
1414 * order to clear all the blocks. Do it in two separate
1415 * I/Os. The first write should be from the head to the
1416 * end of the physical log, and it should use the current
1417 * cycle number minus one just like above.
1419 distance = log->l_logBBsize - head_block;
1420 error = xlog_write_log_records(log, (head_cycle - 1),
1421 head_block, distance, tail_cycle,
1422 tail_block);
1424 if (error)
1425 return error;
1428 * Now write the blocks at the start of the physical log.
1429 * This writes the remainder of the blocks we want to clear.
1430 * It uses the current cycle number since we're now on the
1431 * same cycle as the head so that we get:
1432 * n ... n ... | n - 1 ...
1433 * ^^^^^ blocks we're writing
1435 distance = max_distance - (log->l_logBBsize - head_block);
1436 error = xlog_write_log_records(log, head_cycle, 0, distance,
1437 tail_cycle, tail_block);
1438 if (error)
1439 return error;
1442 return 0;
1445 /******************************************************************************
1447 * Log recover routines
1449 ******************************************************************************
1452 STATIC xlog_recover_t *
1453 xlog_recover_find_tid(
1454 struct hlist_head *head,
1455 xlog_tid_t tid)
1457 xlog_recover_t *trans;
1459 hlist_for_each_entry(trans, head, r_list) {
1460 if (trans->r_log_tid == tid)
1461 return trans;
1463 return NULL;
1466 STATIC void
1467 xlog_recover_new_tid(
1468 struct hlist_head *head,
1469 xlog_tid_t tid,
1470 xfs_lsn_t lsn)
1472 xlog_recover_t *trans;
1474 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1475 trans->r_log_tid = tid;
1476 trans->r_lsn = lsn;
1477 INIT_LIST_HEAD(&trans->r_itemq);
1479 INIT_HLIST_NODE(&trans->r_list);
1480 hlist_add_head(&trans->r_list, head);
1483 STATIC void
1484 xlog_recover_add_item(
1485 struct list_head *head)
1487 xlog_recover_item_t *item;
1489 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1490 INIT_LIST_HEAD(&item->ri_list);
1491 list_add_tail(&item->ri_list, head);
1494 STATIC int
1495 xlog_recover_add_to_cont_trans(
1496 struct xlog *log,
1497 struct xlog_recover *trans,
1498 xfs_caddr_t dp,
1499 int len)
1501 xlog_recover_item_t *item;
1502 xfs_caddr_t ptr, old_ptr;
1503 int old_len;
1505 if (list_empty(&trans->r_itemq)) {
1506 /* finish copying rest of trans header */
1507 xlog_recover_add_item(&trans->r_itemq);
1508 ptr = (xfs_caddr_t) &trans->r_theader +
1509 sizeof(xfs_trans_header_t) - len;
1510 memcpy(ptr, dp, len); /* d, s, l */
1511 return 0;
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1516 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1517 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1519 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1520 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1521 item->ri_buf[item->ri_cnt-1].i_len += len;
1522 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1523 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1524 return 0;
1528 * The next region to add is the start of a new region. It could be
1529 * a whole region or it could be the first part of a new region. Because
1530 * of this, the assumption here is that the type and size fields of all
1531 * format structures fit into the first 32 bits of the structure.
1533 * This works because all regions must be 32 bit aligned. Therefore, we
1534 * either have both fields or we have neither field. In the case we have
1535 * neither field, the data part of the region is zero length. We only have
1536 * a log_op_header and can throw away the header since a new one will appear
1537 * later. If we have at least 4 bytes, then we can determine how many regions
1538 * will appear in the current log item.
1540 STATIC int
1541 xlog_recover_add_to_trans(
1542 struct xlog *log,
1543 struct xlog_recover *trans,
1544 xfs_caddr_t dp,
1545 int len)
1547 xfs_inode_log_format_t *in_f; /* any will do */
1548 xlog_recover_item_t *item;
1549 xfs_caddr_t ptr;
1551 if (!len)
1552 return 0;
1553 if (list_empty(&trans->r_itemq)) {
1554 /* we need to catch log corruptions here */
1555 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1556 xfs_warn(log->l_mp, "%s: bad header magic number",
1557 __func__);
1558 ASSERT(0);
1559 return XFS_ERROR(EIO);
1561 if (len == sizeof(xfs_trans_header_t))
1562 xlog_recover_add_item(&trans->r_itemq);
1563 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1564 return 0;
1567 ptr = kmem_alloc(len, KM_SLEEP);
1568 memcpy(ptr, dp, len);
1569 in_f = (xfs_inode_log_format_t *)ptr;
1571 /* take the tail entry */
1572 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1573 if (item->ri_total != 0 &&
1574 item->ri_total == item->ri_cnt) {
1575 /* tail item is in use, get a new one */
1576 xlog_recover_add_item(&trans->r_itemq);
1577 item = list_entry(trans->r_itemq.prev,
1578 xlog_recover_item_t, ri_list);
1581 if (item->ri_total == 0) { /* first region to be added */
1582 if (in_f->ilf_size == 0 ||
1583 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1584 xfs_warn(log->l_mp,
1585 "bad number of regions (%d) in inode log format",
1586 in_f->ilf_size);
1587 ASSERT(0);
1588 kmem_free(ptr);
1589 return XFS_ERROR(EIO);
1592 item->ri_total = in_f->ilf_size;
1593 item->ri_buf =
1594 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1595 KM_SLEEP);
1597 ASSERT(item->ri_total > item->ri_cnt);
1598 /* Description region is ri_buf[0] */
1599 item->ri_buf[item->ri_cnt].i_addr = ptr;
1600 item->ri_buf[item->ri_cnt].i_len = len;
1601 item->ri_cnt++;
1602 trace_xfs_log_recover_item_add(log, trans, item, 0);
1603 return 0;
1607 * Sort the log items in the transaction.
1609 * The ordering constraints are defined by the inode allocation and unlink
1610 * behaviour. The rules are:
1612 * 1. Every item is only logged once in a given transaction. Hence it
1613 * represents the last logged state of the item. Hence ordering is
1614 * dependent on the order in which operations need to be performed so
1615 * required initial conditions are always met.
1617 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1618 * there's nothing to replay from them so we can simply cull them
1619 * from the transaction. However, we can't do that until after we've
1620 * replayed all the other items because they may be dependent on the
1621 * cancelled buffer and replaying the cancelled buffer can remove it
1622 * form the cancelled buffer table. Hence they have tobe done last.
1624 * 3. Inode allocation buffers must be replayed before inode items that
1625 * read the buffer and replay changes into it. For filesystems using the
1626 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1627 * treated the same as inode allocation buffers as they create and
1628 * initialise the buffers directly.
1630 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1631 * This ensures that inodes are completely flushed to the inode buffer
1632 * in a "free" state before we remove the unlinked inode list pointer.
1634 * Hence the ordering needs to be inode allocation buffers first, inode items
1635 * second, inode unlink buffers third and cancelled buffers last.
1637 * But there's a problem with that - we can't tell an inode allocation buffer
1638 * apart from a regular buffer, so we can't separate them. We can, however,
1639 * tell an inode unlink buffer from the others, and so we can separate them out
1640 * from all the other buffers and move them to last.
1642 * Hence, 4 lists, in order from head to tail:
1643 * - buffer_list for all buffers except cancelled/inode unlink buffers
1644 * - item_list for all non-buffer items
1645 * - inode_buffer_list for inode unlink buffers
1646 * - cancel_list for the cancelled buffers
1648 * Note that we add objects to the tail of the lists so that first-to-last
1649 * ordering is preserved within the lists. Adding objects to the head of the
1650 * list means when we traverse from the head we walk them in last-to-first
1651 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1652 * but for all other items there may be specific ordering that we need to
1653 * preserve.
1655 STATIC int
1656 xlog_recover_reorder_trans(
1657 struct xlog *log,
1658 struct xlog_recover *trans,
1659 int pass)
1661 xlog_recover_item_t *item, *n;
1662 LIST_HEAD(sort_list);
1663 LIST_HEAD(cancel_list);
1664 LIST_HEAD(buffer_list);
1665 LIST_HEAD(inode_buffer_list);
1666 LIST_HEAD(inode_list);
1668 list_splice_init(&trans->r_itemq, &sort_list);
1669 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1670 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1672 switch (ITEM_TYPE(item)) {
1673 case XFS_LI_ICREATE:
1674 list_move_tail(&item->ri_list, &buffer_list);
1675 break;
1676 case XFS_LI_BUF:
1677 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1678 trace_xfs_log_recover_item_reorder_head(log,
1679 trans, item, pass);
1680 list_move(&item->ri_list, &cancel_list);
1681 break;
1683 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1684 list_move(&item->ri_list, &inode_buffer_list);
1685 break;
1687 list_move_tail(&item->ri_list, &buffer_list);
1688 break;
1689 case XFS_LI_INODE:
1690 case XFS_LI_DQUOT:
1691 case XFS_LI_QUOTAOFF:
1692 case XFS_LI_EFD:
1693 case XFS_LI_EFI:
1694 trace_xfs_log_recover_item_reorder_tail(log,
1695 trans, item, pass);
1696 list_move_tail(&item->ri_list, &inode_list);
1697 break;
1698 default:
1699 xfs_warn(log->l_mp,
1700 "%s: unrecognized type of log operation",
1701 __func__);
1702 ASSERT(0);
1703 return XFS_ERROR(EIO);
1706 ASSERT(list_empty(&sort_list));
1707 if (!list_empty(&buffer_list))
1708 list_splice(&buffer_list, &trans->r_itemq);
1709 if (!list_empty(&inode_list))
1710 list_splice_tail(&inode_list, &trans->r_itemq);
1711 if (!list_empty(&inode_buffer_list))
1712 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1713 if (!list_empty(&cancel_list))
1714 list_splice_tail(&cancel_list, &trans->r_itemq);
1715 return 0;
1719 * Build up the table of buf cancel records so that we don't replay
1720 * cancelled data in the second pass. For buffer records that are
1721 * not cancel records, there is nothing to do here so we just return.
1723 * If we get a cancel record which is already in the table, this indicates
1724 * that the buffer was cancelled multiple times. In order to ensure
1725 * that during pass 2 we keep the record in the table until we reach its
1726 * last occurrence in the log, we keep a reference count in the cancel
1727 * record in the table to tell us how many times we expect to see this
1728 * record during the second pass.
1730 STATIC int
1731 xlog_recover_buffer_pass1(
1732 struct xlog *log,
1733 struct xlog_recover_item *item)
1735 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1736 struct list_head *bucket;
1737 struct xfs_buf_cancel *bcp;
1740 * If this isn't a cancel buffer item, then just return.
1742 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1743 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1744 return 0;
1748 * Insert an xfs_buf_cancel record into the hash table of them.
1749 * If there is already an identical record, bump its reference count.
1751 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1752 list_for_each_entry(bcp, bucket, bc_list) {
1753 if (bcp->bc_blkno == buf_f->blf_blkno &&
1754 bcp->bc_len == buf_f->blf_len) {
1755 bcp->bc_refcount++;
1756 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1757 return 0;
1761 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1762 bcp->bc_blkno = buf_f->blf_blkno;
1763 bcp->bc_len = buf_f->blf_len;
1764 bcp->bc_refcount = 1;
1765 list_add_tail(&bcp->bc_list, bucket);
1767 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1768 return 0;
1772 * Check to see whether the buffer being recovered has a corresponding
1773 * entry in the buffer cancel record table. If it is, return the cancel
1774 * buffer structure to the caller.
1776 STATIC struct xfs_buf_cancel *
1777 xlog_peek_buffer_cancelled(
1778 struct xlog *log,
1779 xfs_daddr_t blkno,
1780 uint len,
1781 ushort flags)
1783 struct list_head *bucket;
1784 struct xfs_buf_cancel *bcp;
1786 if (!log->l_buf_cancel_table) {
1787 /* empty table means no cancelled buffers in the log */
1788 ASSERT(!(flags & XFS_BLF_CANCEL));
1789 return NULL;
1792 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1793 list_for_each_entry(bcp, bucket, bc_list) {
1794 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1795 return bcp;
1799 * We didn't find a corresponding entry in the table, so return 0 so
1800 * that the buffer is NOT cancelled.
1802 ASSERT(!(flags & XFS_BLF_CANCEL));
1803 return NULL;
1807 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1808 * otherwise return 0. If the buffer is actually a buffer cancel item
1809 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1810 * table and remove it from the table if this is the last reference.
1812 * We remove the cancel record from the table when we encounter its last
1813 * occurrence in the log so that if the same buffer is re-used again after its
1814 * last cancellation we actually replay the changes made at that point.
1816 STATIC int
1817 xlog_check_buffer_cancelled(
1818 struct xlog *log,
1819 xfs_daddr_t blkno,
1820 uint len,
1821 ushort flags)
1823 struct xfs_buf_cancel *bcp;
1825 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1826 if (!bcp)
1827 return 0;
1830 * We've go a match, so return 1 so that the recovery of this buffer
1831 * is cancelled. If this buffer is actually a buffer cancel log
1832 * item, then decrement the refcount on the one in the table and
1833 * remove it if this is the last reference.
1835 if (flags & XFS_BLF_CANCEL) {
1836 if (--bcp->bc_refcount == 0) {
1837 list_del(&bcp->bc_list);
1838 kmem_free(bcp);
1841 return 1;
1845 * Perform recovery for a buffer full of inodes. In these buffers, the only
1846 * data which should be recovered is that which corresponds to the
1847 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1848 * data for the inodes is always logged through the inodes themselves rather
1849 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1851 * The only time when buffers full of inodes are fully recovered is when the
1852 * buffer is full of newly allocated inodes. In this case the buffer will
1853 * not be marked as an inode buffer and so will be sent to
1854 * xlog_recover_do_reg_buffer() below during recovery.
1856 STATIC int
1857 xlog_recover_do_inode_buffer(
1858 struct xfs_mount *mp,
1859 xlog_recover_item_t *item,
1860 struct xfs_buf *bp,
1861 xfs_buf_log_format_t *buf_f)
1863 int i;
1864 int item_index = 0;
1865 int bit = 0;
1866 int nbits = 0;
1867 int reg_buf_offset = 0;
1868 int reg_buf_bytes = 0;
1869 int next_unlinked_offset;
1870 int inodes_per_buf;
1871 xfs_agino_t *logged_nextp;
1872 xfs_agino_t *buffer_nextp;
1874 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1877 * Post recovery validation only works properly on CRC enabled
1878 * filesystems.
1880 if (xfs_sb_version_hascrc(&mp->m_sb))
1881 bp->b_ops = &xfs_inode_buf_ops;
1883 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1884 for (i = 0; i < inodes_per_buf; i++) {
1885 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1886 offsetof(xfs_dinode_t, di_next_unlinked);
1888 while (next_unlinked_offset >=
1889 (reg_buf_offset + reg_buf_bytes)) {
1891 * The next di_next_unlinked field is beyond
1892 * the current logged region. Find the next
1893 * logged region that contains or is beyond
1894 * the current di_next_unlinked field.
1896 bit += nbits;
1897 bit = xfs_next_bit(buf_f->blf_data_map,
1898 buf_f->blf_map_size, bit);
1901 * If there are no more logged regions in the
1902 * buffer, then we're done.
1904 if (bit == -1)
1905 return 0;
1907 nbits = xfs_contig_bits(buf_f->blf_data_map,
1908 buf_f->blf_map_size, bit);
1909 ASSERT(nbits > 0);
1910 reg_buf_offset = bit << XFS_BLF_SHIFT;
1911 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1912 item_index++;
1916 * If the current logged region starts after the current
1917 * di_next_unlinked field, then move on to the next
1918 * di_next_unlinked field.
1920 if (next_unlinked_offset < reg_buf_offset)
1921 continue;
1923 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1924 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1925 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1926 BBTOB(bp->b_io_length));
1929 * The current logged region contains a copy of the
1930 * current di_next_unlinked field. Extract its value
1931 * and copy it to the buffer copy.
1933 logged_nextp = item->ri_buf[item_index].i_addr +
1934 next_unlinked_offset - reg_buf_offset;
1935 if (unlikely(*logged_nextp == 0)) {
1936 xfs_alert(mp,
1937 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1938 "Trying to replay bad (0) inode di_next_unlinked field.",
1939 item, bp);
1940 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1941 XFS_ERRLEVEL_LOW, mp);
1942 return XFS_ERROR(EFSCORRUPTED);
1945 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1946 next_unlinked_offset);
1947 *buffer_nextp = *logged_nextp;
1950 * If necessary, recalculate the CRC in the on-disk inode. We
1951 * have to leave the inode in a consistent state for whoever
1952 * reads it next....
1954 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1955 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1959 return 0;
1963 * V5 filesystems know the age of the buffer on disk being recovered. We can
1964 * have newer objects on disk than we are replaying, and so for these cases we
1965 * don't want to replay the current change as that will make the buffer contents
1966 * temporarily invalid on disk.
1968 * The magic number might not match the buffer type we are going to recover
1969 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1970 * extract the LSN of the existing object in the buffer based on it's current
1971 * magic number. If we don't recognise the magic number in the buffer, then
1972 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1973 * so can recover the buffer.
1975 * Note: we cannot rely solely on magic number matches to determine that the
1976 * buffer has a valid LSN - we also need to verify that it belongs to this
1977 * filesystem, so we need to extract the object's LSN and compare it to that
1978 * which we read from the superblock. If the UUIDs don't match, then we've got a
1979 * stale metadata block from an old filesystem instance that we need to recover
1980 * over the top of.
1982 static xfs_lsn_t
1983 xlog_recover_get_buf_lsn(
1984 struct xfs_mount *mp,
1985 struct xfs_buf *bp)
1987 __uint32_t magic32;
1988 __uint16_t magic16;
1989 __uint16_t magicda;
1990 void *blk = bp->b_addr;
1991 uuid_t *uuid;
1992 xfs_lsn_t lsn = -1;
1994 /* v4 filesystems always recover immediately */
1995 if (!xfs_sb_version_hascrc(&mp->m_sb))
1996 goto recover_immediately;
1998 magic32 = be32_to_cpu(*(__be32 *)blk);
1999 switch (magic32) {
2000 case XFS_ABTB_CRC_MAGIC:
2001 case XFS_ABTC_CRC_MAGIC:
2002 case XFS_ABTB_MAGIC:
2003 case XFS_ABTC_MAGIC:
2004 case XFS_IBT_CRC_MAGIC:
2005 case XFS_IBT_MAGIC: {
2006 struct xfs_btree_block *btb = blk;
2008 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2009 uuid = &btb->bb_u.s.bb_uuid;
2010 break;
2012 case XFS_BMAP_CRC_MAGIC:
2013 case XFS_BMAP_MAGIC: {
2014 struct xfs_btree_block *btb = blk;
2016 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2017 uuid = &btb->bb_u.l.bb_uuid;
2018 break;
2020 case XFS_AGF_MAGIC:
2021 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2022 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2023 break;
2024 case XFS_AGFL_MAGIC:
2025 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2026 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2027 break;
2028 case XFS_AGI_MAGIC:
2029 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2030 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2031 break;
2032 case XFS_SYMLINK_MAGIC:
2033 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2034 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2035 break;
2036 case XFS_DIR3_BLOCK_MAGIC:
2037 case XFS_DIR3_DATA_MAGIC:
2038 case XFS_DIR3_FREE_MAGIC:
2039 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2040 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2041 break;
2042 case XFS_ATTR3_RMT_MAGIC:
2043 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2044 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2045 break;
2046 case XFS_SB_MAGIC:
2047 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2048 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2049 break;
2050 default:
2051 break;
2054 if (lsn != (xfs_lsn_t)-1) {
2055 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2056 goto recover_immediately;
2057 return lsn;
2060 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2061 switch (magicda) {
2062 case XFS_DIR3_LEAF1_MAGIC:
2063 case XFS_DIR3_LEAFN_MAGIC:
2064 case XFS_DA3_NODE_MAGIC:
2065 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2066 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2067 break;
2068 default:
2069 break;
2072 if (lsn != (xfs_lsn_t)-1) {
2073 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2074 goto recover_immediately;
2075 return lsn;
2079 * We do individual object checks on dquot and inode buffers as they
2080 * have their own individual LSN records. Also, we could have a stale
2081 * buffer here, so we have to at least recognise these buffer types.
2083 * A notd complexity here is inode unlinked list processing - it logs
2084 * the inode directly in the buffer, but we don't know which inodes have
2085 * been modified, and there is no global buffer LSN. Hence we need to
2086 * recover all inode buffer types immediately. This problem will be
2087 * fixed by logical logging of the unlinked list modifications.
2089 magic16 = be16_to_cpu(*(__be16 *)blk);
2090 switch (magic16) {
2091 case XFS_DQUOT_MAGIC:
2092 case XFS_DINODE_MAGIC:
2093 goto recover_immediately;
2094 default:
2095 break;
2098 /* unknown buffer contents, recover immediately */
2100 recover_immediately:
2101 return (xfs_lsn_t)-1;
2106 * Validate the recovered buffer is of the correct type and attach the
2107 * appropriate buffer operations to them for writeback. Magic numbers are in a
2108 * few places:
2109 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2110 * the first 32 bits of the buffer (most blocks),
2111 * inside a struct xfs_da_blkinfo at the start of the buffer.
2113 static void
2114 xlog_recover_validate_buf_type(
2115 struct xfs_mount *mp,
2116 struct xfs_buf *bp,
2117 xfs_buf_log_format_t *buf_f)
2119 struct xfs_da_blkinfo *info = bp->b_addr;
2120 __uint32_t magic32;
2121 __uint16_t magic16;
2122 __uint16_t magicda;
2125 * We can only do post recovery validation on items on CRC enabled
2126 * fielsystems as we need to know when the buffer was written to be able
2127 * to determine if we should have replayed the item. If we replay old
2128 * metadata over a newer buffer, then it will enter a temporarily
2129 * inconsistent state resulting in verification failures. Hence for now
2130 * just avoid the verification stage for non-crc filesystems
2132 if (!xfs_sb_version_hascrc(&mp->m_sb))
2133 return;
2135 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2136 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2137 magicda = be16_to_cpu(info->magic);
2138 switch (xfs_blft_from_flags(buf_f)) {
2139 case XFS_BLFT_BTREE_BUF:
2140 switch (magic32) {
2141 case XFS_ABTB_CRC_MAGIC:
2142 case XFS_ABTC_CRC_MAGIC:
2143 case XFS_ABTB_MAGIC:
2144 case XFS_ABTC_MAGIC:
2145 bp->b_ops = &xfs_allocbt_buf_ops;
2146 break;
2147 case XFS_IBT_CRC_MAGIC:
2148 case XFS_IBT_MAGIC:
2149 bp->b_ops = &xfs_inobt_buf_ops;
2150 break;
2151 case XFS_BMAP_CRC_MAGIC:
2152 case XFS_BMAP_MAGIC:
2153 bp->b_ops = &xfs_bmbt_buf_ops;
2154 break;
2155 default:
2156 xfs_warn(mp, "Bad btree block magic!");
2157 ASSERT(0);
2158 break;
2160 break;
2161 case XFS_BLFT_AGF_BUF:
2162 if (magic32 != XFS_AGF_MAGIC) {
2163 xfs_warn(mp, "Bad AGF block magic!");
2164 ASSERT(0);
2165 break;
2167 bp->b_ops = &xfs_agf_buf_ops;
2168 break;
2169 case XFS_BLFT_AGFL_BUF:
2170 if (magic32 != XFS_AGFL_MAGIC) {
2171 xfs_warn(mp, "Bad AGFL block magic!");
2172 ASSERT(0);
2173 break;
2175 bp->b_ops = &xfs_agfl_buf_ops;
2176 break;
2177 case XFS_BLFT_AGI_BUF:
2178 if (magic32 != XFS_AGI_MAGIC) {
2179 xfs_warn(mp, "Bad AGI block magic!");
2180 ASSERT(0);
2181 break;
2183 bp->b_ops = &xfs_agi_buf_ops;
2184 break;
2185 case XFS_BLFT_UDQUOT_BUF:
2186 case XFS_BLFT_PDQUOT_BUF:
2187 case XFS_BLFT_GDQUOT_BUF:
2188 #ifdef CONFIG_XFS_QUOTA
2189 if (magic16 != XFS_DQUOT_MAGIC) {
2190 xfs_warn(mp, "Bad DQUOT block magic!");
2191 ASSERT(0);
2192 break;
2194 bp->b_ops = &xfs_dquot_buf_ops;
2195 #else
2196 xfs_alert(mp,
2197 "Trying to recover dquots without QUOTA support built in!");
2198 ASSERT(0);
2199 #endif
2200 break;
2201 case XFS_BLFT_DINO_BUF:
2202 if (magic16 != XFS_DINODE_MAGIC) {
2203 xfs_warn(mp, "Bad INODE block magic!");
2204 ASSERT(0);
2205 break;
2207 bp->b_ops = &xfs_inode_buf_ops;
2208 break;
2209 case XFS_BLFT_SYMLINK_BUF:
2210 if (magic32 != XFS_SYMLINK_MAGIC) {
2211 xfs_warn(mp, "Bad symlink block magic!");
2212 ASSERT(0);
2213 break;
2215 bp->b_ops = &xfs_symlink_buf_ops;
2216 break;
2217 case XFS_BLFT_DIR_BLOCK_BUF:
2218 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2219 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2220 xfs_warn(mp, "Bad dir block magic!");
2221 ASSERT(0);
2222 break;
2224 bp->b_ops = &xfs_dir3_block_buf_ops;
2225 break;
2226 case XFS_BLFT_DIR_DATA_BUF:
2227 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2228 magic32 != XFS_DIR3_DATA_MAGIC) {
2229 xfs_warn(mp, "Bad dir data magic!");
2230 ASSERT(0);
2231 break;
2233 bp->b_ops = &xfs_dir3_data_buf_ops;
2234 break;
2235 case XFS_BLFT_DIR_FREE_BUF:
2236 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2237 magic32 != XFS_DIR3_FREE_MAGIC) {
2238 xfs_warn(mp, "Bad dir3 free magic!");
2239 ASSERT(0);
2240 break;
2242 bp->b_ops = &xfs_dir3_free_buf_ops;
2243 break;
2244 case XFS_BLFT_DIR_LEAF1_BUF:
2245 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2246 magicda != XFS_DIR3_LEAF1_MAGIC) {
2247 xfs_warn(mp, "Bad dir leaf1 magic!");
2248 ASSERT(0);
2249 break;
2251 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2252 break;
2253 case XFS_BLFT_DIR_LEAFN_BUF:
2254 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2255 magicda != XFS_DIR3_LEAFN_MAGIC) {
2256 xfs_warn(mp, "Bad dir leafn magic!");
2257 ASSERT(0);
2258 break;
2260 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2261 break;
2262 case XFS_BLFT_DA_NODE_BUF:
2263 if (magicda != XFS_DA_NODE_MAGIC &&
2264 magicda != XFS_DA3_NODE_MAGIC) {
2265 xfs_warn(mp, "Bad da node magic!");
2266 ASSERT(0);
2267 break;
2269 bp->b_ops = &xfs_da3_node_buf_ops;
2270 break;
2271 case XFS_BLFT_ATTR_LEAF_BUF:
2272 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2273 magicda != XFS_ATTR3_LEAF_MAGIC) {
2274 xfs_warn(mp, "Bad attr leaf magic!");
2275 ASSERT(0);
2276 break;
2278 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2279 break;
2280 case XFS_BLFT_ATTR_RMT_BUF:
2281 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2282 xfs_warn(mp, "Bad attr remote magic!");
2283 ASSERT(0);
2284 break;
2286 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2287 break;
2288 case XFS_BLFT_SB_BUF:
2289 if (magic32 != XFS_SB_MAGIC) {
2290 xfs_warn(mp, "Bad SB block magic!");
2291 ASSERT(0);
2292 break;
2294 bp->b_ops = &xfs_sb_buf_ops;
2295 break;
2296 default:
2297 xfs_warn(mp, "Unknown buffer type %d!",
2298 xfs_blft_from_flags(buf_f));
2299 break;
2304 * Perform a 'normal' buffer recovery. Each logged region of the
2305 * buffer should be copied over the corresponding region in the
2306 * given buffer. The bitmap in the buf log format structure indicates
2307 * where to place the logged data.
2309 STATIC void
2310 xlog_recover_do_reg_buffer(
2311 struct xfs_mount *mp,
2312 xlog_recover_item_t *item,
2313 struct xfs_buf *bp,
2314 xfs_buf_log_format_t *buf_f)
2316 int i;
2317 int bit;
2318 int nbits;
2319 int error;
2321 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2323 bit = 0;
2324 i = 1; /* 0 is the buf format structure */
2325 while (1) {
2326 bit = xfs_next_bit(buf_f->blf_data_map,
2327 buf_f->blf_map_size, bit);
2328 if (bit == -1)
2329 break;
2330 nbits = xfs_contig_bits(buf_f->blf_data_map,
2331 buf_f->blf_map_size, bit);
2332 ASSERT(nbits > 0);
2333 ASSERT(item->ri_buf[i].i_addr != NULL);
2334 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2335 ASSERT(BBTOB(bp->b_io_length) >=
2336 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2339 * The dirty regions logged in the buffer, even though
2340 * contiguous, may span multiple chunks. This is because the
2341 * dirty region may span a physical page boundary in a buffer
2342 * and hence be split into two separate vectors for writing into
2343 * the log. Hence we need to trim nbits back to the length of
2344 * the current region being copied out of the log.
2346 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2347 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2350 * Do a sanity check if this is a dquot buffer. Just checking
2351 * the first dquot in the buffer should do. XXXThis is
2352 * probably a good thing to do for other buf types also.
2354 error = 0;
2355 if (buf_f->blf_flags &
2356 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2357 if (item->ri_buf[i].i_addr == NULL) {
2358 xfs_alert(mp,
2359 "XFS: NULL dquot in %s.", __func__);
2360 goto next;
2362 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2363 xfs_alert(mp,
2364 "XFS: dquot too small (%d) in %s.",
2365 item->ri_buf[i].i_len, __func__);
2366 goto next;
2368 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2369 -1, 0, XFS_QMOPT_DOWARN,
2370 "dquot_buf_recover");
2371 if (error)
2372 goto next;
2375 memcpy(xfs_buf_offset(bp,
2376 (uint)bit << XFS_BLF_SHIFT), /* dest */
2377 item->ri_buf[i].i_addr, /* source */
2378 nbits<<XFS_BLF_SHIFT); /* length */
2379 next:
2380 i++;
2381 bit += nbits;
2384 /* Shouldn't be any more regions */
2385 ASSERT(i == item->ri_total);
2387 xlog_recover_validate_buf_type(mp, bp, buf_f);
2391 * Do some primitive error checking on ondisk dquot data structures.
2394 xfs_qm_dqcheck(
2395 struct xfs_mount *mp,
2396 xfs_disk_dquot_t *ddq,
2397 xfs_dqid_t id,
2398 uint type, /* used only when IO_dorepair is true */
2399 uint flags,
2400 char *str)
2402 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2403 int errs = 0;
2406 * We can encounter an uninitialized dquot buffer for 2 reasons:
2407 * 1. If we crash while deleting the quotainode(s), and those blks got
2408 * used for user data. This is because we take the path of regular
2409 * file deletion; however, the size field of quotainodes is never
2410 * updated, so all the tricks that we play in itruncate_finish
2411 * don't quite matter.
2413 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2414 * But the allocation will be replayed so we'll end up with an
2415 * uninitialized quota block.
2417 * This is all fine; things are still consistent, and we haven't lost
2418 * any quota information. Just don't complain about bad dquot blks.
2420 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2421 if (flags & XFS_QMOPT_DOWARN)
2422 xfs_alert(mp,
2423 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2424 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2425 errs++;
2427 if (ddq->d_version != XFS_DQUOT_VERSION) {
2428 if (flags & XFS_QMOPT_DOWARN)
2429 xfs_alert(mp,
2430 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2431 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2432 errs++;
2435 if (ddq->d_flags != XFS_DQ_USER &&
2436 ddq->d_flags != XFS_DQ_PROJ &&
2437 ddq->d_flags != XFS_DQ_GROUP) {
2438 if (flags & XFS_QMOPT_DOWARN)
2439 xfs_alert(mp,
2440 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2441 str, id, ddq->d_flags);
2442 errs++;
2445 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2446 if (flags & XFS_QMOPT_DOWARN)
2447 xfs_alert(mp,
2448 "%s : ondisk-dquot 0x%p, ID mismatch: "
2449 "0x%x expected, found id 0x%x",
2450 str, ddq, id, be32_to_cpu(ddq->d_id));
2451 errs++;
2454 if (!errs && ddq->d_id) {
2455 if (ddq->d_blk_softlimit &&
2456 be64_to_cpu(ddq->d_bcount) >
2457 be64_to_cpu(ddq->d_blk_softlimit)) {
2458 if (!ddq->d_btimer) {
2459 if (flags & XFS_QMOPT_DOWARN)
2460 xfs_alert(mp,
2461 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2462 str, (int)be32_to_cpu(ddq->d_id), ddq);
2463 errs++;
2466 if (ddq->d_ino_softlimit &&
2467 be64_to_cpu(ddq->d_icount) >
2468 be64_to_cpu(ddq->d_ino_softlimit)) {
2469 if (!ddq->d_itimer) {
2470 if (flags & XFS_QMOPT_DOWARN)
2471 xfs_alert(mp,
2472 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2473 str, (int)be32_to_cpu(ddq->d_id), ddq);
2474 errs++;
2477 if (ddq->d_rtb_softlimit &&
2478 be64_to_cpu(ddq->d_rtbcount) >
2479 be64_to_cpu(ddq->d_rtb_softlimit)) {
2480 if (!ddq->d_rtbtimer) {
2481 if (flags & XFS_QMOPT_DOWARN)
2482 xfs_alert(mp,
2483 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2484 str, (int)be32_to_cpu(ddq->d_id), ddq);
2485 errs++;
2490 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2491 return errs;
2493 if (flags & XFS_QMOPT_DOWARN)
2494 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2497 * Typically, a repair is only requested by quotacheck.
2499 ASSERT(id != -1);
2500 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2501 memset(d, 0, sizeof(xfs_dqblk_t));
2503 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2504 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2505 d->dd_diskdq.d_flags = type;
2506 d->dd_diskdq.d_id = cpu_to_be32(id);
2508 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2509 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2510 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2511 XFS_DQUOT_CRC_OFF);
2514 return errs;
2518 * Perform a dquot buffer recovery.
2519 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2520 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2521 * Else, treat it as a regular buffer and do recovery.
2523 STATIC void
2524 xlog_recover_do_dquot_buffer(
2525 struct xfs_mount *mp,
2526 struct xlog *log,
2527 struct xlog_recover_item *item,
2528 struct xfs_buf *bp,
2529 struct xfs_buf_log_format *buf_f)
2531 uint type;
2533 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2536 * Filesystems are required to send in quota flags at mount time.
2538 if (mp->m_qflags == 0) {
2539 return;
2542 type = 0;
2543 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2544 type |= XFS_DQ_USER;
2545 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2546 type |= XFS_DQ_PROJ;
2547 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2548 type |= XFS_DQ_GROUP;
2550 * This type of quotas was turned off, so ignore this buffer
2552 if (log->l_quotaoffs_flag & type)
2553 return;
2555 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2559 * This routine replays a modification made to a buffer at runtime.
2560 * There are actually two types of buffer, regular and inode, which
2561 * are handled differently. Inode buffers are handled differently
2562 * in that we only recover a specific set of data from them, namely
2563 * the inode di_next_unlinked fields. This is because all other inode
2564 * data is actually logged via inode records and any data we replay
2565 * here which overlaps that may be stale.
2567 * When meta-data buffers are freed at run time we log a buffer item
2568 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2569 * of the buffer in the log should not be replayed at recovery time.
2570 * This is so that if the blocks covered by the buffer are reused for
2571 * file data before we crash we don't end up replaying old, freed
2572 * meta-data into a user's file.
2574 * To handle the cancellation of buffer log items, we make two passes
2575 * over the log during recovery. During the first we build a table of
2576 * those buffers which have been cancelled, and during the second we
2577 * only replay those buffers which do not have corresponding cancel
2578 * records in the table. See xlog_recover_buffer_pass[1,2] above
2579 * for more details on the implementation of the table of cancel records.
2581 STATIC int
2582 xlog_recover_buffer_pass2(
2583 struct xlog *log,
2584 struct list_head *buffer_list,
2585 struct xlog_recover_item *item,
2586 xfs_lsn_t current_lsn)
2588 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2589 xfs_mount_t *mp = log->l_mp;
2590 xfs_buf_t *bp;
2591 int error;
2592 uint buf_flags;
2593 xfs_lsn_t lsn;
2596 * In this pass we only want to recover all the buffers which have
2597 * not been cancelled and are not cancellation buffers themselves.
2599 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2600 buf_f->blf_len, buf_f->blf_flags)) {
2601 trace_xfs_log_recover_buf_cancel(log, buf_f);
2602 return 0;
2605 trace_xfs_log_recover_buf_recover(log, buf_f);
2607 buf_flags = 0;
2608 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2609 buf_flags |= XBF_UNMAPPED;
2611 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2612 buf_flags, NULL);
2613 if (!bp)
2614 return XFS_ERROR(ENOMEM);
2615 error = bp->b_error;
2616 if (error) {
2617 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2618 goto out_release;
2622 * Recover the buffer only if we get an LSN from it and it's less than
2623 * the lsn of the transaction we are replaying.
2625 * Note that we have to be extremely careful of readahead here.
2626 * Readahead does not attach verfiers to the buffers so if we don't
2627 * actually do any replay after readahead because of the LSN we found
2628 * in the buffer if more recent than that current transaction then we
2629 * need to attach the verifier directly. Failure to do so can lead to
2630 * future recovery actions (e.g. EFI and unlinked list recovery) can
2631 * operate on the buffers and they won't get the verifier attached. This
2632 * can lead to blocks on disk having the correct content but a stale
2633 * CRC.
2635 * It is safe to assume these clean buffers are currently up to date.
2636 * If the buffer is dirtied by a later transaction being replayed, then
2637 * the verifier will be reset to match whatever recover turns that
2638 * buffer into.
2640 lsn = xlog_recover_get_buf_lsn(mp, bp);
2641 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2642 xlog_recover_validate_buf_type(mp, bp, buf_f);
2643 goto out_release;
2646 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2647 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2648 } else if (buf_f->blf_flags &
2649 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2650 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2651 } else {
2652 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2654 if (error)
2655 goto out_release;
2658 * Perform delayed write on the buffer. Asynchronous writes will be
2659 * slower when taking into account all the buffers to be flushed.
2661 * Also make sure that only inode buffers with good sizes stay in
2662 * the buffer cache. The kernel moves inodes in buffers of 1 block
2663 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2664 * buffers in the log can be a different size if the log was generated
2665 * by an older kernel using unclustered inode buffers or a newer kernel
2666 * running with a different inode cluster size. Regardless, if the
2667 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2668 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2669 * the buffer out of the buffer cache so that the buffer won't
2670 * overlap with future reads of those inodes.
2672 if (XFS_DINODE_MAGIC ==
2673 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2674 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2675 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2676 xfs_buf_stale(bp);
2677 error = xfs_bwrite(bp);
2678 } else {
2679 ASSERT(bp->b_target->bt_mount == mp);
2680 bp->b_iodone = xlog_recover_iodone;
2681 xfs_buf_delwri_queue(bp, buffer_list);
2684 out_release:
2685 xfs_buf_relse(bp);
2686 return error;
2690 * Inode fork owner changes
2692 * If we have been told that we have to reparent the inode fork, it's because an
2693 * extent swap operation on a CRC enabled filesystem has been done and we are
2694 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2695 * owners of it.
2697 * The complexity here is that we don't have an inode context to work with, so
2698 * after we've replayed the inode we need to instantiate one. This is where the
2699 * fun begins.
2701 * We are in the middle of log recovery, so we can't run transactions. That
2702 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2703 * that will result in the corresponding iput() running the inode through
2704 * xfs_inactive(). If we've just replayed an inode core that changes the link
2705 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2706 * transactions (bad!).
2708 * So, to avoid this, we instantiate an inode directly from the inode core we've
2709 * just recovered. We have the buffer still locked, and all we really need to
2710 * instantiate is the inode core and the forks being modified. We can do this
2711 * manually, then run the inode btree owner change, and then tear down the
2712 * xfs_inode without having to run any transactions at all.
2714 * Also, because we don't have a transaction context available here but need to
2715 * gather all the buffers we modify for writeback so we pass the buffer_list
2716 * instead for the operation to use.
2719 STATIC int
2720 xfs_recover_inode_owner_change(
2721 struct xfs_mount *mp,
2722 struct xfs_dinode *dip,
2723 struct xfs_inode_log_format *in_f,
2724 struct list_head *buffer_list)
2726 struct xfs_inode *ip;
2727 int error;
2729 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2731 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2732 if (!ip)
2733 return ENOMEM;
2735 /* instantiate the inode */
2736 xfs_dinode_from_disk(&ip->i_d, dip);
2737 ASSERT(ip->i_d.di_version >= 3);
2739 error = xfs_iformat_fork(ip, dip);
2740 if (error)
2741 goto out_free_ip;
2744 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2745 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2746 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2747 ip->i_ino, buffer_list);
2748 if (error)
2749 goto out_free_ip;
2752 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2753 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2754 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2755 ip->i_ino, buffer_list);
2756 if (error)
2757 goto out_free_ip;
2760 out_free_ip:
2761 xfs_inode_free(ip);
2762 return error;
2765 STATIC int
2766 xlog_recover_inode_pass2(
2767 struct xlog *log,
2768 struct list_head *buffer_list,
2769 struct xlog_recover_item *item,
2770 xfs_lsn_t current_lsn)
2772 xfs_inode_log_format_t *in_f;
2773 xfs_mount_t *mp = log->l_mp;
2774 xfs_buf_t *bp;
2775 xfs_dinode_t *dip;
2776 int len;
2777 xfs_caddr_t src;
2778 xfs_caddr_t dest;
2779 int error;
2780 int attr_index;
2781 uint fields;
2782 xfs_icdinode_t *dicp;
2783 uint isize;
2784 int need_free = 0;
2786 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2787 in_f = item->ri_buf[0].i_addr;
2788 } else {
2789 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2790 need_free = 1;
2791 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2792 if (error)
2793 goto error;
2797 * Inode buffers can be freed, look out for it,
2798 * and do not replay the inode.
2800 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2801 in_f->ilf_len, 0)) {
2802 error = 0;
2803 trace_xfs_log_recover_inode_cancel(log, in_f);
2804 goto error;
2806 trace_xfs_log_recover_inode_recover(log, in_f);
2808 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2809 &xfs_inode_buf_ops);
2810 if (!bp) {
2811 error = ENOMEM;
2812 goto error;
2814 error = bp->b_error;
2815 if (error) {
2816 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2817 goto out_release;
2819 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2820 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2823 * Make sure the place we're flushing out to really looks
2824 * like an inode!
2826 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2827 xfs_alert(mp,
2828 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2829 __func__, dip, bp, in_f->ilf_ino);
2830 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2831 XFS_ERRLEVEL_LOW, mp);
2832 error = EFSCORRUPTED;
2833 goto out_release;
2835 dicp = item->ri_buf[1].i_addr;
2836 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2837 xfs_alert(mp,
2838 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2839 __func__, item, in_f->ilf_ino);
2840 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2841 XFS_ERRLEVEL_LOW, mp);
2842 error = EFSCORRUPTED;
2843 goto out_release;
2847 * If the inode has an LSN in it, recover the inode only if it's less
2848 * than the lsn of the transaction we are replaying. Note: we still
2849 * need to replay an owner change even though the inode is more recent
2850 * than the transaction as there is no guarantee that all the btree
2851 * blocks are more recent than this transaction, too.
2853 if (dip->di_version >= 3) {
2854 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2856 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2857 trace_xfs_log_recover_inode_skip(log, in_f);
2858 error = 0;
2859 goto out_owner_change;
2864 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2865 * are transactional and if ordering is necessary we can determine that
2866 * more accurately by the LSN field in the V3 inode core. Don't trust
2867 * the inode versions we might be changing them here - use the
2868 * superblock flag to determine whether we need to look at di_flushiter
2869 * to skip replay when the on disk inode is newer than the log one
2871 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2872 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2874 * Deal with the wrap case, DI_MAX_FLUSH is less
2875 * than smaller numbers
2877 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2878 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2879 /* do nothing */
2880 } else {
2881 trace_xfs_log_recover_inode_skip(log, in_f);
2882 error = 0;
2883 goto out_release;
2887 /* Take the opportunity to reset the flush iteration count */
2888 dicp->di_flushiter = 0;
2890 if (unlikely(S_ISREG(dicp->di_mode))) {
2891 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2892 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2893 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2894 XFS_ERRLEVEL_LOW, mp, dicp);
2895 xfs_alert(mp,
2896 "%s: Bad regular inode log record, rec ptr 0x%p, "
2897 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2898 __func__, item, dip, bp, in_f->ilf_ino);
2899 error = EFSCORRUPTED;
2900 goto out_release;
2902 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2903 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2904 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2905 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2906 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2907 XFS_ERRLEVEL_LOW, mp, dicp);
2908 xfs_alert(mp,
2909 "%s: Bad dir inode log record, rec ptr 0x%p, "
2910 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2911 __func__, item, dip, bp, in_f->ilf_ino);
2912 error = EFSCORRUPTED;
2913 goto out_release;
2916 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2917 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2918 XFS_ERRLEVEL_LOW, mp, dicp);
2919 xfs_alert(mp,
2920 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2921 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2922 __func__, item, dip, bp, in_f->ilf_ino,
2923 dicp->di_nextents + dicp->di_anextents,
2924 dicp->di_nblocks);
2925 error = EFSCORRUPTED;
2926 goto out_release;
2928 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2929 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2930 XFS_ERRLEVEL_LOW, mp, dicp);
2931 xfs_alert(mp,
2932 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2933 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2934 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2935 error = EFSCORRUPTED;
2936 goto out_release;
2938 isize = xfs_icdinode_size(dicp->di_version);
2939 if (unlikely(item->ri_buf[1].i_len > isize)) {
2940 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2941 XFS_ERRLEVEL_LOW, mp, dicp);
2942 xfs_alert(mp,
2943 "%s: Bad inode log record length %d, rec ptr 0x%p",
2944 __func__, item->ri_buf[1].i_len, item);
2945 error = EFSCORRUPTED;
2946 goto out_release;
2949 /* The core is in in-core format */
2950 xfs_dinode_to_disk(dip, dicp);
2952 /* the rest is in on-disk format */
2953 if (item->ri_buf[1].i_len > isize) {
2954 memcpy((char *)dip + isize,
2955 item->ri_buf[1].i_addr + isize,
2956 item->ri_buf[1].i_len - isize);
2959 fields = in_f->ilf_fields;
2960 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2961 case XFS_ILOG_DEV:
2962 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2963 break;
2964 case XFS_ILOG_UUID:
2965 memcpy(XFS_DFORK_DPTR(dip),
2966 &in_f->ilf_u.ilfu_uuid,
2967 sizeof(uuid_t));
2968 break;
2971 if (in_f->ilf_size == 2)
2972 goto out_owner_change;
2973 len = item->ri_buf[2].i_len;
2974 src = item->ri_buf[2].i_addr;
2975 ASSERT(in_f->ilf_size <= 4);
2976 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2977 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2978 (len == in_f->ilf_dsize));
2980 switch (fields & XFS_ILOG_DFORK) {
2981 case XFS_ILOG_DDATA:
2982 case XFS_ILOG_DEXT:
2983 memcpy(XFS_DFORK_DPTR(dip), src, len);
2984 break;
2986 case XFS_ILOG_DBROOT:
2987 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2988 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2989 XFS_DFORK_DSIZE(dip, mp));
2990 break;
2992 default:
2994 * There are no data fork flags set.
2996 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2997 break;
3001 * If we logged any attribute data, recover it. There may or
3002 * may not have been any other non-core data logged in this
3003 * transaction.
3005 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3006 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3007 attr_index = 3;
3008 } else {
3009 attr_index = 2;
3011 len = item->ri_buf[attr_index].i_len;
3012 src = item->ri_buf[attr_index].i_addr;
3013 ASSERT(len == in_f->ilf_asize);
3015 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3016 case XFS_ILOG_ADATA:
3017 case XFS_ILOG_AEXT:
3018 dest = XFS_DFORK_APTR(dip);
3019 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3020 memcpy(dest, src, len);
3021 break;
3023 case XFS_ILOG_ABROOT:
3024 dest = XFS_DFORK_APTR(dip);
3025 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3026 len, (xfs_bmdr_block_t*)dest,
3027 XFS_DFORK_ASIZE(dip, mp));
3028 break;
3030 default:
3031 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3032 ASSERT(0);
3033 error = EIO;
3034 goto out_release;
3038 out_owner_change:
3039 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3040 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3041 buffer_list);
3042 /* re-generate the checksum. */
3043 xfs_dinode_calc_crc(log->l_mp, dip);
3045 ASSERT(bp->b_target->bt_mount == mp);
3046 bp->b_iodone = xlog_recover_iodone;
3047 xfs_buf_delwri_queue(bp, buffer_list);
3049 out_release:
3050 xfs_buf_relse(bp);
3051 error:
3052 if (need_free)
3053 kmem_free(in_f);
3054 return XFS_ERROR(error);
3058 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3059 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3060 * of that type.
3062 STATIC int
3063 xlog_recover_quotaoff_pass1(
3064 struct xlog *log,
3065 struct xlog_recover_item *item)
3067 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3068 ASSERT(qoff_f);
3071 * The logitem format's flag tells us if this was user quotaoff,
3072 * group/project quotaoff or both.
3074 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3075 log->l_quotaoffs_flag |= XFS_DQ_USER;
3076 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3077 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3078 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3079 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3081 return (0);
3085 * Recover a dquot record
3087 STATIC int
3088 xlog_recover_dquot_pass2(
3089 struct xlog *log,
3090 struct list_head *buffer_list,
3091 struct xlog_recover_item *item,
3092 xfs_lsn_t current_lsn)
3094 xfs_mount_t *mp = log->l_mp;
3095 xfs_buf_t *bp;
3096 struct xfs_disk_dquot *ddq, *recddq;
3097 int error;
3098 xfs_dq_logformat_t *dq_f;
3099 uint type;
3103 * Filesystems are required to send in quota flags at mount time.
3105 if (mp->m_qflags == 0)
3106 return (0);
3108 recddq = item->ri_buf[1].i_addr;
3109 if (recddq == NULL) {
3110 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3111 return XFS_ERROR(EIO);
3113 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3114 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3115 item->ri_buf[1].i_len, __func__);
3116 return XFS_ERROR(EIO);
3120 * This type of quotas was turned off, so ignore this record.
3122 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3123 ASSERT(type);
3124 if (log->l_quotaoffs_flag & type)
3125 return (0);
3128 * At this point we know that quota was _not_ turned off.
3129 * Since the mount flags are not indicating to us otherwise, this
3130 * must mean that quota is on, and the dquot needs to be replayed.
3131 * Remember that we may not have fully recovered the superblock yet,
3132 * so we can't do the usual trick of looking at the SB quota bits.
3134 * The other possibility, of course, is that the quota subsystem was
3135 * removed since the last mount - ENOSYS.
3137 dq_f = item->ri_buf[0].i_addr;
3138 ASSERT(dq_f);
3139 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3140 "xlog_recover_dquot_pass2 (log copy)");
3141 if (error)
3142 return XFS_ERROR(EIO);
3143 ASSERT(dq_f->qlf_len == 1);
3145 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3146 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3147 NULL);
3148 if (error)
3149 return error;
3151 ASSERT(bp);
3152 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3155 * At least the magic num portion should be on disk because this
3156 * was among a chunk of dquots created earlier, and we did some
3157 * minimal initialization then.
3159 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3160 "xlog_recover_dquot_pass2");
3161 if (error) {
3162 xfs_buf_relse(bp);
3163 return XFS_ERROR(EIO);
3167 * If the dquot has an LSN in it, recover the dquot only if it's less
3168 * than the lsn of the transaction we are replaying.
3170 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3171 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3172 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3174 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3175 goto out_release;
3179 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3180 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3181 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3182 XFS_DQUOT_CRC_OFF);
3185 ASSERT(dq_f->qlf_size == 2);
3186 ASSERT(bp->b_target->bt_mount == mp);
3187 bp->b_iodone = xlog_recover_iodone;
3188 xfs_buf_delwri_queue(bp, buffer_list);
3190 out_release:
3191 xfs_buf_relse(bp);
3192 return 0;
3196 * This routine is called to create an in-core extent free intent
3197 * item from the efi format structure which was logged on disk.
3198 * It allocates an in-core efi, copies the extents from the format
3199 * structure into it, and adds the efi to the AIL with the given
3200 * LSN.
3202 STATIC int
3203 xlog_recover_efi_pass2(
3204 struct xlog *log,
3205 struct xlog_recover_item *item,
3206 xfs_lsn_t lsn)
3208 int error;
3209 xfs_mount_t *mp = log->l_mp;
3210 xfs_efi_log_item_t *efip;
3211 xfs_efi_log_format_t *efi_formatp;
3213 efi_formatp = item->ri_buf[0].i_addr;
3215 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3216 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3217 &(efip->efi_format)))) {
3218 xfs_efi_item_free(efip);
3219 return error;
3221 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3223 spin_lock(&log->l_ailp->xa_lock);
3225 * xfs_trans_ail_update() drops the AIL lock.
3227 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3228 return 0;
3233 * This routine is called when an efd format structure is found in
3234 * a committed transaction in the log. It's purpose is to cancel
3235 * the corresponding efi if it was still in the log. To do this
3236 * it searches the AIL for the efi with an id equal to that in the
3237 * efd format structure. If we find it, we remove the efi from the
3238 * AIL and free it.
3240 STATIC int
3241 xlog_recover_efd_pass2(
3242 struct xlog *log,
3243 struct xlog_recover_item *item)
3245 xfs_efd_log_format_t *efd_formatp;
3246 xfs_efi_log_item_t *efip = NULL;
3247 xfs_log_item_t *lip;
3248 __uint64_t efi_id;
3249 struct xfs_ail_cursor cur;
3250 struct xfs_ail *ailp = log->l_ailp;
3252 efd_formatp = item->ri_buf[0].i_addr;
3253 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3254 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3255 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3256 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3257 efi_id = efd_formatp->efd_efi_id;
3260 * Search for the efi with the id in the efd format structure
3261 * in the AIL.
3263 spin_lock(&ailp->xa_lock);
3264 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3265 while (lip != NULL) {
3266 if (lip->li_type == XFS_LI_EFI) {
3267 efip = (xfs_efi_log_item_t *)lip;
3268 if (efip->efi_format.efi_id == efi_id) {
3270 * xfs_trans_ail_delete() drops the
3271 * AIL lock.
3273 xfs_trans_ail_delete(ailp, lip,
3274 SHUTDOWN_CORRUPT_INCORE);
3275 xfs_efi_item_free(efip);
3276 spin_lock(&ailp->xa_lock);
3277 break;
3280 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3282 xfs_trans_ail_cursor_done(ailp, &cur);
3283 spin_unlock(&ailp->xa_lock);
3285 return 0;
3289 * This routine is called when an inode create format structure is found in a
3290 * committed transaction in the log. It's purpose is to initialise the inodes
3291 * being allocated on disk. This requires us to get inode cluster buffers that
3292 * match the range to be intialised, stamped with inode templates and written
3293 * by delayed write so that subsequent modifications will hit the cached buffer
3294 * and only need writing out at the end of recovery.
3296 STATIC int
3297 xlog_recover_do_icreate_pass2(
3298 struct xlog *log,
3299 struct list_head *buffer_list,
3300 xlog_recover_item_t *item)
3302 struct xfs_mount *mp = log->l_mp;
3303 struct xfs_icreate_log *icl;
3304 xfs_agnumber_t agno;
3305 xfs_agblock_t agbno;
3306 unsigned int count;
3307 unsigned int isize;
3308 xfs_agblock_t length;
3310 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3311 if (icl->icl_type != XFS_LI_ICREATE) {
3312 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3313 return EINVAL;
3316 if (icl->icl_size != 1) {
3317 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3318 return EINVAL;
3321 agno = be32_to_cpu(icl->icl_ag);
3322 if (agno >= mp->m_sb.sb_agcount) {
3323 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3324 return EINVAL;
3326 agbno = be32_to_cpu(icl->icl_agbno);
3327 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3328 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3329 return EINVAL;
3331 isize = be32_to_cpu(icl->icl_isize);
3332 if (isize != mp->m_sb.sb_inodesize) {
3333 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3334 return EINVAL;
3336 count = be32_to_cpu(icl->icl_count);
3337 if (!count) {
3338 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3339 return EINVAL;
3341 length = be32_to_cpu(icl->icl_length);
3342 if (!length || length >= mp->m_sb.sb_agblocks) {
3343 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3344 return EINVAL;
3347 /* existing allocation is fixed value */
3348 ASSERT(count == XFS_IALLOC_INODES(mp));
3349 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3350 if (count != XFS_IALLOC_INODES(mp) ||
3351 length != XFS_IALLOC_BLOCKS(mp)) {
3352 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3353 return EINVAL;
3357 * Inode buffers can be freed. Do not replay the inode initialisation as
3358 * we could be overwriting something written after this inode buffer was
3359 * cancelled.
3361 * XXX: we need to iterate all buffers and only init those that are not
3362 * cancelled. I think that a more fine grained factoring of
3363 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3364 * done easily.
3366 if (xlog_check_buffer_cancelled(log,
3367 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3368 return 0;
3370 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3371 be32_to_cpu(icl->icl_gen));
3372 return 0;
3376 * Free up any resources allocated by the transaction
3378 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3380 STATIC void
3381 xlog_recover_free_trans(
3382 struct xlog_recover *trans)
3384 xlog_recover_item_t *item, *n;
3385 int i;
3387 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3388 /* Free the regions in the item. */
3389 list_del(&item->ri_list);
3390 for (i = 0; i < item->ri_cnt; i++)
3391 kmem_free(item->ri_buf[i].i_addr);
3392 /* Free the item itself */
3393 kmem_free(item->ri_buf);
3394 kmem_free(item);
3396 /* Free the transaction recover structure */
3397 kmem_free(trans);
3400 STATIC void
3401 xlog_recover_buffer_ra_pass2(
3402 struct xlog *log,
3403 struct xlog_recover_item *item)
3405 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3406 struct xfs_mount *mp = log->l_mp;
3408 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3409 buf_f->blf_len, buf_f->blf_flags)) {
3410 return;
3413 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3414 buf_f->blf_len, NULL);
3417 STATIC void
3418 xlog_recover_inode_ra_pass2(
3419 struct xlog *log,
3420 struct xlog_recover_item *item)
3422 struct xfs_inode_log_format ilf_buf;
3423 struct xfs_inode_log_format *ilfp;
3424 struct xfs_mount *mp = log->l_mp;
3425 int error;
3427 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3428 ilfp = item->ri_buf[0].i_addr;
3429 } else {
3430 ilfp = &ilf_buf;
3431 memset(ilfp, 0, sizeof(*ilfp));
3432 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3433 if (error)
3434 return;
3437 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3438 return;
3440 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3441 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3444 STATIC void
3445 xlog_recover_dquot_ra_pass2(
3446 struct xlog *log,
3447 struct xlog_recover_item *item)
3449 struct xfs_mount *mp = log->l_mp;
3450 struct xfs_disk_dquot *recddq;
3451 struct xfs_dq_logformat *dq_f;
3452 uint type;
3455 if (mp->m_qflags == 0)
3456 return;
3458 recddq = item->ri_buf[1].i_addr;
3459 if (recddq == NULL)
3460 return;
3461 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3462 return;
3464 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3465 ASSERT(type);
3466 if (log->l_quotaoffs_flag & type)
3467 return;
3469 dq_f = item->ri_buf[0].i_addr;
3470 ASSERT(dq_f);
3471 ASSERT(dq_f->qlf_len == 1);
3473 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3474 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3477 STATIC void
3478 xlog_recover_ra_pass2(
3479 struct xlog *log,
3480 struct xlog_recover_item *item)
3482 switch (ITEM_TYPE(item)) {
3483 case XFS_LI_BUF:
3484 xlog_recover_buffer_ra_pass2(log, item);
3485 break;
3486 case XFS_LI_INODE:
3487 xlog_recover_inode_ra_pass2(log, item);
3488 break;
3489 case XFS_LI_DQUOT:
3490 xlog_recover_dquot_ra_pass2(log, item);
3491 break;
3492 case XFS_LI_EFI:
3493 case XFS_LI_EFD:
3494 case XFS_LI_QUOTAOFF:
3495 default:
3496 break;
3500 STATIC int
3501 xlog_recover_commit_pass1(
3502 struct xlog *log,
3503 struct xlog_recover *trans,
3504 struct xlog_recover_item *item)
3506 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3508 switch (ITEM_TYPE(item)) {
3509 case XFS_LI_BUF:
3510 return xlog_recover_buffer_pass1(log, item);
3511 case XFS_LI_QUOTAOFF:
3512 return xlog_recover_quotaoff_pass1(log, item);
3513 case XFS_LI_INODE:
3514 case XFS_LI_EFI:
3515 case XFS_LI_EFD:
3516 case XFS_LI_DQUOT:
3517 case XFS_LI_ICREATE:
3518 /* nothing to do in pass 1 */
3519 return 0;
3520 default:
3521 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3522 __func__, ITEM_TYPE(item));
3523 ASSERT(0);
3524 return XFS_ERROR(EIO);
3528 STATIC int
3529 xlog_recover_commit_pass2(
3530 struct xlog *log,
3531 struct xlog_recover *trans,
3532 struct list_head *buffer_list,
3533 struct xlog_recover_item *item)
3535 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3537 switch (ITEM_TYPE(item)) {
3538 case XFS_LI_BUF:
3539 return xlog_recover_buffer_pass2(log, buffer_list, item,
3540 trans->r_lsn);
3541 case XFS_LI_INODE:
3542 return xlog_recover_inode_pass2(log, buffer_list, item,
3543 trans->r_lsn);
3544 case XFS_LI_EFI:
3545 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3546 case XFS_LI_EFD:
3547 return xlog_recover_efd_pass2(log, item);
3548 case XFS_LI_DQUOT:
3549 return xlog_recover_dquot_pass2(log, buffer_list, item,
3550 trans->r_lsn);
3551 case XFS_LI_ICREATE:
3552 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3553 case XFS_LI_QUOTAOFF:
3554 /* nothing to do in pass2 */
3555 return 0;
3556 default:
3557 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3558 __func__, ITEM_TYPE(item));
3559 ASSERT(0);
3560 return XFS_ERROR(EIO);
3564 STATIC int
3565 xlog_recover_items_pass2(
3566 struct xlog *log,
3567 struct xlog_recover *trans,
3568 struct list_head *buffer_list,
3569 struct list_head *item_list)
3571 struct xlog_recover_item *item;
3572 int error = 0;
3574 list_for_each_entry(item, item_list, ri_list) {
3575 error = xlog_recover_commit_pass2(log, trans,
3576 buffer_list, item);
3577 if (error)
3578 return error;
3581 return error;
3585 * Perform the transaction.
3587 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3588 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3590 STATIC int
3591 xlog_recover_commit_trans(
3592 struct xlog *log,
3593 struct xlog_recover *trans,
3594 int pass)
3596 int error = 0;
3597 int error2;
3598 int items_queued = 0;
3599 struct xlog_recover_item *item;
3600 struct xlog_recover_item *next;
3601 LIST_HEAD (buffer_list);
3602 LIST_HEAD (ra_list);
3603 LIST_HEAD (done_list);
3605 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3607 hlist_del(&trans->r_list);
3609 error = xlog_recover_reorder_trans(log, trans, pass);
3610 if (error)
3611 return error;
3613 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3614 switch (pass) {
3615 case XLOG_RECOVER_PASS1:
3616 error = xlog_recover_commit_pass1(log, trans, item);
3617 break;
3618 case XLOG_RECOVER_PASS2:
3619 xlog_recover_ra_pass2(log, item);
3620 list_move_tail(&item->ri_list, &ra_list);
3621 items_queued++;
3622 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3623 error = xlog_recover_items_pass2(log, trans,
3624 &buffer_list, &ra_list);
3625 list_splice_tail_init(&ra_list, &done_list);
3626 items_queued = 0;
3629 break;
3630 default:
3631 ASSERT(0);
3634 if (error)
3635 goto out;
3638 out:
3639 if (!list_empty(&ra_list)) {
3640 if (!error)
3641 error = xlog_recover_items_pass2(log, trans,
3642 &buffer_list, &ra_list);
3643 list_splice_tail_init(&ra_list, &done_list);
3646 if (!list_empty(&done_list))
3647 list_splice_init(&done_list, &trans->r_itemq);
3649 xlog_recover_free_trans(trans);
3651 error2 = xfs_buf_delwri_submit(&buffer_list);
3652 return error ? error : error2;
3655 STATIC int
3656 xlog_recover_unmount_trans(
3657 struct xlog *log,
3658 struct xlog_recover *trans)
3660 /* Do nothing now */
3661 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3662 return 0;
3666 * There are two valid states of the r_state field. 0 indicates that the
3667 * transaction structure is in a normal state. We have either seen the
3668 * start of the transaction or the last operation we added was not a partial
3669 * operation. If the last operation we added to the transaction was a
3670 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3672 * NOTE: skip LRs with 0 data length.
3674 STATIC int
3675 xlog_recover_process_data(
3676 struct xlog *log,
3677 struct hlist_head rhash[],
3678 struct xlog_rec_header *rhead,
3679 xfs_caddr_t dp,
3680 int pass)
3682 xfs_caddr_t lp;
3683 int num_logops;
3684 xlog_op_header_t *ohead;
3685 xlog_recover_t *trans;
3686 xlog_tid_t tid;
3687 int error;
3688 unsigned long hash;
3689 uint flags;
3691 lp = dp + be32_to_cpu(rhead->h_len);
3692 num_logops = be32_to_cpu(rhead->h_num_logops);
3694 /* check the log format matches our own - else we can't recover */
3695 if (xlog_header_check_recover(log->l_mp, rhead))
3696 return (XFS_ERROR(EIO));
3698 while ((dp < lp) && num_logops) {
3699 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3700 ohead = (xlog_op_header_t *)dp;
3701 dp += sizeof(xlog_op_header_t);
3702 if (ohead->oh_clientid != XFS_TRANSACTION &&
3703 ohead->oh_clientid != XFS_LOG) {
3704 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3705 __func__, ohead->oh_clientid);
3706 ASSERT(0);
3707 return (XFS_ERROR(EIO));
3709 tid = be32_to_cpu(ohead->oh_tid);
3710 hash = XLOG_RHASH(tid);
3711 trans = xlog_recover_find_tid(&rhash[hash], tid);
3712 if (trans == NULL) { /* not found; add new tid */
3713 if (ohead->oh_flags & XLOG_START_TRANS)
3714 xlog_recover_new_tid(&rhash[hash], tid,
3715 be64_to_cpu(rhead->h_lsn));
3716 } else {
3717 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3718 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3719 __func__, be32_to_cpu(ohead->oh_len));
3720 WARN_ON(1);
3721 return (XFS_ERROR(EIO));
3723 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3724 if (flags & XLOG_WAS_CONT_TRANS)
3725 flags &= ~XLOG_CONTINUE_TRANS;
3726 switch (flags) {
3727 case XLOG_COMMIT_TRANS:
3728 error = xlog_recover_commit_trans(log,
3729 trans, pass);
3730 break;
3731 case XLOG_UNMOUNT_TRANS:
3732 error = xlog_recover_unmount_trans(log, trans);
3733 break;
3734 case XLOG_WAS_CONT_TRANS:
3735 error = xlog_recover_add_to_cont_trans(log,
3736 trans, dp,
3737 be32_to_cpu(ohead->oh_len));
3738 break;
3739 case XLOG_START_TRANS:
3740 xfs_warn(log->l_mp, "%s: bad transaction",
3741 __func__);
3742 ASSERT(0);
3743 error = XFS_ERROR(EIO);
3744 break;
3745 case 0:
3746 case XLOG_CONTINUE_TRANS:
3747 error = xlog_recover_add_to_trans(log, trans,
3748 dp, be32_to_cpu(ohead->oh_len));
3749 break;
3750 default:
3751 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3752 __func__, flags);
3753 ASSERT(0);
3754 error = XFS_ERROR(EIO);
3755 break;
3757 if (error)
3758 return error;
3760 dp += be32_to_cpu(ohead->oh_len);
3761 num_logops--;
3763 return 0;
3767 * Process an extent free intent item that was recovered from
3768 * the log. We need to free the extents that it describes.
3770 STATIC int
3771 xlog_recover_process_efi(
3772 xfs_mount_t *mp,
3773 xfs_efi_log_item_t *efip)
3775 xfs_efd_log_item_t *efdp;
3776 xfs_trans_t *tp;
3777 int i;
3778 int error = 0;
3779 xfs_extent_t *extp;
3780 xfs_fsblock_t startblock_fsb;
3782 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3785 * First check the validity of the extents described by the
3786 * EFI. If any are bad, then assume that all are bad and
3787 * just toss the EFI.
3789 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3790 extp = &(efip->efi_format.efi_extents[i]);
3791 startblock_fsb = XFS_BB_TO_FSB(mp,
3792 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3793 if ((startblock_fsb == 0) ||
3794 (extp->ext_len == 0) ||
3795 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3796 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3798 * This will pull the EFI from the AIL and
3799 * free the memory associated with it.
3801 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3802 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3803 return XFS_ERROR(EIO);
3807 tp = xfs_trans_alloc(mp, 0);
3808 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3809 if (error)
3810 goto abort_error;
3811 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3813 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3814 extp = &(efip->efi_format.efi_extents[i]);
3815 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3816 if (error)
3817 goto abort_error;
3818 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3819 extp->ext_len);
3822 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3823 error = xfs_trans_commit(tp, 0);
3824 return error;
3826 abort_error:
3827 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3828 return error;
3832 * When this is called, all of the EFIs which did not have
3833 * corresponding EFDs should be in the AIL. What we do now
3834 * is free the extents associated with each one.
3836 * Since we process the EFIs in normal transactions, they
3837 * will be removed at some point after the commit. This prevents
3838 * us from just walking down the list processing each one.
3839 * We'll use a flag in the EFI to skip those that we've already
3840 * processed and use the AIL iteration mechanism's generation
3841 * count to try to speed this up at least a bit.
3843 * When we start, we know that the EFIs are the only things in
3844 * the AIL. As we process them, however, other items are added
3845 * to the AIL. Since everything added to the AIL must come after
3846 * everything already in the AIL, we stop processing as soon as
3847 * we see something other than an EFI in the AIL.
3849 STATIC int
3850 xlog_recover_process_efis(
3851 struct xlog *log)
3853 xfs_log_item_t *lip;
3854 xfs_efi_log_item_t *efip;
3855 int error = 0;
3856 struct xfs_ail_cursor cur;
3857 struct xfs_ail *ailp;
3859 ailp = log->l_ailp;
3860 spin_lock(&ailp->xa_lock);
3861 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3862 while (lip != NULL) {
3864 * We're done when we see something other than an EFI.
3865 * There should be no EFIs left in the AIL now.
3867 if (lip->li_type != XFS_LI_EFI) {
3868 #ifdef DEBUG
3869 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3870 ASSERT(lip->li_type != XFS_LI_EFI);
3871 #endif
3872 break;
3876 * Skip EFIs that we've already processed.
3878 efip = (xfs_efi_log_item_t *)lip;
3879 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3880 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3881 continue;
3884 spin_unlock(&ailp->xa_lock);
3885 error = xlog_recover_process_efi(log->l_mp, efip);
3886 spin_lock(&ailp->xa_lock);
3887 if (error)
3888 goto out;
3889 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3891 out:
3892 xfs_trans_ail_cursor_done(ailp, &cur);
3893 spin_unlock(&ailp->xa_lock);
3894 return error;
3898 * This routine performs a transaction to null out a bad inode pointer
3899 * in an agi unlinked inode hash bucket.
3901 STATIC void
3902 xlog_recover_clear_agi_bucket(
3903 xfs_mount_t *mp,
3904 xfs_agnumber_t agno,
3905 int bucket)
3907 xfs_trans_t *tp;
3908 xfs_agi_t *agi;
3909 xfs_buf_t *agibp;
3910 int offset;
3911 int error;
3913 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3914 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3915 if (error)
3916 goto out_abort;
3918 error = xfs_read_agi(mp, tp, agno, &agibp);
3919 if (error)
3920 goto out_abort;
3922 agi = XFS_BUF_TO_AGI(agibp);
3923 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3924 offset = offsetof(xfs_agi_t, agi_unlinked) +
3925 (sizeof(xfs_agino_t) * bucket);
3926 xfs_trans_log_buf(tp, agibp, offset,
3927 (offset + sizeof(xfs_agino_t) - 1));
3929 error = xfs_trans_commit(tp, 0);
3930 if (error)
3931 goto out_error;
3932 return;
3934 out_abort:
3935 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3936 out_error:
3937 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3938 return;
3941 STATIC xfs_agino_t
3942 xlog_recover_process_one_iunlink(
3943 struct xfs_mount *mp,
3944 xfs_agnumber_t agno,
3945 xfs_agino_t agino,
3946 int bucket)
3948 struct xfs_buf *ibp;
3949 struct xfs_dinode *dip;
3950 struct xfs_inode *ip;
3951 xfs_ino_t ino;
3952 int error;
3954 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3955 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3956 if (error)
3957 goto fail;
3960 * Get the on disk inode to find the next inode in the bucket.
3962 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3963 if (error)
3964 goto fail_iput;
3966 ASSERT(ip->i_d.di_nlink == 0);
3967 ASSERT(ip->i_d.di_mode != 0);
3969 /* setup for the next pass */
3970 agino = be32_to_cpu(dip->di_next_unlinked);
3971 xfs_buf_relse(ibp);
3974 * Prevent any DMAPI event from being sent when the reference on
3975 * the inode is dropped.
3977 ip->i_d.di_dmevmask = 0;
3979 IRELE(ip);
3980 return agino;
3982 fail_iput:
3983 IRELE(ip);
3984 fail:
3986 * We can't read in the inode this bucket points to, or this inode
3987 * is messed up. Just ditch this bucket of inodes. We will lose
3988 * some inodes and space, but at least we won't hang.
3990 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3991 * clear the inode pointer in the bucket.
3993 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3994 return NULLAGINO;
3998 * xlog_iunlink_recover
4000 * This is called during recovery to process any inodes which
4001 * we unlinked but not freed when the system crashed. These
4002 * inodes will be on the lists in the AGI blocks. What we do
4003 * here is scan all the AGIs and fully truncate and free any
4004 * inodes found on the lists. Each inode is removed from the
4005 * lists when it has been fully truncated and is freed. The
4006 * freeing of the inode and its removal from the list must be
4007 * atomic.
4009 STATIC void
4010 xlog_recover_process_iunlinks(
4011 struct xlog *log)
4013 xfs_mount_t *mp;
4014 xfs_agnumber_t agno;
4015 xfs_agi_t *agi;
4016 xfs_buf_t *agibp;
4017 xfs_agino_t agino;
4018 int bucket;
4019 int error;
4020 uint mp_dmevmask;
4022 mp = log->l_mp;
4025 * Prevent any DMAPI event from being sent while in this function.
4027 mp_dmevmask = mp->m_dmevmask;
4028 mp->m_dmevmask = 0;
4030 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4032 * Find the agi for this ag.
4034 error = xfs_read_agi(mp, NULL, agno, &agibp);
4035 if (error) {
4037 * AGI is b0rked. Don't process it.
4039 * We should probably mark the filesystem as corrupt
4040 * after we've recovered all the ag's we can....
4042 continue;
4045 * Unlock the buffer so that it can be acquired in the normal
4046 * course of the transaction to truncate and free each inode.
4047 * Because we are not racing with anyone else here for the AGI
4048 * buffer, we don't even need to hold it locked to read the
4049 * initial unlinked bucket entries out of the buffer. We keep
4050 * buffer reference though, so that it stays pinned in memory
4051 * while we need the buffer.
4053 agi = XFS_BUF_TO_AGI(agibp);
4054 xfs_buf_unlock(agibp);
4056 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4057 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4058 while (agino != NULLAGINO) {
4059 agino = xlog_recover_process_one_iunlink(mp,
4060 agno, agino, bucket);
4063 xfs_buf_rele(agibp);
4066 mp->m_dmevmask = mp_dmevmask;
4070 * Upack the log buffer data and crc check it. If the check fails, issue a
4071 * warning if and only if the CRC in the header is non-zero. This makes the
4072 * check an advisory warning, and the zero CRC check will prevent failure
4073 * warnings from being emitted when upgrading the kernel from one that does not
4074 * add CRCs by default.
4076 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4077 * corruption failure
4079 STATIC int
4080 xlog_unpack_data_crc(
4081 struct xlog_rec_header *rhead,
4082 xfs_caddr_t dp,
4083 struct xlog *log)
4085 __le32 crc;
4087 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4088 if (crc != rhead->h_crc) {
4089 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4090 xfs_alert(log->l_mp,
4091 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
4092 le32_to_cpu(rhead->h_crc),
4093 le32_to_cpu(crc));
4094 xfs_hex_dump(dp, 32);
4098 * If we've detected a log record corruption, then we can't
4099 * recover past this point. Abort recovery if we are enforcing
4100 * CRC protection by punting an error back up the stack.
4102 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4103 return EFSCORRUPTED;
4106 return 0;
4109 STATIC int
4110 xlog_unpack_data(
4111 struct xlog_rec_header *rhead,
4112 xfs_caddr_t dp,
4113 struct xlog *log)
4115 int i, j, k;
4116 int error;
4118 error = xlog_unpack_data_crc(rhead, dp, log);
4119 if (error)
4120 return error;
4122 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4123 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4124 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4125 dp += BBSIZE;
4128 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4129 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4130 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4131 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4132 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4133 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4134 dp += BBSIZE;
4138 return 0;
4141 STATIC int
4142 xlog_valid_rec_header(
4143 struct xlog *log,
4144 struct xlog_rec_header *rhead,
4145 xfs_daddr_t blkno)
4147 int hlen;
4149 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4150 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4151 XFS_ERRLEVEL_LOW, log->l_mp);
4152 return XFS_ERROR(EFSCORRUPTED);
4154 if (unlikely(
4155 (!rhead->h_version ||
4156 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4157 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4158 __func__, be32_to_cpu(rhead->h_version));
4159 return XFS_ERROR(EIO);
4162 /* LR body must have data or it wouldn't have been written */
4163 hlen = be32_to_cpu(rhead->h_len);
4164 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4165 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4166 XFS_ERRLEVEL_LOW, log->l_mp);
4167 return XFS_ERROR(EFSCORRUPTED);
4169 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4170 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4171 XFS_ERRLEVEL_LOW, log->l_mp);
4172 return XFS_ERROR(EFSCORRUPTED);
4174 return 0;
4178 * Read the log from tail to head and process the log records found.
4179 * Handle the two cases where the tail and head are in the same cycle
4180 * and where the active portion of the log wraps around the end of
4181 * the physical log separately. The pass parameter is passed through
4182 * to the routines called to process the data and is not looked at
4183 * here.
4185 STATIC int
4186 xlog_do_recovery_pass(
4187 struct xlog *log,
4188 xfs_daddr_t head_blk,
4189 xfs_daddr_t tail_blk,
4190 int pass)
4192 xlog_rec_header_t *rhead;
4193 xfs_daddr_t blk_no;
4194 xfs_caddr_t offset;
4195 xfs_buf_t *hbp, *dbp;
4196 int error = 0, h_size;
4197 int bblks, split_bblks;
4198 int hblks, split_hblks, wrapped_hblks;
4199 struct hlist_head rhash[XLOG_RHASH_SIZE];
4201 ASSERT(head_blk != tail_blk);
4204 * Read the header of the tail block and get the iclog buffer size from
4205 * h_size. Use this to tell how many sectors make up the log header.
4207 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4209 * When using variable length iclogs, read first sector of
4210 * iclog header and extract the header size from it. Get a
4211 * new hbp that is the correct size.
4213 hbp = xlog_get_bp(log, 1);
4214 if (!hbp)
4215 return ENOMEM;
4217 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4218 if (error)
4219 goto bread_err1;
4221 rhead = (xlog_rec_header_t *)offset;
4222 error = xlog_valid_rec_header(log, rhead, tail_blk);
4223 if (error)
4224 goto bread_err1;
4225 h_size = be32_to_cpu(rhead->h_size);
4226 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4227 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4228 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4229 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4230 hblks++;
4231 xlog_put_bp(hbp);
4232 hbp = xlog_get_bp(log, hblks);
4233 } else {
4234 hblks = 1;
4236 } else {
4237 ASSERT(log->l_sectBBsize == 1);
4238 hblks = 1;
4239 hbp = xlog_get_bp(log, 1);
4240 h_size = XLOG_BIG_RECORD_BSIZE;
4243 if (!hbp)
4244 return ENOMEM;
4245 dbp = xlog_get_bp(log, BTOBB(h_size));
4246 if (!dbp) {
4247 xlog_put_bp(hbp);
4248 return ENOMEM;
4251 memset(rhash, 0, sizeof(rhash));
4252 if (tail_blk <= head_blk) {
4253 for (blk_no = tail_blk; blk_no < head_blk; ) {
4254 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4255 if (error)
4256 goto bread_err2;
4258 rhead = (xlog_rec_header_t *)offset;
4259 error = xlog_valid_rec_header(log, rhead, blk_no);
4260 if (error)
4261 goto bread_err2;
4263 /* blocks in data section */
4264 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4265 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4266 &offset);
4267 if (error)
4268 goto bread_err2;
4270 error = xlog_unpack_data(rhead, offset, log);
4271 if (error)
4272 goto bread_err2;
4274 error = xlog_recover_process_data(log,
4275 rhash, rhead, offset, pass);
4276 if (error)
4277 goto bread_err2;
4278 blk_no += bblks + hblks;
4280 } else {
4282 * Perform recovery around the end of the physical log.
4283 * When the head is not on the same cycle number as the tail,
4284 * we can't do a sequential recovery as above.
4286 blk_no = tail_blk;
4287 while (blk_no < log->l_logBBsize) {
4289 * Check for header wrapping around physical end-of-log
4291 offset = hbp->b_addr;
4292 split_hblks = 0;
4293 wrapped_hblks = 0;
4294 if (blk_no + hblks <= log->l_logBBsize) {
4295 /* Read header in one read */
4296 error = xlog_bread(log, blk_no, hblks, hbp,
4297 &offset);
4298 if (error)
4299 goto bread_err2;
4300 } else {
4301 /* This LR is split across physical log end */
4302 if (blk_no != log->l_logBBsize) {
4303 /* some data before physical log end */
4304 ASSERT(blk_no <= INT_MAX);
4305 split_hblks = log->l_logBBsize - (int)blk_no;
4306 ASSERT(split_hblks > 0);
4307 error = xlog_bread(log, blk_no,
4308 split_hblks, hbp,
4309 &offset);
4310 if (error)
4311 goto bread_err2;
4315 * Note: this black magic still works with
4316 * large sector sizes (non-512) only because:
4317 * - we increased the buffer size originally
4318 * by 1 sector giving us enough extra space
4319 * for the second read;
4320 * - the log start is guaranteed to be sector
4321 * aligned;
4322 * - we read the log end (LR header start)
4323 * _first_, then the log start (LR header end)
4324 * - order is important.
4326 wrapped_hblks = hblks - split_hblks;
4327 error = xlog_bread_offset(log, 0,
4328 wrapped_hblks, hbp,
4329 offset + BBTOB(split_hblks));
4330 if (error)
4331 goto bread_err2;
4333 rhead = (xlog_rec_header_t *)offset;
4334 error = xlog_valid_rec_header(log, rhead,
4335 split_hblks ? blk_no : 0);
4336 if (error)
4337 goto bread_err2;
4339 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4340 blk_no += hblks;
4342 /* Read in data for log record */
4343 if (blk_no + bblks <= log->l_logBBsize) {
4344 error = xlog_bread(log, blk_no, bblks, dbp,
4345 &offset);
4346 if (error)
4347 goto bread_err2;
4348 } else {
4349 /* This log record is split across the
4350 * physical end of log */
4351 offset = dbp->b_addr;
4352 split_bblks = 0;
4353 if (blk_no != log->l_logBBsize) {
4354 /* some data is before the physical
4355 * end of log */
4356 ASSERT(!wrapped_hblks);
4357 ASSERT(blk_no <= INT_MAX);
4358 split_bblks =
4359 log->l_logBBsize - (int)blk_no;
4360 ASSERT(split_bblks > 0);
4361 error = xlog_bread(log, blk_no,
4362 split_bblks, dbp,
4363 &offset);
4364 if (error)
4365 goto bread_err2;
4369 * Note: this black magic still works with
4370 * large sector sizes (non-512) only because:
4371 * - we increased the buffer size originally
4372 * by 1 sector giving us enough extra space
4373 * for the second read;
4374 * - the log start is guaranteed to be sector
4375 * aligned;
4376 * - we read the log end (LR header start)
4377 * _first_, then the log start (LR header end)
4378 * - order is important.
4380 error = xlog_bread_offset(log, 0,
4381 bblks - split_bblks, dbp,
4382 offset + BBTOB(split_bblks));
4383 if (error)
4384 goto bread_err2;
4387 error = xlog_unpack_data(rhead, offset, log);
4388 if (error)
4389 goto bread_err2;
4391 error = xlog_recover_process_data(log, rhash,
4392 rhead, offset, pass);
4393 if (error)
4394 goto bread_err2;
4395 blk_no += bblks;
4398 ASSERT(blk_no >= log->l_logBBsize);
4399 blk_no -= log->l_logBBsize;
4401 /* read first part of physical log */
4402 while (blk_no < head_blk) {
4403 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4404 if (error)
4405 goto bread_err2;
4407 rhead = (xlog_rec_header_t *)offset;
4408 error = xlog_valid_rec_header(log, rhead, blk_no);
4409 if (error)
4410 goto bread_err2;
4412 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4413 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4414 &offset);
4415 if (error)
4416 goto bread_err2;
4418 error = xlog_unpack_data(rhead, offset, log);
4419 if (error)
4420 goto bread_err2;
4422 error = xlog_recover_process_data(log, rhash,
4423 rhead, offset, pass);
4424 if (error)
4425 goto bread_err2;
4426 blk_no += bblks + hblks;
4430 bread_err2:
4431 xlog_put_bp(dbp);
4432 bread_err1:
4433 xlog_put_bp(hbp);
4434 return error;
4438 * Do the recovery of the log. We actually do this in two phases.
4439 * The two passes are necessary in order to implement the function
4440 * of cancelling a record written into the log. The first pass
4441 * determines those things which have been cancelled, and the
4442 * second pass replays log items normally except for those which
4443 * have been cancelled. The handling of the replay and cancellations
4444 * takes place in the log item type specific routines.
4446 * The table of items which have cancel records in the log is allocated
4447 * and freed at this level, since only here do we know when all of
4448 * the log recovery has been completed.
4450 STATIC int
4451 xlog_do_log_recovery(
4452 struct xlog *log,
4453 xfs_daddr_t head_blk,
4454 xfs_daddr_t tail_blk)
4456 int error, i;
4458 ASSERT(head_blk != tail_blk);
4461 * First do a pass to find all of the cancelled buf log items.
4462 * Store them in the buf_cancel_table for use in the second pass.
4464 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4465 sizeof(struct list_head),
4466 KM_SLEEP);
4467 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4468 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4470 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4471 XLOG_RECOVER_PASS1);
4472 if (error != 0) {
4473 kmem_free(log->l_buf_cancel_table);
4474 log->l_buf_cancel_table = NULL;
4475 return error;
4478 * Then do a second pass to actually recover the items in the log.
4479 * When it is complete free the table of buf cancel items.
4481 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4482 XLOG_RECOVER_PASS2);
4483 #ifdef DEBUG
4484 if (!error) {
4485 int i;
4487 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4488 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4490 #endif /* DEBUG */
4492 kmem_free(log->l_buf_cancel_table);
4493 log->l_buf_cancel_table = NULL;
4495 return error;
4499 * Do the actual recovery
4501 STATIC int
4502 xlog_do_recover(
4503 struct xlog *log,
4504 xfs_daddr_t head_blk,
4505 xfs_daddr_t tail_blk)
4507 int error;
4508 xfs_buf_t *bp;
4509 xfs_sb_t *sbp;
4512 * First replay the images in the log.
4514 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4515 if (error)
4516 return error;
4519 * If IO errors happened during recovery, bail out.
4521 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4522 return (EIO);
4526 * We now update the tail_lsn since much of the recovery has completed
4527 * and there may be space available to use. If there were no extent
4528 * or iunlinks, we can free up the entire log and set the tail_lsn to
4529 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4530 * lsn of the last known good LR on disk. If there are extent frees
4531 * or iunlinks they will have some entries in the AIL; so we look at
4532 * the AIL to determine how to set the tail_lsn.
4534 xlog_assign_tail_lsn(log->l_mp);
4537 * Now that we've finished replaying all buffer and inode
4538 * updates, re-read in the superblock and reverify it.
4540 bp = xfs_getsb(log->l_mp, 0);
4541 XFS_BUF_UNDONE(bp);
4542 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4543 XFS_BUF_READ(bp);
4544 XFS_BUF_UNASYNC(bp);
4545 bp->b_ops = &xfs_sb_buf_ops;
4546 xfsbdstrat(log->l_mp, bp);
4547 error = xfs_buf_iowait(bp);
4548 if (error) {
4549 xfs_buf_ioerror_alert(bp, __func__);
4550 ASSERT(0);
4551 xfs_buf_relse(bp);
4552 return error;
4555 /* Convert superblock from on-disk format */
4556 sbp = &log->l_mp->m_sb;
4557 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4558 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4559 ASSERT(xfs_sb_good_version(sbp));
4560 xfs_buf_relse(bp);
4562 /* We've re-read the superblock so re-initialize per-cpu counters */
4563 xfs_icsb_reinit_counters(log->l_mp);
4565 xlog_recover_check_summary(log);
4567 /* Normal transactions can now occur */
4568 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4569 return 0;
4573 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4575 * Return error or zero.
4578 xlog_recover(
4579 struct xlog *log)
4581 xfs_daddr_t head_blk, tail_blk;
4582 int error;
4584 /* find the tail of the log */
4585 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4586 return error;
4588 if (tail_blk != head_blk) {
4589 /* There used to be a comment here:
4591 * disallow recovery on read-only mounts. note -- mount
4592 * checks for ENOSPC and turns it into an intelligent
4593 * error message.
4594 * ...but this is no longer true. Now, unless you specify
4595 * NORECOVERY (in which case this function would never be
4596 * called), we just go ahead and recover. We do this all
4597 * under the vfs layer, so we can get away with it unless
4598 * the device itself is read-only, in which case we fail.
4600 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4601 return error;
4605 * Version 5 superblock log feature mask validation. We know the
4606 * log is dirty so check if there are any unknown log features
4607 * in what we need to recover. If there are unknown features
4608 * (e.g. unsupported transactions, then simply reject the
4609 * attempt at recovery before touching anything.
4611 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4612 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4613 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4614 xfs_warn(log->l_mp,
4615 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4616 "The log can not be fully and/or safely recovered by this kernel.\n"
4617 "Please recover the log on a kernel that supports the unknown features.",
4618 (log->l_mp->m_sb.sb_features_log_incompat &
4619 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4620 return EINVAL;
4623 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4624 log->l_mp->m_logname ? log->l_mp->m_logname
4625 : "internal");
4627 error = xlog_do_recover(log, head_blk, tail_blk);
4628 log->l_flags |= XLOG_RECOVERY_NEEDED;
4630 return error;
4634 * In the first part of recovery we replay inodes and buffers and build
4635 * up the list of extent free items which need to be processed. Here
4636 * we process the extent free items and clean up the on disk unlinked
4637 * inode lists. This is separated from the first part of recovery so
4638 * that the root and real-time bitmap inodes can be read in from disk in
4639 * between the two stages. This is necessary so that we can free space
4640 * in the real-time portion of the file system.
4643 xlog_recover_finish(
4644 struct xlog *log)
4647 * Now we're ready to do the transactions needed for the
4648 * rest of recovery. Start with completing all the extent
4649 * free intent records and then process the unlinked inode
4650 * lists. At this point, we essentially run in normal mode
4651 * except that we're still performing recovery actions
4652 * rather than accepting new requests.
4654 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4655 int error;
4656 error = xlog_recover_process_efis(log);
4657 if (error) {
4658 xfs_alert(log->l_mp, "Failed to recover EFIs");
4659 return error;
4662 * Sync the log to get all the EFIs out of the AIL.
4663 * This isn't absolutely necessary, but it helps in
4664 * case the unlink transactions would have problems
4665 * pushing the EFIs out of the way.
4667 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4669 xlog_recover_process_iunlinks(log);
4671 xlog_recover_check_summary(log);
4673 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4674 log->l_mp->m_logname ? log->l_mp->m_logname
4675 : "internal");
4676 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4677 } else {
4678 xfs_info(log->l_mp, "Ending clean mount");
4680 return 0;
4684 #if defined(DEBUG)
4686 * Read all of the agf and agi counters and check that they
4687 * are consistent with the superblock counters.
4689 void
4690 xlog_recover_check_summary(
4691 struct xlog *log)
4693 xfs_mount_t *mp;
4694 xfs_agf_t *agfp;
4695 xfs_buf_t *agfbp;
4696 xfs_buf_t *agibp;
4697 xfs_agnumber_t agno;
4698 __uint64_t freeblks;
4699 __uint64_t itotal;
4700 __uint64_t ifree;
4701 int error;
4703 mp = log->l_mp;
4705 freeblks = 0LL;
4706 itotal = 0LL;
4707 ifree = 0LL;
4708 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4709 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4710 if (error) {
4711 xfs_alert(mp, "%s agf read failed agno %d error %d",
4712 __func__, agno, error);
4713 } else {
4714 agfp = XFS_BUF_TO_AGF(agfbp);
4715 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4716 be32_to_cpu(agfp->agf_flcount);
4717 xfs_buf_relse(agfbp);
4720 error = xfs_read_agi(mp, NULL, agno, &agibp);
4721 if (error) {
4722 xfs_alert(mp, "%s agi read failed agno %d error %d",
4723 __func__, agno, error);
4724 } else {
4725 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4727 itotal += be32_to_cpu(agi->agi_count);
4728 ifree += be32_to_cpu(agi->agi_freecount);
4729 xfs_buf_relse(agibp);
4733 #endif /* DEBUG */