2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63 #include <linux/file.h>
65 #include <linux/atomic.h>
68 * cgroup_mutex is the master lock. Any modification to cgroup or its
69 * hierarchy must be performed while holding it.
71 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
72 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
73 * release_agent_path and so on. Modifying requires both cgroup_mutex and
74 * cgroup_root_mutex. Readers can acquire either of the two. This is to
75 * break the following locking order cycle.
77 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
78 * B. namespace_sem -> cgroup_mutex
80 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 #ifdef CONFIG_PROVE_RCU
84 DEFINE_MUTEX(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(cgroup_mutex
); /* only for lockdep */
87 static DEFINE_MUTEX(cgroup_mutex
);
90 static DEFINE_MUTEX(cgroup_root_mutex
);
93 * cgroup destruction makes heavy use of work items and there can be a lot
94 * of concurrent destructions. Use a separate workqueue so that cgroup
95 * destruction work items don't end up filling up max_active of system_wq
96 * which may lead to deadlock.
98 static struct workqueue_struct
*cgroup_destroy_wq
;
101 * Generate an array of cgroup subsystem pointers. At boot time, this is
102 * populated with the built in subsystems, and modular subsystems are
103 * registered after that. The mutable section of this array is protected by
106 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
107 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
108 static struct cgroup_subsys
*cgroup_subsys
[CGROUP_SUBSYS_COUNT
] = {
109 #include <linux/cgroup_subsys.h>
113 * The dummy hierarchy, reserved for the subsystems that are otherwise
114 * unattached - it never has more than a single cgroup, and all tasks are
115 * part of that cgroup.
117 static struct cgroupfs_root cgroup_dummy_root
;
119 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
120 static struct cgroup
* const cgroup_dummy_top
= &cgroup_dummy_root
.top_cgroup
;
123 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
126 struct list_head node
;
127 struct dentry
*dentry
;
129 struct cgroup_subsys_state
*css
;
132 struct simple_xattrs xattrs
;
136 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
137 * cgroup_subsys->use_id != 0.
139 #define CSS_ID_MAX (65535)
142 * The css to which this ID points. This pointer is set to valid value
143 * after cgroup is populated. If cgroup is removed, this will be NULL.
144 * This pointer is expected to be RCU-safe because destroy()
145 * is called after synchronize_rcu(). But for safe use, css_tryget()
146 * should be used for avoiding race.
148 struct cgroup_subsys_state __rcu
*css
;
154 * Depth in hierarchy which this ID belongs to.
156 unsigned short depth
;
158 * ID is freed by RCU. (and lookup routine is RCU safe.)
160 struct rcu_head rcu_head
;
162 * Hierarchy of CSS ID belongs to.
164 unsigned short stack
[0]; /* Array of Length (depth+1) */
168 * cgroup_event represents events which userspace want to receive.
170 struct cgroup_event
{
172 * css which the event belongs to.
174 struct cgroup_subsys_state
*css
;
176 * Control file which the event associated.
180 * eventfd to signal userspace about the event.
182 struct eventfd_ctx
*eventfd
;
184 * Each of these stored in a list by the cgroup.
186 struct list_head list
;
188 * All fields below needed to unregister event when
189 * userspace closes eventfd.
192 wait_queue_head_t
*wqh
;
194 struct work_struct remove
;
197 /* The list of hierarchy roots */
199 static LIST_HEAD(cgroup_roots
);
200 static int cgroup_root_count
;
203 * Hierarchy ID allocation and mapping. It follows the same exclusion
204 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
205 * writes, either for reads.
207 static DEFINE_IDR(cgroup_hierarchy_idr
);
209 static struct cgroup_name root_cgroup_name
= { .name
= "/" };
212 * Assign a monotonically increasing serial number to cgroups. It
213 * guarantees cgroups with bigger numbers are newer than those with smaller
214 * numbers. Also, as cgroups are always appended to the parent's
215 * ->children list, it guarantees that sibling cgroups are always sorted in
216 * the ascending serial number order on the list. Protected by
219 static u64 cgroup_serial_nr_next
= 1;
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
226 static int need_forkexit_callback __read_mostly
;
228 static struct cftype cgroup_base_files
[];
230 static void cgroup_destroy_css_killed(struct cgroup
*cgrp
);
231 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
232 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
234 static int cgroup_file_release(struct inode
*inode
, struct file
*file
);
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
239 * @ss: the subsystem of interest (%NULL returns the dummy_css)
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
247 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
248 struct cgroup_subsys
*ss
)
251 return rcu_dereference_check(cgrp
->subsys
[ss
->subsys_id
],
252 lockdep_is_held(&cgroup_mutex
));
254 return &cgrp
->dummy_css
;
257 /* convenient tests for these bits */
258 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
260 return test_bit(CGRP_DEAD
, &cgrp
->flags
);
264 * cgroup_is_descendant - test ancestry
265 * @cgrp: the cgroup to be tested
266 * @ancestor: possible ancestor of @cgrp
268 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
269 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
270 * and @ancestor are accessible.
272 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
275 if (cgrp
== ancestor
)
281 EXPORT_SYMBOL_GPL(cgroup_is_descendant
);
283 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
286 (1 << CGRP_RELEASABLE
) |
287 (1 << CGRP_NOTIFY_ON_RELEASE
);
288 return (cgrp
->flags
& bits
) == bits
;
291 static int notify_on_release(const struct cgroup
*cgrp
)
293 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
297 * for_each_subsys - iterate all loaded cgroup subsystems
298 * @ss: the iteration cursor
299 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
301 * Should be called under cgroup_mutex.
303 #define for_each_subsys(ss, i) \
304 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
305 if (({ lockdep_assert_held(&cgroup_mutex); \
306 !((ss) = cgroup_subsys[i]); })) { } \
310 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
311 * @ss: the iteration cursor
312 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
314 * Bulit-in subsystems are always present and iteration itself doesn't
315 * require any synchronization.
317 #define for_each_builtin_subsys(ss, i) \
318 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
319 (((ss) = cgroup_subsys[i]) || true); (i)++)
321 /* iterate each subsystem attached to a hierarchy */
322 #define for_each_root_subsys(root, ss) \
323 list_for_each_entry((ss), &(root)->subsys_list, sibling)
325 /* iterate across the active hierarchies */
326 #define for_each_active_root(root) \
327 list_for_each_entry((root), &cgroup_roots, root_list)
329 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
331 return dentry
->d_fsdata
;
334 static inline struct cfent
*__d_cfe(struct dentry
*dentry
)
336 return dentry
->d_fsdata
;
339 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
341 return __d_cfe(dentry
)->type
;
345 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
346 * @cgrp: the cgroup to be checked for liveness
348 * On success, returns true; the mutex should be later unlocked. On
349 * failure returns false with no lock held.
351 static bool cgroup_lock_live_group(struct cgroup
*cgrp
)
353 mutex_lock(&cgroup_mutex
);
354 if (cgroup_is_dead(cgrp
)) {
355 mutex_unlock(&cgroup_mutex
);
361 /* the list of cgroups eligible for automatic release. Protected by
362 * release_list_lock */
363 static LIST_HEAD(release_list
);
364 static DEFINE_RAW_SPINLOCK(release_list_lock
);
365 static void cgroup_release_agent(struct work_struct
*work
);
366 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
367 static void check_for_release(struct cgroup
*cgrp
);
370 * A cgroup can be associated with multiple css_sets as different tasks may
371 * belong to different cgroups on different hierarchies. In the other
372 * direction, a css_set is naturally associated with multiple cgroups.
373 * This M:N relationship is represented by the following link structure
374 * which exists for each association and allows traversing the associations
377 struct cgrp_cset_link
{
378 /* the cgroup and css_set this link associates */
380 struct css_set
*cset
;
382 /* list of cgrp_cset_links anchored at cgrp->cset_links */
383 struct list_head cset_link
;
385 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
386 struct list_head cgrp_link
;
389 /* The default css_set - used by init and its children prior to any
390 * hierarchies being mounted. It contains a pointer to the root state
391 * for each subsystem. Also used to anchor the list of css_sets. Not
392 * reference-counted, to improve performance when child cgroups
393 * haven't been created.
396 static struct css_set init_css_set
;
397 static struct cgrp_cset_link init_cgrp_cset_link
;
399 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
400 struct cgroup_subsys_state
*css
);
403 * css_set_lock protects the list of css_set objects, and the chain of
404 * tasks off each css_set. Nests outside task->alloc_lock due to
405 * css_task_iter_start().
407 static DEFINE_RWLOCK(css_set_lock
);
408 static int css_set_count
;
411 * hash table for cgroup groups. This improves the performance to find
412 * an existing css_set. This hash doesn't (currently) take into
413 * account cgroups in empty hierarchies.
415 #define CSS_SET_HASH_BITS 7
416 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
418 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
420 unsigned long key
= 0UL;
421 struct cgroup_subsys
*ss
;
424 for_each_subsys(ss
, i
)
425 key
+= (unsigned long)css
[i
];
426 key
= (key
>> 16) ^ key
;
432 * We don't maintain the lists running through each css_set to its task
433 * until after the first call to css_task_iter_start(). This reduces the
434 * fork()/exit() overhead for people who have cgroups compiled into their
435 * kernel but not actually in use.
437 static int use_task_css_set_links __read_mostly
;
439 static void __put_css_set(struct css_set
*cset
, int taskexit
)
441 struct cgrp_cset_link
*link
, *tmp_link
;
444 * Ensure that the refcount doesn't hit zero while any readers
445 * can see it. Similar to atomic_dec_and_lock(), but for an
448 if (atomic_add_unless(&cset
->refcount
, -1, 1))
450 write_lock(&css_set_lock
);
451 if (!atomic_dec_and_test(&cset
->refcount
)) {
452 write_unlock(&css_set_lock
);
456 /* This css_set is dead. unlink it and release cgroup refcounts */
457 hash_del(&cset
->hlist
);
460 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
461 struct cgroup
*cgrp
= link
->cgrp
;
463 list_del(&link
->cset_link
);
464 list_del(&link
->cgrp_link
);
466 /* @cgrp can't go away while we're holding css_set_lock */
467 if (list_empty(&cgrp
->cset_links
) && notify_on_release(cgrp
)) {
469 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
470 check_for_release(cgrp
);
476 write_unlock(&css_set_lock
);
477 kfree_rcu(cset
, rcu_head
);
481 * refcounted get/put for css_set objects
483 static inline void get_css_set(struct css_set
*cset
)
485 atomic_inc(&cset
->refcount
);
488 static inline void put_css_set(struct css_set
*cset
)
490 __put_css_set(cset
, 0);
493 static inline void put_css_set_taskexit(struct css_set
*cset
)
495 __put_css_set(cset
, 1);
499 * compare_css_sets - helper function for find_existing_css_set().
500 * @cset: candidate css_set being tested
501 * @old_cset: existing css_set for a task
502 * @new_cgrp: cgroup that's being entered by the task
503 * @template: desired set of css pointers in css_set (pre-calculated)
505 * Returns true if "cset" matches "old_cset" except for the hierarchy
506 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
508 static bool compare_css_sets(struct css_set
*cset
,
509 struct css_set
*old_cset
,
510 struct cgroup
*new_cgrp
,
511 struct cgroup_subsys_state
*template[])
513 struct list_head
*l1
, *l2
;
515 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
))) {
516 /* Not all subsystems matched */
521 * Compare cgroup pointers in order to distinguish between
522 * different cgroups in heirarchies with no subsystems. We
523 * could get by with just this check alone (and skip the
524 * memcmp above) but on most setups the memcmp check will
525 * avoid the need for this more expensive check on almost all
529 l1
= &cset
->cgrp_links
;
530 l2
= &old_cset
->cgrp_links
;
532 struct cgrp_cset_link
*link1
, *link2
;
533 struct cgroup
*cgrp1
, *cgrp2
;
537 /* See if we reached the end - both lists are equal length. */
538 if (l1
== &cset
->cgrp_links
) {
539 BUG_ON(l2
!= &old_cset
->cgrp_links
);
542 BUG_ON(l2
== &old_cset
->cgrp_links
);
544 /* Locate the cgroups associated with these links. */
545 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
546 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
549 /* Hierarchies should be linked in the same order. */
550 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
553 * If this hierarchy is the hierarchy of the cgroup
554 * that's changing, then we need to check that this
555 * css_set points to the new cgroup; if it's any other
556 * hierarchy, then this css_set should point to the
557 * same cgroup as the old css_set.
559 if (cgrp1
->root
== new_cgrp
->root
) {
560 if (cgrp1
!= new_cgrp
)
571 * find_existing_css_set - init css array and find the matching css_set
572 * @old_cset: the css_set that we're using before the cgroup transition
573 * @cgrp: the cgroup that we're moving into
574 * @template: out param for the new set of csses, should be clear on entry
576 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
578 struct cgroup_subsys_state
*template[])
580 struct cgroupfs_root
*root
= cgrp
->root
;
581 struct cgroup_subsys
*ss
;
582 struct css_set
*cset
;
587 * Build the set of subsystem state objects that we want to see in the
588 * new css_set. while subsystems can change globally, the entries here
589 * won't change, so no need for locking.
591 for_each_subsys(ss
, i
) {
592 if (root
->subsys_mask
& (1UL << i
)) {
593 /* Subsystem is in this hierarchy. So we want
594 * the subsystem state from the new
596 template[i
] = cgroup_css(cgrp
, ss
);
598 /* Subsystem is not in this hierarchy, so we
599 * don't want to change the subsystem state */
600 template[i
] = old_cset
->subsys
[i
];
604 key
= css_set_hash(template);
605 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
606 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
609 /* This css_set matches what we need */
613 /* No existing cgroup group matched */
617 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
619 struct cgrp_cset_link
*link
, *tmp_link
;
621 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
622 list_del(&link
->cset_link
);
628 * allocate_cgrp_cset_links - allocate cgrp_cset_links
629 * @count: the number of links to allocate
630 * @tmp_links: list_head the allocated links are put on
632 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
633 * through ->cset_link. Returns 0 on success or -errno.
635 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
637 struct cgrp_cset_link
*link
;
640 INIT_LIST_HEAD(tmp_links
);
642 for (i
= 0; i
< count
; i
++) {
643 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
645 free_cgrp_cset_links(tmp_links
);
648 list_add(&link
->cset_link
, tmp_links
);
654 * link_css_set - a helper function to link a css_set to a cgroup
655 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
656 * @cset: the css_set to be linked
657 * @cgrp: the destination cgroup
659 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
662 struct cgrp_cset_link
*link
;
664 BUG_ON(list_empty(tmp_links
));
665 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
668 list_move(&link
->cset_link
, &cgrp
->cset_links
);
670 * Always add links to the tail of the list so that the list
671 * is sorted by order of hierarchy creation
673 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
677 * find_css_set - return a new css_set with one cgroup updated
678 * @old_cset: the baseline css_set
679 * @cgrp: the cgroup to be updated
681 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
682 * substituted into the appropriate hierarchy.
684 static struct css_set
*find_css_set(struct css_set
*old_cset
,
687 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
688 struct css_set
*cset
;
689 struct list_head tmp_links
;
690 struct cgrp_cset_link
*link
;
693 lockdep_assert_held(&cgroup_mutex
);
695 /* First see if we already have a cgroup group that matches
697 read_lock(&css_set_lock
);
698 cset
= find_existing_css_set(old_cset
, cgrp
, template);
701 read_unlock(&css_set_lock
);
706 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
710 /* Allocate all the cgrp_cset_link objects that we'll need */
711 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
716 atomic_set(&cset
->refcount
, 1);
717 INIT_LIST_HEAD(&cset
->cgrp_links
);
718 INIT_LIST_HEAD(&cset
->tasks
);
719 INIT_HLIST_NODE(&cset
->hlist
);
721 /* Copy the set of subsystem state objects generated in
722 * find_existing_css_set() */
723 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
725 write_lock(&css_set_lock
);
726 /* Add reference counts and links from the new css_set. */
727 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
728 struct cgroup
*c
= link
->cgrp
;
730 if (c
->root
== cgrp
->root
)
732 link_css_set(&tmp_links
, cset
, c
);
735 BUG_ON(!list_empty(&tmp_links
));
739 /* Add this cgroup group to the hash table */
740 key
= css_set_hash(cset
->subsys
);
741 hash_add(css_set_table
, &cset
->hlist
, key
);
743 write_unlock(&css_set_lock
);
749 * Return the cgroup for "task" from the given hierarchy. Must be
750 * called with cgroup_mutex held.
752 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
753 struct cgroupfs_root
*root
)
755 struct css_set
*cset
;
756 struct cgroup
*res
= NULL
;
758 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
759 read_lock(&css_set_lock
);
761 * No need to lock the task - since we hold cgroup_mutex the
762 * task can't change groups, so the only thing that can happen
763 * is that it exits and its css is set back to init_css_set.
765 cset
= task_css_set(task
);
766 if (cset
== &init_css_set
) {
767 res
= &root
->top_cgroup
;
769 struct cgrp_cset_link
*link
;
771 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
772 struct cgroup
*c
= link
->cgrp
;
774 if (c
->root
== root
) {
780 read_unlock(&css_set_lock
);
786 * There is one global cgroup mutex. We also require taking
787 * task_lock() when dereferencing a task's cgroup subsys pointers.
788 * See "The task_lock() exception", at the end of this comment.
790 * A task must hold cgroup_mutex to modify cgroups.
792 * Any task can increment and decrement the count field without lock.
793 * So in general, code holding cgroup_mutex can't rely on the count
794 * field not changing. However, if the count goes to zero, then only
795 * cgroup_attach_task() can increment it again. Because a count of zero
796 * means that no tasks are currently attached, therefore there is no
797 * way a task attached to that cgroup can fork (the other way to
798 * increment the count). So code holding cgroup_mutex can safely
799 * assume that if the count is zero, it will stay zero. Similarly, if
800 * a task holds cgroup_mutex on a cgroup with zero count, it
801 * knows that the cgroup won't be removed, as cgroup_rmdir()
804 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
805 * (usually) take cgroup_mutex. These are the two most performance
806 * critical pieces of code here. The exception occurs on cgroup_exit(),
807 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
808 * is taken, and if the cgroup count is zero, a usermode call made
809 * to the release agent with the name of the cgroup (path relative to
810 * the root of cgroup file system) as the argument.
812 * A cgroup can only be deleted if both its 'count' of using tasks
813 * is zero, and its list of 'children' cgroups is empty. Since all
814 * tasks in the system use _some_ cgroup, and since there is always at
815 * least one task in the system (init, pid == 1), therefore, top_cgroup
816 * always has either children cgroups and/or using tasks. So we don't
817 * need a special hack to ensure that top_cgroup cannot be deleted.
819 * The task_lock() exception
821 * The need for this exception arises from the action of
822 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
823 * another. It does so using cgroup_mutex, however there are
824 * several performance critical places that need to reference
825 * task->cgroup without the expense of grabbing a system global
826 * mutex. Therefore except as noted below, when dereferencing or, as
827 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
828 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
829 * the task_struct routinely used for such matters.
831 * P.S. One more locking exception. RCU is used to guard the
832 * update of a tasks cgroup pointer by cgroup_attach_task()
836 * A couple of forward declarations required, due to cyclic reference loop:
837 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
838 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
842 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
);
843 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
844 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
);
845 static const struct inode_operations cgroup_dir_inode_operations
;
846 static const struct file_operations proc_cgroupstats_operations
;
848 static struct backing_dev_info cgroup_backing_dev_info
= {
850 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
853 static int alloc_css_id(struct cgroup_subsys_state
*child_css
);
855 static struct inode
*cgroup_new_inode(umode_t mode
, struct super_block
*sb
)
857 struct inode
*inode
= new_inode(sb
);
860 inode
->i_ino
= get_next_ino();
861 inode
->i_mode
= mode
;
862 inode
->i_uid
= current_fsuid();
863 inode
->i_gid
= current_fsgid();
864 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
865 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
870 static struct cgroup_name
*cgroup_alloc_name(struct dentry
*dentry
)
872 struct cgroup_name
*name
;
874 name
= kmalloc(sizeof(*name
) + dentry
->d_name
.len
+ 1, GFP_KERNEL
);
877 strcpy(name
->name
, dentry
->d_name
.name
);
881 static void cgroup_free_fn(struct work_struct
*work
)
883 struct cgroup
*cgrp
= container_of(work
, struct cgroup
, destroy_work
);
885 mutex_lock(&cgroup_mutex
);
886 cgrp
->root
->number_of_cgroups
--;
887 mutex_unlock(&cgroup_mutex
);
890 * We get a ref to the parent's dentry, and put the ref when
891 * this cgroup is being freed, so it's guaranteed that the
892 * parent won't be destroyed before its children.
894 dput(cgrp
->parent
->dentry
);
897 * Drop the active superblock reference that we took when we
898 * created the cgroup. This will free cgrp->root, if we are
899 * holding the last reference to @sb.
901 deactivate_super(cgrp
->root
->sb
);
904 * if we're getting rid of the cgroup, refcount should ensure
905 * that there are no pidlists left.
907 BUG_ON(!list_empty(&cgrp
->pidlists
));
909 simple_xattrs_free(&cgrp
->xattrs
);
911 kfree(rcu_dereference_raw(cgrp
->name
));
915 static void cgroup_free_rcu(struct rcu_head
*head
)
917 struct cgroup
*cgrp
= container_of(head
, struct cgroup
, rcu_head
);
919 INIT_WORK(&cgrp
->destroy_work
, cgroup_free_fn
);
920 queue_work(cgroup_destroy_wq
, &cgrp
->destroy_work
);
923 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
925 /* is dentry a directory ? if so, kfree() associated cgroup */
926 if (S_ISDIR(inode
->i_mode
)) {
927 struct cgroup
*cgrp
= dentry
->d_fsdata
;
929 BUG_ON(!(cgroup_is_dead(cgrp
)));
930 call_rcu(&cgrp
->rcu_head
, cgroup_free_rcu
);
932 struct cfent
*cfe
= __d_cfe(dentry
);
933 struct cgroup
*cgrp
= dentry
->d_parent
->d_fsdata
;
935 WARN_ONCE(!list_empty(&cfe
->node
) &&
936 cgrp
!= &cgrp
->root
->top_cgroup
,
937 "cfe still linked for %s\n", cfe
->type
->name
);
938 simple_xattrs_free(&cfe
->xattrs
);
944 static int cgroup_delete(const struct dentry
*d
)
949 static void remove_dir(struct dentry
*d
)
951 struct dentry
*parent
= dget(d
->d_parent
);
954 simple_rmdir(parent
->d_inode
, d
);
958 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
962 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
963 lockdep_assert_held(&cgroup_mutex
);
966 * If we're doing cleanup due to failure of cgroup_create(),
967 * the corresponding @cfe may not exist.
969 list_for_each_entry(cfe
, &cgrp
->files
, node
) {
970 struct dentry
*d
= cfe
->dentry
;
972 if (cft
&& cfe
->type
!= cft
)
977 simple_unlink(cgrp
->dentry
->d_inode
, d
);
978 list_del_init(&cfe
->node
);
986 * cgroup_clear_dir - remove subsys files in a cgroup directory
987 * @cgrp: target cgroup
988 * @subsys_mask: mask of the subsystem ids whose files should be removed
990 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
992 struct cgroup_subsys
*ss
;
995 for_each_subsys(ss
, i
) {
996 struct cftype_set
*set
;
998 if (!test_bit(i
, &subsys_mask
))
1000 list_for_each_entry(set
, &ss
->cftsets
, node
)
1001 cgroup_addrm_files(cgrp
, set
->cfts
, false);
1006 * NOTE : the dentry must have been dget()'ed
1008 static void cgroup_d_remove_dir(struct dentry
*dentry
)
1010 struct dentry
*parent
;
1012 parent
= dentry
->d_parent
;
1013 spin_lock(&parent
->d_lock
);
1014 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1015 list_del_init(&dentry
->d_child
);
1016 spin_unlock(&dentry
->d_lock
);
1017 spin_unlock(&parent
->d_lock
);
1022 * Call with cgroup_mutex held. Drops reference counts on modules, including
1023 * any duplicate ones that parse_cgroupfs_options took. If this function
1024 * returns an error, no reference counts are touched.
1026 static int rebind_subsystems(struct cgroupfs_root
*root
,
1027 unsigned long added_mask
, unsigned removed_mask
)
1029 struct cgroup
*cgrp
= &root
->top_cgroup
;
1030 struct cgroup_subsys
*ss
;
1031 unsigned long pinned
= 0;
1034 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1035 BUG_ON(!mutex_is_locked(&cgroup_root_mutex
));
1037 /* Check that any added subsystems are currently free */
1038 for_each_subsys(ss
, i
) {
1039 if (!(added_mask
& (1 << i
)))
1042 /* is the subsystem mounted elsewhere? */
1043 if (ss
->root
!= &cgroup_dummy_root
) {
1048 /* pin the module */
1049 if (!try_module_get(ss
->module
)) {
1056 /* subsys could be missing if unloaded between parsing and here */
1057 if (added_mask
!= pinned
) {
1062 ret
= cgroup_populate_dir(cgrp
, added_mask
);
1067 * Nothing can fail from this point on. Remove files for the
1068 * removed subsystems and rebind each subsystem.
1070 cgroup_clear_dir(cgrp
, removed_mask
);
1072 for_each_subsys(ss
, i
) {
1073 unsigned long bit
= 1UL << i
;
1075 if (bit
& added_mask
) {
1076 /* We're binding this subsystem to this hierarchy */
1077 BUG_ON(cgroup_css(cgrp
, ss
));
1078 BUG_ON(!cgroup_css(cgroup_dummy_top
, ss
));
1079 BUG_ON(cgroup_css(cgroup_dummy_top
, ss
)->cgroup
!= cgroup_dummy_top
);
1081 rcu_assign_pointer(cgrp
->subsys
[i
],
1082 cgroup_css(cgroup_dummy_top
, ss
));
1083 cgroup_css(cgrp
, ss
)->cgroup
= cgrp
;
1085 list_move(&ss
->sibling
, &root
->subsys_list
);
1088 ss
->bind(cgroup_css(cgrp
, ss
));
1090 /* refcount was already taken, and we're keeping it */
1091 root
->subsys_mask
|= bit
;
1092 } else if (bit
& removed_mask
) {
1093 /* We're removing this subsystem */
1094 BUG_ON(cgroup_css(cgrp
, ss
) != cgroup_css(cgroup_dummy_top
, ss
));
1095 BUG_ON(cgroup_css(cgrp
, ss
)->cgroup
!= cgrp
);
1098 ss
->bind(cgroup_css(cgroup_dummy_top
, ss
));
1100 cgroup_css(cgroup_dummy_top
, ss
)->cgroup
= cgroup_dummy_top
;
1101 RCU_INIT_POINTER(cgrp
->subsys
[i
], NULL
);
1103 cgroup_subsys
[i
]->root
= &cgroup_dummy_root
;
1104 list_move(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
1106 /* subsystem is now free - drop reference on module */
1107 module_put(ss
->module
);
1108 root
->subsys_mask
&= ~bit
;
1113 * Mark @root has finished binding subsystems. @root->subsys_mask
1114 * now matches the bound subsystems.
1116 root
->flags
|= CGRP_ROOT_SUBSYS_BOUND
;
1121 for_each_subsys(ss
, i
)
1122 if (pinned
& (1 << i
))
1123 module_put(ss
->module
);
1127 static int cgroup_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1129 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1130 struct cgroup_subsys
*ss
;
1132 mutex_lock(&cgroup_root_mutex
);
1133 for_each_root_subsys(root
, ss
)
1134 seq_printf(seq
, ",%s", ss
->name
);
1135 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
)
1136 seq_puts(seq
, ",sane_behavior");
1137 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1138 seq_puts(seq
, ",noprefix");
1139 if (root
->flags
& CGRP_ROOT_XATTR
)
1140 seq_puts(seq
, ",xattr");
1141 if (strlen(root
->release_agent_path
))
1142 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1143 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
))
1144 seq_puts(seq
, ",clone_children");
1145 if (strlen(root
->name
))
1146 seq_printf(seq
, ",name=%s", root
->name
);
1147 mutex_unlock(&cgroup_root_mutex
);
1151 struct cgroup_sb_opts
{
1152 unsigned long subsys_mask
;
1153 unsigned long flags
;
1154 char *release_agent
;
1155 bool cpuset_clone_children
;
1157 /* User explicitly requested empty subsystem */
1160 struct cgroupfs_root
*new_root
;
1165 * Convert a hierarchy specifier into a bitmask of subsystems and
1166 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1167 * array. This function takes refcounts on subsystems to be used, unless it
1168 * returns error, in which case no refcounts are taken.
1170 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1172 char *token
, *o
= data
;
1173 bool all_ss
= false, one_ss
= false;
1174 unsigned long mask
= (unsigned long)-1;
1175 struct cgroup_subsys
*ss
;
1178 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1180 #ifdef CONFIG_CPUSETS
1181 mask
= ~(1UL << cpuset_subsys_id
);
1184 memset(opts
, 0, sizeof(*opts
));
1186 while ((token
= strsep(&o
, ",")) != NULL
) {
1189 if (!strcmp(token
, "none")) {
1190 /* Explicitly have no subsystems */
1194 if (!strcmp(token
, "all")) {
1195 /* Mutually exclusive option 'all' + subsystem name */
1201 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1202 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1205 if (!strcmp(token
, "noprefix")) {
1206 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1209 if (!strcmp(token
, "clone_children")) {
1210 opts
->cpuset_clone_children
= true;
1213 if (!strcmp(token
, "xattr")) {
1214 opts
->flags
|= CGRP_ROOT_XATTR
;
1217 if (!strncmp(token
, "release_agent=", 14)) {
1218 /* Specifying two release agents is forbidden */
1219 if (opts
->release_agent
)
1221 opts
->release_agent
=
1222 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1223 if (!opts
->release_agent
)
1227 if (!strncmp(token
, "name=", 5)) {
1228 const char *name
= token
+ 5;
1229 /* Can't specify an empty name */
1232 /* Must match [\w.-]+ */
1233 for (i
= 0; i
< strlen(name
); i
++) {
1237 if ((c
== '.') || (c
== '-') || (c
== '_'))
1241 /* Specifying two names is forbidden */
1244 opts
->name
= kstrndup(name
,
1245 MAX_CGROUP_ROOT_NAMELEN
- 1,
1253 for_each_subsys(ss
, i
) {
1254 if (strcmp(token
, ss
->name
))
1259 /* Mutually exclusive option 'all' + subsystem name */
1262 set_bit(i
, &opts
->subsys_mask
);
1267 if (i
== CGROUP_SUBSYS_COUNT
)
1272 * If the 'all' option was specified select all the subsystems,
1273 * otherwise if 'none', 'name=' and a subsystem name options
1274 * were not specified, let's default to 'all'
1276 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1277 for_each_subsys(ss
, i
)
1279 set_bit(i
, &opts
->subsys_mask
);
1281 /* Consistency checks */
1283 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1284 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1286 if (opts
->flags
& CGRP_ROOT_NOPREFIX
) {
1287 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1291 if (opts
->cpuset_clone_children
) {
1292 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1298 * Option noprefix was introduced just for backward compatibility
1299 * with the old cpuset, so we allow noprefix only if mounting just
1300 * the cpuset subsystem.
1302 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1306 /* Can't specify "none" and some subsystems */
1307 if (opts
->subsys_mask
&& opts
->none
)
1311 * We either have to specify by name or by subsystems. (So all
1312 * empty hierarchies must have a name).
1314 if (!opts
->subsys_mask
&& !opts
->name
)
1320 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1323 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1324 struct cgroup
*cgrp
= &root
->top_cgroup
;
1325 struct cgroup_sb_opts opts
;
1326 unsigned long added_mask
, removed_mask
;
1328 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1329 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1333 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1334 mutex_lock(&cgroup_mutex
);
1335 mutex_lock(&cgroup_root_mutex
);
1337 /* See what subsystems are wanted */
1338 ret
= parse_cgroupfs_options(data
, &opts
);
1342 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1343 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1344 task_tgid_nr(current
), current
->comm
);
1346 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1347 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1349 /* Don't allow flags or name to change at remount */
1350 if (((opts
.flags
^ root
->flags
) & CGRP_ROOT_OPTION_MASK
) ||
1351 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1352 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1353 opts
.flags
& CGRP_ROOT_OPTION_MASK
, opts
.name
?: "",
1354 root
->flags
& CGRP_ROOT_OPTION_MASK
, root
->name
);
1359 /* remounting is not allowed for populated hierarchies */
1360 if (root
->number_of_cgroups
> 1) {
1365 ret
= rebind_subsystems(root
, added_mask
, removed_mask
);
1369 if (opts
.release_agent
)
1370 strcpy(root
->release_agent_path
, opts
.release_agent
);
1372 kfree(opts
.release_agent
);
1374 mutex_unlock(&cgroup_root_mutex
);
1375 mutex_unlock(&cgroup_mutex
);
1376 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1380 static const struct super_operations cgroup_ops
= {
1381 .statfs
= simple_statfs
,
1382 .drop_inode
= generic_delete_inode
,
1383 .show_options
= cgroup_show_options
,
1384 .remount_fs
= cgroup_remount
,
1387 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1389 INIT_LIST_HEAD(&cgrp
->sibling
);
1390 INIT_LIST_HEAD(&cgrp
->children
);
1391 INIT_LIST_HEAD(&cgrp
->files
);
1392 INIT_LIST_HEAD(&cgrp
->cset_links
);
1393 INIT_LIST_HEAD(&cgrp
->release_list
);
1394 INIT_LIST_HEAD(&cgrp
->pidlists
);
1395 mutex_init(&cgrp
->pidlist_mutex
);
1396 cgrp
->dummy_css
.cgroup
= cgrp
;
1397 INIT_LIST_HEAD(&cgrp
->event_list
);
1398 spin_lock_init(&cgrp
->event_list_lock
);
1399 simple_xattrs_init(&cgrp
->xattrs
);
1402 static void init_cgroup_root(struct cgroupfs_root
*root
)
1404 struct cgroup
*cgrp
= &root
->top_cgroup
;
1406 INIT_LIST_HEAD(&root
->subsys_list
);
1407 INIT_LIST_HEAD(&root
->root_list
);
1408 root
->number_of_cgroups
= 1;
1410 RCU_INIT_POINTER(cgrp
->name
, &root_cgroup_name
);
1411 init_cgroup_housekeeping(cgrp
);
1412 idr_init(&root
->cgroup_idr
);
1415 static int cgroup_init_root_id(struct cgroupfs_root
*root
, int start
, int end
)
1419 lockdep_assert_held(&cgroup_mutex
);
1420 lockdep_assert_held(&cgroup_root_mutex
);
1422 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, start
, end
,
1427 root
->hierarchy_id
= id
;
1431 static void cgroup_exit_root_id(struct cgroupfs_root
*root
)
1433 lockdep_assert_held(&cgroup_mutex
);
1434 lockdep_assert_held(&cgroup_root_mutex
);
1436 if (root
->hierarchy_id
) {
1437 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1438 root
->hierarchy_id
= 0;
1442 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1444 struct cgroup_sb_opts
*opts
= data
;
1445 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1447 /* If we asked for a name then it must match */
1448 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1452 * If we asked for subsystems (or explicitly for no
1453 * subsystems) then they must match
1455 if ((opts
->subsys_mask
|| opts
->none
)
1456 && (opts
->subsys_mask
!= root
->subsys_mask
))
1462 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1464 struct cgroupfs_root
*root
;
1466 if (!opts
->subsys_mask
&& !opts
->none
)
1469 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1471 return ERR_PTR(-ENOMEM
);
1473 init_cgroup_root(root
);
1476 * We need to set @root->subsys_mask now so that @root can be
1477 * matched by cgroup_test_super() before it finishes
1478 * initialization; otherwise, competing mounts with the same
1479 * options may try to bind the same subsystems instead of waiting
1480 * for the first one leading to unexpected mount errors.
1481 * SUBSYS_BOUND will be set once actual binding is complete.
1483 root
->subsys_mask
= opts
->subsys_mask
;
1484 root
->flags
= opts
->flags
;
1485 if (opts
->release_agent
)
1486 strcpy(root
->release_agent_path
, opts
->release_agent
);
1488 strcpy(root
->name
, opts
->name
);
1489 if (opts
->cpuset_clone_children
)
1490 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1494 static void cgroup_free_root(struct cgroupfs_root
*root
)
1497 /* hierarhcy ID shoulid already have been released */
1498 WARN_ON_ONCE(root
->hierarchy_id
);
1500 idr_destroy(&root
->cgroup_idr
);
1505 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1508 struct cgroup_sb_opts
*opts
= data
;
1510 /* If we don't have a new root, we can't set up a new sb */
1511 if (!opts
->new_root
)
1514 BUG_ON(!opts
->subsys_mask
&& !opts
->none
);
1516 ret
= set_anon_super(sb
, NULL
);
1520 sb
->s_fs_info
= opts
->new_root
;
1521 opts
->new_root
->sb
= sb
;
1523 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1524 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1525 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1526 sb
->s_op
= &cgroup_ops
;
1531 static int cgroup_get_rootdir(struct super_block
*sb
)
1533 static const struct dentry_operations cgroup_dops
= {
1534 .d_iput
= cgroup_diput
,
1535 .d_delete
= cgroup_delete
,
1538 struct inode
*inode
=
1539 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1544 inode
->i_fop
= &simple_dir_operations
;
1545 inode
->i_op
= &cgroup_dir_inode_operations
;
1546 /* directories start off with i_nlink == 2 (for "." entry) */
1548 sb
->s_root
= d_make_root(inode
);
1551 /* for everything else we want ->d_op set */
1552 sb
->s_d_op
= &cgroup_dops
;
1556 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1557 int flags
, const char *unused_dev_name
,
1560 struct cgroup_sb_opts opts
;
1561 struct cgroupfs_root
*root
;
1563 struct super_block
*sb
;
1564 struct cgroupfs_root
*new_root
;
1565 struct list_head tmp_links
;
1566 struct inode
*inode
;
1567 const struct cred
*cred
;
1569 /* First find the desired set of subsystems */
1570 mutex_lock(&cgroup_mutex
);
1571 ret
= parse_cgroupfs_options(data
, &opts
);
1572 mutex_unlock(&cgroup_mutex
);
1577 * Allocate a new cgroup root. We may not need it if we're
1578 * reusing an existing hierarchy.
1580 new_root
= cgroup_root_from_opts(&opts
);
1581 if (IS_ERR(new_root
)) {
1582 ret
= PTR_ERR(new_root
);
1585 opts
.new_root
= new_root
;
1587 /* Locate an existing or new sb for this hierarchy */
1588 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, 0, &opts
);
1591 cgroup_free_root(opts
.new_root
);
1595 root
= sb
->s_fs_info
;
1597 if (root
== opts
.new_root
) {
1598 /* We used the new root structure, so this is a new hierarchy */
1599 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1600 struct cgroupfs_root
*existing_root
;
1602 struct css_set
*cset
;
1604 BUG_ON(sb
->s_root
!= NULL
);
1606 ret
= cgroup_get_rootdir(sb
);
1608 goto drop_new_super
;
1609 inode
= sb
->s_root
->d_inode
;
1611 mutex_lock(&inode
->i_mutex
);
1612 mutex_lock(&cgroup_mutex
);
1613 mutex_lock(&cgroup_root_mutex
);
1615 ret
= idr_alloc(&root
->cgroup_idr
, root_cgrp
, 0, 1, GFP_KERNEL
);
1618 root_cgrp
->id
= ret
;
1620 /* Check for name clashes with existing mounts */
1622 if (strlen(root
->name
))
1623 for_each_active_root(existing_root
)
1624 if (!strcmp(existing_root
->name
, root
->name
))
1628 * We're accessing css_set_count without locking
1629 * css_set_lock here, but that's OK - it can only be
1630 * increased by someone holding cgroup_lock, and
1631 * that's us. The worst that can happen is that we
1632 * have some link structures left over
1634 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1638 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1639 ret
= cgroup_init_root_id(root
, 2, 0);
1643 sb
->s_root
->d_fsdata
= root_cgrp
;
1644 root_cgrp
->dentry
= sb
->s_root
;
1647 * We're inside get_sb() and will call lookup_one_len() to
1648 * create the root files, which doesn't work if SELinux is
1649 * in use. The following cred dancing somehow works around
1650 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1651 * populating new cgroupfs mount") for more details.
1653 cred
= override_creds(&init_cred
);
1655 ret
= cgroup_addrm_files(root_cgrp
, cgroup_base_files
, true);
1659 ret
= rebind_subsystems(root
, root
->subsys_mask
, 0);
1666 * There must be no failure case after here, since rebinding
1667 * takes care of subsystems' refcounts, which are explicitly
1668 * dropped in the failure exit path.
1671 list_add(&root
->root_list
, &cgroup_roots
);
1672 cgroup_root_count
++;
1674 /* Link the top cgroup in this hierarchy into all
1675 * the css_set objects */
1676 write_lock(&css_set_lock
);
1677 hash_for_each(css_set_table
, i
, cset
, hlist
)
1678 link_css_set(&tmp_links
, cset
, root_cgrp
);
1679 write_unlock(&css_set_lock
);
1681 free_cgrp_cset_links(&tmp_links
);
1683 BUG_ON(!list_empty(&root_cgrp
->children
));
1684 BUG_ON(root
->number_of_cgroups
!= 1);
1686 mutex_unlock(&cgroup_root_mutex
);
1687 mutex_unlock(&cgroup_mutex
);
1688 mutex_unlock(&inode
->i_mutex
);
1691 * We re-used an existing hierarchy - the new root (if
1692 * any) is not needed
1694 cgroup_free_root(opts
.new_root
);
1696 if ((root
->flags
^ opts
.flags
) & CGRP_ROOT_OPTION_MASK
) {
1697 if ((root
->flags
| opts
.flags
) & CGRP_ROOT_SANE_BEHAVIOR
) {
1698 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1700 goto drop_new_super
;
1702 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1707 kfree(opts
.release_agent
);
1709 return dget(sb
->s_root
);
1712 free_cgrp_cset_links(&tmp_links
);
1713 cgroup_addrm_files(&root
->top_cgroup
, cgroup_base_files
, false);
1716 cgroup_exit_root_id(root
);
1717 mutex_unlock(&cgroup_root_mutex
);
1718 mutex_unlock(&cgroup_mutex
);
1719 mutex_unlock(&inode
->i_mutex
);
1721 deactivate_locked_super(sb
);
1723 kfree(opts
.release_agent
);
1725 return ERR_PTR(ret
);
1728 static void cgroup_kill_sb(struct super_block
*sb
) {
1729 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1730 struct cgroup
*cgrp
= &root
->top_cgroup
;
1731 struct cgrp_cset_link
*link
, *tmp_link
;
1736 BUG_ON(root
->number_of_cgroups
!= 1);
1737 BUG_ON(!list_empty(&cgrp
->children
));
1739 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1740 mutex_lock(&cgroup_mutex
);
1741 mutex_lock(&cgroup_root_mutex
);
1743 /* Rebind all subsystems back to the default hierarchy */
1744 if (root
->flags
& CGRP_ROOT_SUBSYS_BOUND
) {
1745 ret
= rebind_subsystems(root
, 0, root
->subsys_mask
);
1746 /* Shouldn't be able to fail ... */
1751 * Release all the links from cset_links to this hierarchy's
1754 write_lock(&css_set_lock
);
1756 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1757 list_del(&link
->cset_link
);
1758 list_del(&link
->cgrp_link
);
1761 write_unlock(&css_set_lock
);
1763 if (!list_empty(&root
->root_list
)) {
1764 list_del(&root
->root_list
);
1765 cgroup_root_count
--;
1768 cgroup_exit_root_id(root
);
1770 mutex_unlock(&cgroup_root_mutex
);
1771 mutex_unlock(&cgroup_mutex
);
1772 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1774 simple_xattrs_free(&cgrp
->xattrs
);
1776 kill_litter_super(sb
);
1777 cgroup_free_root(root
);
1780 static struct file_system_type cgroup_fs_type
= {
1782 .mount
= cgroup_mount
,
1783 .kill_sb
= cgroup_kill_sb
,
1786 static struct kobject
*cgroup_kobj
;
1789 * cgroup_path - generate the path of a cgroup
1790 * @cgrp: the cgroup in question
1791 * @buf: the buffer to write the path into
1792 * @buflen: the length of the buffer
1794 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1796 * We can't generate cgroup path using dentry->d_name, as accessing
1797 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1798 * inode's i_mutex, while on the other hand cgroup_path() can be called
1799 * with some irq-safe spinlocks held.
1801 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1803 int ret
= -ENAMETOOLONG
;
1806 if (!cgrp
->parent
) {
1807 if (strlcpy(buf
, "/", buflen
) >= buflen
)
1808 return -ENAMETOOLONG
;
1812 start
= buf
+ buflen
- 1;
1817 const char *name
= cgroup_name(cgrp
);
1821 if ((start
-= len
) < buf
)
1823 memcpy(start
, name
, len
);
1829 cgrp
= cgrp
->parent
;
1830 } while (cgrp
->parent
);
1832 memmove(buf
, start
, buf
+ buflen
- start
);
1837 EXPORT_SYMBOL_GPL(cgroup_path
);
1840 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1841 * @task: target task
1842 * @buf: the buffer to write the path into
1843 * @buflen: the length of the buffer
1845 * Determine @task's cgroup on the first (the one with the lowest non-zero
1846 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1847 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1848 * cgroup controller callbacks.
1850 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1852 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1854 struct cgroupfs_root
*root
;
1855 struct cgroup
*cgrp
;
1856 int hierarchy_id
= 1, ret
= 0;
1859 return -ENAMETOOLONG
;
1861 mutex_lock(&cgroup_mutex
);
1863 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
1866 cgrp
= task_cgroup_from_root(task
, root
);
1867 ret
= cgroup_path(cgrp
, buf
, buflen
);
1869 /* if no hierarchy exists, everyone is in "/" */
1870 memcpy(buf
, "/", 2);
1873 mutex_unlock(&cgroup_mutex
);
1876 EXPORT_SYMBOL_GPL(task_cgroup_path
);
1879 * Control Group taskset
1881 struct task_and_cgroup
{
1882 struct task_struct
*task
;
1883 struct cgroup
*cgrp
;
1884 struct css_set
*cset
;
1887 struct cgroup_taskset
{
1888 struct task_and_cgroup single
;
1889 struct flex_array
*tc_array
;
1892 struct cgroup
*cur_cgrp
;
1896 * cgroup_taskset_first - reset taskset and return the first task
1897 * @tset: taskset of interest
1899 * @tset iteration is initialized and the first task is returned.
1901 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1903 if (tset
->tc_array
) {
1905 return cgroup_taskset_next(tset
);
1907 tset
->cur_cgrp
= tset
->single
.cgrp
;
1908 return tset
->single
.task
;
1911 EXPORT_SYMBOL_GPL(cgroup_taskset_first
);
1914 * cgroup_taskset_next - iterate to the next task in taskset
1915 * @tset: taskset of interest
1917 * Return the next task in @tset. Iteration must have been initialized
1918 * with cgroup_taskset_first().
1920 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1922 struct task_and_cgroup
*tc
;
1924 if (!tset
->tc_array
|| tset
->idx
>= tset
->tc_array_len
)
1927 tc
= flex_array_get(tset
->tc_array
, tset
->idx
++);
1928 tset
->cur_cgrp
= tc
->cgrp
;
1931 EXPORT_SYMBOL_GPL(cgroup_taskset_next
);
1934 * cgroup_taskset_cur_css - return the matching css for the current task
1935 * @tset: taskset of interest
1936 * @subsys_id: the ID of the target subsystem
1938 * Return the css for the current (last returned) task of @tset for
1939 * subsystem specified by @subsys_id. This function must be preceded by
1940 * either cgroup_taskset_first() or cgroup_taskset_next().
1942 struct cgroup_subsys_state
*cgroup_taskset_cur_css(struct cgroup_taskset
*tset
,
1945 return cgroup_css(tset
->cur_cgrp
, cgroup_subsys
[subsys_id
]);
1947 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css
);
1950 * cgroup_taskset_size - return the number of tasks in taskset
1951 * @tset: taskset of interest
1953 int cgroup_taskset_size(struct cgroup_taskset
*tset
)
1955 return tset
->tc_array
? tset
->tc_array_len
: 1;
1957 EXPORT_SYMBOL_GPL(cgroup_taskset_size
);
1961 * cgroup_task_migrate - move a task from one cgroup to another.
1963 * Must be called with cgroup_mutex and threadgroup locked.
1965 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
1966 struct task_struct
*tsk
,
1967 struct css_set
*new_cset
)
1969 struct css_set
*old_cset
;
1972 * We are synchronized through threadgroup_lock() against PF_EXITING
1973 * setting such that we can't race against cgroup_exit() changing the
1974 * css_set to init_css_set and dropping the old one.
1976 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1977 old_cset
= task_css_set(tsk
);
1980 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
1983 /* Update the css_set linked lists if we're using them */
1984 write_lock(&css_set_lock
);
1985 if (!list_empty(&tsk
->cg_list
))
1986 list_move(&tsk
->cg_list
, &new_cset
->tasks
);
1987 write_unlock(&css_set_lock
);
1990 * We just gained a reference on old_cset by taking it from the
1991 * task. As trading it for new_cset is protected by cgroup_mutex,
1992 * we're safe to drop it here; it will be freed under RCU.
1994 set_bit(CGRP_RELEASABLE
, &old_cgrp
->flags
);
1995 put_css_set(old_cset
);
1999 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2000 * @cgrp: the cgroup to attach to
2001 * @tsk: the task or the leader of the threadgroup to be attached
2002 * @threadgroup: attach the whole threadgroup?
2004 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2005 * task_lock of @tsk or each thread in the threadgroup individually in turn.
2007 static int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
,
2010 int retval
, i
, group_size
;
2011 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
2012 struct cgroupfs_root
*root
= cgrp
->root
;
2013 /* threadgroup list cursor and array */
2014 struct task_struct
*leader
= tsk
;
2015 struct task_and_cgroup
*tc
;
2016 struct flex_array
*group
;
2017 struct cgroup_taskset tset
= { };
2020 * step 0: in order to do expensive, possibly blocking operations for
2021 * every thread, we cannot iterate the thread group list, since it needs
2022 * rcu or tasklist locked. instead, build an array of all threads in the
2023 * group - group_rwsem prevents new threads from appearing, and if
2024 * threads exit, this will just be an over-estimate.
2027 group_size
= get_nr_threads(tsk
);
2030 /* flex_array supports very large thread-groups better than kmalloc. */
2031 group
= flex_array_alloc(sizeof(*tc
), group_size
, GFP_KERNEL
);
2034 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2035 retval
= flex_array_prealloc(group
, 0, group_size
, GFP_KERNEL
);
2037 goto out_free_group_list
;
2041 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2042 * already PF_EXITING could be freed from underneath us unless we
2043 * take an rcu_read_lock.
2047 struct task_and_cgroup ent
;
2049 /* @tsk either already exited or can't exit until the end */
2050 if (tsk
->flags
& PF_EXITING
)
2053 /* as per above, nr_threads may decrease, but not increase. */
2054 BUG_ON(i
>= group_size
);
2056 ent
.cgrp
= task_cgroup_from_root(tsk
, root
);
2057 /* nothing to do if this task is already in the cgroup */
2058 if (ent
.cgrp
== cgrp
)
2061 * saying GFP_ATOMIC has no effect here because we did prealloc
2062 * earlier, but it's good form to communicate our expectations.
2064 retval
= flex_array_put(group
, i
, &ent
, GFP_ATOMIC
);
2065 BUG_ON(retval
!= 0);
2070 } while_each_thread(leader
, tsk
);
2072 /* remember the number of threads in the array for later. */
2074 tset
.tc_array
= group
;
2075 tset
.tc_array_len
= group_size
;
2077 /* methods shouldn't be called if no task is actually migrating */
2080 goto out_free_group_list
;
2083 * step 1: check that we can legitimately attach to the cgroup.
2085 for_each_root_subsys(root
, ss
) {
2086 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2088 if (ss
->can_attach
) {
2089 retval
= ss
->can_attach(css
, &tset
);
2092 goto out_cancel_attach
;
2098 * step 2: make sure css_sets exist for all threads to be migrated.
2099 * we use find_css_set, which allocates a new one if necessary.
2101 for (i
= 0; i
< group_size
; i
++) {
2102 struct css_set
*old_cset
;
2104 tc
= flex_array_get(group
, i
);
2105 old_cset
= task_css_set(tc
->task
);
2106 tc
->cset
= find_css_set(old_cset
, cgrp
);
2109 goto out_put_css_set_refs
;
2114 * step 3: now that we're guaranteed success wrt the css_sets,
2115 * proceed to move all tasks to the new cgroup. There are no
2116 * failure cases after here, so this is the commit point.
2118 for (i
= 0; i
< group_size
; i
++) {
2119 tc
= flex_array_get(group
, i
);
2120 cgroup_task_migrate(tc
->cgrp
, tc
->task
, tc
->cset
);
2122 /* nothing is sensitive to fork() after this point. */
2125 * step 4: do subsystem attach callbacks.
2127 for_each_root_subsys(root
, ss
) {
2128 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2131 ss
->attach(css
, &tset
);
2135 * step 5: success! and cleanup
2138 out_put_css_set_refs
:
2140 for (i
= 0; i
< group_size
; i
++) {
2141 tc
= flex_array_get(group
, i
);
2144 put_css_set(tc
->cset
);
2149 for_each_root_subsys(root
, ss
) {
2150 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2152 if (ss
== failed_ss
)
2154 if (ss
->cancel_attach
)
2155 ss
->cancel_attach(css
, &tset
);
2158 out_free_group_list
:
2159 flex_array_free(group
);
2164 * Find the task_struct of the task to attach by vpid and pass it along to the
2165 * function to attach either it or all tasks in its threadgroup. Will lock
2166 * cgroup_mutex and threadgroup; may take task_lock of task.
2168 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2170 struct task_struct
*tsk
;
2171 const struct cred
*cred
= current_cred(), *tcred
;
2174 if (!cgroup_lock_live_group(cgrp
))
2180 tsk
= find_task_by_vpid(pid
);
2184 goto out_unlock_cgroup
;
2187 * even if we're attaching all tasks in the thread group, we
2188 * only need to check permissions on one of them.
2190 tcred
= __task_cred(tsk
);
2191 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2192 !uid_eq(cred
->euid
, tcred
->uid
) &&
2193 !uid_eq(cred
->euid
, tcred
->suid
)) {
2196 goto out_unlock_cgroup
;
2202 tsk
= tsk
->group_leader
;
2205 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2206 * trapped in a cpuset, or RT worker may be born in a cgroup
2207 * with no rt_runtime allocated. Just say no.
2209 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2212 goto out_unlock_cgroup
;
2215 get_task_struct(tsk
);
2218 threadgroup_lock(tsk
);
2220 if (!thread_group_leader(tsk
)) {
2222 * a race with de_thread from another thread's exec()
2223 * may strip us of our leadership, if this happens,
2224 * there is no choice but to throw this task away and
2225 * try again; this is
2226 * "double-double-toil-and-trouble-check locking".
2228 threadgroup_unlock(tsk
);
2229 put_task_struct(tsk
);
2230 goto retry_find_task
;
2234 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2236 threadgroup_unlock(tsk
);
2238 put_task_struct(tsk
);
2240 mutex_unlock(&cgroup_mutex
);
2245 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2246 * @from: attach to all cgroups of a given task
2247 * @tsk: the task to be attached
2249 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2251 struct cgroupfs_root
*root
;
2254 mutex_lock(&cgroup_mutex
);
2255 for_each_active_root(root
) {
2256 struct cgroup
*from_cgrp
= task_cgroup_from_root(from
, root
);
2258 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2262 mutex_unlock(&cgroup_mutex
);
2266 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2268 static int cgroup_tasks_write(struct cgroup_subsys_state
*css
,
2269 struct cftype
*cft
, u64 pid
)
2271 return attach_task_by_pid(css
->cgroup
, pid
, false);
2274 static int cgroup_procs_write(struct cgroup_subsys_state
*css
,
2275 struct cftype
*cft
, u64 tgid
)
2277 return attach_task_by_pid(css
->cgroup
, tgid
, true);
2280 static int cgroup_release_agent_write(struct cgroup_subsys_state
*css
,
2281 struct cftype
*cft
, const char *buffer
)
2283 BUILD_BUG_ON(sizeof(css
->cgroup
->root
->release_agent_path
) < PATH_MAX
);
2284 if (strlen(buffer
) >= PATH_MAX
)
2286 if (!cgroup_lock_live_group(css
->cgroup
))
2288 mutex_lock(&cgroup_root_mutex
);
2289 strcpy(css
->cgroup
->root
->release_agent_path
, buffer
);
2290 mutex_unlock(&cgroup_root_mutex
);
2291 mutex_unlock(&cgroup_mutex
);
2295 static int cgroup_release_agent_show(struct cgroup_subsys_state
*css
,
2296 struct cftype
*cft
, struct seq_file
*seq
)
2298 struct cgroup
*cgrp
= css
->cgroup
;
2300 if (!cgroup_lock_live_group(cgrp
))
2302 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2303 seq_putc(seq
, '\n');
2304 mutex_unlock(&cgroup_mutex
);
2308 static int cgroup_sane_behavior_show(struct cgroup_subsys_state
*css
,
2309 struct cftype
*cft
, struct seq_file
*seq
)
2311 seq_printf(seq
, "%d\n", cgroup_sane_behavior(css
->cgroup
));
2315 /* A buffer size big enough for numbers or short strings */
2316 #define CGROUP_LOCAL_BUFFER_SIZE 64
2318 static ssize_t
cgroup_write_X64(struct cgroup_subsys_state
*css
,
2319 struct cftype
*cft
, struct file
*file
,
2320 const char __user
*userbuf
, size_t nbytes
,
2321 loff_t
*unused_ppos
)
2323 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2329 if (nbytes
>= sizeof(buffer
))
2331 if (copy_from_user(buffer
, userbuf
, nbytes
))
2334 buffer
[nbytes
] = 0; /* nul-terminate */
2335 if (cft
->write_u64
) {
2336 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2339 retval
= cft
->write_u64(css
, cft
, val
);
2341 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2344 retval
= cft
->write_s64(css
, cft
, val
);
2351 static ssize_t
cgroup_write_string(struct cgroup_subsys_state
*css
,
2352 struct cftype
*cft
, struct file
*file
,
2353 const char __user
*userbuf
, size_t nbytes
,
2354 loff_t
*unused_ppos
)
2356 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2358 size_t max_bytes
= cft
->max_write_len
;
2359 char *buffer
= local_buffer
;
2362 max_bytes
= sizeof(local_buffer
) - 1;
2363 if (nbytes
>= max_bytes
)
2365 /* Allocate a dynamic buffer if we need one */
2366 if (nbytes
>= sizeof(local_buffer
)) {
2367 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2371 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2376 buffer
[nbytes
] = 0; /* nul-terminate */
2377 retval
= cft
->write_string(css
, cft
, strstrip(buffer
));
2381 if (buffer
!= local_buffer
)
2386 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2387 size_t nbytes
, loff_t
*ppos
)
2389 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2390 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2391 struct cgroup_subsys_state
*css
= cfe
->css
;
2394 return cft
->write(css
, cft
, file
, buf
, nbytes
, ppos
);
2395 if (cft
->write_u64
|| cft
->write_s64
)
2396 return cgroup_write_X64(css
, cft
, file
, buf
, nbytes
, ppos
);
2397 if (cft
->write_string
)
2398 return cgroup_write_string(css
, cft
, file
, buf
, nbytes
, ppos
);
2400 int ret
= cft
->trigger(css
, (unsigned int)cft
->private);
2401 return ret
? ret
: nbytes
;
2406 static ssize_t
cgroup_read_u64(struct cgroup_subsys_state
*css
,
2407 struct cftype
*cft
, struct file
*file
,
2408 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2410 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2411 u64 val
= cft
->read_u64(css
, cft
);
2412 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2414 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2417 static ssize_t
cgroup_read_s64(struct cgroup_subsys_state
*css
,
2418 struct cftype
*cft
, struct file
*file
,
2419 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2421 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2422 s64 val
= cft
->read_s64(css
, cft
);
2423 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2425 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2428 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2429 size_t nbytes
, loff_t
*ppos
)
2431 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2432 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2433 struct cgroup_subsys_state
*css
= cfe
->css
;
2436 return cft
->read(css
, cft
, file
, buf
, nbytes
, ppos
);
2438 return cgroup_read_u64(css
, cft
, file
, buf
, nbytes
, ppos
);
2440 return cgroup_read_s64(css
, cft
, file
, buf
, nbytes
, ppos
);
2445 * seqfile ops/methods for returning structured data. Currently just
2446 * supports string->u64 maps, but can be extended in future.
2449 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2451 struct seq_file
*sf
= cb
->state
;
2452 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2455 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2457 struct cfent
*cfe
= m
->private;
2458 struct cftype
*cft
= cfe
->type
;
2459 struct cgroup_subsys_state
*css
= cfe
->css
;
2461 if (cft
->read_map
) {
2462 struct cgroup_map_cb cb
= {
2463 .fill
= cgroup_map_add
,
2466 return cft
->read_map(css
, cft
, &cb
);
2468 return cft
->read_seq_string(css
, cft
, m
);
2471 static const struct file_operations cgroup_seqfile_operations
= {
2473 .write
= cgroup_file_write
,
2474 .llseek
= seq_lseek
,
2475 .release
= cgroup_file_release
,
2478 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2480 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2481 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2482 struct cgroup
*cgrp
= __d_cgrp(cfe
->dentry
->d_parent
);
2483 struct cgroup_subsys_state
*css
;
2486 err
= generic_file_open(inode
, file
);
2491 * If the file belongs to a subsystem, pin the css. Will be
2492 * unpinned either on open failure or release. This ensures that
2493 * @css stays alive for all file operations.
2496 css
= cgroup_css(cgrp
, cft
->ss
);
2497 if (cft
->ss
&& !css_tryget(css
))
2505 * @cfe->css is used by read/write/close to determine the
2506 * associated css. @file->private_data would be a better place but
2507 * that's already used by seqfile. Multiple accessors may use it
2508 * simultaneously which is okay as the association never changes.
2510 WARN_ON_ONCE(cfe
->css
&& cfe
->css
!= css
);
2513 if (cft
->read_map
|| cft
->read_seq_string
) {
2514 file
->f_op
= &cgroup_seqfile_operations
;
2515 err
= single_open(file
, cgroup_seqfile_show
, cfe
);
2516 } else if (cft
->open
) {
2517 err
= cft
->open(inode
, file
);
2525 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2527 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2528 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2529 struct cgroup_subsys_state
*css
= cfe
->css
;
2533 ret
= cft
->release(inode
, file
);
2536 if (file
->f_op
== &cgroup_seqfile_operations
)
2537 single_release(inode
, file
);
2542 * cgroup_rename - Only allow simple rename of directories in place.
2544 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2545 struct inode
*new_dir
, struct dentry
*new_dentry
)
2548 struct cgroup_name
*name
, *old_name
;
2549 struct cgroup
*cgrp
;
2552 * It's convinient to use parent dir's i_mutex to protected
2555 lockdep_assert_held(&old_dir
->i_mutex
);
2557 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2559 if (new_dentry
->d_inode
)
2561 if (old_dir
!= new_dir
)
2564 cgrp
= __d_cgrp(old_dentry
);
2567 * This isn't a proper migration and its usefulness is very
2568 * limited. Disallow if sane_behavior.
2570 if (cgroup_sane_behavior(cgrp
))
2573 name
= cgroup_alloc_name(new_dentry
);
2577 ret
= simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2583 old_name
= rcu_dereference_protected(cgrp
->name
, true);
2584 rcu_assign_pointer(cgrp
->name
, name
);
2586 kfree_rcu(old_name
, rcu_head
);
2590 static struct simple_xattrs
*__d_xattrs(struct dentry
*dentry
)
2592 if (S_ISDIR(dentry
->d_inode
->i_mode
))
2593 return &__d_cgrp(dentry
)->xattrs
;
2595 return &__d_cfe(dentry
)->xattrs
;
2598 static inline int xattr_enabled(struct dentry
*dentry
)
2600 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
2601 return root
->flags
& CGRP_ROOT_XATTR
;
2604 static bool is_valid_xattr(const char *name
)
2606 if (!strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
) ||
2607 !strncmp(name
, XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
))
2612 static int cgroup_setxattr(struct dentry
*dentry
, const char *name
,
2613 const void *val
, size_t size
, int flags
)
2615 if (!xattr_enabled(dentry
))
2617 if (!is_valid_xattr(name
))
2619 return simple_xattr_set(__d_xattrs(dentry
), name
, val
, size
, flags
);
2622 static int cgroup_removexattr(struct dentry
*dentry
, const char *name
)
2624 if (!xattr_enabled(dentry
))
2626 if (!is_valid_xattr(name
))
2628 return simple_xattr_remove(__d_xattrs(dentry
), name
);
2631 static ssize_t
cgroup_getxattr(struct dentry
*dentry
, const char *name
,
2632 void *buf
, size_t size
)
2634 if (!xattr_enabled(dentry
))
2636 if (!is_valid_xattr(name
))
2638 return simple_xattr_get(__d_xattrs(dentry
), name
, buf
, size
);
2641 static ssize_t
cgroup_listxattr(struct dentry
*dentry
, char *buf
, size_t size
)
2643 if (!xattr_enabled(dentry
))
2645 return simple_xattr_list(__d_xattrs(dentry
), buf
, size
);
2648 static const struct file_operations cgroup_file_operations
= {
2649 .read
= cgroup_file_read
,
2650 .write
= cgroup_file_write
,
2651 .llseek
= generic_file_llseek
,
2652 .open
= cgroup_file_open
,
2653 .release
= cgroup_file_release
,
2656 static const struct inode_operations cgroup_file_inode_operations
= {
2657 .setxattr
= cgroup_setxattr
,
2658 .getxattr
= cgroup_getxattr
,
2659 .listxattr
= cgroup_listxattr
,
2660 .removexattr
= cgroup_removexattr
,
2663 static const struct inode_operations cgroup_dir_inode_operations
= {
2664 .lookup
= simple_lookup
,
2665 .mkdir
= cgroup_mkdir
,
2666 .rmdir
= cgroup_rmdir
,
2667 .rename
= cgroup_rename
,
2668 .setxattr
= cgroup_setxattr
,
2669 .getxattr
= cgroup_getxattr
,
2670 .listxattr
= cgroup_listxattr
,
2671 .removexattr
= cgroup_removexattr
,
2675 * Check if a file is a control file
2677 static inline struct cftype
*__file_cft(struct file
*file
)
2679 if (file_inode(file
)->i_fop
!= &cgroup_file_operations
)
2680 return ERR_PTR(-EINVAL
);
2681 return __d_cft(file
->f_dentry
);
2684 static int cgroup_create_file(struct dentry
*dentry
, umode_t mode
,
2685 struct super_block
*sb
)
2687 struct inode
*inode
;
2691 if (dentry
->d_inode
)
2694 inode
= cgroup_new_inode(mode
, sb
);
2698 if (S_ISDIR(mode
)) {
2699 inode
->i_op
= &cgroup_dir_inode_operations
;
2700 inode
->i_fop
= &simple_dir_operations
;
2702 /* start off with i_nlink == 2 (for "." entry) */
2704 inc_nlink(dentry
->d_parent
->d_inode
);
2707 * Control reaches here with cgroup_mutex held.
2708 * @inode->i_mutex should nest outside cgroup_mutex but we
2709 * want to populate it immediately without releasing
2710 * cgroup_mutex. As @inode isn't visible to anyone else
2711 * yet, trylock will always succeed without affecting
2714 WARN_ON_ONCE(!mutex_trylock(&inode
->i_mutex
));
2715 } else if (S_ISREG(mode
)) {
2717 inode
->i_fop
= &cgroup_file_operations
;
2718 inode
->i_op
= &cgroup_file_inode_operations
;
2720 d_instantiate(dentry
, inode
);
2721 dget(dentry
); /* Extra count - pin the dentry in core */
2726 * cgroup_file_mode - deduce file mode of a control file
2727 * @cft: the control file in question
2729 * returns cft->mode if ->mode is not 0
2730 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2731 * returns S_IRUGO if it has only a read handler
2732 * returns S_IWUSR if it has only a write hander
2734 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
2741 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2742 cft
->read_map
|| cft
->read_seq_string
)
2745 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2746 cft
->write_string
|| cft
->trigger
)
2752 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
2754 struct dentry
*dir
= cgrp
->dentry
;
2755 struct cgroup
*parent
= __d_cgrp(dir
);
2756 struct dentry
*dentry
;
2760 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2762 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
2763 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
2764 strcpy(name
, cft
->ss
->name
);
2767 strcat(name
, cft
->name
);
2769 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2771 cfe
= kzalloc(sizeof(*cfe
), GFP_KERNEL
);
2775 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2776 if (IS_ERR(dentry
)) {
2777 error
= PTR_ERR(dentry
);
2781 cfe
->type
= (void *)cft
;
2782 cfe
->dentry
= dentry
;
2783 dentry
->d_fsdata
= cfe
;
2784 simple_xattrs_init(&cfe
->xattrs
);
2786 mode
= cgroup_file_mode(cft
);
2787 error
= cgroup_create_file(dentry
, mode
| S_IFREG
, cgrp
->root
->sb
);
2789 list_add_tail(&cfe
->node
, &parent
->files
);
2799 * cgroup_addrm_files - add or remove files to a cgroup directory
2800 * @cgrp: the target cgroup
2801 * @cfts: array of cftypes to be added
2802 * @is_add: whether to add or remove
2804 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2805 * For removals, this function never fails. If addition fails, this
2806 * function doesn't remove files already added. The caller is responsible
2809 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
2815 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
2816 lockdep_assert_held(&cgroup_mutex
);
2818 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2819 /* does cft->flags tell us to skip this file on @cgrp? */
2820 if ((cft
->flags
& CFTYPE_INSANE
) && cgroup_sane_behavior(cgrp
))
2822 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgrp
->parent
)
2824 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgrp
->parent
)
2828 ret
= cgroup_add_file(cgrp
, cft
);
2830 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2835 cgroup_rm_file(cgrp
, cft
);
2841 static void cgroup_cfts_prepare(void)
2842 __acquires(&cgroup_mutex
)
2845 * Thanks to the entanglement with vfs inode locking, we can't walk
2846 * the existing cgroups under cgroup_mutex and create files.
2847 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2848 * lock before calling cgroup_addrm_files().
2850 mutex_lock(&cgroup_mutex
);
2853 static int cgroup_cfts_commit(struct cftype
*cfts
, bool is_add
)
2854 __releases(&cgroup_mutex
)
2857 struct cgroup_subsys
*ss
= cfts
[0].ss
;
2858 struct cgroup
*root
= &ss
->root
->top_cgroup
;
2859 struct super_block
*sb
= ss
->root
->sb
;
2860 struct dentry
*prev
= NULL
;
2861 struct inode
*inode
;
2862 struct cgroup_subsys_state
*css
;
2866 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2867 if (!cfts
|| ss
->root
== &cgroup_dummy_root
||
2868 !atomic_inc_not_zero(&sb
->s_active
)) {
2869 mutex_unlock(&cgroup_mutex
);
2874 * All cgroups which are created after we drop cgroup_mutex will
2875 * have the updated set of files, so we only need to update the
2876 * cgroups created before the current @cgroup_serial_nr_next.
2878 update_before
= cgroup_serial_nr_next
;
2880 /* add/rm files for all cgroups created before */
2881 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
2882 struct cgroup
*cgrp
= css
->cgroup
;
2884 if (cgroup_is_dead(cgrp
))
2887 inode
= cgrp
->dentry
->d_inode
;
2890 prev
= cgrp
->dentry
;
2892 mutex_unlock(&cgroup_mutex
);
2893 mutex_lock(&inode
->i_mutex
);
2894 mutex_lock(&cgroup_mutex
);
2895 if (cgrp
->serial_nr
< update_before
&& !cgroup_is_dead(cgrp
))
2896 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
2897 mutex_unlock(&inode
->i_mutex
);
2901 mutex_unlock(&cgroup_mutex
);
2903 deactivate_super(sb
);
2908 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2909 * @ss: target cgroup subsystem
2910 * @cfts: zero-length name terminated array of cftypes
2912 * Register @cfts to @ss. Files described by @cfts are created for all
2913 * existing cgroups to which @ss is attached and all future cgroups will
2914 * have them too. This function can be called anytime whether @ss is
2917 * Returns 0 on successful registration, -errno on failure. Note that this
2918 * function currently returns 0 as long as @cfts registration is successful
2919 * even if some file creation attempts on existing cgroups fail.
2921 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2923 struct cftype_set
*set
;
2927 set
= kzalloc(sizeof(*set
), GFP_KERNEL
);
2931 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++)
2934 cgroup_cfts_prepare();
2936 list_add_tail(&set
->node
, &ss
->cftsets
);
2937 ret
= cgroup_cfts_commit(cfts
, true);
2939 cgroup_rm_cftypes(cfts
);
2942 EXPORT_SYMBOL_GPL(cgroup_add_cftypes
);
2945 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2946 * @cfts: zero-length name terminated array of cftypes
2948 * Unregister @cfts. Files described by @cfts are removed from all
2949 * existing cgroups and all future cgroups won't have them either. This
2950 * function can be called anytime whether @cfts' subsys is attached or not.
2952 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2955 int cgroup_rm_cftypes(struct cftype
*cfts
)
2957 struct cftype_set
*set
;
2959 if (!cfts
|| !cfts
[0].ss
)
2962 cgroup_cfts_prepare();
2964 list_for_each_entry(set
, &cfts
[0].ss
->cftsets
, node
) {
2965 if (set
->cfts
== cfts
) {
2966 list_del(&set
->node
);
2968 cgroup_cfts_commit(cfts
, false);
2973 cgroup_cfts_commit(NULL
, false);
2978 * cgroup_task_count - count the number of tasks in a cgroup.
2979 * @cgrp: the cgroup in question
2981 * Return the number of tasks in the cgroup.
2983 int cgroup_task_count(const struct cgroup
*cgrp
)
2986 struct cgrp_cset_link
*link
;
2988 read_lock(&css_set_lock
);
2989 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
2990 count
+= atomic_read(&link
->cset
->refcount
);
2991 read_unlock(&css_set_lock
);
2996 * To reduce the fork() overhead for systems that are not actually using
2997 * their cgroups capability, we don't maintain the lists running through
2998 * each css_set to its tasks until we see the list actually used - in other
2999 * words after the first call to css_task_iter_start().
3001 static void cgroup_enable_task_cg_lists(void)
3003 struct task_struct
*p
, *g
;
3004 write_lock(&css_set_lock
);
3005 use_task_css_set_links
= 1;
3007 * We need tasklist_lock because RCU is not safe against
3008 * while_each_thread(). Besides, a forking task that has passed
3009 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3010 * is not guaranteed to have its child immediately visible in the
3011 * tasklist if we walk through it with RCU.
3013 read_lock(&tasklist_lock
);
3014 do_each_thread(g
, p
) {
3017 * We should check if the process is exiting, otherwise
3018 * it will race with cgroup_exit() in that the list
3019 * entry won't be deleted though the process has exited.
3020 * Do it while holding siglock so that we don't end up
3021 * racing against cgroup_exit().
3023 spin_lock_irq(&p
->sighand
->siglock
);
3024 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
3025 list_add(&p
->cg_list
, &task_css_set(p
)->tasks
);
3026 spin_unlock_irq(&p
->sighand
->siglock
);
3029 } while_each_thread(g
, p
);
3030 read_unlock(&tasklist_lock
);
3031 write_unlock(&css_set_lock
);
3035 * css_next_child - find the next child of a given css
3036 * @pos_css: the current position (%NULL to initiate traversal)
3037 * @parent_css: css whose children to walk
3039 * This function returns the next child of @parent_css and should be called
3040 * under RCU read lock. The only requirement is that @parent_css and
3041 * @pos_css are accessible. The next sibling is guaranteed to be returned
3042 * regardless of their states.
3044 struct cgroup_subsys_state
*
3045 css_next_child(struct cgroup_subsys_state
*pos_css
,
3046 struct cgroup_subsys_state
*parent_css
)
3048 struct cgroup
*pos
= pos_css
? pos_css
->cgroup
: NULL
;
3049 struct cgroup
*cgrp
= parent_css
->cgroup
;
3050 struct cgroup
*next
;
3052 WARN_ON_ONCE(!rcu_read_lock_held());
3055 * @pos could already have been removed. Once a cgroup is removed,
3056 * its ->sibling.next is no longer updated when its next sibling
3057 * changes. As CGRP_DEAD assertion is serialized and happens
3058 * before the cgroup is taken off the ->sibling list, if we see it
3059 * unasserted, it's guaranteed that the next sibling hasn't
3060 * finished its grace period even if it's already removed, and thus
3061 * safe to dereference from this RCU critical section. If
3062 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3063 * to be visible as %true here.
3065 * If @pos is dead, its next pointer can't be dereferenced;
3066 * however, as each cgroup is given a monotonically increasing
3067 * unique serial number and always appended to the sibling list,
3068 * the next one can be found by walking the parent's children until
3069 * we see a cgroup with higher serial number than @pos's. While
3070 * this path can be slower, it's taken only when either the current
3071 * cgroup is removed or iteration and removal race.
3074 next
= list_entry_rcu(cgrp
->children
.next
, struct cgroup
, sibling
);
3075 } else if (likely(!cgroup_is_dead(pos
))) {
3076 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup
, sibling
);
3078 list_for_each_entry_rcu(next
, &cgrp
->children
, sibling
)
3079 if (next
->serial_nr
> pos
->serial_nr
)
3083 if (&next
->sibling
== &cgrp
->children
)
3086 return cgroup_css(next
, parent_css
->ss
);
3088 EXPORT_SYMBOL_GPL(css_next_child
);
3091 * css_next_descendant_pre - find the next descendant for pre-order walk
3092 * @pos: the current position (%NULL to initiate traversal)
3093 * @root: css whose descendants to walk
3095 * To be used by css_for_each_descendant_pre(). Find the next descendant
3096 * to visit for pre-order traversal of @root's descendants. @root is
3097 * included in the iteration and the first node to be visited.
3099 * While this function requires RCU read locking, it doesn't require the
3100 * whole traversal to be contained in a single RCU critical section. This
3101 * function will return the correct next descendant as long as both @pos
3102 * and @root are accessible and @pos is a descendant of @root.
3104 struct cgroup_subsys_state
*
3105 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3106 struct cgroup_subsys_state
*root
)
3108 struct cgroup_subsys_state
*next
;
3110 WARN_ON_ONCE(!rcu_read_lock_held());
3112 /* if first iteration, visit @root */
3116 /* visit the first child if exists */
3117 next
= css_next_child(NULL
, pos
);
3121 /* no child, visit my or the closest ancestor's next sibling */
3122 while (pos
!= root
) {
3123 next
= css_next_child(pos
, css_parent(pos
));
3126 pos
= css_parent(pos
);
3131 EXPORT_SYMBOL_GPL(css_next_descendant_pre
);
3134 * css_rightmost_descendant - return the rightmost descendant of a css
3135 * @pos: css of interest
3137 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3138 * is returned. This can be used during pre-order traversal to skip
3141 * While this function requires RCU read locking, it doesn't require the
3142 * whole traversal to be contained in a single RCU critical section. This
3143 * function will return the correct rightmost descendant as long as @pos is
3146 struct cgroup_subsys_state
*
3147 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3149 struct cgroup_subsys_state
*last
, *tmp
;
3151 WARN_ON_ONCE(!rcu_read_lock_held());
3155 /* ->prev isn't RCU safe, walk ->next till the end */
3157 css_for_each_child(tmp
, last
)
3163 EXPORT_SYMBOL_GPL(css_rightmost_descendant
);
3165 static struct cgroup_subsys_state
*
3166 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3168 struct cgroup_subsys_state
*last
;
3172 pos
= css_next_child(NULL
, pos
);
3179 * css_next_descendant_post - find the next descendant for post-order walk
3180 * @pos: the current position (%NULL to initiate traversal)
3181 * @root: css whose descendants to walk
3183 * To be used by css_for_each_descendant_post(). Find the next descendant
3184 * to visit for post-order traversal of @root's descendants. @root is
3185 * included in the iteration and the last node to be visited.
3187 * While this function requires RCU read locking, it doesn't require the
3188 * whole traversal to be contained in a single RCU critical section. This
3189 * function will return the correct next descendant as long as both @pos
3190 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3192 struct cgroup_subsys_state
*
3193 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3194 struct cgroup_subsys_state
*root
)
3196 struct cgroup_subsys_state
*next
;
3198 WARN_ON_ONCE(!rcu_read_lock_held());
3200 /* if first iteration, visit leftmost descendant which may be @root */
3202 return css_leftmost_descendant(root
);
3204 /* if we visited @root, we're done */
3208 /* if there's an unvisited sibling, visit its leftmost descendant */
3209 next
= css_next_child(pos
, css_parent(pos
));
3211 return css_leftmost_descendant(next
);
3213 /* no sibling left, visit parent */
3214 return css_parent(pos
);
3216 EXPORT_SYMBOL_GPL(css_next_descendant_post
);
3219 * css_advance_task_iter - advance a task itererator to the next css_set
3220 * @it: the iterator to advance
3222 * Advance @it to the next css_set to walk.
3224 static void css_advance_task_iter(struct css_task_iter
*it
)
3226 struct list_head
*l
= it
->cset_link
;
3227 struct cgrp_cset_link
*link
;
3228 struct css_set
*cset
;
3230 /* Advance to the next non-empty css_set */
3233 if (l
== &it
->origin_css
->cgroup
->cset_links
) {
3234 it
->cset_link
= NULL
;
3237 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3239 } while (list_empty(&cset
->tasks
));
3241 it
->task
= cset
->tasks
.next
;
3245 * css_task_iter_start - initiate task iteration
3246 * @css: the css to walk tasks of
3247 * @it: the task iterator to use
3249 * Initiate iteration through the tasks of @css. The caller can call
3250 * css_task_iter_next() to walk through the tasks until the function
3251 * returns NULL. On completion of iteration, css_task_iter_end() must be
3254 * Note that this function acquires a lock which is released when the
3255 * iteration finishes. The caller can't sleep while iteration is in
3258 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3259 struct css_task_iter
*it
)
3260 __acquires(css_set_lock
)
3263 * The first time anyone tries to iterate across a css, we need to
3264 * enable the list linking each css_set to its tasks, and fix up
3265 * all existing tasks.
3267 if (!use_task_css_set_links
)
3268 cgroup_enable_task_cg_lists();
3270 read_lock(&css_set_lock
);
3272 it
->origin_css
= css
;
3273 it
->cset_link
= &css
->cgroup
->cset_links
;
3275 css_advance_task_iter(it
);
3279 * css_task_iter_next - return the next task for the iterator
3280 * @it: the task iterator being iterated
3282 * The "next" function for task iteration. @it should have been
3283 * initialized via css_task_iter_start(). Returns NULL when the iteration
3286 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3288 struct task_struct
*res
;
3289 struct list_head
*l
= it
->task
;
3290 struct cgrp_cset_link
*link
;
3292 /* If the iterator cg is NULL, we have no tasks */
3295 res
= list_entry(l
, struct task_struct
, cg_list
);
3296 /* Advance iterator to find next entry */
3298 link
= list_entry(it
->cset_link
, struct cgrp_cset_link
, cset_link
);
3299 if (l
== &link
->cset
->tasks
) {
3301 * We reached the end of this task list - move on to the
3302 * next cgrp_cset_link.
3304 css_advance_task_iter(it
);
3312 * css_task_iter_end - finish task iteration
3313 * @it: the task iterator to finish
3315 * Finish task iteration started by css_task_iter_start().
3317 void css_task_iter_end(struct css_task_iter
*it
)
3318 __releases(css_set_lock
)
3320 read_unlock(&css_set_lock
);
3323 static inline int started_after_time(struct task_struct
*t1
,
3324 struct timespec
*time
,
3325 struct task_struct
*t2
)
3327 int start_diff
= timespec_compare(&t1
->start_time
, time
);
3328 if (start_diff
> 0) {
3330 } else if (start_diff
< 0) {
3334 * Arbitrarily, if two processes started at the same
3335 * time, we'll say that the lower pointer value
3336 * started first. Note that t2 may have exited by now
3337 * so this may not be a valid pointer any longer, but
3338 * that's fine - it still serves to distinguish
3339 * between two tasks started (effectively) simultaneously.
3346 * This function is a callback from heap_insert() and is used to order
3348 * In this case we order the heap in descending task start time.
3350 static inline int started_after(void *p1
, void *p2
)
3352 struct task_struct
*t1
= p1
;
3353 struct task_struct
*t2
= p2
;
3354 return started_after_time(t1
, &t2
->start_time
, t2
);
3358 * css_scan_tasks - iterate though all the tasks in a css
3359 * @css: the css to iterate tasks of
3360 * @test: optional test callback
3361 * @process: process callback
3362 * @data: data passed to @test and @process
3363 * @heap: optional pre-allocated heap used for task iteration
3365 * Iterate through all the tasks in @css, calling @test for each, and if it
3366 * returns %true, call @process for it also.
3368 * @test may be NULL, meaning always true (select all tasks), which
3369 * effectively duplicates css_task_iter_{start,next,end}() but does not
3370 * lock css_set_lock for the call to @process.
3372 * It is guaranteed that @process will act on every task that is a member
3373 * of @css for the duration of this call. This function may or may not
3374 * call @process for tasks that exit or move to a different css during the
3375 * call, or are forked or move into the css during the call.
3377 * Note that @test may be called with locks held, and may in some
3378 * situations be called multiple times for the same task, so it should be
3381 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3382 * heap operations (and its "gt" member will be overwritten), else a
3383 * temporary heap will be used (allocation of which may cause this function
3386 int css_scan_tasks(struct cgroup_subsys_state
*css
,
3387 bool (*test
)(struct task_struct
*, void *),
3388 void (*process
)(struct task_struct
*, void *),
3389 void *data
, struct ptr_heap
*heap
)
3392 struct css_task_iter it
;
3393 struct task_struct
*p
, *dropped
;
3394 /* Never dereference latest_task, since it's not refcounted */
3395 struct task_struct
*latest_task
= NULL
;
3396 struct ptr_heap tmp_heap
;
3397 struct timespec latest_time
= { 0, 0 };
3400 /* The caller supplied our heap and pre-allocated its memory */
3401 heap
->gt
= &started_after
;
3403 /* We need to allocate our own heap memory */
3405 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
3407 /* cannot allocate the heap */
3413 * Scan tasks in the css, using the @test callback to determine
3414 * which are of interest, and invoking @process callback on the
3415 * ones which need an update. Since we don't want to hold any
3416 * locks during the task updates, gather tasks to be processed in a
3417 * heap structure. The heap is sorted by descending task start
3418 * time. If the statically-sized heap fills up, we overflow tasks
3419 * that started later, and in future iterations only consider tasks
3420 * that started after the latest task in the previous pass. This
3421 * guarantees forward progress and that we don't miss any tasks.
3424 css_task_iter_start(css
, &it
);
3425 while ((p
= css_task_iter_next(&it
))) {
3427 * Only affect tasks that qualify per the caller's callback,
3428 * if he provided one
3430 if (test
&& !test(p
, data
))
3433 * Only process tasks that started after the last task
3436 if (!started_after_time(p
, &latest_time
, latest_task
))
3438 dropped
= heap_insert(heap
, p
);
3439 if (dropped
== NULL
) {
3441 * The new task was inserted; the heap wasn't
3445 } else if (dropped
!= p
) {
3447 * The new task was inserted, and pushed out a
3451 put_task_struct(dropped
);
3454 * Else the new task was newer than anything already in
3455 * the heap and wasn't inserted
3458 css_task_iter_end(&it
);
3461 for (i
= 0; i
< heap
->size
; i
++) {
3462 struct task_struct
*q
= heap
->ptrs
[i
];
3464 latest_time
= q
->start_time
;
3467 /* Process the task per the caller's callback */
3472 * If we had to process any tasks at all, scan again
3473 * in case some of them were in the middle of forking
3474 * children that didn't get processed.
3475 * Not the most efficient way to do it, but it avoids
3476 * having to take callback_mutex in the fork path
3480 if (heap
== &tmp_heap
)
3481 heap_free(&tmp_heap
);
3485 static void cgroup_transfer_one_task(struct task_struct
*task
, void *data
)
3487 struct cgroup
*new_cgroup
= data
;
3489 mutex_lock(&cgroup_mutex
);
3490 cgroup_attach_task(new_cgroup
, task
, false);
3491 mutex_unlock(&cgroup_mutex
);
3495 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3496 * @to: cgroup to which the tasks will be moved
3497 * @from: cgroup in which the tasks currently reside
3499 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3501 return css_scan_tasks(&from
->dummy_css
, NULL
, cgroup_transfer_one_task
,
3506 * Stuff for reading the 'tasks'/'procs' files.
3508 * Reading this file can return large amounts of data if a cgroup has
3509 * *lots* of attached tasks. So it may need several calls to read(),
3510 * but we cannot guarantee that the information we produce is correct
3511 * unless we produce it entirely atomically.
3515 /* which pidlist file are we talking about? */
3516 enum cgroup_filetype
{
3522 * A pidlist is a list of pids that virtually represents the contents of one
3523 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3524 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3527 struct cgroup_pidlist
{
3529 * used to find which pidlist is wanted. doesn't change as long as
3530 * this particular list stays in the list.
3532 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3535 /* how many elements the above list has */
3537 /* how many files are using the current array */
3539 /* each of these stored in a list by its cgroup */
3540 struct list_head links
;
3541 /* pointer to the cgroup we belong to, for list removal purposes */
3542 struct cgroup
*owner
;
3543 /* protects the other fields */
3544 struct rw_semaphore rwsem
;
3548 * The following two functions "fix" the issue where there are more pids
3549 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3550 * TODO: replace with a kernel-wide solution to this problem
3552 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3553 static void *pidlist_allocate(int count
)
3555 if (PIDLIST_TOO_LARGE(count
))
3556 return vmalloc(count
* sizeof(pid_t
));
3558 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3560 static void pidlist_free(void *p
)
3562 if (is_vmalloc_addr(p
))
3569 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3570 * Returns the number of unique elements.
3572 static int pidlist_uniq(pid_t
*list
, int length
)
3577 * we presume the 0th element is unique, so i starts at 1. trivial
3578 * edge cases first; no work needs to be done for either
3580 if (length
== 0 || length
== 1)
3582 /* src and dest walk down the list; dest counts unique elements */
3583 for (src
= 1; src
< length
; src
++) {
3584 /* find next unique element */
3585 while (list
[src
] == list
[src
-1]) {
3590 /* dest always points to where the next unique element goes */
3591 list
[dest
] = list
[src
];
3598 static int cmppid(const void *a
, const void *b
)
3600 return *(pid_t
*)a
- *(pid_t
*)b
;
3604 * find the appropriate pidlist for our purpose (given procs vs tasks)
3605 * returns with the lock on that pidlist already held, and takes care
3606 * of the use count, or returns NULL with no locks held if we're out of
3609 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3610 enum cgroup_filetype type
)
3612 struct cgroup_pidlist
*l
;
3613 /* don't need task_nsproxy() if we're looking at ourself */
3614 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3617 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3618 * the last ref-holder is trying to remove l from the list at the same
3619 * time. Holding the pidlist_mutex precludes somebody taking whichever
3620 * list we find out from under us - compare release_pid_array().
3622 mutex_lock(&cgrp
->pidlist_mutex
);
3623 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3624 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3625 /* make sure l doesn't vanish out from under us */
3626 down_write(&l
->rwsem
);
3627 mutex_unlock(&cgrp
->pidlist_mutex
);
3631 /* entry not found; create a new one */
3632 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3634 mutex_unlock(&cgrp
->pidlist_mutex
);
3637 init_rwsem(&l
->rwsem
);
3638 down_write(&l
->rwsem
);
3640 l
->key
.ns
= get_pid_ns(ns
);
3642 list_add(&l
->links
, &cgrp
->pidlists
);
3643 mutex_unlock(&cgrp
->pidlist_mutex
);
3648 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3650 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3651 struct cgroup_pidlist
**lp
)
3655 int pid
, n
= 0; /* used for populating the array */
3656 struct css_task_iter it
;
3657 struct task_struct
*tsk
;
3658 struct cgroup_pidlist
*l
;
3661 * If cgroup gets more users after we read count, we won't have
3662 * enough space - tough. This race is indistinguishable to the
3663 * caller from the case that the additional cgroup users didn't
3664 * show up until sometime later on.
3666 length
= cgroup_task_count(cgrp
);
3667 array
= pidlist_allocate(length
);
3670 /* now, populate the array */
3671 css_task_iter_start(&cgrp
->dummy_css
, &it
);
3672 while ((tsk
= css_task_iter_next(&it
))) {
3673 if (unlikely(n
== length
))
3675 /* get tgid or pid for procs or tasks file respectively */
3676 if (type
== CGROUP_FILE_PROCS
)
3677 pid
= task_tgid_vnr(tsk
);
3679 pid
= task_pid_vnr(tsk
);
3680 if (pid
> 0) /* make sure to only use valid results */
3683 css_task_iter_end(&it
);
3685 /* now sort & (if procs) strip out duplicates */
3686 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3687 if (type
== CGROUP_FILE_PROCS
)
3688 length
= pidlist_uniq(array
, length
);
3689 l
= cgroup_pidlist_find(cgrp
, type
);
3691 pidlist_free(array
);
3694 /* store array, freeing old if necessary - lock already held */
3695 pidlist_free(l
->list
);
3699 up_write(&l
->rwsem
);
3705 * cgroupstats_build - build and fill cgroupstats
3706 * @stats: cgroupstats to fill information into
3707 * @dentry: A dentry entry belonging to the cgroup for which stats have
3710 * Build and fill cgroupstats so that taskstats can export it to user
3713 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3716 struct cgroup
*cgrp
;
3717 struct css_task_iter it
;
3718 struct task_struct
*tsk
;
3721 * Validate dentry by checking the superblock operations,
3722 * and make sure it's a directory.
3724 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3725 !S_ISDIR(dentry
->d_inode
->i_mode
))
3729 cgrp
= dentry
->d_fsdata
;
3731 css_task_iter_start(&cgrp
->dummy_css
, &it
);
3732 while ((tsk
= css_task_iter_next(&it
))) {
3733 switch (tsk
->state
) {
3735 stats
->nr_running
++;
3737 case TASK_INTERRUPTIBLE
:
3738 stats
->nr_sleeping
++;
3740 case TASK_UNINTERRUPTIBLE
:
3741 stats
->nr_uninterruptible
++;
3744 stats
->nr_stopped
++;
3747 if (delayacct_is_task_waiting_on_io(tsk
))
3748 stats
->nr_io_wait
++;
3752 css_task_iter_end(&it
);
3760 * seq_file methods for the tasks/procs files. The seq_file position is the
3761 * next pid to display; the seq_file iterator is a pointer to the pid
3762 * in the cgroup->l->list array.
3765 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3768 * Initially we receive a position value that corresponds to
3769 * one more than the last pid shown (or 0 on the first call or
3770 * after a seek to the start). Use a binary-search to find the
3771 * next pid to display, if any
3773 struct cgroup_pidlist
*l
= s
->private;
3774 int index
= 0, pid
= *pos
;
3777 down_read(&l
->rwsem
);
3779 int end
= l
->length
;
3781 while (index
< end
) {
3782 int mid
= (index
+ end
) / 2;
3783 if (l
->list
[mid
] == pid
) {
3786 } else if (l
->list
[mid
] <= pid
)
3792 /* If we're off the end of the array, we're done */
3793 if (index
>= l
->length
)
3795 /* Update the abstract position to be the actual pid that we found */
3796 iter
= l
->list
+ index
;
3801 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3803 struct cgroup_pidlist
*l
= s
->private;
3807 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3809 struct cgroup_pidlist
*l
= s
->private;
3811 pid_t
*end
= l
->list
+ l
->length
;
3813 * Advance to the next pid in the array. If this goes off the
3825 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3827 return seq_printf(s
, "%d\n", *(int *)v
);
3831 * seq_operations functions for iterating on pidlists through seq_file -
3832 * independent of whether it's tasks or procs
3834 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3835 .start
= cgroup_pidlist_start
,
3836 .stop
= cgroup_pidlist_stop
,
3837 .next
= cgroup_pidlist_next
,
3838 .show
= cgroup_pidlist_show
,
3841 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3844 * the case where we're the last user of this particular pidlist will
3845 * have us remove it from the cgroup's list, which entails taking the
3846 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3847 * pidlist_mutex, we have to take pidlist_mutex first.
3849 mutex_lock(&l
->owner
->pidlist_mutex
);
3850 down_write(&l
->rwsem
);
3851 BUG_ON(!l
->use_count
);
3852 if (!--l
->use_count
) {
3853 /* we're the last user if refcount is 0; remove and free */
3854 list_del(&l
->links
);
3855 mutex_unlock(&l
->owner
->pidlist_mutex
);
3856 pidlist_free(l
->list
);
3857 put_pid_ns(l
->key
.ns
);
3858 up_write(&l
->rwsem
);
3862 mutex_unlock(&l
->owner
->pidlist_mutex
);
3863 up_write(&l
->rwsem
);
3866 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3868 struct cgroup_pidlist
*l
;
3869 if (!(file
->f_mode
& FMODE_READ
))
3872 * the seq_file will only be initialized if the file was opened for
3873 * reading; hence we check if it's not null only in that case.
3875 l
= ((struct seq_file
*)file
->private_data
)->private;
3876 cgroup_release_pid_array(l
);
3877 return seq_release(inode
, file
);
3880 static const struct file_operations cgroup_pidlist_operations
= {
3882 .llseek
= seq_lseek
,
3883 .write
= cgroup_file_write
,
3884 .release
= cgroup_pidlist_release
,
3888 * The following functions handle opens on a file that displays a pidlist
3889 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3892 /* helper function for the two below it */
3893 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3895 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3896 struct cgroup_pidlist
*l
;
3899 /* Nothing to do for write-only files */
3900 if (!(file
->f_mode
& FMODE_READ
))
3903 /* have the array populated */
3904 retval
= pidlist_array_load(cgrp
, type
, &l
);
3907 /* configure file information */
3908 file
->f_op
= &cgroup_pidlist_operations
;
3910 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3912 cgroup_release_pid_array(l
);
3915 ((struct seq_file
*)file
->private_data
)->private = l
;
3918 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3920 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3922 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3924 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3927 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
3930 return notify_on_release(css
->cgroup
);
3933 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
3934 struct cftype
*cft
, u64 val
)
3936 clear_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
3938 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
3940 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
3945 * When dput() is called asynchronously, if umount has been done and
3946 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3947 * there's a small window that vfs will see the root dentry with non-zero
3948 * refcnt and trigger BUG().
3950 * That's why we hold a reference before dput() and drop it right after.
3952 static void cgroup_dput(struct cgroup
*cgrp
)
3954 struct super_block
*sb
= cgrp
->root
->sb
;
3956 atomic_inc(&sb
->s_active
);
3958 deactivate_super(sb
);
3962 * Unregister event and free resources.
3964 * Gets called from workqueue.
3966 static void cgroup_event_remove(struct work_struct
*work
)
3968 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3970 struct cgroup_subsys_state
*css
= event
->css
;
3972 remove_wait_queue(event
->wqh
, &event
->wait
);
3974 event
->cft
->unregister_event(css
, event
->cft
, event
->eventfd
);
3976 /* Notify userspace the event is going away. */
3977 eventfd_signal(event
->eventfd
, 1);
3979 eventfd_ctx_put(event
->eventfd
);
3985 * Gets called on POLLHUP on eventfd when user closes it.
3987 * Called with wqh->lock held and interrupts disabled.
3989 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3990 int sync
, void *key
)
3992 struct cgroup_event
*event
= container_of(wait
,
3993 struct cgroup_event
, wait
);
3994 struct cgroup
*cgrp
= event
->css
->cgroup
;
3995 unsigned long flags
= (unsigned long)key
;
3997 if (flags
& POLLHUP
) {
3999 * If the event has been detached at cgroup removal, we
4000 * can simply return knowing the other side will cleanup
4003 * We can't race against event freeing since the other
4004 * side will require wqh->lock via remove_wait_queue(),
4007 spin_lock(&cgrp
->event_list_lock
);
4008 if (!list_empty(&event
->list
)) {
4009 list_del_init(&event
->list
);
4011 * We are in atomic context, but cgroup_event_remove()
4012 * may sleep, so we have to call it in workqueue.
4014 schedule_work(&event
->remove
);
4016 spin_unlock(&cgrp
->event_list_lock
);
4022 static void cgroup_event_ptable_queue_proc(struct file
*file
,
4023 wait_queue_head_t
*wqh
, poll_table
*pt
)
4025 struct cgroup_event
*event
= container_of(pt
,
4026 struct cgroup_event
, pt
);
4029 add_wait_queue(wqh
, &event
->wait
);
4033 * Parse input and register new cgroup event handler.
4035 * Input must be in format '<event_fd> <control_fd> <args>'.
4036 * Interpretation of args is defined by control file implementation.
4038 static int cgroup_write_event_control(struct cgroup_subsys_state
*dummy_css
,
4039 struct cftype
*cft
, const char *buffer
)
4041 struct cgroup
*cgrp
= dummy_css
->cgroup
;
4042 struct cgroup_event
*event
;
4043 struct cgroup_subsys_state
*cfile_css
;
4044 unsigned int efd
, cfd
;
4050 efd
= simple_strtoul(buffer
, &endp
, 10);
4055 cfd
= simple_strtoul(buffer
, &endp
, 10);
4056 if ((*endp
!= ' ') && (*endp
!= '\0'))
4060 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4064 INIT_LIST_HEAD(&event
->list
);
4065 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
4066 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
4067 INIT_WORK(&event
->remove
, cgroup_event_remove
);
4075 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4076 if (IS_ERR(event
->eventfd
)) {
4077 ret
= PTR_ERR(event
->eventfd
);
4084 goto out_put_eventfd
;
4087 /* the process need read permission on control file */
4088 /* AV: shouldn't we check that it's been opened for read instead? */
4089 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4093 event
->cft
= __file_cft(cfile
.file
);
4094 if (IS_ERR(event
->cft
)) {
4095 ret
= PTR_ERR(event
->cft
);
4099 if (!event
->cft
->ss
) {
4105 * Determine the css of @cfile, verify it belongs to the same
4106 * cgroup as cgroup.event_control, and associate @event with it.
4107 * Remaining events are automatically removed on cgroup destruction
4108 * but the removal is asynchronous, so take an extra ref.
4113 event
->css
= cgroup_css(cgrp
, event
->cft
->ss
);
4114 cfile_css
= css_from_dir(cfile
.file
->f_dentry
->d_parent
, event
->cft
->ss
);
4115 if (event
->css
&& event
->css
== cfile_css
&& css_tryget(event
->css
))
4122 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
4127 ret
= event
->cft
->register_event(event
->css
, event
->cft
,
4128 event
->eventfd
, buffer
);
4132 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
4134 spin_lock(&cgrp
->event_list_lock
);
4135 list_add(&event
->list
, &cgrp
->event_list
);
4136 spin_unlock(&cgrp
->event_list_lock
);
4144 css_put(event
->css
);
4148 eventfd_ctx_put(event
->eventfd
);
4157 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4160 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4163 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4164 struct cftype
*cft
, u64 val
)
4167 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4169 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4173 static struct cftype cgroup_base_files
[] = {
4175 .name
= "cgroup.procs",
4176 .open
= cgroup_procs_open
,
4177 .write_u64
= cgroup_procs_write
,
4178 .release
= cgroup_pidlist_release
,
4179 .mode
= S_IRUGO
| S_IWUSR
,
4182 .name
= "cgroup.event_control",
4183 .write_string
= cgroup_write_event_control
,
4187 .name
= "cgroup.clone_children",
4188 .flags
= CFTYPE_INSANE
,
4189 .read_u64
= cgroup_clone_children_read
,
4190 .write_u64
= cgroup_clone_children_write
,
4193 .name
= "cgroup.sane_behavior",
4194 .flags
= CFTYPE_ONLY_ON_ROOT
,
4195 .read_seq_string
= cgroup_sane_behavior_show
,
4199 * Historical crazy stuff. These don't have "cgroup." prefix and
4200 * don't exist if sane_behavior. If you're depending on these, be
4201 * prepared to be burned.
4205 .flags
= CFTYPE_INSANE
, /* use "procs" instead */
4206 .open
= cgroup_tasks_open
,
4207 .write_u64
= cgroup_tasks_write
,
4208 .release
= cgroup_pidlist_release
,
4209 .mode
= S_IRUGO
| S_IWUSR
,
4212 .name
= "notify_on_release",
4213 .flags
= CFTYPE_INSANE
,
4214 .read_u64
= cgroup_read_notify_on_release
,
4215 .write_u64
= cgroup_write_notify_on_release
,
4218 .name
= "release_agent",
4219 .flags
= CFTYPE_INSANE
| CFTYPE_ONLY_ON_ROOT
,
4220 .read_seq_string
= cgroup_release_agent_show
,
4221 .write_string
= cgroup_release_agent_write
,
4222 .max_write_len
= PATH_MAX
,
4228 * cgroup_populate_dir - create subsys files in a cgroup directory
4229 * @cgrp: target cgroup
4230 * @subsys_mask: mask of the subsystem ids whose files should be added
4232 * On failure, no file is added.
4234 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
4236 struct cgroup_subsys
*ss
;
4239 /* process cftsets of each subsystem */
4240 for_each_subsys(ss
, i
) {
4241 struct cftype_set
*set
;
4243 if (!test_bit(i
, &subsys_mask
))
4246 list_for_each_entry(set
, &ss
->cftsets
, node
) {
4247 ret
= cgroup_addrm_files(cgrp
, set
->cfts
, true);
4253 /* This cgroup is ready now */
4254 for_each_root_subsys(cgrp
->root
, ss
) {
4255 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
4256 struct css_id
*id
= rcu_dereference_protected(css
->id
, true);
4259 * Update id->css pointer and make this css visible from
4260 * CSS ID functions. This pointer will be dereferened
4261 * from RCU-read-side without locks.
4264 rcu_assign_pointer(id
->css
, css
);
4269 cgroup_clear_dir(cgrp
, subsys_mask
);
4274 * css destruction is four-stage process.
4276 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4277 * Implemented in kill_css().
4279 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4280 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4281 * by invoking offline_css(). After offlining, the base ref is put.
4282 * Implemented in css_killed_work_fn().
4284 * 3. When the percpu_ref reaches zero, the only possible remaining
4285 * accessors are inside RCU read sections. css_release() schedules the
4288 * 4. After the grace period, the css can be freed. Implemented in
4289 * css_free_work_fn().
4291 * It is actually hairier because both step 2 and 4 require process context
4292 * and thus involve punting to css->destroy_work adding two additional
4293 * steps to the already complex sequence.
4295 static void css_free_work_fn(struct work_struct
*work
)
4297 struct cgroup_subsys_state
*css
=
4298 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4299 struct cgroup
*cgrp
= css
->cgroup
;
4302 css_put(css
->parent
);
4304 css
->ss
->css_free(css
);
4308 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4310 struct cgroup_subsys_state
*css
=
4311 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4314 * css holds an extra ref to @cgrp->dentry which is put on the last
4315 * css_put(). dput() requires process context which we don't have.
4317 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4318 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4321 static void css_release(struct percpu_ref
*ref
)
4323 struct cgroup_subsys_state
*css
=
4324 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4326 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4329 static void init_css(struct cgroup_subsys_state
*css
, struct cgroup_subsys
*ss
,
4330 struct cgroup
*cgrp
)
4338 css
->parent
= cgroup_css(cgrp
->parent
, ss
);
4340 css
->flags
|= CSS_ROOT
;
4342 BUG_ON(cgroup_css(cgrp
, ss
));
4345 /* invoke ->css_online() on a new CSS and mark it online if successful */
4346 static int online_css(struct cgroup_subsys_state
*css
)
4348 struct cgroup_subsys
*ss
= css
->ss
;
4351 lockdep_assert_held(&cgroup_mutex
);
4354 ret
= ss
->css_online(css
);
4356 css
->flags
|= CSS_ONLINE
;
4357 css
->cgroup
->nr_css
++;
4358 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->subsys_id
], css
);
4363 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4364 static void offline_css(struct cgroup_subsys_state
*css
)
4366 struct cgroup_subsys
*ss
= css
->ss
;
4368 lockdep_assert_held(&cgroup_mutex
);
4370 if (!(css
->flags
& CSS_ONLINE
))
4373 if (ss
->css_offline
)
4374 ss
->css_offline(css
);
4376 css
->flags
&= ~CSS_ONLINE
;
4377 css
->cgroup
->nr_css
--;
4378 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->subsys_id
], css
);
4382 * cgroup_create - create a cgroup
4383 * @parent: cgroup that will be parent of the new cgroup
4384 * @dentry: dentry of the new cgroup
4385 * @mode: mode to set on new inode
4387 * Must be called with the mutex on the parent inode held
4389 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
4392 struct cgroup_subsys_state
*css_ar
[CGROUP_SUBSYS_COUNT
] = { };
4393 struct cgroup
*cgrp
;
4394 struct cgroup_name
*name
;
4395 struct cgroupfs_root
*root
= parent
->root
;
4397 struct cgroup_subsys
*ss
;
4398 struct super_block
*sb
= root
->sb
;
4400 /* allocate the cgroup and its ID, 0 is reserved for the root */
4401 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4405 name
= cgroup_alloc_name(dentry
);
4410 rcu_assign_pointer(cgrp
->name
, name
);
4413 * Only live parents can have children. Note that the liveliness
4414 * check isn't strictly necessary because cgroup_mkdir() and
4415 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4416 * anyway so that locking is contained inside cgroup proper and we
4417 * don't get nasty surprises if we ever grow another caller.
4419 if (!cgroup_lock_live_group(parent
)) {
4424 /* Grab a reference on the superblock so the hierarchy doesn't
4425 * get deleted on unmount if there are child cgroups. This
4426 * can be done outside cgroup_mutex, since the sb can't
4427 * disappear while someone has an open control file on the
4429 atomic_inc(&sb
->s_active
);
4432 * Temporarily set the pointer to NULL, so idr_find() won't return
4433 * a half-baked cgroup.
4435 cgrp
->id
= idr_alloc(&root
->cgroup_idr
, NULL
, 1, 0, GFP_KERNEL
);
4441 init_cgroup_housekeeping(cgrp
);
4443 dentry
->d_fsdata
= cgrp
;
4444 cgrp
->dentry
= dentry
;
4446 cgrp
->parent
= parent
;
4447 cgrp
->dummy_css
.parent
= &parent
->dummy_css
;
4448 cgrp
->root
= parent
->root
;
4450 if (notify_on_release(parent
))
4451 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4453 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4454 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4456 for_each_root_subsys(root
, ss
) {
4457 struct cgroup_subsys_state
*css
;
4459 css
= ss
->css_alloc(cgroup_css(parent
, ss
));
4464 css_ar
[ss
->subsys_id
] = css
;
4466 err
= percpu_ref_init(&css
->refcnt
, css_release
);
4470 init_css(css
, ss
, cgrp
);
4473 err
= alloc_css_id(css
);
4480 * Create directory. cgroup_create_file() returns with the new
4481 * directory locked on success so that it can be populated without
4482 * dropping cgroup_mutex.
4484 err
= cgroup_create_file(dentry
, S_IFDIR
| mode
, sb
);
4487 lockdep_assert_held(&dentry
->d_inode
->i_mutex
);
4489 cgrp
->serial_nr
= cgroup_serial_nr_next
++;
4491 /* allocation complete, commit to creation */
4492 list_add_tail_rcu(&cgrp
->sibling
, &cgrp
->parent
->children
);
4493 root
->number_of_cgroups
++;
4495 /* hold a ref to the parent's dentry */
4496 dget(parent
->dentry
);
4498 /* creation succeeded, notify subsystems */
4499 for_each_root_subsys(root
, ss
) {
4500 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4502 err
= online_css(css
);
4506 /* each css holds a ref to the cgroup's dentry and parent css */
4508 css_get(css
->parent
);
4510 /* mark it consumed for error path */
4511 css_ar
[ss
->subsys_id
] = NULL
;
4513 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4515 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4516 current
->comm
, current
->pid
, ss
->name
);
4517 if (!strcmp(ss
->name
, "memory"))
4518 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4519 ss
->warned_broken_hierarchy
= true;
4523 idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4525 err
= cgroup_addrm_files(cgrp
, cgroup_base_files
, true);
4529 err
= cgroup_populate_dir(cgrp
, root
->subsys_mask
);
4533 mutex_unlock(&cgroup_mutex
);
4534 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
4539 for_each_root_subsys(root
, ss
) {
4540 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4543 percpu_ref_cancel_init(&css
->refcnt
);
4547 idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4549 mutex_unlock(&cgroup_mutex
);
4550 /* Release the reference count that we took on the superblock */
4551 deactivate_super(sb
);
4553 kfree(rcu_dereference_raw(cgrp
->name
));
4559 for_each_root_subsys(root
, ss
) {
4560 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4563 percpu_ref_cancel_init(&css
->refcnt
);
4567 cgroup_destroy_locked(cgrp
);
4568 mutex_unlock(&cgroup_mutex
);
4569 mutex_unlock(&dentry
->d_inode
->i_mutex
);
4573 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4575 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
4577 /* the vfs holds inode->i_mutex already */
4578 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
4582 * This is called when the refcnt of a css is confirmed to be killed.
4583 * css_tryget() is now guaranteed to fail.
4585 static void css_killed_work_fn(struct work_struct
*work
)
4587 struct cgroup_subsys_state
*css
=
4588 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4589 struct cgroup
*cgrp
= css
->cgroup
;
4591 mutex_lock(&cgroup_mutex
);
4594 * css_tryget() is guaranteed to fail now. Tell subsystems to
4595 * initate destruction.
4600 * If @cgrp is marked dead, it's waiting for refs of all css's to
4601 * be disabled before proceeding to the second phase of cgroup
4602 * destruction. If we are the last one, kick it off.
4604 if (!cgrp
->nr_css
&& cgroup_is_dead(cgrp
))
4605 cgroup_destroy_css_killed(cgrp
);
4607 mutex_unlock(&cgroup_mutex
);
4610 * Put the css refs from kill_css(). Each css holds an extra
4611 * reference to the cgroup's dentry and cgroup removal proceeds
4612 * regardless of css refs. On the last put of each css, whenever
4613 * that may be, the extra dentry ref is put so that dentry
4614 * destruction happens only after all css's are released.
4619 /* css kill confirmation processing requires process context, bounce */
4620 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4622 struct cgroup_subsys_state
*css
=
4623 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4625 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4626 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4630 * kill_css - destroy a css
4631 * @css: css to destroy
4633 * This function initiates destruction of @css by removing cgroup interface
4634 * files and putting its base reference. ->css_offline() will be invoked
4635 * asynchronously once css_tryget() is guaranteed to fail and when the
4636 * reference count reaches zero, @css will be released.
4638 static void kill_css(struct cgroup_subsys_state
*css
)
4640 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->subsys_id
);
4643 * Killing would put the base ref, but we need to keep it alive
4644 * until after ->css_offline().
4649 * cgroup core guarantees that, by the time ->css_offline() is
4650 * invoked, no new css reference will be given out via
4651 * css_tryget(). We can't simply call percpu_ref_kill() and
4652 * proceed to offlining css's because percpu_ref_kill() doesn't
4653 * guarantee that the ref is seen as killed on all CPUs on return.
4655 * Use percpu_ref_kill_and_confirm() to get notifications as each
4656 * css is confirmed to be seen as killed on all CPUs.
4658 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4662 * cgroup_destroy_locked - the first stage of cgroup destruction
4663 * @cgrp: cgroup to be destroyed
4665 * css's make use of percpu refcnts whose killing latency shouldn't be
4666 * exposed to userland and are RCU protected. Also, cgroup core needs to
4667 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4668 * invoked. To satisfy all the requirements, destruction is implemented in
4669 * the following two steps.
4671 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4672 * userland visible parts and start killing the percpu refcnts of
4673 * css's. Set up so that the next stage will be kicked off once all
4674 * the percpu refcnts are confirmed to be killed.
4676 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4677 * rest of destruction. Once all cgroup references are gone, the
4678 * cgroup is RCU-freed.
4680 * This function implements s1. After this step, @cgrp is gone as far as
4681 * the userland is concerned and a new cgroup with the same name may be
4682 * created. As cgroup doesn't care about the names internally, this
4683 * doesn't cause any problem.
4685 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4686 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4688 struct dentry
*d
= cgrp
->dentry
;
4689 struct cgroup_event
*event
, *tmp
;
4690 struct cgroup_subsys
*ss
;
4691 struct cgroup
*child
;
4694 lockdep_assert_held(&d
->d_inode
->i_mutex
);
4695 lockdep_assert_held(&cgroup_mutex
);
4698 * css_set_lock synchronizes access to ->cset_links and prevents
4699 * @cgrp from being removed while __put_css_set() is in progress.
4701 read_lock(&css_set_lock
);
4702 empty
= list_empty(&cgrp
->cset_links
);
4703 read_unlock(&css_set_lock
);
4708 * Make sure there's no live children. We can't test ->children
4709 * emptiness as dead children linger on it while being destroyed;
4710 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4714 list_for_each_entry_rcu(child
, &cgrp
->children
, sibling
) {
4715 empty
= cgroup_is_dead(child
);
4724 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4725 * will be invoked to perform the rest of destruction once the
4726 * percpu refs of all css's are confirmed to be killed.
4728 for_each_root_subsys(cgrp
->root
, ss
) {
4729 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
4736 * Mark @cgrp dead. This prevents further task migration and child
4737 * creation by disabling cgroup_lock_live_group(). Note that
4738 * CGRP_DEAD assertion is depended upon by css_next_child() to
4739 * resume iteration after dropping RCU read lock. See
4740 * css_next_child() for details.
4742 set_bit(CGRP_DEAD
, &cgrp
->flags
);
4744 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4745 raw_spin_lock(&release_list_lock
);
4746 if (!list_empty(&cgrp
->release_list
))
4747 list_del_init(&cgrp
->release_list
);
4748 raw_spin_unlock(&release_list_lock
);
4751 * If @cgrp has css's attached, the second stage of cgroup
4752 * destruction is kicked off from css_killed_work_fn() after the
4753 * refs of all attached css's are killed. If @cgrp doesn't have
4754 * any css, we kick it off here.
4757 cgroup_destroy_css_killed(cgrp
);
4760 * Clear the base files and remove @cgrp directory. The removal
4761 * puts the base ref but we aren't quite done with @cgrp yet, so
4764 cgroup_addrm_files(cgrp
, cgroup_base_files
, false);
4766 cgroup_d_remove_dir(d
);
4769 * Unregister events and notify userspace.
4770 * Notify userspace about cgroup removing only after rmdir of cgroup
4771 * directory to avoid race between userspace and kernelspace.
4773 spin_lock(&cgrp
->event_list_lock
);
4774 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4775 list_del_init(&event
->list
);
4776 schedule_work(&event
->remove
);
4778 spin_unlock(&cgrp
->event_list_lock
);
4784 * cgroup_destroy_css_killed - the second step of cgroup destruction
4785 * @work: cgroup->destroy_free_work
4787 * This function is invoked from a work item for a cgroup which is being
4788 * destroyed after all css's are offlined and performs the rest of
4789 * destruction. This is the second step of destruction described in the
4790 * comment above cgroup_destroy_locked().
4792 static void cgroup_destroy_css_killed(struct cgroup
*cgrp
)
4794 struct cgroup
*parent
= cgrp
->parent
;
4795 struct dentry
*d
= cgrp
->dentry
;
4797 lockdep_assert_held(&cgroup_mutex
);
4799 /* delete this cgroup from parent->children */
4800 list_del_rcu(&cgrp
->sibling
);
4803 * We should remove the cgroup object from idr before its grace
4804 * period starts, so we won't be looking up a cgroup while the
4805 * cgroup is being freed.
4807 idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4812 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4813 check_for_release(parent
);
4816 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
4820 mutex_lock(&cgroup_mutex
);
4821 ret
= cgroup_destroy_locked(dentry
->d_fsdata
);
4822 mutex_unlock(&cgroup_mutex
);
4827 static void __init_or_module
cgroup_init_cftsets(struct cgroup_subsys
*ss
)
4829 INIT_LIST_HEAD(&ss
->cftsets
);
4832 * base_cftset is embedded in subsys itself, no need to worry about
4835 if (ss
->base_cftypes
) {
4838 for (cft
= ss
->base_cftypes
; cft
->name
[0] != '\0'; cft
++)
4841 ss
->base_cftset
.cfts
= ss
->base_cftypes
;
4842 list_add_tail(&ss
->base_cftset
.node
, &ss
->cftsets
);
4846 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4848 struct cgroup_subsys_state
*css
;
4850 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4852 mutex_lock(&cgroup_mutex
);
4854 /* init base cftset */
4855 cgroup_init_cftsets(ss
);
4857 /* Create the top cgroup state for this subsystem */
4858 list_add(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
4859 ss
->root
= &cgroup_dummy_root
;
4860 css
= ss
->css_alloc(cgroup_css(cgroup_dummy_top
, ss
));
4861 /* We don't handle early failures gracefully */
4862 BUG_ON(IS_ERR(css
));
4863 init_css(css
, ss
, cgroup_dummy_top
);
4865 /* Update the init_css_set to contain a subsys
4866 * pointer to this state - since the subsystem is
4867 * newly registered, all tasks and hence the
4868 * init_css_set is in the subsystem's top cgroup. */
4869 init_css_set
.subsys
[ss
->subsys_id
] = css
;
4871 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4873 /* At system boot, before all subsystems have been
4874 * registered, no tasks have been forked, so we don't
4875 * need to invoke fork callbacks here. */
4876 BUG_ON(!list_empty(&init_task
.tasks
));
4878 BUG_ON(online_css(css
));
4880 mutex_unlock(&cgroup_mutex
);
4882 /* this function shouldn't be used with modular subsystems, since they
4883 * need to register a subsys_id, among other things */
4888 * cgroup_load_subsys: load and register a modular subsystem at runtime
4889 * @ss: the subsystem to load
4891 * This function should be called in a modular subsystem's initcall. If the
4892 * subsystem is built as a module, it will be assigned a new subsys_id and set
4893 * up for use. If the subsystem is built-in anyway, work is delegated to the
4894 * simpler cgroup_init_subsys.
4896 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4898 struct cgroup_subsys_state
*css
;
4900 struct hlist_node
*tmp
;
4901 struct css_set
*cset
;
4904 /* check name and function validity */
4905 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4906 ss
->css_alloc
== NULL
|| ss
->css_free
== NULL
)
4910 * we don't support callbacks in modular subsystems. this check is
4911 * before the ss->module check for consistency; a subsystem that could
4912 * be a module should still have no callbacks even if the user isn't
4913 * compiling it as one.
4915 if (ss
->fork
|| ss
->exit
)
4919 * an optionally modular subsystem is built-in: we want to do nothing,
4920 * since cgroup_init_subsys will have already taken care of it.
4922 if (ss
->module
== NULL
) {
4923 /* a sanity check */
4924 BUG_ON(cgroup_subsys
[ss
->subsys_id
] != ss
);
4928 /* init base cftset */
4929 cgroup_init_cftsets(ss
);
4931 mutex_lock(&cgroup_mutex
);
4932 cgroup_subsys
[ss
->subsys_id
] = ss
;
4935 * no ss->css_alloc seems to need anything important in the ss
4936 * struct, so this can happen first (i.e. before the dummy root
4939 css
= ss
->css_alloc(cgroup_css(cgroup_dummy_top
, ss
));
4941 /* failure case - need to deassign the cgroup_subsys[] slot. */
4942 cgroup_subsys
[ss
->subsys_id
] = NULL
;
4943 mutex_unlock(&cgroup_mutex
);
4944 return PTR_ERR(css
);
4947 list_add(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
4948 ss
->root
= &cgroup_dummy_root
;
4950 /* our new subsystem will be attached to the dummy hierarchy. */
4951 init_css(css
, ss
, cgroup_dummy_top
);
4952 /* init_idr must be after init_css() because it sets css->id. */
4954 ret
= cgroup_init_idr(ss
, css
);
4960 * Now we need to entangle the css into the existing css_sets. unlike
4961 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4962 * will need a new pointer to it; done by iterating the css_set_table.
4963 * furthermore, modifying the existing css_sets will corrupt the hash
4964 * table state, so each changed css_set will need its hash recomputed.
4965 * this is all done under the css_set_lock.
4967 write_lock(&css_set_lock
);
4968 hash_for_each_safe(css_set_table
, i
, tmp
, cset
, hlist
) {
4969 /* skip entries that we already rehashed */
4970 if (cset
->subsys
[ss
->subsys_id
])
4972 /* remove existing entry */
4973 hash_del(&cset
->hlist
);
4975 cset
->subsys
[ss
->subsys_id
] = css
;
4976 /* recompute hash and restore entry */
4977 key
= css_set_hash(cset
->subsys
);
4978 hash_add(css_set_table
, &cset
->hlist
, key
);
4980 write_unlock(&css_set_lock
);
4982 ret
= online_css(css
);
4987 mutex_unlock(&cgroup_mutex
);
4991 mutex_unlock(&cgroup_mutex
);
4992 /* @ss can't be mounted here as try_module_get() would fail */
4993 cgroup_unload_subsys(ss
);
4996 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4999 * cgroup_unload_subsys: unload a modular subsystem
5000 * @ss: the subsystem to unload
5002 * This function should be called in a modular subsystem's exitcall. When this
5003 * function is invoked, the refcount on the subsystem's module will be 0, so
5004 * the subsystem will not be attached to any hierarchy.
5006 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
5008 struct cgrp_cset_link
*link
;
5010 BUG_ON(ss
->module
== NULL
);
5013 * we shouldn't be called if the subsystem is in use, and the use of
5014 * try_module_get() in rebind_subsystems() should ensure that it
5015 * doesn't start being used while we're killing it off.
5017 BUG_ON(ss
->root
!= &cgroup_dummy_root
);
5019 mutex_lock(&cgroup_mutex
);
5021 offline_css(cgroup_css(cgroup_dummy_top
, ss
));
5024 idr_destroy(&ss
->idr
);
5026 /* deassign the subsys_id */
5027 cgroup_subsys
[ss
->subsys_id
] = NULL
;
5029 /* remove subsystem from the dummy root's list of subsystems */
5030 list_del_init(&ss
->sibling
);
5033 * disentangle the css from all css_sets attached to the dummy
5034 * top. as in loading, we need to pay our respects to the hashtable
5037 write_lock(&css_set_lock
);
5038 list_for_each_entry(link
, &cgroup_dummy_top
->cset_links
, cset_link
) {
5039 struct css_set
*cset
= link
->cset
;
5042 hash_del(&cset
->hlist
);
5043 cset
->subsys
[ss
->subsys_id
] = NULL
;
5044 key
= css_set_hash(cset
->subsys
);
5045 hash_add(css_set_table
, &cset
->hlist
, key
);
5047 write_unlock(&css_set_lock
);
5050 * remove subsystem's css from the cgroup_dummy_top and free it -
5051 * need to free before marking as null because ss->css_free needs
5052 * the cgrp->subsys pointer to find their state. note that this
5053 * also takes care of freeing the css_id.
5055 ss
->css_free(cgroup_css(cgroup_dummy_top
, ss
));
5056 RCU_INIT_POINTER(cgroup_dummy_top
->subsys
[ss
->subsys_id
], NULL
);
5058 mutex_unlock(&cgroup_mutex
);
5060 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
5063 * cgroup_init_early - cgroup initialization at system boot
5065 * Initialize cgroups at system boot, and initialize any
5066 * subsystems that request early init.
5068 int __init
cgroup_init_early(void)
5070 struct cgroup_subsys
*ss
;
5073 atomic_set(&init_css_set
.refcount
, 1);
5074 INIT_LIST_HEAD(&init_css_set
.cgrp_links
);
5075 INIT_LIST_HEAD(&init_css_set
.tasks
);
5076 INIT_HLIST_NODE(&init_css_set
.hlist
);
5078 init_cgroup_root(&cgroup_dummy_root
);
5079 cgroup_root_count
= 1;
5080 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5082 init_cgrp_cset_link
.cset
= &init_css_set
;
5083 init_cgrp_cset_link
.cgrp
= cgroup_dummy_top
;
5084 list_add(&init_cgrp_cset_link
.cset_link
, &cgroup_dummy_top
->cset_links
);
5085 list_add(&init_cgrp_cset_link
.cgrp_link
, &init_css_set
.cgrp_links
);
5087 /* at bootup time, we don't worry about modular subsystems */
5088 for_each_builtin_subsys(ss
, i
) {
5090 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
5091 BUG_ON(!ss
->css_alloc
);
5092 BUG_ON(!ss
->css_free
);
5093 if (ss
->subsys_id
!= i
) {
5094 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
5095 ss
->name
, ss
->subsys_id
);
5100 cgroup_init_subsys(ss
);
5106 * cgroup_init - cgroup initialization
5108 * Register cgroup filesystem and /proc file, and initialize
5109 * any subsystems that didn't request early init.
5111 int __init
cgroup_init(void)
5113 struct cgroup_subsys
*ss
;
5117 err
= bdi_init(&cgroup_backing_dev_info
);
5121 for_each_builtin_subsys(ss
, i
) {
5122 if (!ss
->early_init
)
5123 cgroup_init_subsys(ss
);
5125 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
5128 /* allocate id for the dummy hierarchy */
5129 mutex_lock(&cgroup_mutex
);
5130 mutex_lock(&cgroup_root_mutex
);
5132 /* Add init_css_set to the hash table */
5133 key
= css_set_hash(init_css_set
.subsys
);
5134 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5136 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root
, 0, 1));
5138 err
= idr_alloc(&cgroup_dummy_root
.cgroup_idr
, cgroup_dummy_top
,
5142 mutex_unlock(&cgroup_root_mutex
);
5143 mutex_unlock(&cgroup_mutex
);
5145 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
5151 err
= register_filesystem(&cgroup_fs_type
);
5153 kobject_put(cgroup_kobj
);
5157 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
5161 bdi_destroy(&cgroup_backing_dev_info
);
5166 static int __init
cgroup_wq_init(void)
5169 * There isn't much point in executing destruction path in
5170 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5171 * Use 1 for @max_active.
5173 * We would prefer to do this in cgroup_init() above, but that
5174 * is called before init_workqueues(): so leave this until after.
5176 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5177 BUG_ON(!cgroup_destroy_wq
);
5180 core_initcall(cgroup_wq_init
);
5183 * proc_cgroup_show()
5184 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5185 * - Used for /proc/<pid>/cgroup.
5186 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5187 * doesn't really matter if tsk->cgroup changes after we read it,
5188 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5189 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5190 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5191 * cgroup to top_cgroup.
5194 /* TODO: Use a proper seq_file iterator */
5195 int proc_cgroup_show(struct seq_file
*m
, void *v
)
5198 struct task_struct
*tsk
;
5201 struct cgroupfs_root
*root
;
5204 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5210 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
5216 mutex_lock(&cgroup_mutex
);
5218 for_each_active_root(root
) {
5219 struct cgroup_subsys
*ss
;
5220 struct cgroup
*cgrp
;
5223 seq_printf(m
, "%d:", root
->hierarchy_id
);
5224 for_each_root_subsys(root
, ss
)
5225 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
5226 if (strlen(root
->name
))
5227 seq_printf(m
, "%sname=%s", count
? "," : "",
5230 cgrp
= task_cgroup_from_root(tsk
, root
);
5231 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
5239 mutex_unlock(&cgroup_mutex
);
5240 put_task_struct(tsk
);
5247 /* Display information about each subsystem and each hierarchy */
5248 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5250 struct cgroup_subsys
*ss
;
5253 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5255 * ideally we don't want subsystems moving around while we do this.
5256 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5257 * subsys/hierarchy state.
5259 mutex_lock(&cgroup_mutex
);
5261 for_each_subsys(ss
, i
)
5262 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5263 ss
->name
, ss
->root
->hierarchy_id
,
5264 ss
->root
->number_of_cgroups
, !ss
->disabled
);
5266 mutex_unlock(&cgroup_mutex
);
5270 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5272 return single_open(file
, proc_cgroupstats_show
, NULL
);
5275 static const struct file_operations proc_cgroupstats_operations
= {
5276 .open
= cgroupstats_open
,
5278 .llseek
= seq_lseek
,
5279 .release
= single_release
,
5283 * cgroup_fork - attach newly forked task to its parents cgroup.
5284 * @child: pointer to task_struct of forking parent process.
5286 * Description: A task inherits its parent's cgroup at fork().
5288 * A pointer to the shared css_set was automatically copied in
5289 * fork.c by dup_task_struct(). However, we ignore that copy, since
5290 * it was not made under the protection of RCU or cgroup_mutex, so
5291 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5292 * have already changed current->cgroups, allowing the previously
5293 * referenced cgroup group to be removed and freed.
5295 * At the point that cgroup_fork() is called, 'current' is the parent
5296 * task, and the passed argument 'child' points to the child task.
5298 void cgroup_fork(struct task_struct
*child
)
5301 get_css_set(task_css_set(current
));
5302 child
->cgroups
= current
->cgroups
;
5303 task_unlock(current
);
5304 INIT_LIST_HEAD(&child
->cg_list
);
5308 * cgroup_post_fork - called on a new task after adding it to the task list
5309 * @child: the task in question
5311 * Adds the task to the list running through its css_set if necessary and
5312 * call the subsystem fork() callbacks. Has to be after the task is
5313 * visible on the task list in case we race with the first call to
5314 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5317 void cgroup_post_fork(struct task_struct
*child
)
5319 struct cgroup_subsys
*ss
;
5323 * use_task_css_set_links is set to 1 before we walk the tasklist
5324 * under the tasklist_lock and we read it here after we added the child
5325 * to the tasklist under the tasklist_lock as well. If the child wasn't
5326 * yet in the tasklist when we walked through it from
5327 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5328 * should be visible now due to the paired locking and barriers implied
5329 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5330 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5333 if (use_task_css_set_links
) {
5334 write_lock(&css_set_lock
);
5336 if (list_empty(&child
->cg_list
))
5337 list_add(&child
->cg_list
, &task_css_set(child
)->tasks
);
5339 write_unlock(&css_set_lock
);
5343 * Call ss->fork(). This must happen after @child is linked on
5344 * css_set; otherwise, @child might change state between ->fork()
5345 * and addition to css_set.
5347 if (need_forkexit_callback
) {
5349 * fork/exit callbacks are supported only for builtin
5350 * subsystems, and the builtin section of the subsys
5351 * array is immutable, so we don't need to lock the
5352 * subsys array here. On the other hand, modular section
5353 * of the array can be freed at module unload, so we
5356 for_each_builtin_subsys(ss
, i
)
5363 * cgroup_exit - detach cgroup from exiting task
5364 * @tsk: pointer to task_struct of exiting process
5365 * @run_callback: run exit callbacks?
5367 * Description: Detach cgroup from @tsk and release it.
5369 * Note that cgroups marked notify_on_release force every task in
5370 * them to take the global cgroup_mutex mutex when exiting.
5371 * This could impact scaling on very large systems. Be reluctant to
5372 * use notify_on_release cgroups where very high task exit scaling
5373 * is required on large systems.
5375 * the_top_cgroup_hack:
5377 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5379 * We call cgroup_exit() while the task is still competent to
5380 * handle notify_on_release(), then leave the task attached to the
5381 * root cgroup in each hierarchy for the remainder of its exit.
5383 * To do this properly, we would increment the reference count on
5384 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5385 * code we would add a second cgroup function call, to drop that
5386 * reference. This would just create an unnecessary hot spot on
5387 * the top_cgroup reference count, to no avail.
5389 * Normally, holding a reference to a cgroup without bumping its
5390 * count is unsafe. The cgroup could go away, or someone could
5391 * attach us to a different cgroup, decrementing the count on
5392 * the first cgroup that we never incremented. But in this case,
5393 * top_cgroup isn't going away, and either task has PF_EXITING set,
5394 * which wards off any cgroup_attach_task() attempts, or task is a failed
5395 * fork, never visible to cgroup_attach_task.
5397 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
5399 struct cgroup_subsys
*ss
;
5400 struct css_set
*cset
;
5404 * Unlink from the css_set task list if necessary.
5405 * Optimistically check cg_list before taking
5408 if (!list_empty(&tsk
->cg_list
)) {
5409 write_lock(&css_set_lock
);
5410 if (!list_empty(&tsk
->cg_list
))
5411 list_del_init(&tsk
->cg_list
);
5412 write_unlock(&css_set_lock
);
5415 /* Reassign the task to the init_css_set. */
5417 cset
= task_css_set(tsk
);
5418 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5420 if (run_callbacks
&& need_forkexit_callback
) {
5422 * fork/exit callbacks are supported only for builtin
5423 * subsystems, see cgroup_post_fork() for details.
5425 for_each_builtin_subsys(ss
, i
) {
5427 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5428 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5430 ss
->exit(css
, old_css
, tsk
);
5436 put_css_set_taskexit(cset
);
5439 static void check_for_release(struct cgroup
*cgrp
)
5441 if (cgroup_is_releasable(cgrp
) &&
5442 list_empty(&cgrp
->cset_links
) && list_empty(&cgrp
->children
)) {
5444 * Control Group is currently removeable. If it's not
5445 * already queued for a userspace notification, queue
5448 int need_schedule_work
= 0;
5450 raw_spin_lock(&release_list_lock
);
5451 if (!cgroup_is_dead(cgrp
) &&
5452 list_empty(&cgrp
->release_list
)) {
5453 list_add(&cgrp
->release_list
, &release_list
);
5454 need_schedule_work
= 1;
5456 raw_spin_unlock(&release_list_lock
);
5457 if (need_schedule_work
)
5458 schedule_work(&release_agent_work
);
5463 * Notify userspace when a cgroup is released, by running the
5464 * configured release agent with the name of the cgroup (path
5465 * relative to the root of cgroup file system) as the argument.
5467 * Most likely, this user command will try to rmdir this cgroup.
5469 * This races with the possibility that some other task will be
5470 * attached to this cgroup before it is removed, or that some other
5471 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5472 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5473 * unused, and this cgroup will be reprieved from its death sentence,
5474 * to continue to serve a useful existence. Next time it's released,
5475 * we will get notified again, if it still has 'notify_on_release' set.
5477 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5478 * means only wait until the task is successfully execve()'d. The
5479 * separate release agent task is forked by call_usermodehelper(),
5480 * then control in this thread returns here, without waiting for the
5481 * release agent task. We don't bother to wait because the caller of
5482 * this routine has no use for the exit status of the release agent
5483 * task, so no sense holding our caller up for that.
5485 static void cgroup_release_agent(struct work_struct
*work
)
5487 BUG_ON(work
!= &release_agent_work
);
5488 mutex_lock(&cgroup_mutex
);
5489 raw_spin_lock(&release_list_lock
);
5490 while (!list_empty(&release_list
)) {
5491 char *argv
[3], *envp
[3];
5493 char *pathbuf
= NULL
, *agentbuf
= NULL
;
5494 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5497 list_del_init(&cgrp
->release_list
);
5498 raw_spin_unlock(&release_list_lock
);
5499 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5502 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
5504 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5509 argv
[i
++] = agentbuf
;
5510 argv
[i
++] = pathbuf
;
5514 /* minimal command environment */
5515 envp
[i
++] = "HOME=/";
5516 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5519 /* Drop the lock while we invoke the usermode helper,
5520 * since the exec could involve hitting disk and hence
5521 * be a slow process */
5522 mutex_unlock(&cgroup_mutex
);
5523 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5524 mutex_lock(&cgroup_mutex
);
5528 raw_spin_lock(&release_list_lock
);
5530 raw_spin_unlock(&release_list_lock
);
5531 mutex_unlock(&cgroup_mutex
);
5534 static int __init
cgroup_disable(char *str
)
5536 struct cgroup_subsys
*ss
;
5540 while ((token
= strsep(&str
, ",")) != NULL
) {
5545 * cgroup_disable, being at boot time, can't know about
5546 * module subsystems, so we don't worry about them.
5548 for_each_builtin_subsys(ss
, i
) {
5549 if (!strcmp(token
, ss
->name
)) {
5551 printk(KERN_INFO
"Disabling %s control group"
5552 " subsystem\n", ss
->name
);
5559 __setup("cgroup_disable=", cgroup_disable
);
5562 * Functons for CSS ID.
5565 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5566 unsigned short css_id(struct cgroup_subsys_state
*css
)
5568 struct css_id
*cssid
;
5571 * This css_id() can return correct value when somone has refcnt
5572 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5573 * it's unchanged until freed.
5575 cssid
= rcu_dereference_raw(css
->id
);
5581 EXPORT_SYMBOL_GPL(css_id
);
5584 * css_is_ancestor - test "root" css is an ancestor of "child"
5585 * @child: the css to be tested.
5586 * @root: the css supporsed to be an ancestor of the child.
5588 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5589 * this function reads css->id, the caller must hold rcu_read_lock().
5590 * But, considering usual usage, the csses should be valid objects after test.
5591 * Assuming that the caller will do some action to the child if this returns
5592 * returns true, the caller must take "child";s reference count.
5593 * If "child" is valid object and this returns true, "root" is valid, too.
5596 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
5597 const struct cgroup_subsys_state
*root
)
5599 struct css_id
*child_id
;
5600 struct css_id
*root_id
;
5602 child_id
= rcu_dereference(child
->id
);
5605 root_id
= rcu_dereference(root
->id
);
5608 if (child_id
->depth
< root_id
->depth
)
5610 if (child_id
->stack
[root_id
->depth
] != root_id
->id
)
5615 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
5617 struct css_id
*id
= rcu_dereference_protected(css
->id
, true);
5619 /* When this is called before css_id initialization, id can be NULL */
5623 BUG_ON(!ss
->use_id
);
5625 rcu_assign_pointer(id
->css
, NULL
);
5626 rcu_assign_pointer(css
->id
, NULL
);
5627 spin_lock(&ss
->id_lock
);
5628 idr_remove(&ss
->idr
, id
->id
);
5629 spin_unlock(&ss
->id_lock
);
5630 kfree_rcu(id
, rcu_head
);
5632 EXPORT_SYMBOL_GPL(free_css_id
);
5635 * This is called by init or create(). Then, calls to this function are
5636 * always serialized (By cgroup_mutex() at create()).
5639 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
5641 struct css_id
*newid
;
5644 BUG_ON(!ss
->use_id
);
5646 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
5647 newid
= kzalloc(size
, GFP_KERNEL
);
5649 return ERR_PTR(-ENOMEM
);
5651 idr_preload(GFP_KERNEL
);
5652 spin_lock(&ss
->id_lock
);
5653 /* Don't use 0. allocates an ID of 1-65535 */
5654 ret
= idr_alloc(&ss
->idr
, newid
, 1, CSS_ID_MAX
+ 1, GFP_NOWAIT
);
5655 spin_unlock(&ss
->id_lock
);
5658 /* Returns error when there are no free spaces for new ID.*/
5663 newid
->depth
= depth
;
5667 return ERR_PTR(ret
);
5671 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
5672 struct cgroup_subsys_state
*rootcss
)
5674 struct css_id
*newid
;
5676 spin_lock_init(&ss
->id_lock
);
5679 newid
= get_new_cssid(ss
, 0);
5681 return PTR_ERR(newid
);
5683 newid
->stack
[0] = newid
->id
;
5684 RCU_INIT_POINTER(newid
->css
, rootcss
);
5685 RCU_INIT_POINTER(rootcss
->id
, newid
);
5689 static int alloc_css_id(struct cgroup_subsys_state
*child_css
)
5691 struct cgroup_subsys_state
*parent_css
= css_parent(child_css
);
5692 struct css_id
*child_id
, *parent_id
;
5695 parent_id
= rcu_dereference_protected(parent_css
->id
, true);
5696 depth
= parent_id
->depth
+ 1;
5698 child_id
= get_new_cssid(child_css
->ss
, depth
);
5699 if (IS_ERR(child_id
))
5700 return PTR_ERR(child_id
);
5702 for (i
= 0; i
< depth
; i
++)
5703 child_id
->stack
[i
] = parent_id
->stack
[i
];
5704 child_id
->stack
[depth
] = child_id
->id
;
5706 * child_id->css pointer will be set after this cgroup is available
5707 * see cgroup_populate_dir()
5709 rcu_assign_pointer(child_css
->id
, child_id
);
5715 * css_lookup - lookup css by id
5716 * @ss: cgroup subsys to be looked into.
5719 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5720 * NULL if not. Should be called under rcu_read_lock()
5722 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
5724 struct css_id
*cssid
= NULL
;
5726 BUG_ON(!ss
->use_id
);
5727 cssid
= idr_find(&ss
->idr
, id
);
5729 if (unlikely(!cssid
))
5732 return rcu_dereference(cssid
->css
);
5734 EXPORT_SYMBOL_GPL(css_lookup
);
5737 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5738 * @dentry: directory dentry of interest
5739 * @ss: subsystem of interest
5741 * Must be called under RCU read lock. The caller is responsible for
5742 * pinning the returned css if it needs to be accessed outside the RCU
5745 struct cgroup_subsys_state
*css_from_dir(struct dentry
*dentry
,
5746 struct cgroup_subsys
*ss
)
5748 struct cgroup
*cgrp
;
5750 WARN_ON_ONCE(!rcu_read_lock_held());
5752 /* is @dentry a cgroup dir? */
5753 if (!dentry
->d_inode
||
5754 dentry
->d_inode
->i_op
!= &cgroup_dir_inode_operations
)
5755 return ERR_PTR(-EBADF
);
5757 cgrp
= __d_cgrp(dentry
);
5758 return cgroup_css(cgrp
, ss
) ?: ERR_PTR(-ENOENT
);
5762 * css_from_id - lookup css by id
5763 * @id: the cgroup id
5764 * @ss: cgroup subsys to be looked into
5766 * Returns the css if there's valid one with @id, otherwise returns NULL.
5767 * Should be called under rcu_read_lock().
5769 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5771 struct cgroup
*cgrp
;
5773 rcu_lockdep_assert(rcu_read_lock_held() ||
5774 lockdep_is_held(&cgroup_mutex
),
5775 "css_from_id() needs proper protection");
5777 cgrp
= idr_find(&ss
->root
->cgroup_idr
, id
);
5779 return cgroup_css(cgrp
, ss
);
5783 #ifdef CONFIG_CGROUP_DEBUG
5784 static struct cgroup_subsys_state
*
5785 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5787 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5790 return ERR_PTR(-ENOMEM
);
5795 static void debug_css_free(struct cgroup_subsys_state
*css
)
5800 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5803 return cgroup_task_count(css
->cgroup
);
5806 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5809 return (u64
)(unsigned long)current
->cgroups
;
5812 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5818 count
= atomic_read(&task_css_set(current
)->refcount
);
5823 static int current_css_set_cg_links_read(struct cgroup_subsys_state
*css
,
5825 struct seq_file
*seq
)
5827 struct cgrp_cset_link
*link
;
5828 struct css_set
*cset
;
5830 read_lock(&css_set_lock
);
5832 cset
= rcu_dereference(current
->cgroups
);
5833 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5834 struct cgroup
*c
= link
->cgrp
;
5838 name
= c
->dentry
->d_name
.name
;
5841 seq_printf(seq
, "Root %d group %s\n",
5842 c
->root
->hierarchy_id
, name
);
5845 read_unlock(&css_set_lock
);
5849 #define MAX_TASKS_SHOWN_PER_CSS 25
5850 static int cgroup_css_links_read(struct cgroup_subsys_state
*css
,
5851 struct cftype
*cft
, struct seq_file
*seq
)
5853 struct cgrp_cset_link
*link
;
5855 read_lock(&css_set_lock
);
5856 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5857 struct css_set
*cset
= link
->cset
;
5858 struct task_struct
*task
;
5860 seq_printf(seq
, "css_set %p\n", cset
);
5861 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5862 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5863 seq_puts(seq
, " ...\n");
5866 seq_printf(seq
, " task %d\n",
5867 task_pid_vnr(task
));
5871 read_unlock(&css_set_lock
);
5875 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5877 return test_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
5880 static struct cftype debug_files
[] = {
5882 .name
= "taskcount",
5883 .read_u64
= debug_taskcount_read
,
5887 .name
= "current_css_set",
5888 .read_u64
= current_css_set_read
,
5892 .name
= "current_css_set_refcount",
5893 .read_u64
= current_css_set_refcount_read
,
5897 .name
= "current_css_set_cg_links",
5898 .read_seq_string
= current_css_set_cg_links_read
,
5902 .name
= "cgroup_css_links",
5903 .read_seq_string
= cgroup_css_links_read
,
5907 .name
= "releasable",
5908 .read_u64
= releasable_read
,
5914 struct cgroup_subsys debug_subsys
= {
5916 .css_alloc
= debug_css_alloc
,
5917 .css_free
= debug_css_free
,
5918 .subsys_id
= debug_subsys_id
,
5919 .base_cftypes
= debug_files
,
5921 #endif /* CONFIG_CGROUP_DEBUG */