Linux 3.12.39
[linux/fpc-iii.git] / kernel / fork.c
blob5b486126147fba685e82a414f24a05cbfdc9cf85
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
84 #include <trace/events/sched.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
90 * Protected counters by write_lock_irq(&tasklist_lock)
92 unsigned long total_forks; /* Handle normal Linux uptimes. */
93 int nr_threads; /* The idle threads do not count.. */
95 int max_threads; /* tunable limit on nr_threads */
97 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
104 return lockdep_is_held(&tasklist_lock);
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
109 int nr_processes(void)
111 int cpu;
112 int total = 0;
114 for_each_possible_cpu(cpu)
115 total += per_cpu(process_counts, cpu);
117 return total;
120 void __weak arch_release_task_struct(struct task_struct *tsk)
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache *task_struct_cachep;
127 static inline struct task_struct *alloc_task_struct_node(int node)
129 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
132 static inline void free_task_struct(struct task_struct *tsk)
134 kmem_cache_free(task_struct_cachep, tsk);
136 #endif
138 void __weak arch_release_thread_info(struct thread_info *ti)
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146 * kmemcache based allocator.
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
150 int node)
152 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
153 THREAD_SIZE_ORDER);
155 return page ? page_address(page) : NULL;
158 static inline void free_thread_info(struct thread_info *ti)
160 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 # else
163 static struct kmem_cache *thread_info_cache;
165 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
166 int node)
168 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
171 static void free_thread_info(struct thread_info *ti)
173 kmem_cache_free(thread_info_cache, ti);
176 void thread_info_cache_init(void)
178 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
179 THREAD_SIZE, 0, NULL);
180 BUG_ON(thread_info_cache == NULL);
182 # endif
183 #endif
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache *signal_cachep;
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache *sighand_cachep;
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache *files_cachep;
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache *fs_cachep;
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache *vm_area_cachep;
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache *mm_cachep;
203 static void account_kernel_stack(struct thread_info *ti, int account)
205 struct zone *zone = page_zone(virt_to_page(ti));
207 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
210 void free_task(struct task_struct *tsk)
212 account_kernel_stack(tsk->stack, -1);
213 arch_release_thread_info(tsk->stack);
214 free_thread_info(tsk->stack);
215 rt_mutex_debug_task_free(tsk);
216 ftrace_graph_exit_task(tsk);
217 put_seccomp_filter(tsk);
218 arch_release_task_struct(tsk);
219 free_task_struct(tsk);
221 EXPORT_SYMBOL(free_task);
223 static inline void free_signal_struct(struct signal_struct *sig)
225 taskstats_tgid_free(sig);
226 sched_autogroup_exit(sig);
227 kmem_cache_free(signal_cachep, sig);
230 static inline void put_signal_struct(struct signal_struct *sig)
232 if (atomic_dec_and_test(&sig->sigcnt))
233 free_signal_struct(sig);
236 void __put_task_struct(struct task_struct *tsk)
238 WARN_ON(!tsk->exit_state);
239 WARN_ON(atomic_read(&tsk->usage));
240 WARN_ON(tsk == current);
242 security_task_free(tsk);
243 exit_creds(tsk);
244 delayacct_tsk_free(tsk);
245 put_signal_struct(tsk->signal);
247 if (!profile_handoff_task(tsk))
248 free_task(tsk);
250 EXPORT_SYMBOL_GPL(__put_task_struct);
252 void __init __weak arch_task_cache_init(void) { }
254 void __init fork_init(unsigned long mempages)
256 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
257 #ifndef ARCH_MIN_TASKALIGN
258 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
259 #endif
260 /* create a slab on which task_structs can be allocated */
261 task_struct_cachep =
262 kmem_cache_create("task_struct", sizeof(struct task_struct),
263 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
264 #endif
266 /* do the arch specific task caches init */
267 arch_task_cache_init();
270 * The default maximum number of threads is set to a safe
271 * value: the thread structures can take up at most half
272 * of memory.
274 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 * we need to allow at least 20 threads to boot a system
279 if (max_threads < 20)
280 max_threads = 20;
282 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
283 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
284 init_task.signal->rlim[RLIMIT_SIGPENDING] =
285 init_task.signal->rlim[RLIMIT_NPROC];
288 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
289 struct task_struct *src)
291 *dst = *src;
292 return 0;
295 static struct task_struct *dup_task_struct(struct task_struct *orig)
297 struct task_struct *tsk;
298 struct thread_info *ti;
299 unsigned long *stackend;
300 int node = tsk_fork_get_node(orig);
301 int err;
303 tsk = alloc_task_struct_node(node);
304 if (!tsk)
305 return NULL;
307 ti = alloc_thread_info_node(tsk, node);
308 if (!ti)
309 goto free_tsk;
311 err = arch_dup_task_struct(tsk, orig);
312 if (err)
313 goto free_ti;
315 tsk->stack = ti;
317 setup_thread_stack(tsk, orig);
318 clear_user_return_notifier(tsk);
319 clear_tsk_need_resched(tsk);
320 stackend = end_of_stack(tsk);
321 *stackend = STACK_END_MAGIC; /* for overflow detection */
323 #ifdef CONFIG_CC_STACKPROTECTOR
324 tsk->stack_canary = get_random_int();
325 #endif
328 * One for us, one for whoever does the "release_task()" (usually
329 * parent)
331 atomic_set(&tsk->usage, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
333 tsk->btrace_seq = 0;
334 #endif
335 tsk->splice_pipe = NULL;
336 tsk->task_frag.page = NULL;
338 account_kernel_stack(ti, 1);
340 return tsk;
342 free_ti:
343 free_thread_info(ti);
344 free_tsk:
345 free_task_struct(tsk);
346 return NULL;
349 #ifdef CONFIG_MMU
350 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
352 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
353 struct rb_node **rb_link, *rb_parent;
354 int retval;
355 unsigned long charge;
357 uprobe_start_dup_mmap();
358 down_write(&oldmm->mmap_sem);
359 flush_cache_dup_mm(oldmm);
360 uprobe_dup_mmap(oldmm, mm);
362 * Not linked in yet - no deadlock potential:
364 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
366 mm->locked_vm = 0;
367 mm->mmap = NULL;
368 mm->vmacache_seqnum = 0;
369 mm->map_count = 0;
370 cpumask_clear(mm_cpumask(mm));
371 mm->mm_rb = RB_ROOT;
372 rb_link = &mm->mm_rb.rb_node;
373 rb_parent = NULL;
374 pprev = &mm->mmap;
375 retval = ksm_fork(mm, oldmm);
376 if (retval)
377 goto out;
378 retval = khugepaged_fork(mm, oldmm);
379 if (retval)
380 goto out;
382 prev = NULL;
383 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 struct file *file;
386 if (mpnt->vm_flags & VM_DONTCOPY) {
387 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388 -vma_pages(mpnt));
389 continue;
391 charge = 0;
392 if (mpnt->vm_flags & VM_ACCOUNT) {
393 unsigned long len = vma_pages(mpnt);
395 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396 goto fail_nomem;
397 charge = len;
399 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400 if (!tmp)
401 goto fail_nomem;
402 *tmp = *mpnt;
403 INIT_LIST_HEAD(&tmp->anon_vma_chain);
404 retval = vma_dup_policy(mpnt, tmp);
405 if (retval)
406 goto fail_nomem_policy;
407 tmp->vm_mm = mm;
408 if (anon_vma_fork(tmp, mpnt))
409 goto fail_nomem_anon_vma_fork;
410 tmp->vm_flags &= ~VM_LOCKED;
411 tmp->vm_next = tmp->vm_prev = NULL;
412 file = tmp->vm_file;
413 if (file) {
414 struct inode *inode = file_inode(file);
415 struct address_space *mapping = file->f_mapping;
417 get_file(file);
418 if (tmp->vm_flags & VM_DENYWRITE)
419 atomic_dec(&inode->i_writecount);
420 mutex_lock(&mapping->i_mmap_mutex);
421 if (tmp->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 /* insert tmp into the share list, just after mpnt */
425 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
426 vma_nonlinear_insert(tmp,
427 &mapping->i_mmap_nonlinear);
428 else
429 vma_interval_tree_insert_after(tmp, mpnt,
430 &mapping->i_mmap);
431 flush_dcache_mmap_unlock(mapping);
432 mutex_unlock(&mapping->i_mmap_mutex);
436 * Clear hugetlb-related page reserves for children. This only
437 * affects MAP_PRIVATE mappings. Faults generated by the child
438 * are not guaranteed to succeed, even if read-only
440 if (is_vm_hugetlb_page(tmp))
441 reset_vma_resv_huge_pages(tmp);
444 * Link in the new vma and copy the page table entries.
446 *pprev = tmp;
447 pprev = &tmp->vm_next;
448 tmp->vm_prev = prev;
449 prev = tmp;
451 __vma_link_rb(mm, tmp, rb_link, rb_parent);
452 rb_link = &tmp->vm_rb.rb_right;
453 rb_parent = &tmp->vm_rb;
455 mm->map_count++;
456 retval = copy_page_range(mm, oldmm, mpnt);
458 if (tmp->vm_ops && tmp->vm_ops->open)
459 tmp->vm_ops->open(tmp);
461 if (retval)
462 goto out;
464 /* a new mm has just been created */
465 arch_dup_mmap(oldmm, mm);
466 retval = 0;
467 out:
468 up_write(&mm->mmap_sem);
469 flush_tlb_mm(oldmm);
470 up_write(&oldmm->mmap_sem);
471 uprobe_end_dup_mmap();
472 return retval;
473 fail_nomem_anon_vma_fork:
474 mpol_put(vma_policy(tmp));
475 fail_nomem_policy:
476 kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 retval = -ENOMEM;
479 vm_unacct_memory(charge);
480 goto out;
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 mm->pgd = pgd_alloc(mm);
486 if (unlikely(!mm->pgd))
487 return -ENOMEM;
488 return 0;
491 static inline void mm_free_pgd(struct mm_struct *mm)
493 pgd_free(mm, mm->pgd);
495 #else
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508 static int __init coredump_filter_setup(char *s)
510 default_dump_filter =
511 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 MMF_DUMP_FILTER_MASK;
513 return 1;
516 __setup("coredump_filter=", coredump_filter_setup);
518 #include <linux/init_task.h>
520 static void mm_init_aio(struct mm_struct *mm)
522 #ifdef CONFIG_AIO
523 spin_lock_init(&mm->ioctx_lock);
524 mm->ioctx_table = NULL;
525 #endif
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 atomic_set(&mm->mm_users, 1);
531 atomic_set(&mm->mm_count, 1);
532 init_rwsem(&mm->mmap_sem);
533 INIT_LIST_HEAD(&mm->mmlist);
534 mm->flags = (current->mm) ?
535 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 mm->core_state = NULL;
537 mm->nr_ptes = 0;
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm_init_aio(mm);
541 mm_init_owner(mm, p);
542 clear_tlb_flush_pending(mm);
544 if (likely(!mm_alloc_pgd(mm))) {
545 mm->def_flags = 0;
546 mmu_notifier_mm_init(mm);
547 return mm;
550 free_mm(mm);
551 return NULL;
554 static void check_mm(struct mm_struct *mm)
556 int i;
558 for (i = 0; i < NR_MM_COUNTERS; i++) {
559 long x = atomic_long_read(&mm->rss_stat.count[i]);
561 if (unlikely(x))
562 printk(KERN_ALERT "BUG: Bad rss-counter state "
563 "mm:%p idx:%d val:%ld\n", mm, i, x);
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
572 * Allocate and initialize an mm_struct.
574 struct mm_struct *mm_alloc(void)
576 struct mm_struct *mm;
578 mm = allocate_mm();
579 if (!mm)
580 return NULL;
582 memset(mm, 0, sizeof(*mm));
583 mm_init_cpumask(mm);
584 return mm_init(mm, current);
588 * Called when the last reference to the mm
589 * is dropped: either by a lazy thread or by
590 * mmput. Free the page directory and the mm.
592 void __mmdrop(struct mm_struct *mm)
594 BUG_ON(mm == &init_mm);
595 mm_free_pgd(mm);
596 destroy_context(mm);
597 mmu_notifier_mm_destroy(mm);
598 check_mm(mm);
599 free_mm(mm);
601 EXPORT_SYMBOL_GPL(__mmdrop);
604 * Decrement the use count and release all resources for an mm.
606 void mmput(struct mm_struct *mm)
608 might_sleep();
610 if (atomic_dec_and_test(&mm->mm_users)) {
611 uprobe_clear_state(mm);
612 exit_aio(mm);
613 ksm_exit(mm);
614 khugepaged_exit(mm); /* must run before exit_mmap */
615 exit_mmap(mm);
616 set_mm_exe_file(mm, NULL);
617 if (!list_empty(&mm->mmlist)) {
618 spin_lock(&mmlist_lock);
619 list_del(&mm->mmlist);
620 spin_unlock(&mmlist_lock);
622 if (mm->binfmt)
623 module_put(mm->binfmt->module);
624 mmdrop(mm);
627 EXPORT_SYMBOL_GPL(mmput);
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 if (new_exe_file)
632 get_file(new_exe_file);
633 if (mm->exe_file)
634 fput(mm->exe_file);
635 mm->exe_file = new_exe_file;
638 struct file *get_mm_exe_file(struct mm_struct *mm)
640 struct file *exe_file;
642 /* We need mmap_sem to protect against races with removal of exe_file */
643 down_read(&mm->mmap_sem);
644 exe_file = mm->exe_file;
645 if (exe_file)
646 get_file(exe_file);
647 up_read(&mm->mmap_sem);
648 return exe_file;
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 /* It's safe to write the exe_file pointer without exe_file_lock because
654 * this is called during fork when the task is not yet in /proc */
655 newmm->exe_file = get_mm_exe_file(oldmm);
659 * get_task_mm - acquire a reference to the task's mm
661 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
662 * this kernel workthread has transiently adopted a user mm with use_mm,
663 * to do its AIO) is not set and if so returns a reference to it, after
664 * bumping up the use count. User must release the mm via mmput()
665 * after use. Typically used by /proc and ptrace.
667 struct mm_struct *get_task_mm(struct task_struct *task)
669 struct mm_struct *mm;
671 task_lock(task);
672 mm = task->mm;
673 if (mm) {
674 if (task->flags & PF_KTHREAD)
675 mm = NULL;
676 else
677 atomic_inc(&mm->mm_users);
679 task_unlock(task);
680 return mm;
682 EXPORT_SYMBOL_GPL(get_task_mm);
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 struct mm_struct *mm;
687 int err;
689 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
690 if (err)
691 return ERR_PTR(err);
693 mm = get_task_mm(task);
694 if (mm && mm != current->mm &&
695 !ptrace_may_access(task, mode)) {
696 mmput(mm);
697 mm = ERR_PTR(-EACCES);
699 mutex_unlock(&task->signal->cred_guard_mutex);
701 return mm;
704 static void complete_vfork_done(struct task_struct *tsk)
706 struct completion *vfork;
708 task_lock(tsk);
709 vfork = tsk->vfork_done;
710 if (likely(vfork)) {
711 tsk->vfork_done = NULL;
712 complete(vfork);
714 task_unlock(tsk);
717 static int wait_for_vfork_done(struct task_struct *child,
718 struct completion *vfork)
720 int killed;
722 freezer_do_not_count();
723 killed = wait_for_completion_killable(vfork);
724 freezer_count();
726 if (killed) {
727 task_lock(child);
728 child->vfork_done = NULL;
729 task_unlock(child);
732 put_task_struct(child);
733 return killed;
736 /* Please note the differences between mmput and mm_release.
737 * mmput is called whenever we stop holding onto a mm_struct,
738 * error success whatever.
740 * mm_release is called after a mm_struct has been removed
741 * from the current process.
743 * This difference is important for error handling, when we
744 * only half set up a mm_struct for a new process and need to restore
745 * the old one. Because we mmput the new mm_struct before
746 * restoring the old one. . .
747 * Eric Biederman 10 January 1998
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753 if (unlikely(tsk->robust_list)) {
754 exit_robust_list(tsk);
755 tsk->robust_list = NULL;
757 #ifdef CONFIG_COMPAT
758 if (unlikely(tsk->compat_robust_list)) {
759 compat_exit_robust_list(tsk);
760 tsk->compat_robust_list = NULL;
762 #endif
763 if (unlikely(!list_empty(&tsk->pi_state_list)))
764 exit_pi_state_list(tsk);
765 #endif
767 uprobe_free_utask(tsk);
769 /* Get rid of any cached register state */
770 deactivate_mm(tsk, mm);
773 * If we're exiting normally, clear a user-space tid field if
774 * requested. We leave this alone when dying by signal, to leave
775 * the value intact in a core dump, and to save the unnecessary
776 * trouble, say, a killed vfork parent shouldn't touch this mm.
777 * Userland only wants this done for a sys_exit.
779 if (tsk->clear_child_tid) {
780 if (!(tsk->flags & PF_SIGNALED) &&
781 atomic_read(&mm->mm_users) > 1) {
783 * We don't check the error code - if userspace has
784 * not set up a proper pointer then tough luck.
786 put_user(0, tsk->clear_child_tid);
787 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788 1, NULL, NULL, 0);
790 tsk->clear_child_tid = NULL;
794 * All done, finally we can wake up parent and return this mm to him.
795 * Also kthread_stop() uses this completion for synchronization.
797 if (tsk->vfork_done)
798 complete_vfork_done(tsk);
802 * Allocate a new mm structure and copy contents from the
803 * mm structure of the passed in task structure.
805 struct mm_struct *dup_mm(struct task_struct *tsk)
807 struct mm_struct *mm, *oldmm = current->mm;
808 int err;
810 if (!oldmm)
811 return NULL;
813 mm = allocate_mm();
814 if (!mm)
815 goto fail_nomem;
817 memcpy(mm, oldmm, sizeof(*mm));
818 mm_init_cpumask(mm);
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821 mm->pmd_huge_pte = NULL;
822 #endif
823 #ifdef CONFIG_NUMA_BALANCING
824 mm->first_nid = NUMA_PTE_SCAN_INIT;
825 #endif
826 if (!mm_init(mm, tsk))
827 goto fail_nomem;
829 if (init_new_context(tsk, mm))
830 goto fail_nocontext;
832 dup_mm_exe_file(oldmm, mm);
834 err = dup_mmap(mm, oldmm);
835 if (err)
836 goto free_pt;
838 mm->hiwater_rss = get_mm_rss(mm);
839 mm->hiwater_vm = mm->total_vm;
841 if (mm->binfmt && !try_module_get(mm->binfmt->module))
842 goto free_pt;
844 return mm;
846 free_pt:
847 /* don't put binfmt in mmput, we haven't got module yet */
848 mm->binfmt = NULL;
849 mmput(mm);
851 fail_nomem:
852 return NULL;
854 fail_nocontext:
856 * If init_new_context() failed, we cannot use mmput() to free the mm
857 * because it calls destroy_context()
859 mm_free_pgd(mm);
860 free_mm(mm);
861 return NULL;
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
866 struct mm_struct *mm, *oldmm;
867 int retval;
869 tsk->min_flt = tsk->maj_flt = 0;
870 tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
875 tsk->mm = NULL;
876 tsk->active_mm = NULL;
879 * Are we cloning a kernel thread?
881 * We need to steal a active VM for that..
883 oldmm = current->mm;
884 if (!oldmm)
885 return 0;
887 /* initialize the new vmacache entries */
888 vmacache_flush(tsk);
890 if (clone_flags & CLONE_VM) {
891 atomic_inc(&oldmm->mm_users);
892 mm = oldmm;
893 goto good_mm;
896 retval = -ENOMEM;
897 mm = dup_mm(tsk);
898 if (!mm)
899 goto fail_nomem;
901 good_mm:
902 tsk->mm = mm;
903 tsk->active_mm = mm;
904 return 0;
906 fail_nomem:
907 return retval;
910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
912 struct fs_struct *fs = current->fs;
913 if (clone_flags & CLONE_FS) {
914 /* tsk->fs is already what we want */
915 spin_lock(&fs->lock);
916 if (fs->in_exec) {
917 spin_unlock(&fs->lock);
918 return -EAGAIN;
920 fs->users++;
921 spin_unlock(&fs->lock);
922 return 0;
924 tsk->fs = copy_fs_struct(fs);
925 if (!tsk->fs)
926 return -ENOMEM;
927 return 0;
930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
932 struct files_struct *oldf, *newf;
933 int error = 0;
936 * A background process may not have any files ...
938 oldf = current->files;
939 if (!oldf)
940 goto out;
942 if (clone_flags & CLONE_FILES) {
943 atomic_inc(&oldf->count);
944 goto out;
947 newf = dup_fd(oldf, &error);
948 if (!newf)
949 goto out;
951 tsk->files = newf;
952 error = 0;
953 out:
954 return error;
957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
959 #ifdef CONFIG_BLOCK
960 struct io_context *ioc = current->io_context;
961 struct io_context *new_ioc;
963 if (!ioc)
964 return 0;
966 * Share io context with parent, if CLONE_IO is set
968 if (clone_flags & CLONE_IO) {
969 ioc_task_link(ioc);
970 tsk->io_context = ioc;
971 } else if (ioprio_valid(ioc->ioprio)) {
972 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
973 if (unlikely(!new_ioc))
974 return -ENOMEM;
976 new_ioc->ioprio = ioc->ioprio;
977 put_io_context(new_ioc);
979 #endif
980 return 0;
983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
985 struct sighand_struct *sig;
987 if (clone_flags & CLONE_SIGHAND) {
988 atomic_inc(&current->sighand->count);
989 return 0;
991 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 rcu_assign_pointer(tsk->sighand, sig);
993 if (!sig)
994 return -ENOMEM;
995 atomic_set(&sig->count, 1);
996 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
997 return 0;
1000 void __cleanup_sighand(struct sighand_struct *sighand)
1002 if (atomic_dec_and_test(&sighand->count)) {
1003 signalfd_cleanup(sighand);
1004 kmem_cache_free(sighand_cachep, sighand);
1010 * Initialize POSIX timer handling for a thread group.
1012 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1014 unsigned long cpu_limit;
1016 /* Thread group counters. */
1017 thread_group_cputime_init(sig);
1019 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1020 if (cpu_limit != RLIM_INFINITY) {
1021 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1022 sig->cputimer.running = 1;
1025 /* The timer lists. */
1026 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1027 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1028 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1033 struct signal_struct *sig;
1035 if (clone_flags & CLONE_THREAD)
1036 return 0;
1038 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1039 tsk->signal = sig;
1040 if (!sig)
1041 return -ENOMEM;
1043 sig->nr_threads = 1;
1044 atomic_set(&sig->live, 1);
1045 atomic_set(&sig->sigcnt, 1);
1047 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1048 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1049 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1051 init_waitqueue_head(&sig->wait_chldexit);
1052 sig->curr_target = tsk;
1053 init_sigpending(&sig->shared_pending);
1054 INIT_LIST_HEAD(&sig->posix_timers);
1056 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 sig->real_timer.function = it_real_fn;
1059 task_lock(current->group_leader);
1060 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1061 task_unlock(current->group_leader);
1063 posix_cpu_timers_init_group(sig);
1065 tty_audit_fork(sig);
1066 sched_autogroup_fork(sig);
1068 #ifdef CONFIG_CGROUPS
1069 init_rwsem(&sig->group_rwsem);
1070 #endif
1072 sig->oom_score_adj = current->signal->oom_score_adj;
1073 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1075 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1076 current->signal->is_child_subreaper;
1078 mutex_init(&sig->cred_guard_mutex);
1080 return 0;
1083 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1085 unsigned long new_flags = p->flags;
1087 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1088 new_flags |= PF_FORKNOEXEC;
1089 p->flags = new_flags;
1092 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1094 current->clear_child_tid = tidptr;
1096 return task_pid_vnr(current);
1099 static void rt_mutex_init_task(struct task_struct *p)
1101 raw_spin_lock_init(&p->pi_lock);
1102 #ifdef CONFIG_RT_MUTEXES
1103 plist_head_init(&p->pi_waiters);
1104 p->pi_blocked_on = NULL;
1105 #endif
1108 #ifdef CONFIG_MM_OWNER
1109 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1111 mm->owner = p;
1113 #endif /* CONFIG_MM_OWNER */
1116 * Initialize POSIX timer handling for a single task.
1118 static void posix_cpu_timers_init(struct task_struct *tsk)
1120 tsk->cputime_expires.prof_exp = 0;
1121 tsk->cputime_expires.virt_exp = 0;
1122 tsk->cputime_expires.sched_exp = 0;
1123 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1124 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1125 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1128 static inline void
1129 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1131 task->pids[type].pid = pid;
1135 * This creates a new process as a copy of the old one,
1136 * but does not actually start it yet.
1138 * It copies the registers, and all the appropriate
1139 * parts of the process environment (as per the clone
1140 * flags). The actual kick-off is left to the caller.
1142 static struct task_struct *copy_process(unsigned long clone_flags,
1143 unsigned long stack_start,
1144 unsigned long stack_size,
1145 int __user *child_tidptr,
1146 struct pid *pid,
1147 int trace)
1149 int retval;
1150 struct task_struct *p;
1152 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1153 return ERR_PTR(-EINVAL);
1155 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1156 return ERR_PTR(-EINVAL);
1159 * Thread groups must share signals as well, and detached threads
1160 * can only be started up within the thread group.
1162 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1163 return ERR_PTR(-EINVAL);
1166 * Shared signal handlers imply shared VM. By way of the above,
1167 * thread groups also imply shared VM. Blocking this case allows
1168 * for various simplifications in other code.
1170 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1171 return ERR_PTR(-EINVAL);
1174 * Siblings of global init remain as zombies on exit since they are
1175 * not reaped by their parent (swapper). To solve this and to avoid
1176 * multi-rooted process trees, prevent global and container-inits
1177 * from creating siblings.
1179 if ((clone_flags & CLONE_PARENT) &&
1180 current->signal->flags & SIGNAL_UNKILLABLE)
1181 return ERR_PTR(-EINVAL);
1184 * If the new process will be in a different pid or user namespace
1185 * do not allow it to share a thread group or signal handlers or
1186 * parent with the forking task.
1188 if (clone_flags & CLONE_SIGHAND) {
1189 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1190 (task_active_pid_ns(current) !=
1191 current->nsproxy->pid_ns_for_children))
1192 return ERR_PTR(-EINVAL);
1195 retval = security_task_create(clone_flags);
1196 if (retval)
1197 goto fork_out;
1199 retval = -ENOMEM;
1200 p = dup_task_struct(current);
1201 if (!p)
1202 goto fork_out;
1204 ftrace_graph_init_task(p);
1205 get_seccomp_filter(p);
1207 rt_mutex_init_task(p);
1209 #ifdef CONFIG_PROVE_LOCKING
1210 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1211 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1212 #endif
1213 retval = -EAGAIN;
1214 if (atomic_read(&p->real_cred->user->processes) >=
1215 task_rlimit(p, RLIMIT_NPROC)) {
1216 if (p->real_cred->user != INIT_USER &&
1217 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1218 goto bad_fork_free;
1220 current->flags &= ~PF_NPROC_EXCEEDED;
1222 retval = copy_creds(p, clone_flags);
1223 if (retval < 0)
1224 goto bad_fork_free;
1227 * If multiple threads are within copy_process(), then this check
1228 * triggers too late. This doesn't hurt, the check is only there
1229 * to stop root fork bombs.
1231 retval = -EAGAIN;
1232 if (nr_threads >= max_threads)
1233 goto bad_fork_cleanup_count;
1235 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1236 goto bad_fork_cleanup_count;
1238 p->did_exec = 0;
1239 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1240 copy_flags(clone_flags, p);
1241 INIT_LIST_HEAD(&p->children);
1242 INIT_LIST_HEAD(&p->sibling);
1243 rcu_copy_process(p);
1244 p->vfork_done = NULL;
1245 spin_lock_init(&p->alloc_lock);
1247 init_sigpending(&p->pending);
1249 p->utime = p->stime = p->gtime = 0;
1250 p->utimescaled = p->stimescaled = 0;
1251 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1252 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1253 #endif
1254 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1255 seqlock_init(&p->vtime_seqlock);
1256 p->vtime_snap = 0;
1257 p->vtime_snap_whence = VTIME_SLEEPING;
1258 #endif
1260 #if defined(SPLIT_RSS_COUNTING)
1261 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1262 #endif
1264 p->default_timer_slack_ns = current->timer_slack_ns;
1266 task_io_accounting_init(&p->ioac);
1267 acct_clear_integrals(p);
1269 posix_cpu_timers_init(p);
1271 do_posix_clock_monotonic_gettime(&p->start_time);
1272 p->real_start_time = p->start_time;
1273 monotonic_to_bootbased(&p->real_start_time);
1274 p->io_context = NULL;
1275 p->audit_context = NULL;
1276 if (clone_flags & CLONE_THREAD)
1277 threadgroup_change_begin(current);
1278 cgroup_fork(p);
1279 #ifdef CONFIG_NUMA
1280 p->mempolicy = mpol_dup(p->mempolicy);
1281 if (IS_ERR(p->mempolicy)) {
1282 retval = PTR_ERR(p->mempolicy);
1283 p->mempolicy = NULL;
1284 goto bad_fork_cleanup_cgroup;
1286 mpol_fix_fork_child_flag(p);
1287 #endif
1288 #ifdef CONFIG_CPUSETS
1289 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1290 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1291 seqcount_init(&p->mems_allowed_seq);
1292 #endif
1293 #ifdef CONFIG_TRACE_IRQFLAGS
1294 p->irq_events = 0;
1295 p->hardirqs_enabled = 0;
1296 p->hardirq_enable_ip = 0;
1297 p->hardirq_enable_event = 0;
1298 p->hardirq_disable_ip = _THIS_IP_;
1299 p->hardirq_disable_event = 0;
1300 p->softirqs_enabled = 1;
1301 p->softirq_enable_ip = _THIS_IP_;
1302 p->softirq_enable_event = 0;
1303 p->softirq_disable_ip = 0;
1304 p->softirq_disable_event = 0;
1305 p->hardirq_context = 0;
1306 p->softirq_context = 0;
1307 #endif
1308 #ifdef CONFIG_LOCKDEP
1309 p->lockdep_depth = 0; /* no locks held yet */
1310 p->curr_chain_key = 0;
1311 p->lockdep_recursion = 0;
1312 #endif
1314 #ifdef CONFIG_DEBUG_MUTEXES
1315 p->blocked_on = NULL; /* not blocked yet */
1316 #endif
1317 #ifdef CONFIG_MEMCG
1318 p->memcg_batch.do_batch = 0;
1319 p->memcg_batch.memcg = NULL;
1320 #endif
1321 #ifdef CONFIG_BCACHE
1322 p->sequential_io = 0;
1323 p->sequential_io_avg = 0;
1324 #endif
1326 /* Perform scheduler related setup. Assign this task to a CPU. */
1327 sched_fork(p);
1329 retval = perf_event_init_task(p);
1330 if (retval)
1331 goto bad_fork_cleanup_policy;
1332 retval = audit_alloc(p);
1333 if (retval)
1334 goto bad_fork_cleanup_perf;
1335 /* copy all the process information */
1336 retval = copy_semundo(clone_flags, p);
1337 if (retval)
1338 goto bad_fork_cleanup_audit;
1339 retval = copy_files(clone_flags, p);
1340 if (retval)
1341 goto bad_fork_cleanup_semundo;
1342 retval = copy_fs(clone_flags, p);
1343 if (retval)
1344 goto bad_fork_cleanup_files;
1345 retval = copy_sighand(clone_flags, p);
1346 if (retval)
1347 goto bad_fork_cleanup_fs;
1348 retval = copy_signal(clone_flags, p);
1349 if (retval)
1350 goto bad_fork_cleanup_sighand;
1351 retval = copy_mm(clone_flags, p);
1352 if (retval)
1353 goto bad_fork_cleanup_signal;
1354 retval = copy_namespaces(clone_flags, p);
1355 if (retval)
1356 goto bad_fork_cleanup_mm;
1357 retval = copy_io(clone_flags, p);
1358 if (retval)
1359 goto bad_fork_cleanup_namespaces;
1360 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1361 if (retval)
1362 goto bad_fork_cleanup_io;
1364 if (pid != &init_struct_pid) {
1365 retval = -ENOMEM;
1366 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1367 if (!pid)
1368 goto bad_fork_cleanup_io;
1371 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1373 * Clear TID on mm_release()?
1375 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1376 #ifdef CONFIG_BLOCK
1377 p->plug = NULL;
1378 #endif
1379 #ifdef CONFIG_FUTEX
1380 p->robust_list = NULL;
1381 #ifdef CONFIG_COMPAT
1382 p->compat_robust_list = NULL;
1383 #endif
1384 INIT_LIST_HEAD(&p->pi_state_list);
1385 p->pi_state_cache = NULL;
1386 #endif
1387 uprobe_copy_process(p);
1389 * sigaltstack should be cleared when sharing the same VM
1391 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1392 p->sas_ss_sp = p->sas_ss_size = 0;
1395 * Syscall tracing and stepping should be turned off in the
1396 * child regardless of CLONE_PTRACE.
1398 user_disable_single_step(p);
1399 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1400 #ifdef TIF_SYSCALL_EMU
1401 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1402 #endif
1403 clear_all_latency_tracing(p);
1405 /* ok, now we should be set up.. */
1406 p->pid = pid_nr(pid);
1407 if (clone_flags & CLONE_THREAD) {
1408 p->exit_signal = -1;
1409 p->group_leader = current->group_leader;
1410 p->tgid = current->tgid;
1411 } else {
1412 if (clone_flags & CLONE_PARENT)
1413 p->exit_signal = current->group_leader->exit_signal;
1414 else
1415 p->exit_signal = (clone_flags & CSIGNAL);
1416 p->group_leader = p;
1417 p->tgid = p->pid;
1420 p->pdeath_signal = 0;
1421 p->exit_state = 0;
1423 p->nr_dirtied = 0;
1424 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1425 p->dirty_paused_when = 0;
1427 INIT_LIST_HEAD(&p->thread_group);
1428 p->task_works = NULL;
1431 * Make it visible to the rest of the system, but dont wake it up yet.
1432 * Need tasklist lock for parent etc handling!
1434 write_lock_irq(&tasklist_lock);
1436 /* CLONE_PARENT re-uses the old parent */
1437 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1438 p->real_parent = current->real_parent;
1439 p->parent_exec_id = current->parent_exec_id;
1440 } else {
1441 p->real_parent = current;
1442 p->parent_exec_id = current->self_exec_id;
1445 spin_lock(&current->sighand->siglock);
1448 * Process group and session signals need to be delivered to just the
1449 * parent before the fork or both the parent and the child after the
1450 * fork. Restart if a signal comes in before we add the new process to
1451 * it's process group.
1452 * A fatal signal pending means that current will exit, so the new
1453 * thread can't slip out of an OOM kill (or normal SIGKILL).
1455 recalc_sigpending();
1456 if (signal_pending(current)) {
1457 spin_unlock(&current->sighand->siglock);
1458 write_unlock_irq(&tasklist_lock);
1459 retval = -ERESTARTNOINTR;
1460 goto bad_fork_free_pid;
1463 if (likely(p->pid)) {
1464 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1466 init_task_pid(p, PIDTYPE_PID, pid);
1467 if (thread_group_leader(p)) {
1468 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1469 init_task_pid(p, PIDTYPE_SID, task_session(current));
1471 if (is_child_reaper(pid)) {
1472 ns_of_pid(pid)->child_reaper = p;
1473 p->signal->flags |= SIGNAL_UNKILLABLE;
1476 p->signal->leader_pid = pid;
1477 p->signal->tty = tty_kref_get(current->signal->tty);
1478 list_add_tail(&p->sibling, &p->real_parent->children);
1479 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1480 attach_pid(p, PIDTYPE_PGID);
1481 attach_pid(p, PIDTYPE_SID);
1482 __this_cpu_inc(process_counts);
1483 } else {
1484 current->signal->nr_threads++;
1485 atomic_inc(&current->signal->live);
1486 atomic_inc(&current->signal->sigcnt);
1487 list_add_tail_rcu(&p->thread_group,
1488 &p->group_leader->thread_group);
1489 list_add_tail_rcu(&p->thread_node,
1490 &p->signal->thread_head);
1492 attach_pid(p, PIDTYPE_PID);
1493 nr_threads++;
1496 total_forks++;
1497 spin_unlock(&current->sighand->siglock);
1498 syscall_tracepoint_update(p);
1499 write_unlock_irq(&tasklist_lock);
1501 proc_fork_connector(p);
1502 cgroup_post_fork(p);
1503 if (clone_flags & CLONE_THREAD)
1504 threadgroup_change_end(current);
1505 perf_event_fork(p);
1507 trace_task_newtask(p, clone_flags);
1509 return p;
1511 bad_fork_free_pid:
1512 if (pid != &init_struct_pid)
1513 free_pid(pid);
1514 bad_fork_cleanup_io:
1515 if (p->io_context)
1516 exit_io_context(p);
1517 bad_fork_cleanup_namespaces:
1518 exit_task_namespaces(p);
1519 bad_fork_cleanup_mm:
1520 if (p->mm)
1521 mmput(p->mm);
1522 bad_fork_cleanup_signal:
1523 if (!(clone_flags & CLONE_THREAD))
1524 free_signal_struct(p->signal);
1525 bad_fork_cleanup_sighand:
1526 __cleanup_sighand(p->sighand);
1527 bad_fork_cleanup_fs:
1528 exit_fs(p); /* blocking */
1529 bad_fork_cleanup_files:
1530 exit_files(p); /* blocking */
1531 bad_fork_cleanup_semundo:
1532 exit_sem(p);
1533 bad_fork_cleanup_audit:
1534 audit_free(p);
1535 bad_fork_cleanup_perf:
1536 perf_event_free_task(p);
1537 bad_fork_cleanup_policy:
1538 #ifdef CONFIG_NUMA
1539 mpol_put(p->mempolicy);
1540 bad_fork_cleanup_cgroup:
1541 #endif
1542 if (clone_flags & CLONE_THREAD)
1543 threadgroup_change_end(current);
1544 cgroup_exit(p, 0);
1545 delayacct_tsk_free(p);
1546 module_put(task_thread_info(p)->exec_domain->module);
1547 bad_fork_cleanup_count:
1548 atomic_dec(&p->cred->user->processes);
1549 exit_creds(p);
1550 bad_fork_free:
1551 free_task(p);
1552 fork_out:
1553 return ERR_PTR(retval);
1556 static inline void init_idle_pids(struct pid_link *links)
1558 enum pid_type type;
1560 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1561 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1562 links[type].pid = &init_struct_pid;
1566 struct task_struct *fork_idle(int cpu)
1568 struct task_struct *task;
1569 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1570 if (!IS_ERR(task)) {
1571 init_idle_pids(task->pids);
1572 init_idle(task, cpu);
1575 return task;
1579 * Ok, this is the main fork-routine.
1581 * It copies the process, and if successful kick-starts
1582 * it and waits for it to finish using the VM if required.
1584 long do_fork(unsigned long clone_flags,
1585 unsigned long stack_start,
1586 unsigned long stack_size,
1587 int __user *parent_tidptr,
1588 int __user *child_tidptr)
1590 struct task_struct *p;
1591 int trace = 0;
1592 long nr;
1595 * Determine whether and which event to report to ptracer. When
1596 * called from kernel_thread or CLONE_UNTRACED is explicitly
1597 * requested, no event is reported; otherwise, report if the event
1598 * for the type of forking is enabled.
1600 if (!(clone_flags & CLONE_UNTRACED)) {
1601 if (clone_flags & CLONE_VFORK)
1602 trace = PTRACE_EVENT_VFORK;
1603 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1604 trace = PTRACE_EVENT_CLONE;
1605 else
1606 trace = PTRACE_EVENT_FORK;
1608 if (likely(!ptrace_event_enabled(current, trace)))
1609 trace = 0;
1612 p = copy_process(clone_flags, stack_start, stack_size,
1613 child_tidptr, NULL, trace);
1615 * Do this prior waking up the new thread - the thread pointer
1616 * might get invalid after that point, if the thread exits quickly.
1618 if (!IS_ERR(p)) {
1619 struct completion vfork;
1620 struct pid *pid;
1622 trace_sched_process_fork(current, p);
1624 pid = get_task_pid(p, PIDTYPE_PID);
1625 nr = pid_vnr(pid);
1627 if (clone_flags & CLONE_PARENT_SETTID)
1628 put_user(nr, parent_tidptr);
1630 if (clone_flags & CLONE_VFORK) {
1631 p->vfork_done = &vfork;
1632 init_completion(&vfork);
1633 get_task_struct(p);
1636 wake_up_new_task(p);
1638 /* forking complete and child started to run, tell ptracer */
1639 if (unlikely(trace))
1640 ptrace_event_pid(trace, pid);
1642 if (clone_flags & CLONE_VFORK) {
1643 if (!wait_for_vfork_done(p, &vfork))
1644 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1647 put_pid(pid);
1648 } else {
1649 nr = PTR_ERR(p);
1651 return nr;
1655 * Create a kernel thread.
1657 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1659 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1660 (unsigned long)arg, NULL, NULL);
1663 #ifdef __ARCH_WANT_SYS_FORK
1664 SYSCALL_DEFINE0(fork)
1666 #ifdef CONFIG_MMU
1667 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1668 #else
1669 /* can not support in nommu mode */
1670 return(-EINVAL);
1671 #endif
1673 #endif
1675 #ifdef __ARCH_WANT_SYS_VFORK
1676 SYSCALL_DEFINE0(vfork)
1678 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1679 0, NULL, NULL);
1681 #endif
1683 #ifdef __ARCH_WANT_SYS_CLONE
1684 #ifdef CONFIG_CLONE_BACKWARDS
1685 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1686 int __user *, parent_tidptr,
1687 int, tls_val,
1688 int __user *, child_tidptr)
1689 #elif defined(CONFIG_CLONE_BACKWARDS2)
1690 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1691 int __user *, parent_tidptr,
1692 int __user *, child_tidptr,
1693 int, tls_val)
1694 #elif defined(CONFIG_CLONE_BACKWARDS3)
1695 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1696 int, stack_size,
1697 int __user *, parent_tidptr,
1698 int __user *, child_tidptr,
1699 int, tls_val)
1700 #else
1701 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1702 int __user *, parent_tidptr,
1703 int __user *, child_tidptr,
1704 int, tls_val)
1705 #endif
1707 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1709 #endif
1711 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1712 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1713 #endif
1715 static void sighand_ctor(void *data)
1717 struct sighand_struct *sighand = data;
1719 spin_lock_init(&sighand->siglock);
1720 init_waitqueue_head(&sighand->signalfd_wqh);
1723 void __init proc_caches_init(void)
1725 sighand_cachep = kmem_cache_create("sighand_cache",
1726 sizeof(struct sighand_struct), 0,
1727 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1728 SLAB_NOTRACK, sighand_ctor);
1729 signal_cachep = kmem_cache_create("signal_cache",
1730 sizeof(struct signal_struct), 0,
1731 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1732 files_cachep = kmem_cache_create("files_cache",
1733 sizeof(struct files_struct), 0,
1734 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1735 fs_cachep = kmem_cache_create("fs_cache",
1736 sizeof(struct fs_struct), 0,
1737 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1739 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1740 * whole struct cpumask for the OFFSTACK case. We could change
1741 * this to *only* allocate as much of it as required by the
1742 * maximum number of CPU's we can ever have. The cpumask_allocation
1743 * is at the end of the structure, exactly for that reason.
1745 mm_cachep = kmem_cache_create("mm_struct",
1746 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1747 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1748 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1749 mmap_init();
1750 nsproxy_cache_init();
1754 * Check constraints on flags passed to the unshare system call.
1756 static int check_unshare_flags(unsigned long unshare_flags)
1758 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1759 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1760 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1761 CLONE_NEWUSER|CLONE_NEWPID))
1762 return -EINVAL;
1764 * Not implemented, but pretend it works if there is nothing to
1765 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1766 * needs to unshare vm.
1768 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1769 /* FIXME: get_task_mm() increments ->mm_users */
1770 if (atomic_read(&current->mm->mm_users) > 1)
1771 return -EINVAL;
1774 return 0;
1778 * Unshare the filesystem structure if it is being shared
1780 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1782 struct fs_struct *fs = current->fs;
1784 if (!(unshare_flags & CLONE_FS) || !fs)
1785 return 0;
1787 /* don't need lock here; in the worst case we'll do useless copy */
1788 if (fs->users == 1)
1789 return 0;
1791 *new_fsp = copy_fs_struct(fs);
1792 if (!*new_fsp)
1793 return -ENOMEM;
1795 return 0;
1799 * Unshare file descriptor table if it is being shared
1801 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1803 struct files_struct *fd = current->files;
1804 int error = 0;
1806 if ((unshare_flags & CLONE_FILES) &&
1807 (fd && atomic_read(&fd->count) > 1)) {
1808 *new_fdp = dup_fd(fd, &error);
1809 if (!*new_fdp)
1810 return error;
1813 return 0;
1817 * unshare allows a process to 'unshare' part of the process
1818 * context which was originally shared using clone. copy_*
1819 * functions used by do_fork() cannot be used here directly
1820 * because they modify an inactive task_struct that is being
1821 * constructed. Here we are modifying the current, active,
1822 * task_struct.
1824 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1826 struct fs_struct *fs, *new_fs = NULL;
1827 struct files_struct *fd, *new_fd = NULL;
1828 struct cred *new_cred = NULL;
1829 struct nsproxy *new_nsproxy = NULL;
1830 int do_sysvsem = 0;
1831 int err;
1834 * If unsharing a user namespace must also unshare the thread.
1836 if (unshare_flags & CLONE_NEWUSER)
1837 unshare_flags |= CLONE_THREAD | CLONE_FS;
1839 * If unsharing a thread from a thread group, must also unshare vm.
1841 if (unshare_flags & CLONE_THREAD)
1842 unshare_flags |= CLONE_VM;
1844 * If unsharing vm, must also unshare signal handlers.
1846 if (unshare_flags & CLONE_VM)
1847 unshare_flags |= CLONE_SIGHAND;
1849 * If unsharing namespace, must also unshare filesystem information.
1851 if (unshare_flags & CLONE_NEWNS)
1852 unshare_flags |= CLONE_FS;
1854 err = check_unshare_flags(unshare_flags);
1855 if (err)
1856 goto bad_unshare_out;
1858 * CLONE_NEWIPC must also detach from the undolist: after switching
1859 * to a new ipc namespace, the semaphore arrays from the old
1860 * namespace are unreachable.
1862 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1863 do_sysvsem = 1;
1864 err = unshare_fs(unshare_flags, &new_fs);
1865 if (err)
1866 goto bad_unshare_out;
1867 err = unshare_fd(unshare_flags, &new_fd);
1868 if (err)
1869 goto bad_unshare_cleanup_fs;
1870 err = unshare_userns(unshare_flags, &new_cred);
1871 if (err)
1872 goto bad_unshare_cleanup_fd;
1873 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1874 new_cred, new_fs);
1875 if (err)
1876 goto bad_unshare_cleanup_cred;
1878 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1879 if (do_sysvsem) {
1881 * CLONE_SYSVSEM is equivalent to sys_exit().
1883 exit_sem(current);
1886 if (new_nsproxy)
1887 switch_task_namespaces(current, new_nsproxy);
1889 task_lock(current);
1891 if (new_fs) {
1892 fs = current->fs;
1893 spin_lock(&fs->lock);
1894 current->fs = new_fs;
1895 if (--fs->users)
1896 new_fs = NULL;
1897 else
1898 new_fs = fs;
1899 spin_unlock(&fs->lock);
1902 if (new_fd) {
1903 fd = current->files;
1904 current->files = new_fd;
1905 new_fd = fd;
1908 task_unlock(current);
1910 if (new_cred) {
1911 /* Install the new user namespace */
1912 commit_creds(new_cred);
1913 new_cred = NULL;
1917 bad_unshare_cleanup_cred:
1918 if (new_cred)
1919 put_cred(new_cred);
1920 bad_unshare_cleanup_fd:
1921 if (new_fd)
1922 put_files_struct(new_fd);
1924 bad_unshare_cleanup_fs:
1925 if (new_fs)
1926 free_fs_struct(new_fs);
1928 bad_unshare_out:
1929 return err;
1933 * Helper to unshare the files of the current task.
1934 * We don't want to expose copy_files internals to
1935 * the exec layer of the kernel.
1938 int unshare_files(struct files_struct **displaced)
1940 struct task_struct *task = current;
1941 struct files_struct *copy = NULL;
1942 int error;
1944 error = unshare_fd(CLONE_FILES, &copy);
1945 if (error || !copy) {
1946 *displaced = NULL;
1947 return error;
1949 *displaced = task->files;
1950 task_lock(task);
1951 task->files = copy;
1952 task_unlock(task);
1953 return 0;