4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
64 struct static_key cpusets_enabled_key __read_mostly
= STATIC_KEY_INIT_FALSE
;
66 /* See "Frequency meter" comments, below. */
69 int cnt
; /* unprocessed events count */
70 int val
; /* most recent output value */
71 time_t time
; /* clock (secs) when val computed */
72 spinlock_t lock
; /* guards read or write of above */
76 struct cgroup_subsys_state css
;
78 unsigned long flags
; /* "unsigned long" so bitops work */
79 cpumask_var_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
80 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
83 * This is old Memory Nodes tasks took on.
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
92 nodemask_t old_mems_allowed
;
94 struct fmeter fmeter
; /* memory_pressure filter */
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
100 int attach_in_progress
;
102 /* partition number for rebuild_sched_domains() */
105 /* for custom sched domain */
106 int relax_domain_level
;
109 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
111 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset
*task_cs(struct task_struct
*task
)
117 return css_cs(task_css(task
, cpuset_subsys_id
));
120 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
122 return css_cs(css_parent(&cs
->css
));
126 static inline bool task_has_mempolicy(struct task_struct
*task
)
128 return task
->mempolicy
;
131 static inline bool task_has_mempolicy(struct task_struct
*task
)
138 /* bits in struct cpuset flags field */
145 CS_SCHED_LOAD_BALANCE
,
150 /* convenient tests for these bits */
151 static inline bool is_cpuset_online(const struct cpuset
*cs
)
153 return test_bit(CS_ONLINE
, &cs
->flags
);
156 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
158 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
161 static inline int is_mem_exclusive(const struct cpuset
*cs
)
163 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
166 static inline int is_mem_hardwall(const struct cpuset
*cs
)
168 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
171 static inline int is_sched_load_balance(const struct cpuset
*cs
)
173 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
176 static inline int is_memory_migrate(const struct cpuset
*cs
)
178 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
181 static inline int is_spread_page(const struct cpuset
*cs
)
183 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
186 static inline int is_spread_slab(const struct cpuset
*cs
)
188 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
191 static struct cpuset top_cpuset
= {
192 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
193 (1 << CS_MEM_EXCLUSIVE
)),
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
199 * @pos_css: used for iteration
200 * @parent_cs: target cpuset to walk children of
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
205 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
212 * @pos_css: used for iteration
213 * @root_cs: target cpuset to walk ancestor of
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
216 * with RCU read locked. The caller may modify @pos_css by calling
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
220 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
240 * Calls to the kernel memory allocator can not be made while holding
241 * callback_mutex, as that would risk double tripping on callback_mutex
242 * from one of the callbacks into the cpuset code from within
245 * If a task is only holding callback_mutex, then it has read-only
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
252 * The cpuset_common_file_read() handlers only hold callback_mutex across
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
260 static DEFINE_MUTEX(cpuset_mutex
);
261 static DEFINE_MUTEX(callback_mutex
);
264 * CPU / memory hotplug is handled asynchronously.
266 static void cpuset_hotplug_workfn(struct work_struct
*work
);
267 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
269 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
272 * This is ugly, but preserves the userspace API for existing cpuset
273 * users. If someone tries to mount the "cpuset" filesystem, we
274 * silently switch it to mount "cgroup" instead
276 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
277 int flags
, const char *unused_dev_name
, void *data
)
279 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
280 struct dentry
*ret
= ERR_PTR(-ENODEV
);
284 "release_agent=/sbin/cpuset_release_agent";
285 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
286 unused_dev_name
, mountopts
);
287 put_filesystem(cgroup_fs
);
292 static struct file_system_type cpuset_fs_type
= {
294 .mount
= cpuset_mount
,
298 * Return in pmask the portion of a cpusets's cpus_allowed that
299 * are online. If none are online, walk up the cpuset hierarchy
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
303 * One way or another, we guarantee to return some non-empty subset
304 * of cpu_online_mask.
306 * Call with callback_mutex held.
308 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
310 while (!cpumask_intersects(cs
->cpus_allowed
, cpu_online_mask
))
312 cpumask_and(pmask
, cs
->cpus_allowed
, cpu_online_mask
);
316 * Return in *pmask the portion of a cpusets's mems_allowed that
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
319 * online mems. The top cpuset always has some mems online.
321 * One way or another, we guarantee to return some non-empty subset
322 * of node_states[N_MEMORY].
324 * Call with callback_mutex held.
326 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
328 while (!nodes_intersects(cs
->mems_allowed
, node_states
[N_MEMORY
]))
330 nodes_and(*pmask
, cs
->mems_allowed
, node_states
[N_MEMORY
]);
334 * update task's spread flag if cpuset's page/slab spread flag is set
336 * Called with callback_mutex/cpuset_mutex held
338 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
339 struct task_struct
*tsk
)
341 if (is_spread_page(cs
))
342 tsk
->flags
|= PF_SPREAD_PAGE
;
344 tsk
->flags
&= ~PF_SPREAD_PAGE
;
345 if (is_spread_slab(cs
))
346 tsk
->flags
|= PF_SPREAD_SLAB
;
348 tsk
->flags
&= ~PF_SPREAD_SLAB
;
352 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
354 * One cpuset is a subset of another if all its allowed CPUs and
355 * Memory Nodes are a subset of the other, and its exclusive flags
356 * are only set if the other's are set. Call holding cpuset_mutex.
359 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
361 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
362 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
363 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
364 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
368 * alloc_trial_cpuset - allocate a trial cpuset
369 * @cs: the cpuset that the trial cpuset duplicates
371 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
373 struct cpuset
*trial
;
375 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
379 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
)) {
383 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
389 * free_trial_cpuset - free the trial cpuset
390 * @trial: the trial cpuset to be freed
392 static void free_trial_cpuset(struct cpuset
*trial
)
394 free_cpumask_var(trial
->cpus_allowed
);
399 * validate_change() - Used to validate that any proposed cpuset change
400 * follows the structural rules for cpusets.
402 * If we replaced the flag and mask values of the current cpuset
403 * (cur) with those values in the trial cpuset (trial), would
404 * our various subset and exclusive rules still be valid? Presumes
407 * 'cur' is the address of an actual, in-use cpuset. Operations
408 * such as list traversal that depend on the actual address of the
409 * cpuset in the list must use cur below, not trial.
411 * 'trial' is the address of bulk structure copy of cur, with
412 * perhaps one or more of the fields cpus_allowed, mems_allowed,
413 * or flags changed to new, trial values.
415 * Return 0 if valid, -errno if not.
418 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
420 struct cgroup_subsys_state
*css
;
421 struct cpuset
*c
, *par
;
426 /* Each of our child cpusets must be a subset of us */
428 cpuset_for_each_child(c
, css
, cur
)
429 if (!is_cpuset_subset(c
, trial
))
432 /* Remaining checks don't apply to root cpuset */
434 if (cur
== &top_cpuset
)
437 par
= parent_cs(cur
);
439 /* We must be a subset of our parent cpuset */
441 if (!is_cpuset_subset(trial
, par
))
445 * If either I or some sibling (!= me) is exclusive, we can't
449 cpuset_for_each_child(c
, css
, par
) {
450 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
452 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
454 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
456 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
461 * Cpusets with tasks - existing or newly being attached - can't
462 * be changed to have empty cpus_allowed or mems_allowed.
465 if ((cgroup_task_count(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
466 if (!cpumask_empty(cur
->cpus_allowed
) &&
467 cpumask_empty(trial
->cpus_allowed
))
469 if (!nodes_empty(cur
->mems_allowed
) &&
470 nodes_empty(trial
->mems_allowed
))
482 * Helper routine for generate_sched_domains().
483 * Do cpusets a, b have overlapping cpus_allowed masks?
485 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
487 return cpumask_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
491 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
493 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
494 dattr
->relax_domain_level
= c
->relax_domain_level
;
498 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
499 struct cpuset
*root_cs
)
502 struct cgroup_subsys_state
*pos_css
;
505 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp
->cpus_allowed
)) {
511 pos_css
= css_rightmost_descendant(pos_css
);
515 if (is_sched_load_balance(cp
))
516 update_domain_attr(dattr
, cp
);
522 * generate_sched_domains()
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
527 * The output of this function needs to be passed to kernel/sched/core.c
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
533 * for a background explanation of this.
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
540 * Must be called with cpuset_mutex held.
542 * The three key local variables below are:
543 * q - a linked-list queue of cpuset pointers, used to implement a
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
556 * the kernel/sched/core.c routine partition_sched_domains() in a
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
575 static int generate_sched_domains(cpumask_var_t
**domains
,
576 struct sched_domain_attr
**attributes
)
578 struct cpuset
*cp
; /* scans q */
579 struct cpuset
**csa
; /* array of all cpuset ptrs */
580 int csn
; /* how many cpuset ptrs in csa so far */
581 int i
, j
, k
; /* indices for partition finding loops */
582 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
583 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
584 int ndoms
= 0; /* number of sched domains in result */
585 int nslot
; /* next empty doms[] struct cpumask slot */
586 struct cgroup_subsys_state
*pos_css
;
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset
)) {
595 doms
= alloc_sched_domains(ndoms
);
599 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
601 *dattr
= SD_ATTR_INIT
;
602 update_domain_attr_tree(dattr
, &top_cpuset
);
604 cpumask_copy(doms
[0], top_cpuset
.cpus_allowed
);
609 csa
= kmalloc(nr_cpusets() * sizeof(cp
), GFP_KERNEL
);
615 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
616 if (cp
== &top_cpuset
)
619 * Continue traversing beyond @cp iff @cp has some CPUs and
620 * isn't load balancing. The former is obvious. The
621 * latter: All child cpusets contain a subset of the
622 * parent's cpus, so just skip them, and then we call
623 * update_domain_attr_tree() to calc relax_domain_level of
624 * the corresponding sched domain.
626 if (!cpumask_empty(cp
->cpus_allowed
) &&
627 !is_sched_load_balance(cp
))
630 if (is_sched_load_balance(cp
))
633 /* skip @cp's subtree */
634 pos_css
= css_rightmost_descendant(pos_css
);
638 for (i
= 0; i
< csn
; i
++)
643 /* Find the best partition (set of sched domains) */
644 for (i
= 0; i
< csn
; i
++) {
645 struct cpuset
*a
= csa
[i
];
648 for (j
= 0; j
< csn
; j
++) {
649 struct cpuset
*b
= csa
[j
];
652 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
653 for (k
= 0; k
< csn
; k
++) {
654 struct cpuset
*c
= csa
[k
];
659 ndoms
--; /* one less element */
666 * Now we know how many domains to create.
667 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
669 doms
= alloc_sched_domains(ndoms
);
674 * The rest of the code, including the scheduler, can deal with
675 * dattr==NULL case. No need to abort if alloc fails.
677 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
679 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
680 struct cpuset
*a
= csa
[i
];
685 /* Skip completed partitions */
691 if (nslot
== ndoms
) {
692 static int warnings
= 10;
695 "rebuild_sched_domains confused:"
696 " nslot %d, ndoms %d, csn %d, i %d,"
698 nslot
, ndoms
, csn
, i
, apn
);
706 *(dattr
+ nslot
) = SD_ATTR_INIT
;
707 for (j
= i
; j
< csn
; j
++) {
708 struct cpuset
*b
= csa
[j
];
711 cpumask_or(dp
, dp
, b
->cpus_allowed
);
713 update_domain_attr_tree(dattr
+ nslot
, b
);
715 /* Done with this partition */
721 BUG_ON(nslot
!= ndoms
);
727 * Fallback to the default domain if kmalloc() failed.
728 * See comments in partition_sched_domains().
739 * Rebuild scheduler domains.
741 * If the flag 'sched_load_balance' of any cpuset with non-empty
742 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
743 * which has that flag enabled, or if any cpuset with a non-empty
744 * 'cpus' is removed, then call this routine to rebuild the
745 * scheduler's dynamic sched domains.
747 * Call with cpuset_mutex held. Takes get_online_cpus().
749 static void rebuild_sched_domains_locked(void)
751 struct sched_domain_attr
*attr
;
755 lockdep_assert_held(&cpuset_mutex
);
759 * We have raced with CPU hotplug. Don't do anything to avoid
760 * passing doms with offlined cpu to partition_sched_domains().
761 * Anyways, hotplug work item will rebuild sched domains.
763 if (!cpumask_equal(top_cpuset
.cpus_allowed
, cpu_active_mask
))
766 /* Generate domain masks and attrs */
767 ndoms
= generate_sched_domains(&doms
, &attr
);
769 /* Have scheduler rebuild the domains */
770 partition_sched_domains(ndoms
, doms
, attr
);
774 #else /* !CONFIG_SMP */
775 static void rebuild_sched_domains_locked(void)
778 #endif /* CONFIG_SMP */
780 void rebuild_sched_domains(void)
782 mutex_lock(&cpuset_mutex
);
783 rebuild_sched_domains_locked();
784 mutex_unlock(&cpuset_mutex
);
788 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
789 * @cs: the cpuset in interest
791 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
792 * with non-empty cpus. We use effective cpumask whenever:
793 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
794 * if the cpuset they reside in has no cpus)
795 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
797 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
798 * exception. See comments there.
800 static struct cpuset
*effective_cpumask_cpuset(struct cpuset
*cs
)
802 while (cpumask_empty(cs
->cpus_allowed
))
808 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
809 * @cs: the cpuset in interest
811 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
812 * with non-empty memss. We use effective nodemask whenever:
813 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
814 * if the cpuset they reside in has no mems)
815 * - we want to retrieve task_cs(tsk)'s mems_allowed.
817 * Called with cpuset_mutex held.
819 static struct cpuset
*effective_nodemask_cpuset(struct cpuset
*cs
)
821 while (nodes_empty(cs
->mems_allowed
))
827 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
829 * @data: cpuset to @tsk belongs to
831 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
832 * mask needs to be changed.
834 * We don't need to re-check for the cgroup/cpuset membership, since we're
835 * holding cpuset_mutex at this point.
837 static void cpuset_change_cpumask(struct task_struct
*tsk
, void *data
)
839 struct cpuset
*cs
= data
;
840 struct cpuset
*cpus_cs
= effective_cpumask_cpuset(cs
);
842 set_cpus_allowed_ptr(tsk
, cpus_cs
->cpus_allowed
);
846 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
847 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
848 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
850 * Called with cpuset_mutex held
852 * The css_scan_tasks() function will scan all the tasks in a cgroup,
853 * calling callback functions for each.
855 * No return value. It's guaranteed that css_scan_tasks() always returns 0
858 static void update_tasks_cpumask(struct cpuset
*cs
, struct ptr_heap
*heap
)
860 css_scan_tasks(&cs
->css
, NULL
, cpuset_change_cpumask
, cs
, heap
);
864 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
865 * @root_cs: the root cpuset of the hierarchy
866 * @update_root: update root cpuset or not?
867 * @heap: the heap used by css_scan_tasks()
869 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
870 * which take on cpumask of @root_cs.
872 * Called with cpuset_mutex held
874 static void update_tasks_cpumask_hier(struct cpuset
*root_cs
,
875 bool update_root
, struct ptr_heap
*heap
)
878 struct cgroup_subsys_state
*pos_css
;
881 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
886 /* skip the whole subtree if @cp have some CPU */
887 if (!cpumask_empty(cp
->cpus_allowed
)) {
888 pos_css
= css_rightmost_descendant(pos_css
);
892 if (!css_tryget(&cp
->css
))
896 update_tasks_cpumask(cp
, heap
);
905 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
906 * @cs: the cpuset to consider
907 * @buf: buffer of cpu numbers written to this cpuset
909 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
912 struct ptr_heap heap
;
914 int is_load_balanced
;
916 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
917 if (cs
== &top_cpuset
)
921 * An empty cpus_allowed is ok only if the cpuset has no tasks.
922 * Since cpulist_parse() fails on an empty mask, we special case
923 * that parsing. The validate_change() call ensures that cpusets
924 * with tasks have cpus.
927 cpumask_clear(trialcs
->cpus_allowed
);
929 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
933 if (!cpumask_subset(trialcs
->cpus_allowed
, cpu_active_mask
))
937 /* Nothing to do if the cpus didn't change */
938 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
941 retval
= validate_change(cs
, trialcs
);
945 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
949 is_load_balanced
= is_sched_load_balance(trialcs
);
951 mutex_lock(&callback_mutex
);
952 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
953 mutex_unlock(&callback_mutex
);
955 update_tasks_cpumask_hier(cs
, true, &heap
);
959 if (is_load_balanced
)
960 rebuild_sched_domains_locked();
967 * Migrate memory region from one set of nodes to another.
969 * Temporarilly set tasks mems_allowed to target nodes of migration,
970 * so that the migration code can allocate pages on these nodes.
972 * While the mm_struct we are migrating is typically from some
973 * other task, the task_struct mems_allowed that we are hacking
974 * is for our current task, which must allocate new pages for that
975 * migrating memory region.
978 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
979 const nodemask_t
*to
)
981 struct task_struct
*tsk
= current
;
982 struct cpuset
*mems_cs
;
984 tsk
->mems_allowed
= *to
;
986 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
989 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
990 guarantee_online_mems(mems_cs
, &tsk
->mems_allowed
);
995 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
996 * @tsk: the task to change
997 * @newmems: new nodes that the task will be set
999 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1000 * we structure updates as setting all new allowed nodes, then clearing newly
1003 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1004 nodemask_t
*newmems
)
1009 * Allow tasks that have access to memory reserves because they have
1010 * been OOM killed to get memory anywhere.
1012 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
1014 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
1019 * Determine if a loop is necessary if another thread is doing
1020 * read_mems_allowed_begin(). If at least one node remains unchanged and
1021 * tsk does not have a mempolicy, then an empty nodemask will not be
1022 * possible when mems_allowed is larger than a word.
1024 need_loop
= task_has_mempolicy(tsk
) ||
1025 !nodes_intersects(*newmems
, tsk
->mems_allowed
);
1028 local_irq_disable();
1029 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1032 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1033 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
1035 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1036 tsk
->mems_allowed
= *newmems
;
1039 write_seqcount_end(&tsk
->mems_allowed_seq
);
1046 struct cpuset_change_nodemask_arg
{
1048 nodemask_t
*newmems
;
1052 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1053 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1054 * memory_migrate flag is set. Called with cpuset_mutex held.
1056 static void cpuset_change_nodemask(struct task_struct
*p
, void *data
)
1058 struct cpuset_change_nodemask_arg
*arg
= data
;
1059 struct cpuset
*cs
= arg
->cs
;
1060 struct mm_struct
*mm
;
1063 cpuset_change_task_nodemask(p
, arg
->newmems
);
1065 mm
= get_task_mm(p
);
1069 migrate
= is_memory_migrate(cs
);
1071 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1073 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, arg
->newmems
);
1077 static void *cpuset_being_rebound
;
1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1082 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1084 * Called with cpuset_mutex held. No return value. It's guaranteed that
1085 * css_scan_tasks() always returns 0 if @heap != NULL.
1087 static void update_tasks_nodemask(struct cpuset
*cs
, struct ptr_heap
*heap
)
1089 static nodemask_t newmems
; /* protected by cpuset_mutex */
1090 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1091 struct cpuset_change_nodemask_arg arg
= { .cs
= cs
,
1092 .newmems
= &newmems
};
1094 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1096 guarantee_online_mems(mems_cs
, &newmems
);
1099 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1100 * take while holding tasklist_lock. Forks can happen - the
1101 * mpol_dup() cpuset_being_rebound check will catch such forks,
1102 * and rebind their vma mempolicies too. Because we still hold
1103 * the global cpuset_mutex, we know that no other rebind effort
1104 * will be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 * is idempotent. Also migrate pages in each mm to new nodes.
1108 css_scan_tasks(&cs
->css
, NULL
, cpuset_change_nodemask
, &arg
, heap
);
1111 * All the tasks' nodemasks have been updated, update
1112 * cs->old_mems_allowed.
1114 cs
->old_mems_allowed
= newmems
;
1116 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1117 cpuset_being_rebound
= NULL
;
1121 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1122 * @cs: the root cpuset of the hierarchy
1123 * @update_root: update the root cpuset or not?
1124 * @heap: the heap used by css_scan_tasks()
1126 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1127 * which take on nodemask of @root_cs.
1129 * Called with cpuset_mutex held
1131 static void update_tasks_nodemask_hier(struct cpuset
*root_cs
,
1132 bool update_root
, struct ptr_heap
*heap
)
1135 struct cgroup_subsys_state
*pos_css
;
1138 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
1139 if (cp
== root_cs
) {
1143 /* skip the whole subtree if @cp have some CPU */
1144 if (!nodes_empty(cp
->mems_allowed
)) {
1145 pos_css
= css_rightmost_descendant(pos_css
);
1149 if (!css_tryget(&cp
->css
))
1153 update_tasks_nodemask(cp
, heap
);
1162 * Handle user request to change the 'mems' memory placement
1163 * of a cpuset. Needs to validate the request, update the
1164 * cpusets mems_allowed, and for each task in the cpuset,
1165 * update mems_allowed and rebind task's mempolicy and any vma
1166 * mempolicies and if the cpuset is marked 'memory_migrate',
1167 * migrate the tasks pages to the new memory.
1169 * Call with cpuset_mutex held. May take callback_mutex during call.
1170 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1171 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1172 * their mempolicies to the cpusets new mems_allowed.
1174 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1178 struct ptr_heap heap
;
1181 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1184 if (cs
== &top_cpuset
) {
1190 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1191 * Since nodelist_parse() fails on an empty mask, we special case
1192 * that parsing. The validate_change() call ensures that cpusets
1193 * with tasks have memory.
1196 nodes_clear(trialcs
->mems_allowed
);
1198 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1202 if (!nodes_subset(trialcs
->mems_allowed
,
1203 node_states
[N_MEMORY
])) {
1209 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1210 retval
= 0; /* Too easy - nothing to do */
1213 retval
= validate_change(cs
, trialcs
);
1217 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1221 mutex_lock(&callback_mutex
);
1222 cs
->mems_allowed
= trialcs
->mems_allowed
;
1223 mutex_unlock(&callback_mutex
);
1225 update_tasks_nodemask_hier(cs
, true, &heap
);
1232 int current_cpuset_is_being_rebound(void)
1237 ret
= task_cs(current
) == cpuset_being_rebound
;
1243 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1246 if (val
< -1 || val
>= sched_domain_level_max
)
1250 if (val
!= cs
->relax_domain_level
) {
1251 cs
->relax_domain_level
= val
;
1252 if (!cpumask_empty(cs
->cpus_allowed
) &&
1253 is_sched_load_balance(cs
))
1254 rebuild_sched_domains_locked();
1261 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1262 * @tsk: task to be updated
1263 * @data: cpuset to @tsk belongs to
1265 * Called by css_scan_tasks() for each task in a cgroup.
1267 * We don't need to re-check for the cgroup/cpuset membership, since we're
1268 * holding cpuset_mutex at this point.
1270 static void cpuset_change_flag(struct task_struct
*tsk
, void *data
)
1272 struct cpuset
*cs
= data
;
1274 cpuset_update_task_spread_flag(cs
, tsk
);
1278 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1279 * @cs: the cpuset in which each task's spread flags needs to be changed
1280 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
1282 * Called with cpuset_mutex held
1284 * The css_scan_tasks() function will scan all the tasks in a cgroup,
1285 * calling callback functions for each.
1287 * No return value. It's guaranteed that css_scan_tasks() always returns 0
1290 static void update_tasks_flags(struct cpuset
*cs
, struct ptr_heap
*heap
)
1292 css_scan_tasks(&cs
->css
, NULL
, cpuset_change_flag
, cs
, heap
);
1296 * update_flag - read a 0 or a 1 in a file and update associated flag
1297 * bit: the bit to update (see cpuset_flagbits_t)
1298 * cs: the cpuset to update
1299 * turning_on: whether the flag is being set or cleared
1301 * Call with cpuset_mutex held.
1304 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1307 struct cpuset
*trialcs
;
1308 int balance_flag_changed
;
1309 int spread_flag_changed
;
1310 struct ptr_heap heap
;
1313 trialcs
= alloc_trial_cpuset(cs
);
1318 set_bit(bit
, &trialcs
->flags
);
1320 clear_bit(bit
, &trialcs
->flags
);
1322 err
= validate_change(cs
, trialcs
);
1326 err
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1330 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1331 is_sched_load_balance(trialcs
));
1333 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1334 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1336 mutex_lock(&callback_mutex
);
1337 cs
->flags
= trialcs
->flags
;
1338 mutex_unlock(&callback_mutex
);
1340 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1341 rebuild_sched_domains_locked();
1343 if (spread_flag_changed
)
1344 update_tasks_flags(cs
, &heap
);
1347 free_trial_cpuset(trialcs
);
1352 * Frequency meter - How fast is some event occurring?
1354 * These routines manage a digitally filtered, constant time based,
1355 * event frequency meter. There are four routines:
1356 * fmeter_init() - initialize a frequency meter.
1357 * fmeter_markevent() - called each time the event happens.
1358 * fmeter_getrate() - returns the recent rate of such events.
1359 * fmeter_update() - internal routine used to update fmeter.
1361 * A common data structure is passed to each of these routines,
1362 * which is used to keep track of the state required to manage the
1363 * frequency meter and its digital filter.
1365 * The filter works on the number of events marked per unit time.
1366 * The filter is single-pole low-pass recursive (IIR). The time unit
1367 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1368 * simulate 3 decimal digits of precision (multiplied by 1000).
1370 * With an FM_COEF of 933, and a time base of 1 second, the filter
1371 * has a half-life of 10 seconds, meaning that if the events quit
1372 * happening, then the rate returned from the fmeter_getrate()
1373 * will be cut in half each 10 seconds, until it converges to zero.
1375 * It is not worth doing a real infinitely recursive filter. If more
1376 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1377 * just compute FM_MAXTICKS ticks worth, by which point the level
1380 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1381 * arithmetic overflow in the fmeter_update() routine.
1383 * Given the simple 32 bit integer arithmetic used, this meter works
1384 * best for reporting rates between one per millisecond (msec) and
1385 * one per 32 (approx) seconds. At constant rates faster than one
1386 * per msec it maxes out at values just under 1,000,000. At constant
1387 * rates between one per msec, and one per second it will stabilize
1388 * to a value N*1000, where N is the rate of events per second.
1389 * At constant rates between one per second and one per 32 seconds,
1390 * it will be choppy, moving up on the seconds that have an event,
1391 * and then decaying until the next event. At rates slower than
1392 * about one in 32 seconds, it decays all the way back to zero between
1396 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1397 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1398 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1399 #define FM_SCALE 1000 /* faux fixed point scale */
1401 /* Initialize a frequency meter */
1402 static void fmeter_init(struct fmeter
*fmp
)
1407 spin_lock_init(&fmp
->lock
);
1410 /* Internal meter update - process cnt events and update value */
1411 static void fmeter_update(struct fmeter
*fmp
)
1413 time_t now
= get_seconds();
1414 time_t ticks
= now
- fmp
->time
;
1419 ticks
= min(FM_MAXTICKS
, ticks
);
1421 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1424 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1428 /* Process any previous ticks, then bump cnt by one (times scale). */
1429 static void fmeter_markevent(struct fmeter
*fmp
)
1431 spin_lock(&fmp
->lock
);
1433 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1434 spin_unlock(&fmp
->lock
);
1437 /* Process any previous ticks, then return current value. */
1438 static int fmeter_getrate(struct fmeter
*fmp
)
1442 spin_lock(&fmp
->lock
);
1445 spin_unlock(&fmp
->lock
);
1449 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1450 static int cpuset_can_attach(struct cgroup_subsys_state
*css
,
1451 struct cgroup_taskset
*tset
)
1453 struct cpuset
*cs
= css_cs(css
);
1454 struct task_struct
*task
;
1457 mutex_lock(&cpuset_mutex
);
1460 * We allow to move tasks into an empty cpuset if sane_behavior
1464 if (!cgroup_sane_behavior(css
->cgroup
) &&
1465 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1468 cgroup_taskset_for_each(task
, css
, tset
) {
1470 * Kthreads which disallow setaffinity shouldn't be moved
1471 * to a new cpuset; we don't want to change their cpu
1472 * affinity and isolating such threads by their set of
1473 * allowed nodes is unnecessary. Thus, cpusets are not
1474 * applicable for such threads. This prevents checking for
1475 * success of set_cpus_allowed_ptr() on all attached tasks
1476 * before cpus_allowed may be changed.
1479 if (task
->flags
& PF_NO_SETAFFINITY
)
1481 ret
= security_task_setscheduler(task
);
1487 * Mark attach is in progress. This makes validate_change() fail
1488 * changes which zero cpus/mems_allowed.
1490 cs
->attach_in_progress
++;
1493 mutex_unlock(&cpuset_mutex
);
1497 static void cpuset_cancel_attach(struct cgroup_subsys_state
*css
,
1498 struct cgroup_taskset
*tset
)
1500 mutex_lock(&cpuset_mutex
);
1501 css_cs(css
)->attach_in_progress
--;
1502 mutex_unlock(&cpuset_mutex
);
1506 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1507 * but we can't allocate it dynamically there. Define it global and
1508 * allocate from cpuset_init().
1510 static cpumask_var_t cpus_attach
;
1512 static void cpuset_attach(struct cgroup_subsys_state
*css
,
1513 struct cgroup_taskset
*tset
)
1515 /* static buf protected by cpuset_mutex */
1516 static nodemask_t cpuset_attach_nodemask_to
;
1517 struct mm_struct
*mm
;
1518 struct task_struct
*task
;
1519 struct task_struct
*leader
= cgroup_taskset_first(tset
);
1520 struct cgroup_subsys_state
*oldcss
= cgroup_taskset_cur_css(tset
,
1522 struct cpuset
*cs
= css_cs(css
);
1523 struct cpuset
*oldcs
= css_cs(oldcss
);
1524 struct cpuset
*cpus_cs
= effective_cpumask_cpuset(cs
);
1525 struct cpuset
*mems_cs
= effective_nodemask_cpuset(cs
);
1527 mutex_lock(&cpuset_mutex
);
1529 /* prepare for attach */
1530 if (cs
== &top_cpuset
)
1531 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1533 guarantee_online_cpus(cpus_cs
, cpus_attach
);
1535 guarantee_online_mems(mems_cs
, &cpuset_attach_nodemask_to
);
1537 cgroup_taskset_for_each(task
, css
, tset
) {
1539 * can_attach beforehand should guarantee that this doesn't
1540 * fail. TODO: have a better way to handle failure here
1542 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1544 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1545 cpuset_update_task_spread_flag(cs
, task
);
1549 * Change mm, possibly for multiple threads in a threadgroup. This is
1550 * expensive and may sleep.
1552 cpuset_attach_nodemask_to
= cs
->mems_allowed
;
1553 mm
= get_task_mm(leader
);
1555 struct cpuset
*mems_oldcs
= effective_nodemask_cpuset(oldcs
);
1557 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1560 * old_mems_allowed is the same with mems_allowed here, except
1561 * if this task is being moved automatically due to hotplug.
1562 * In that case @mems_allowed has been updated and is empty,
1563 * so @old_mems_allowed is the right nodesets that we migrate
1566 if (is_memory_migrate(cs
)) {
1567 cpuset_migrate_mm(mm
, &mems_oldcs
->old_mems_allowed
,
1568 &cpuset_attach_nodemask_to
);
1573 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1575 cs
->attach_in_progress
--;
1576 if (!cs
->attach_in_progress
)
1577 wake_up(&cpuset_attach_wq
);
1579 mutex_unlock(&cpuset_mutex
);
1582 /* The various types of files and directories in a cpuset file system */
1585 FILE_MEMORY_MIGRATE
,
1591 FILE_SCHED_LOAD_BALANCE
,
1592 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1593 FILE_MEMORY_PRESSURE_ENABLED
,
1594 FILE_MEMORY_PRESSURE
,
1597 } cpuset_filetype_t
;
1599 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1602 struct cpuset
*cs
= css_cs(css
);
1603 cpuset_filetype_t type
= cft
->private;
1606 mutex_lock(&cpuset_mutex
);
1607 if (!is_cpuset_online(cs
)) {
1613 case FILE_CPU_EXCLUSIVE
:
1614 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1616 case FILE_MEM_EXCLUSIVE
:
1617 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1619 case FILE_MEM_HARDWALL
:
1620 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1622 case FILE_SCHED_LOAD_BALANCE
:
1623 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1625 case FILE_MEMORY_MIGRATE
:
1626 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1628 case FILE_MEMORY_PRESSURE_ENABLED
:
1629 cpuset_memory_pressure_enabled
= !!val
;
1631 case FILE_MEMORY_PRESSURE
:
1634 case FILE_SPREAD_PAGE
:
1635 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1637 case FILE_SPREAD_SLAB
:
1638 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1645 mutex_unlock(&cpuset_mutex
);
1649 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1652 struct cpuset
*cs
= css_cs(css
);
1653 cpuset_filetype_t type
= cft
->private;
1654 int retval
= -ENODEV
;
1656 mutex_lock(&cpuset_mutex
);
1657 if (!is_cpuset_online(cs
))
1661 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1662 retval
= update_relax_domain_level(cs
, val
);
1669 mutex_unlock(&cpuset_mutex
);
1674 * Common handling for a write to a "cpus" or "mems" file.
1676 static int cpuset_write_resmask(struct cgroup_subsys_state
*css
,
1677 struct cftype
*cft
, const char *buf
)
1679 struct cpuset
*cs
= css_cs(css
);
1680 struct cpuset
*trialcs
;
1681 int retval
= -ENODEV
;
1684 * CPU or memory hotunplug may leave @cs w/o any execution
1685 * resources, in which case the hotplug code asynchronously updates
1686 * configuration and transfers all tasks to the nearest ancestor
1687 * which can execute.
1689 * As writes to "cpus" or "mems" may restore @cs's execution
1690 * resources, wait for the previously scheduled operations before
1691 * proceeding, so that we don't end up keep removing tasks added
1692 * after execution capability is restored.
1694 flush_work(&cpuset_hotplug_work
);
1696 mutex_lock(&cpuset_mutex
);
1697 if (!is_cpuset_online(cs
))
1700 trialcs
= alloc_trial_cpuset(cs
);
1706 switch (cft
->private) {
1708 retval
= update_cpumask(cs
, trialcs
, buf
);
1711 retval
= update_nodemask(cs
, trialcs
, buf
);
1718 free_trial_cpuset(trialcs
);
1720 mutex_unlock(&cpuset_mutex
);
1725 * These ascii lists should be read in a single call, by using a user
1726 * buffer large enough to hold the entire map. If read in smaller
1727 * chunks, there is no guarantee of atomicity. Since the display format
1728 * used, list of ranges of sequential numbers, is variable length,
1729 * and since these maps can change value dynamically, one could read
1730 * gibberish by doing partial reads while a list was changing.
1731 * A single large read to a buffer that crosses a page boundary is
1732 * ok, because the result being copied to user land is not recomputed
1733 * across a page fault.
1736 static size_t cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1740 mutex_lock(&callback_mutex
);
1741 count
= cpulist_scnprintf(page
, PAGE_SIZE
, cs
->cpus_allowed
);
1742 mutex_unlock(&callback_mutex
);
1747 static size_t cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1751 mutex_lock(&callback_mutex
);
1752 count
= nodelist_scnprintf(page
, PAGE_SIZE
, cs
->mems_allowed
);
1753 mutex_unlock(&callback_mutex
);
1758 static ssize_t
cpuset_common_file_read(struct cgroup_subsys_state
*css
,
1759 struct cftype
*cft
, struct file
*file
,
1760 char __user
*buf
, size_t nbytes
,
1763 struct cpuset
*cs
= css_cs(css
);
1764 cpuset_filetype_t type
= cft
->private;
1769 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1776 s
+= cpuset_sprintf_cpulist(s
, cs
);
1779 s
+= cpuset_sprintf_memlist(s
, cs
);
1787 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1789 free_page((unsigned long)page
);
1793 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1795 struct cpuset
*cs
= css_cs(css
);
1796 cpuset_filetype_t type
= cft
->private;
1798 case FILE_CPU_EXCLUSIVE
:
1799 return is_cpu_exclusive(cs
);
1800 case FILE_MEM_EXCLUSIVE
:
1801 return is_mem_exclusive(cs
);
1802 case FILE_MEM_HARDWALL
:
1803 return is_mem_hardwall(cs
);
1804 case FILE_SCHED_LOAD_BALANCE
:
1805 return is_sched_load_balance(cs
);
1806 case FILE_MEMORY_MIGRATE
:
1807 return is_memory_migrate(cs
);
1808 case FILE_MEMORY_PRESSURE_ENABLED
:
1809 return cpuset_memory_pressure_enabled
;
1810 case FILE_MEMORY_PRESSURE
:
1811 return fmeter_getrate(&cs
->fmeter
);
1812 case FILE_SPREAD_PAGE
:
1813 return is_spread_page(cs
);
1814 case FILE_SPREAD_SLAB
:
1815 return is_spread_slab(cs
);
1820 /* Unreachable but makes gcc happy */
1824 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1826 struct cpuset
*cs
= css_cs(css
);
1827 cpuset_filetype_t type
= cft
->private;
1829 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1830 return cs
->relax_domain_level
;
1835 /* Unrechable but makes gcc happy */
1841 * for the common functions, 'private' gives the type of file
1844 static struct cftype files
[] = {
1847 .read
= cpuset_common_file_read
,
1848 .write_string
= cpuset_write_resmask
,
1849 .max_write_len
= (100U + 6 * NR_CPUS
),
1850 .private = FILE_CPULIST
,
1855 .read
= cpuset_common_file_read
,
1856 .write_string
= cpuset_write_resmask
,
1857 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1858 .private = FILE_MEMLIST
,
1862 .name
= "cpu_exclusive",
1863 .read_u64
= cpuset_read_u64
,
1864 .write_u64
= cpuset_write_u64
,
1865 .private = FILE_CPU_EXCLUSIVE
,
1869 .name
= "mem_exclusive",
1870 .read_u64
= cpuset_read_u64
,
1871 .write_u64
= cpuset_write_u64
,
1872 .private = FILE_MEM_EXCLUSIVE
,
1876 .name
= "mem_hardwall",
1877 .read_u64
= cpuset_read_u64
,
1878 .write_u64
= cpuset_write_u64
,
1879 .private = FILE_MEM_HARDWALL
,
1883 .name
= "sched_load_balance",
1884 .read_u64
= cpuset_read_u64
,
1885 .write_u64
= cpuset_write_u64
,
1886 .private = FILE_SCHED_LOAD_BALANCE
,
1890 .name
= "sched_relax_domain_level",
1891 .read_s64
= cpuset_read_s64
,
1892 .write_s64
= cpuset_write_s64
,
1893 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1897 .name
= "memory_migrate",
1898 .read_u64
= cpuset_read_u64
,
1899 .write_u64
= cpuset_write_u64
,
1900 .private = FILE_MEMORY_MIGRATE
,
1904 .name
= "memory_pressure",
1905 .read_u64
= cpuset_read_u64
,
1906 .write_u64
= cpuset_write_u64
,
1907 .private = FILE_MEMORY_PRESSURE
,
1912 .name
= "memory_spread_page",
1913 .read_u64
= cpuset_read_u64
,
1914 .write_u64
= cpuset_write_u64
,
1915 .private = FILE_SPREAD_PAGE
,
1919 .name
= "memory_spread_slab",
1920 .read_u64
= cpuset_read_u64
,
1921 .write_u64
= cpuset_write_u64
,
1922 .private = FILE_SPREAD_SLAB
,
1926 .name
= "memory_pressure_enabled",
1927 .flags
= CFTYPE_ONLY_ON_ROOT
,
1928 .read_u64
= cpuset_read_u64
,
1929 .write_u64
= cpuset_write_u64
,
1930 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1937 * cpuset_css_alloc - allocate a cpuset css
1938 * cgrp: control group that the new cpuset will be part of
1941 static struct cgroup_subsys_state
*
1942 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1947 return &top_cpuset
.css
;
1949 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1951 return ERR_PTR(-ENOMEM
);
1952 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
)) {
1954 return ERR_PTR(-ENOMEM
);
1957 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1958 cpumask_clear(cs
->cpus_allowed
);
1959 nodes_clear(cs
->mems_allowed
);
1960 fmeter_init(&cs
->fmeter
);
1961 cs
->relax_domain_level
= -1;
1966 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1968 struct cpuset
*cs
= css_cs(css
);
1969 struct cpuset
*parent
= parent_cs(cs
);
1970 struct cpuset
*tmp_cs
;
1971 struct cgroup_subsys_state
*pos_css
;
1976 mutex_lock(&cpuset_mutex
);
1978 set_bit(CS_ONLINE
, &cs
->flags
);
1979 if (is_spread_page(parent
))
1980 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1981 if (is_spread_slab(parent
))
1982 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1986 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
1990 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1991 * set. This flag handling is implemented in cgroup core for
1992 * histrical reasons - the flag may be specified during mount.
1994 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1995 * refuse to clone the configuration - thereby refusing the task to
1996 * be entered, and as a result refusing the sys_unshare() or
1997 * clone() which initiated it. If this becomes a problem for some
1998 * users who wish to allow that scenario, then this could be
1999 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2000 * (and likewise for mems) to the new cgroup.
2003 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
2004 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2011 mutex_lock(&callback_mutex
);
2012 cs
->mems_allowed
= parent
->mems_allowed
;
2013 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2014 mutex_unlock(&callback_mutex
);
2016 mutex_unlock(&cpuset_mutex
);
2021 * If the cpuset being removed has its flag 'sched_load_balance'
2022 * enabled, then simulate turning sched_load_balance off, which
2023 * will call rebuild_sched_domains_locked().
2026 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2028 struct cpuset
*cs
= css_cs(css
);
2030 mutex_lock(&cpuset_mutex
);
2032 if (is_sched_load_balance(cs
))
2033 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2036 clear_bit(CS_ONLINE
, &cs
->flags
);
2038 mutex_unlock(&cpuset_mutex
);
2041 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2043 struct cpuset
*cs
= css_cs(css
);
2045 free_cpumask_var(cs
->cpus_allowed
);
2049 struct cgroup_subsys cpuset_subsys
= {
2051 .css_alloc
= cpuset_css_alloc
,
2052 .css_online
= cpuset_css_online
,
2053 .css_offline
= cpuset_css_offline
,
2054 .css_free
= cpuset_css_free
,
2055 .can_attach
= cpuset_can_attach
,
2056 .cancel_attach
= cpuset_cancel_attach
,
2057 .attach
= cpuset_attach
,
2058 .subsys_id
= cpuset_subsys_id
,
2059 .base_cftypes
= files
,
2064 * cpuset_init - initialize cpusets at system boot
2066 * Description: Initialize top_cpuset and the cpuset internal file system,
2069 int __init
cpuset_init(void)
2073 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
2076 cpumask_setall(top_cpuset
.cpus_allowed
);
2077 nodes_setall(top_cpuset
.mems_allowed
);
2079 fmeter_init(&top_cpuset
.fmeter
);
2080 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2081 top_cpuset
.relax_domain_level
= -1;
2083 err
= register_filesystem(&cpuset_fs_type
);
2087 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
2094 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2095 * or memory nodes, we need to walk over the cpuset hierarchy,
2096 * removing that CPU or node from all cpusets. If this removes the
2097 * last CPU or node from a cpuset, then move the tasks in the empty
2098 * cpuset to its next-highest non-empty parent.
2100 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2102 struct cpuset
*parent
;
2105 * Find its next-highest non-empty parent, (top cpuset
2106 * has online cpus, so can't be empty).
2108 parent
= parent_cs(cs
);
2109 while (cpumask_empty(parent
->cpus_allowed
) ||
2110 nodes_empty(parent
->mems_allowed
))
2111 parent
= parent_cs(parent
);
2113 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2115 printk(KERN_ERR
"cpuset: failed to transfer tasks out of empty cpuset %s\n",
2116 cgroup_name(cs
->css
.cgroup
));
2122 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2123 * @cs: cpuset in interest
2125 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2126 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2127 * all its tasks are moved to the nearest ancestor with both resources.
2129 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2131 static cpumask_t off_cpus
;
2132 static nodemask_t off_mems
;
2134 bool sane
= cgroup_sane_behavior(cs
->css
.cgroup
);
2137 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2139 mutex_lock(&cpuset_mutex
);
2142 * We have raced with task attaching. We wait until attaching
2143 * is finished, so we won't attach a task to an empty cpuset.
2145 if (cs
->attach_in_progress
) {
2146 mutex_unlock(&cpuset_mutex
);
2150 cpumask_andnot(&off_cpus
, cs
->cpus_allowed
, top_cpuset
.cpus_allowed
);
2151 nodes_andnot(off_mems
, cs
->mems_allowed
, top_cpuset
.mems_allowed
);
2153 mutex_lock(&callback_mutex
);
2154 cpumask_andnot(cs
->cpus_allowed
, cs
->cpus_allowed
, &off_cpus
);
2155 mutex_unlock(&callback_mutex
);
2158 * If sane_behavior flag is set, we need to update tasks' cpumask
2159 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2160 * call update_tasks_cpumask() if the cpuset becomes empty, as
2161 * the tasks in it will be migrated to an ancestor.
2163 if ((sane
&& cpumask_empty(cs
->cpus_allowed
)) ||
2164 (!cpumask_empty(&off_cpus
) && !cpumask_empty(cs
->cpus_allowed
)))
2165 update_tasks_cpumask(cs
, NULL
);
2167 mutex_lock(&callback_mutex
);
2168 nodes_andnot(cs
->mems_allowed
, cs
->mems_allowed
, off_mems
);
2169 mutex_unlock(&callback_mutex
);
2172 * If sane_behavior flag is set, we need to update tasks' nodemask
2173 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2174 * call update_tasks_nodemask() if the cpuset becomes empty, as
2175 * the tasks in it will be migratd to an ancestor.
2177 if ((sane
&& nodes_empty(cs
->mems_allowed
)) ||
2178 (!nodes_empty(off_mems
) && !nodes_empty(cs
->mems_allowed
)))
2179 update_tasks_nodemask(cs
, NULL
);
2181 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2182 nodes_empty(cs
->mems_allowed
);
2184 mutex_unlock(&cpuset_mutex
);
2187 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2189 * Otherwise move tasks to the nearest ancestor with execution
2190 * resources. This is full cgroup operation which will
2191 * also call back into cpuset. Should be done outside any lock.
2193 if (!sane
&& is_empty
)
2194 remove_tasks_in_empty_cpuset(cs
);
2198 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2200 * This function is called after either CPU or memory configuration has
2201 * changed and updates cpuset accordingly. The top_cpuset is always
2202 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2203 * order to make cpusets transparent (of no affect) on systems that are
2204 * actively using CPU hotplug but making no active use of cpusets.
2206 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2207 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2210 * Note that CPU offlining during suspend is ignored. We don't modify
2211 * cpusets across suspend/resume cycles at all.
2213 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2215 static cpumask_t new_cpus
;
2216 static nodemask_t new_mems
;
2217 bool cpus_updated
, mems_updated
;
2219 mutex_lock(&cpuset_mutex
);
2221 /* fetch the available cpus/mems and find out which changed how */
2222 cpumask_copy(&new_cpus
, cpu_active_mask
);
2223 new_mems
= node_states
[N_MEMORY
];
2225 cpus_updated
= !cpumask_equal(top_cpuset
.cpus_allowed
, &new_cpus
);
2226 mems_updated
= !nodes_equal(top_cpuset
.mems_allowed
, new_mems
);
2228 /* synchronize cpus_allowed to cpu_active_mask */
2230 mutex_lock(&callback_mutex
);
2231 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2232 mutex_unlock(&callback_mutex
);
2233 /* we don't mess with cpumasks of tasks in top_cpuset */
2236 /* synchronize mems_allowed to N_MEMORY */
2238 mutex_lock(&callback_mutex
);
2239 top_cpuset
.mems_allowed
= new_mems
;
2240 mutex_unlock(&callback_mutex
);
2241 update_tasks_nodemask(&top_cpuset
, NULL
);
2244 mutex_unlock(&cpuset_mutex
);
2246 /* if cpus or mems changed, we need to propagate to descendants */
2247 if (cpus_updated
|| mems_updated
) {
2249 struct cgroup_subsys_state
*pos_css
;
2252 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2253 if (cs
== &top_cpuset
|| !css_tryget(&cs
->css
))
2257 cpuset_hotplug_update_tasks(cs
);
2265 /* rebuild sched domains if cpus_allowed has changed */
2267 rebuild_sched_domains();
2270 void cpuset_update_active_cpus(bool cpu_online
)
2273 * We're inside cpu hotplug critical region which usually nests
2274 * inside cgroup synchronization. Bounce actual hotplug processing
2275 * to a work item to avoid reverse locking order.
2277 * We still need to do partition_sched_domains() synchronously;
2278 * otherwise, the scheduler will get confused and put tasks to the
2279 * dead CPU. Fall back to the default single domain.
2280 * cpuset_hotplug_workfn() will rebuild it as necessary.
2282 partition_sched_domains(1, NULL
, NULL
);
2283 schedule_work(&cpuset_hotplug_work
);
2287 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2288 * Call this routine anytime after node_states[N_MEMORY] changes.
2289 * See cpuset_update_active_cpus() for CPU hotplug handling.
2291 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2292 unsigned long action
, void *arg
)
2294 schedule_work(&cpuset_hotplug_work
);
2298 static struct notifier_block cpuset_track_online_nodes_nb
= {
2299 .notifier_call
= cpuset_track_online_nodes
,
2300 .priority
= 10, /* ??! */
2304 * cpuset_init_smp - initialize cpus_allowed
2306 * Description: Finish top cpuset after cpu, node maps are initialized
2308 void __init
cpuset_init_smp(void)
2310 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2311 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2312 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2314 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2318 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2319 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2320 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2322 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2323 * attached to the specified @tsk. Guaranteed to return some non-empty
2324 * subset of cpu_online_mask, even if this means going outside the
2328 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2330 struct cpuset
*cpus_cs
;
2332 mutex_lock(&callback_mutex
);
2334 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2335 guarantee_online_cpus(cpus_cs
, pmask
);
2337 mutex_unlock(&callback_mutex
);
2340 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2342 struct cpuset
*cpus_cs
;
2345 cpus_cs
= effective_cpumask_cpuset(task_cs(tsk
));
2346 do_set_cpus_allowed(tsk
, cpus_cs
->cpus_allowed
);
2350 * We own tsk->cpus_allowed, nobody can change it under us.
2352 * But we used cs && cs->cpus_allowed lockless and thus can
2353 * race with cgroup_attach_task() or update_cpumask() and get
2354 * the wrong tsk->cpus_allowed. However, both cases imply the
2355 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2356 * which takes task_rq_lock().
2358 * If we are called after it dropped the lock we must see all
2359 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2360 * set any mask even if it is not right from task_cs() pov,
2361 * the pending set_cpus_allowed_ptr() will fix things.
2363 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2368 void cpuset_init_current_mems_allowed(void)
2370 nodes_setall(current
->mems_allowed
);
2374 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2375 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2377 * Description: Returns the nodemask_t mems_allowed of the cpuset
2378 * attached to the specified @tsk. Guaranteed to return some non-empty
2379 * subset of node_states[N_MEMORY], even if this means going outside the
2383 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2385 struct cpuset
*mems_cs
;
2388 mutex_lock(&callback_mutex
);
2390 mems_cs
= effective_nodemask_cpuset(task_cs(tsk
));
2391 guarantee_online_mems(mems_cs
, &mask
);
2393 mutex_unlock(&callback_mutex
);
2399 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2400 * @nodemask: the nodemask to be checked
2402 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2404 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2406 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2410 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2411 * mem_hardwall ancestor to the specified cpuset. Call holding
2412 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2413 * (an unusual configuration), then returns the root cpuset.
2415 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2417 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2423 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2424 * @node: is this an allowed node?
2425 * @gfp_mask: memory allocation flags
2427 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2428 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2429 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2430 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2431 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2435 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2436 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2437 * might sleep, and might allow a node from an enclosing cpuset.
2439 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2440 * cpusets, and never sleeps.
2442 * The __GFP_THISNODE placement logic is really handled elsewhere,
2443 * by forcibly using a zonelist starting at a specified node, and by
2444 * (in get_page_from_freelist()) refusing to consider the zones for
2445 * any node on the zonelist except the first. By the time any such
2446 * calls get to this routine, we should just shut up and say 'yes'.
2448 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2449 * and do not allow allocations outside the current tasks cpuset
2450 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2451 * GFP_KERNEL allocations are not so marked, so can escape to the
2452 * nearest enclosing hardwalled ancestor cpuset.
2454 * Scanning up parent cpusets requires callback_mutex. The
2455 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2456 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2457 * current tasks mems_allowed came up empty on the first pass over
2458 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2459 * cpuset are short of memory, might require taking the callback_mutex
2462 * The first call here from mm/page_alloc:get_page_from_freelist()
2463 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2464 * so no allocation on a node outside the cpuset is allowed (unless
2465 * in interrupt, of course).
2467 * The second pass through get_page_from_freelist() doesn't even call
2468 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2469 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2470 * in alloc_flags. That logic and the checks below have the combined
2472 * in_interrupt - any node ok (current task context irrelevant)
2473 * GFP_ATOMIC - any node ok
2474 * TIF_MEMDIE - any node ok
2475 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2476 * GFP_USER - only nodes in current tasks mems allowed ok.
2479 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2480 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2481 * the code that might scan up ancestor cpusets and sleep.
2483 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2485 struct cpuset
*cs
; /* current cpuset ancestors */
2486 int allowed
; /* is allocation in zone z allowed? */
2488 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2490 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2491 if (node_isset(node
, current
->mems_allowed
))
2494 * Allow tasks that have access to memory reserves because they have
2495 * been OOM killed to get memory anywhere.
2497 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2499 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2502 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2505 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2506 mutex_lock(&callback_mutex
);
2509 cs
= nearest_hardwall_ancestor(task_cs(current
));
2510 allowed
= node_isset(node
, cs
->mems_allowed
);
2511 task_unlock(current
);
2513 mutex_unlock(&callback_mutex
);
2518 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2519 * @node: is this an allowed node?
2520 * @gfp_mask: memory allocation flags
2522 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2523 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2524 * yes. If the task has been OOM killed and has access to memory reserves as
2525 * specified by the TIF_MEMDIE flag, yes.
2528 * The __GFP_THISNODE placement logic is really handled elsewhere,
2529 * by forcibly using a zonelist starting at a specified node, and by
2530 * (in get_page_from_freelist()) refusing to consider the zones for
2531 * any node on the zonelist except the first. By the time any such
2532 * calls get to this routine, we should just shut up and say 'yes'.
2534 * Unlike the cpuset_node_allowed_softwall() variant, above,
2535 * this variant requires that the node be in the current task's
2536 * mems_allowed or that we're in interrupt. It does not scan up the
2537 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2540 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2542 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2544 if (node_isset(node
, current
->mems_allowed
))
2547 * Allow tasks that have access to memory reserves because they have
2548 * been OOM killed to get memory anywhere.
2550 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2556 * cpuset_mem_spread_node() - On which node to begin search for a file page
2557 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2559 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2560 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2561 * and if the memory allocation used cpuset_mem_spread_node()
2562 * to determine on which node to start looking, as it will for
2563 * certain page cache or slab cache pages such as used for file
2564 * system buffers and inode caches, then instead of starting on the
2565 * local node to look for a free page, rather spread the starting
2566 * node around the tasks mems_allowed nodes.
2568 * We don't have to worry about the returned node being offline
2569 * because "it can't happen", and even if it did, it would be ok.
2571 * The routines calling guarantee_online_mems() are careful to
2572 * only set nodes in task->mems_allowed that are online. So it
2573 * should not be possible for the following code to return an
2574 * offline node. But if it did, that would be ok, as this routine
2575 * is not returning the node where the allocation must be, only
2576 * the node where the search should start. The zonelist passed to
2577 * __alloc_pages() will include all nodes. If the slab allocator
2578 * is passed an offline node, it will fall back to the local node.
2579 * See kmem_cache_alloc_node().
2582 static int cpuset_spread_node(int *rotor
)
2586 node
= next_node(*rotor
, current
->mems_allowed
);
2587 if (node
== MAX_NUMNODES
)
2588 node
= first_node(current
->mems_allowed
);
2593 int cpuset_mem_spread_node(void)
2595 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2596 current
->cpuset_mem_spread_rotor
=
2597 node_random(¤t
->mems_allowed
);
2599 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2602 int cpuset_slab_spread_node(void)
2604 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2605 current
->cpuset_slab_spread_rotor
=
2606 node_random(¤t
->mems_allowed
);
2608 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2611 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2614 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2615 * @tsk1: pointer to task_struct of some task.
2616 * @tsk2: pointer to task_struct of some other task.
2618 * Description: Return true if @tsk1's mems_allowed intersects the
2619 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2620 * one of the task's memory usage might impact the memory available
2624 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2625 const struct task_struct
*tsk2
)
2627 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2630 #define CPUSET_NODELIST_LEN (256)
2633 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2634 * @task: pointer to task_struct of some task.
2636 * Description: Prints @task's name, cpuset name, and cached copy of its
2637 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2638 * dereferencing task_cs(task).
2640 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2642 /* Statically allocated to prevent using excess stack. */
2643 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
2644 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
2646 struct cgroup
*cgrp
= task_cs(tsk
)->css
.cgroup
;
2649 spin_lock(&cpuset_buffer_lock
);
2651 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2653 printk(KERN_INFO
"%s cpuset=%s mems_allowed=%s\n",
2654 tsk
->comm
, cgroup_name(cgrp
), cpuset_nodelist
);
2656 spin_unlock(&cpuset_buffer_lock
);
2661 * Collection of memory_pressure is suppressed unless
2662 * this flag is enabled by writing "1" to the special
2663 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2666 int cpuset_memory_pressure_enabled __read_mostly
;
2669 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2671 * Keep a running average of the rate of synchronous (direct)
2672 * page reclaim efforts initiated by tasks in each cpuset.
2674 * This represents the rate at which some task in the cpuset
2675 * ran low on memory on all nodes it was allowed to use, and
2676 * had to enter the kernels page reclaim code in an effort to
2677 * create more free memory by tossing clean pages or swapping
2678 * or writing dirty pages.
2680 * Display to user space in the per-cpuset read-only file
2681 * "memory_pressure". Value displayed is an integer
2682 * representing the recent rate of entry into the synchronous
2683 * (direct) page reclaim by any task attached to the cpuset.
2686 void __cpuset_memory_pressure_bump(void)
2689 fmeter_markevent(&task_cs(current
)->fmeter
);
2690 task_unlock(current
);
2693 #ifdef CONFIG_PROC_PID_CPUSET
2695 * proc_cpuset_show()
2696 * - Print tasks cpuset path into seq_file.
2697 * - Used for /proc/<pid>/cpuset.
2698 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2699 * doesn't really matter if tsk->cpuset changes after we read it,
2700 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2703 int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2706 struct task_struct
*tsk
;
2708 struct cgroup_subsys_state
*css
;
2712 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2718 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2723 css
= task_css(tsk
, cpuset_subsys_id
);
2724 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2731 put_task_struct(tsk
);
2737 #endif /* CONFIG_PROC_PID_CPUSET */
2739 /* Display task mems_allowed in /proc/<pid>/status file. */
2740 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2742 seq_printf(m
, "Mems_allowed:\t");
2743 seq_nodemask(m
, &task
->mems_allowed
);
2744 seq_printf(m
, "\n");
2745 seq_printf(m
, "Mems_allowed_list:\t");
2746 seq_nodemask_list(m
, &task
->mems_allowed
);
2747 seq_printf(m
, "\n");