2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/suspend.h>
60 #include <trace/events/rcu.h>
65 * Strings used in tracepoints need to be exported via the
66 * tracing system such that tools like perf and trace-cmd can
67 * translate the string address pointers to actual text.
69 #define TPS(x) tracepoint_string(x)
71 /* Data structures. */
73 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
74 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
84 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
87 struct rcu_state sname##_state = { \
88 .level = { &sname##_state.node[0] }, \
90 .fqs_state = RCU_GP_IDLE, \
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
98 .name = sname##_varname, \
101 DEFINE_PER_CPU(struct rcu_data, sname##_data)
103 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
104 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
106 static struct rcu_state
*rcu_state
;
107 LIST_HEAD(rcu_struct_flavors
);
109 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf
= CONFIG_RCU_FANOUT_LEAF
;
111 module_param(rcu_fanout_leaf
, int, 0444);
112 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
113 static int num_rcu_lvl
[] = { /* Number of rcu_nodes at specified level. */
120 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_sched() to a simple barrier(). When this variable
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
131 int rcu_scheduler_active __read_mostly
;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
146 static int rcu_scheduler_fully_active __read_mostly
;
148 #ifdef CONFIG_RCU_BOOST
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
154 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
155 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
156 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
157 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
159 #endif /* #ifdef CONFIG_RCU_BOOST */
161 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
174 unsigned long rcutorture_testseq
;
175 unsigned long rcutorture_vernum
;
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
182 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
184 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
188 * Note a quiescent state. Because we do not need to know
189 * how many quiescent states passed, just if there was at least
190 * one since the start of the grace period, this just sets a flag.
191 * The caller must have disabled preemption.
193 void rcu_sched_qs(int cpu
)
195 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
197 if (rdp
->passed_quiesce
== 0)
198 trace_rcu_grace_period(TPS("rcu_sched"), rdp
->gpnum
, TPS("cpuqs"));
199 rdp
->passed_quiesce
= 1;
202 void rcu_bh_qs(int cpu
)
204 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
206 if (rdp
->passed_quiesce
== 0)
207 trace_rcu_grace_period(TPS("rcu_bh"), rdp
->gpnum
, TPS("cpuqs"));
208 rdp
->passed_quiesce
= 1;
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
214 * The caller must have disabled preemption.
216 void rcu_note_context_switch(int cpu
)
218 trace_rcu_utilization(TPS("Start context switch"));
220 rcu_preempt_note_context_switch(cpu
);
221 trace_rcu_utilization(TPS("End context switch"));
223 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
225 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
226 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
227 .dynticks
= ATOMIC_INIT(1),
228 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
230 .dynticks_idle
= ATOMIC_INIT(1),
231 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
234 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
235 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
236 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
238 module_param(blimit
, long, 0444);
239 module_param(qhimark
, long, 0444);
240 module_param(qlowmark
, long, 0444);
242 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
243 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
245 module_param(jiffies_till_first_fqs
, ulong
, 0644);
246 module_param(jiffies_till_next_fqs
, ulong
, 0644);
248 static void rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
249 struct rcu_data
*rdp
);
250 static void force_qs_rnp(struct rcu_state
*rsp
,
251 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
252 unsigned long *maxj
),
253 bool *isidle
, unsigned long *maxj
);
254 static void force_quiescent_state(struct rcu_state
*rsp
);
255 static int rcu_pending(int cpu
);
258 * Return the number of RCU-sched batches processed thus far for debug & stats.
260 long rcu_batches_completed_sched(void)
262 return rcu_sched_state
.completed
;
264 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
267 * Return the number of RCU BH batches processed thus far for debug & stats.
269 long rcu_batches_completed_bh(void)
271 return rcu_bh_state
.completed
;
273 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
276 * Force a quiescent state for RCU BH.
278 void rcu_bh_force_quiescent_state(void)
280 force_quiescent_state(&rcu_bh_state
);
282 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
291 void rcutorture_record_test_transition(void)
293 rcutorture_testseq
++;
294 rcutorture_vernum
= 0;
296 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
303 void rcutorture_record_progress(unsigned long vernum
)
307 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
310 * Force a quiescent state for RCU-sched.
312 void rcu_sched_force_quiescent_state(void)
314 force_quiescent_state(&rcu_sched_state
);
316 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
319 * Does the CPU have callbacks ready to be invoked?
322 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
324 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
325 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
334 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
338 if (rcu_gp_in_progress(rsp
))
339 return 0; /* No, a grace period is already in progress. */
340 if (rcu_nocb_needs_gp(rsp
))
341 return 1; /* Yes, a no-CBs CPU needs one. */
342 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
347 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp
->completed
),
349 rdp
->nxtcompleted
[i
]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
355 * Return the root node of the specified rcu_state structure.
357 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
359 return &rsp
->node
[0];
363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
369 static void rcu_eqs_enter_common(struct rcu_dynticks
*rdtp
, long long oldval
,
372 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
373 if (!user
&& !is_idle_task(current
)) {
374 struct task_struct
*idle
= idle_task(smp_processor_id());
376 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
377 ftrace_dump(DUMP_ORIG
);
378 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
379 current
->pid
, current
->comm
,
380 idle
->pid
, idle
->comm
); /* must be idle task! */
382 rcu_prepare_for_idle(smp_processor_id());
383 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
384 smp_mb__before_atomic_inc(); /* See above. */
385 atomic_inc(&rdtp
->dynticks
);
386 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
387 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
390 * It is illegal to enter an extended quiescent state while
391 * in an RCU read-side critical section.
393 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map
),
394 "Illegal idle entry in RCU read-side critical section.");
395 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
),
396 "Illegal idle entry in RCU-bh read-side critical section.");
397 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map
),
398 "Illegal idle entry in RCU-sched read-side critical section.");
402 * Enter an RCU extended quiescent state, which can be either the
403 * idle loop or adaptive-tickless usermode execution.
405 static void rcu_eqs_enter(bool user
)
408 struct rcu_dynticks
*rdtp
;
410 rdtp
= &__get_cpu_var(rcu_dynticks
);
411 oldval
= rdtp
->dynticks_nesting
;
412 WARN_ON_ONCE((oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
413 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
)
414 rdtp
->dynticks_nesting
= 0;
416 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
417 rcu_eqs_enter_common(rdtp
, oldval
, user
);
421 * rcu_idle_enter - inform RCU that current CPU is entering idle
423 * Enter idle mode, in other words, -leave- the mode in which RCU
424 * read-side critical sections can occur. (Though RCU read-side
425 * critical sections can occur in irq handlers in idle, a possibility
426 * handled by irq_enter() and irq_exit().)
428 * We crowbar the ->dynticks_nesting field to zero to allow for
429 * the possibility of usermode upcalls having messed up our count
430 * of interrupt nesting level during the prior busy period.
432 void rcu_idle_enter(void)
436 local_irq_save(flags
);
437 rcu_eqs_enter(false);
438 rcu_sysidle_enter(&__get_cpu_var(rcu_dynticks
), 0);
439 local_irq_restore(flags
);
441 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
443 #ifdef CONFIG_RCU_USER_QS
445 * rcu_user_enter - inform RCU that we are resuming userspace.
447 * Enter RCU idle mode right before resuming userspace. No use of RCU
448 * is permitted between this call and rcu_user_exit(). This way the
449 * CPU doesn't need to maintain the tick for RCU maintenance purposes
450 * when the CPU runs in userspace.
452 void rcu_user_enter(void)
456 #endif /* CONFIG_RCU_USER_QS */
459 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461 * Exit from an interrupt handler, which might possibly result in entering
462 * idle mode, in other words, leaving the mode in which read-side critical
463 * sections can occur.
465 * This code assumes that the idle loop never does anything that might
466 * result in unbalanced calls to irq_enter() and irq_exit(). If your
467 * architecture violates this assumption, RCU will give you what you
468 * deserve, good and hard. But very infrequently and irreproducibly.
470 * Use things like work queues to work around this limitation.
472 * You have been warned.
474 void rcu_irq_exit(void)
478 struct rcu_dynticks
*rdtp
;
480 local_irq_save(flags
);
481 rdtp
= &__get_cpu_var(rcu_dynticks
);
482 oldval
= rdtp
->dynticks_nesting
;
483 rdtp
->dynticks_nesting
--;
484 WARN_ON_ONCE(rdtp
->dynticks_nesting
< 0);
485 if (rdtp
->dynticks_nesting
)
486 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
488 rcu_eqs_enter_common(rdtp
, oldval
, true);
489 rcu_sysidle_enter(rdtp
, 1);
490 local_irq_restore(flags
);
494 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
496 * If the new value of the ->dynticks_nesting counter was previously zero,
497 * we really have exited idle, and must do the appropriate accounting.
498 * The caller must have disabled interrupts.
500 static void rcu_eqs_exit_common(struct rcu_dynticks
*rdtp
, long long oldval
,
503 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
504 atomic_inc(&rdtp
->dynticks
);
505 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
506 smp_mb__after_atomic_inc(); /* See above. */
507 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
508 rcu_cleanup_after_idle(smp_processor_id());
509 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
510 if (!user
&& !is_idle_task(current
)) {
511 struct task_struct
*idle
= idle_task(smp_processor_id());
513 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
514 oldval
, rdtp
->dynticks_nesting
);
515 ftrace_dump(DUMP_ORIG
);
516 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
517 current
->pid
, current
->comm
,
518 idle
->pid
, idle
->comm
); /* must be idle task! */
523 * Exit an RCU extended quiescent state, which can be either the
524 * idle loop or adaptive-tickless usermode execution.
526 static void rcu_eqs_exit(bool user
)
528 struct rcu_dynticks
*rdtp
;
531 rdtp
= &__get_cpu_var(rcu_dynticks
);
532 oldval
= rdtp
->dynticks_nesting
;
533 WARN_ON_ONCE(oldval
< 0);
534 if (oldval
& DYNTICK_TASK_NEST_MASK
)
535 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
537 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
538 rcu_eqs_exit_common(rdtp
, oldval
, user
);
542 * rcu_idle_exit - inform RCU that current CPU is leaving idle
544 * Exit idle mode, in other words, -enter- the mode in which RCU
545 * read-side critical sections can occur.
547 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
548 * allow for the possibility of usermode upcalls messing up our count
549 * of interrupt nesting level during the busy period that is just
552 void rcu_idle_exit(void)
556 local_irq_save(flags
);
558 rcu_sysidle_exit(&__get_cpu_var(rcu_dynticks
), 0);
559 local_irq_restore(flags
);
561 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
563 #ifdef CONFIG_RCU_USER_QS
565 * rcu_user_exit - inform RCU that we are exiting userspace.
567 * Exit RCU idle mode while entering the kernel because it can
568 * run a RCU read side critical section anytime.
570 void rcu_user_exit(void)
574 #endif /* CONFIG_RCU_USER_QS */
577 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
579 * Enter an interrupt handler, which might possibly result in exiting
580 * idle mode, in other words, entering the mode in which read-side critical
581 * sections can occur.
583 * Note that the Linux kernel is fully capable of entering an interrupt
584 * handler that it never exits, for example when doing upcalls to
585 * user mode! This code assumes that the idle loop never does upcalls to
586 * user mode. If your architecture does do upcalls from the idle loop (or
587 * does anything else that results in unbalanced calls to the irq_enter()
588 * and irq_exit() functions), RCU will give you what you deserve, good
589 * and hard. But very infrequently and irreproducibly.
591 * Use things like work queues to work around this limitation.
593 * You have been warned.
595 void rcu_irq_enter(void)
598 struct rcu_dynticks
*rdtp
;
601 local_irq_save(flags
);
602 rdtp
= &__get_cpu_var(rcu_dynticks
);
603 oldval
= rdtp
->dynticks_nesting
;
604 rdtp
->dynticks_nesting
++;
605 WARN_ON_ONCE(rdtp
->dynticks_nesting
== 0);
607 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
609 rcu_eqs_exit_common(rdtp
, oldval
, true);
610 rcu_sysidle_exit(rdtp
, 1);
611 local_irq_restore(flags
);
615 * rcu_nmi_enter - inform RCU of entry to NMI context
617 * If the CPU was idle with dynamic ticks active, and there is no
618 * irq handler running, this updates rdtp->dynticks_nmi to let the
619 * RCU grace-period handling know that the CPU is active.
621 void rcu_nmi_enter(void)
623 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
625 if (rdtp
->dynticks_nmi_nesting
== 0 &&
626 (atomic_read(&rdtp
->dynticks
) & 0x1))
628 rdtp
->dynticks_nmi_nesting
++;
629 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
630 atomic_inc(&rdtp
->dynticks
);
631 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
632 smp_mb__after_atomic_inc(); /* See above. */
633 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
637 * rcu_nmi_exit - inform RCU of exit from NMI context
639 * If the CPU was idle with dynamic ticks active, and there is no
640 * irq handler running, this updates rdtp->dynticks_nmi to let the
641 * RCU grace-period handling know that the CPU is no longer active.
643 void rcu_nmi_exit(void)
645 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
647 if (rdtp
->dynticks_nmi_nesting
== 0 ||
648 --rdtp
->dynticks_nmi_nesting
!= 0)
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic_inc(); /* See above. */
652 atomic_inc(&rdtp
->dynticks
);
653 smp_mb__after_atomic_inc(); /* Force delay to next write. */
654 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
658 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
660 * If the current CPU is in its idle loop and is neither in an interrupt
661 * or NMI handler, return true.
663 int rcu_is_cpu_idle(void)
668 ret
= (atomic_read(&__get_cpu_var(rcu_dynticks
).dynticks
) & 0x1) == 0;
672 EXPORT_SYMBOL(rcu_is_cpu_idle
);
674 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
677 * Is the current CPU online? Disable preemption to avoid false positives
678 * that could otherwise happen due to the current CPU number being sampled,
679 * this task being preempted, its old CPU being taken offline, resuming
680 * on some other CPU, then determining that its old CPU is now offline.
681 * It is OK to use RCU on an offline processor during initial boot, hence
682 * the check for rcu_scheduler_fully_active. Note also that it is OK
683 * for a CPU coming online to use RCU for one jiffy prior to marking itself
684 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
685 * offline to continue to use RCU for one jiffy after marking itself
686 * offline in the cpu_online_mask. This leniency is necessary given the
687 * non-atomic nature of the online and offline processing, for example,
688 * the fact that a CPU enters the scheduler after completing the CPU_DYING
691 * This is also why RCU internally marks CPUs online during the
692 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
694 * Disable checking if in an NMI handler because we cannot safely report
695 * errors from NMI handlers anyway.
697 bool rcu_lockdep_current_cpu_online(void)
699 struct rcu_data
*rdp
;
700 struct rcu_node
*rnp
;
706 rdp
= &__get_cpu_var(rcu_sched_data
);
708 ret
= (rdp
->grpmask
& rnp
->qsmaskinit
) ||
709 !rcu_scheduler_fully_active
;
713 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
715 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
718 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
720 * If the current CPU is idle or running at a first-level (not nested)
721 * interrupt from idle, return true. The caller must have at least
722 * disabled preemption.
724 static int rcu_is_cpu_rrupt_from_idle(void)
726 return __get_cpu_var(rcu_dynticks
).dynticks_nesting
<= 1;
730 * Snapshot the specified CPU's dynticks counter so that we can later
731 * credit them with an implicit quiescent state. Return 1 if this CPU
732 * is in dynticks idle mode, which is an extended quiescent state.
734 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
735 bool *isidle
, unsigned long *maxj
)
737 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
738 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
739 return (rdp
->dynticks_snap
& 0x1) == 0;
743 * Return true if the specified CPU has passed through a quiescent
744 * state by virtue of being in or having passed through an dynticks
745 * idle state since the last call to dyntick_save_progress_counter()
746 * for this same CPU, or by virtue of having been offline.
748 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
749 bool *isidle
, unsigned long *maxj
)
754 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
755 snap
= (unsigned int)rdp
->dynticks_snap
;
758 * If the CPU passed through or entered a dynticks idle phase with
759 * no active irq/NMI handlers, then we can safely pretend that the CPU
760 * already acknowledged the request to pass through a quiescent
761 * state. Either way, that CPU cannot possibly be in an RCU
762 * read-side critical section that started before the beginning
763 * of the current RCU grace period.
765 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
766 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
772 * Check for the CPU being offline, but only if the grace period
773 * is old enough. We don't need to worry about the CPU changing
774 * state: If we see it offline even once, it has been through a
777 * The reason for insisting that the grace period be at least
778 * one jiffy old is that CPUs that are not quite online and that
779 * have just gone offline can still execute RCU read-side critical
782 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
783 return 0; /* Grace period is not old enough. */
785 if (cpu_is_offline(rdp
->cpu
)) {
786 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
792 * There is a possibility that a CPU in adaptive-ticks state
793 * might run in the kernel with the scheduling-clock tick disabled
794 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
795 * force the CPU to restart the scheduling-clock tick in this
796 * CPU is in this state.
798 rcu_kick_nohz_cpu(rdp
->cpu
);
803 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
805 rsp
->gp_start
= jiffies
;
806 rsp
->jiffies_stall
= jiffies
+ rcu_jiffies_till_stall_check();
810 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
811 * for architectures that do not implement trigger_all_cpu_backtrace().
812 * The NMI-triggered stack traces are more accurate because they are
813 * printed by the target CPU.
815 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
819 struct rcu_node
*rnp
;
821 rcu_for_each_leaf_node(rsp
, rnp
) {
822 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
823 if (rnp
->qsmask
!= 0) {
824 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
825 if (rnp
->qsmask
& (1UL << cpu
))
826 dump_cpu_task(rnp
->grplo
+ cpu
);
828 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
832 static void print_other_cpu_stall(struct rcu_state
*rsp
)
838 struct rcu_node
*rnp
= rcu_get_root(rsp
);
841 /* Only let one CPU complain about others per time interval. */
843 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
844 delta
= jiffies
- rsp
->jiffies_stall
;
845 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
846 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
849 rsp
->jiffies_stall
= jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3;
850 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
853 * OK, time to rat on our buddy...
854 * See Documentation/RCU/stallwarn.txt for info on how to debug
855 * RCU CPU stall warnings.
857 pr_err("INFO: %s detected stalls on CPUs/tasks:",
859 print_cpu_stall_info_begin();
860 rcu_for_each_leaf_node(rsp
, rnp
) {
861 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
862 ndetected
+= rcu_print_task_stall(rnp
);
863 if (rnp
->qsmask
!= 0) {
864 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
865 if (rnp
->qsmask
& (1UL << cpu
)) {
866 print_cpu_stall_info(rsp
,
871 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
875 * Now rat on any tasks that got kicked up to the root rcu_node
876 * due to CPU offlining.
878 rnp
= rcu_get_root(rsp
);
879 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
880 ndetected
+= rcu_print_task_stall(rnp
);
881 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
883 print_cpu_stall_info_end();
884 for_each_possible_cpu(cpu
)
885 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
886 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
887 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
888 rsp
->gpnum
, rsp
->completed
, totqlen
);
890 pr_err("INFO: Stall ended before state dump start\n");
891 else if (!trigger_all_cpu_backtrace())
892 rcu_dump_cpu_stacks(rsp
);
894 /* Complain about tasks blocking the grace period. */
896 rcu_print_detail_task_stall(rsp
);
898 force_quiescent_state(rsp
); /* Kick them all. */
901 static void print_cpu_stall(struct rcu_state
*rsp
)
905 struct rcu_node
*rnp
= rcu_get_root(rsp
);
909 * OK, time to rat on ourselves...
910 * See Documentation/RCU/stallwarn.txt for info on how to debug
911 * RCU CPU stall warnings.
913 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
914 print_cpu_stall_info_begin();
915 print_cpu_stall_info(rsp
, smp_processor_id());
916 print_cpu_stall_info_end();
917 for_each_possible_cpu(cpu
)
918 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
919 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
920 jiffies
- rsp
->gp_start
, rsp
->gpnum
, rsp
->completed
, totqlen
);
921 if (!trigger_all_cpu_backtrace())
924 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
925 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
926 rsp
->jiffies_stall
= jiffies
+
927 3 * rcu_jiffies_till_stall_check() + 3;
928 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
930 set_need_resched(); /* kick ourselves to get things going. */
933 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
937 struct rcu_node
*rnp
;
939 if (rcu_cpu_stall_suppress
)
941 j
= ACCESS_ONCE(jiffies
);
942 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
944 if (rcu_gp_in_progress(rsp
) &&
945 (ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
947 /* We haven't checked in, so go dump stack. */
948 print_cpu_stall(rsp
);
950 } else if (rcu_gp_in_progress(rsp
) &&
951 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
953 /* They had a few time units to dump stack, so complain. */
954 print_other_cpu_stall(rsp
);
959 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
961 * Set the stall-warning timeout way off into the future, thus preventing
962 * any RCU CPU stall-warning messages from appearing in the current set of
965 * The caller must disable hard irqs.
967 void rcu_cpu_stall_reset(void)
969 struct rcu_state
*rsp
;
971 for_each_rcu_flavor(rsp
)
972 rsp
->jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
976 * Initialize the specified rcu_data structure's callback list to empty.
978 static void init_callback_list(struct rcu_data
*rdp
)
982 if (init_nocb_callback_list(rdp
))
985 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
986 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
990 * Determine the value that ->completed will have at the end of the
991 * next subsequent grace period. This is used to tag callbacks so that
992 * a CPU can invoke callbacks in a timely fashion even if that CPU has
993 * been dyntick-idle for an extended period with callbacks under the
994 * influence of RCU_FAST_NO_HZ.
996 * The caller must hold rnp->lock with interrupts disabled.
998 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
999 struct rcu_node
*rnp
)
1002 * If RCU is idle, we just wait for the next grace period.
1003 * But we can only be sure that RCU is idle if we are looking
1004 * at the root rcu_node structure -- otherwise, a new grace
1005 * period might have started, but just not yet gotten around
1006 * to initializing the current non-root rcu_node structure.
1008 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1009 return rnp
->completed
+ 1;
1012 * Otherwise, wait for a possible partial grace period and
1013 * then the subsequent full grace period.
1015 return rnp
->completed
+ 2;
1019 * Trace-event helper function for rcu_start_future_gp() and
1020 * rcu_nocb_wait_gp().
1022 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1023 unsigned long c
, const char *s
)
1025 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1026 rnp
->completed
, c
, rnp
->level
,
1027 rnp
->grplo
, rnp
->grphi
, s
);
1031 * Start some future grace period, as needed to handle newly arrived
1032 * callbacks. The required future grace periods are recorded in each
1033 * rcu_node structure's ->need_future_gp field.
1035 * The caller must hold the specified rcu_node structure's ->lock.
1037 static unsigned long __maybe_unused
1038 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1042 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1045 * Pick up grace-period number for new callbacks. If this
1046 * grace period is already marked as needed, return to the caller.
1048 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1049 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1050 if (rnp
->need_future_gp
[c
& 0x1]) {
1051 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1056 * If either this rcu_node structure or the root rcu_node structure
1057 * believe that a grace period is in progress, then we must wait
1058 * for the one following, which is in "c". Because our request
1059 * will be noticed at the end of the current grace period, we don't
1060 * need to explicitly start one.
1062 if (rnp
->gpnum
!= rnp
->completed
||
1063 ACCESS_ONCE(rnp
->gpnum
) != ACCESS_ONCE(rnp
->completed
)) {
1064 rnp
->need_future_gp
[c
& 0x1]++;
1065 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1070 * There might be no grace period in progress. If we don't already
1071 * hold it, acquire the root rcu_node structure's lock in order to
1072 * start one (if needed).
1074 if (rnp
!= rnp_root
)
1075 raw_spin_lock(&rnp_root
->lock
);
1078 * Get a new grace-period number. If there really is no grace
1079 * period in progress, it will be smaller than the one we obtained
1080 * earlier. Adjust callbacks as needed. Note that even no-CBs
1081 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1083 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1084 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1085 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1086 rdp
->nxtcompleted
[i
] = c
;
1089 * If the needed for the required grace period is already
1090 * recorded, trace and leave.
1092 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1093 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1097 /* Record the need for the future grace period. */
1098 rnp_root
->need_future_gp
[c
& 0x1]++;
1100 /* If a grace period is not already in progress, start one. */
1101 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1102 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1104 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1105 rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1108 if (rnp
!= rnp_root
)
1109 raw_spin_unlock(&rnp_root
->lock
);
1114 * Clean up any old requests for the just-ended grace period. Also return
1115 * whether any additional grace periods have been requested. Also invoke
1116 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1117 * waiting for this grace period to complete.
1119 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1121 int c
= rnp
->completed
;
1123 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1125 rcu_nocb_gp_cleanup(rsp
, rnp
);
1126 rnp
->need_future_gp
[c
& 0x1] = 0;
1127 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1128 trace_rcu_future_gp(rnp
, rdp
, c
,
1129 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1134 * Awaken the grace-period kthread for the specified flavor of RCU.
1135 * Don't do a self-awaken, and don't bother awakening when there is
1136 * nothing for the grace-period kthread to do (as in several CPUs
1137 * raced to awaken, and we lost), and finally don't try to awaken
1138 * a kthread that has not yet been created.
1140 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1142 if (current
== rsp
->gp_kthread
||
1143 !ACCESS_ONCE(rsp
->gp_flags
) ||
1146 wake_up(&rsp
->gp_wq
);
1150 * If there is room, assign a ->completed number to any callbacks on
1151 * this CPU that have not already been assigned. Also accelerate any
1152 * callbacks that were previously assigned a ->completed number that has
1153 * since proven to be too conservative, which can happen if callbacks get
1154 * assigned a ->completed number while RCU is idle, but with reference to
1155 * a non-root rcu_node structure. This function is idempotent, so it does
1156 * not hurt to call it repeatedly.
1158 * The caller must hold rnp->lock with interrupts disabled.
1160 static void rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1161 struct rcu_data
*rdp
)
1166 /* If the CPU has no callbacks, nothing to do. */
1167 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1171 * Starting from the sublist containing the callbacks most
1172 * recently assigned a ->completed number and working down, find the
1173 * first sublist that is not assignable to an upcoming grace period.
1174 * Such a sublist has something in it (first two tests) and has
1175 * a ->completed number assigned that will complete sooner than
1176 * the ->completed number for newly arrived callbacks (last test).
1178 * The key point is that any later sublist can be assigned the
1179 * same ->completed number as the newly arrived callbacks, which
1180 * means that the callbacks in any of these later sublist can be
1181 * grouped into a single sublist, whether or not they have already
1182 * been assigned a ->completed number.
1184 c
= rcu_cbs_completed(rsp
, rnp
);
1185 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1186 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1187 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1191 * If there are no sublist for unassigned callbacks, leave.
1192 * At the same time, advance "i" one sublist, so that "i" will
1193 * index into the sublist where all the remaining callbacks should
1196 if (++i
>= RCU_NEXT_TAIL
)
1200 * Assign all subsequent callbacks' ->completed number to the next
1201 * full grace period and group them all in the sublist initially
1204 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1205 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1206 rdp
->nxtcompleted
[i
] = c
;
1208 /* Record any needed additional grace periods. */
1209 rcu_start_future_gp(rnp
, rdp
);
1211 /* Trace depending on how much we were able to accelerate. */
1212 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1213 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1215 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1219 * Move any callbacks whose grace period has completed to the
1220 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1221 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1222 * sublist. This function is idempotent, so it does not hurt to
1223 * invoke it repeatedly. As long as it is not invoked -too- often...
1225 * The caller must hold rnp->lock with interrupts disabled.
1227 static void rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1228 struct rcu_data
*rdp
)
1232 /* If the CPU has no callbacks, nothing to do. */
1233 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1237 * Find all callbacks whose ->completed numbers indicate that they
1238 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1240 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1241 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1243 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1245 /* Clean up any sublist tail pointers that were misordered above. */
1246 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1247 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1249 /* Copy down callbacks to fill in empty sublists. */
1250 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1251 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1253 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1254 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1257 /* Classify any remaining callbacks. */
1258 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1262 * Update CPU-local rcu_data state to record the beginnings and ends of
1263 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1264 * structure corresponding to the current CPU, and must have irqs disabled.
1266 static void __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1268 /* Handle the ends of any preceding grace periods first. */
1269 if (rdp
->completed
== rnp
->completed
) {
1271 /* No grace period end, so just accelerate recent callbacks. */
1272 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1276 /* Advance callbacks. */
1277 rcu_advance_cbs(rsp
, rnp
, rdp
);
1279 /* Remember that we saw this grace-period completion. */
1280 rdp
->completed
= rnp
->completed
;
1281 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1284 if (rdp
->gpnum
!= rnp
->gpnum
) {
1286 * If the current grace period is waiting for this CPU,
1287 * set up to detect a quiescent state, otherwise don't
1288 * go looking for one.
1290 rdp
->gpnum
= rnp
->gpnum
;
1291 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1292 rdp
->passed_quiesce
= 0;
1293 rdp
->qs_pending
= !!(rnp
->qsmask
& rdp
->grpmask
);
1294 zero_cpu_stall_ticks(rdp
);
1298 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1300 unsigned long flags
;
1301 struct rcu_node
*rnp
;
1303 local_irq_save(flags
);
1305 if ((rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) &&
1306 rdp
->completed
== ACCESS_ONCE(rnp
->completed
)) || /* w/out lock. */
1307 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
1308 local_irq_restore(flags
);
1311 __note_gp_changes(rsp
, rnp
, rdp
);
1312 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1316 * Initialize a new grace period.
1318 static int rcu_gp_init(struct rcu_state
*rsp
)
1320 struct rcu_data
*rdp
;
1321 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1323 rcu_bind_gp_kthread();
1324 raw_spin_lock_irq(&rnp
->lock
);
1325 rsp
->gp_flags
= 0; /* Clear all flags: New grace period. */
1327 if (rcu_gp_in_progress(rsp
)) {
1328 /* Grace period already in progress, don't start another. */
1329 raw_spin_unlock_irq(&rnp
->lock
);
1333 /* Advance to a new grace period and initialize state. */
1335 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1336 record_gp_stall_check_time(rsp
);
1337 raw_spin_unlock_irq(&rnp
->lock
);
1339 /* Exclude any concurrent CPU-hotplug operations. */
1340 mutex_lock(&rsp
->onoff_mutex
);
1343 * Set the quiescent-state-needed bits in all the rcu_node
1344 * structures for all currently online CPUs in breadth-first order,
1345 * starting from the root rcu_node structure, relying on the layout
1346 * of the tree within the rsp->node[] array. Note that other CPUs
1347 * will access only the leaves of the hierarchy, thus seeing that no
1348 * grace period is in progress, at least until the corresponding
1349 * leaf node has been initialized. In addition, we have excluded
1350 * CPU-hotplug operations.
1352 * The grace period cannot complete until the initialization
1353 * process finishes, because this kthread handles both.
1355 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1356 raw_spin_lock_irq(&rnp
->lock
);
1357 rdp
= this_cpu_ptr(rsp
->rda
);
1358 rcu_preempt_check_blocked_tasks(rnp
);
1359 rnp
->qsmask
= rnp
->qsmaskinit
;
1360 ACCESS_ONCE(rnp
->gpnum
) = rsp
->gpnum
;
1361 WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
);
1362 ACCESS_ONCE(rnp
->completed
) = rsp
->completed
;
1363 if (rnp
== rdp
->mynode
)
1364 __note_gp_changes(rsp
, rnp
, rdp
);
1365 rcu_preempt_boost_start_gp(rnp
);
1366 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1367 rnp
->level
, rnp
->grplo
,
1368 rnp
->grphi
, rnp
->qsmask
);
1369 raw_spin_unlock_irq(&rnp
->lock
);
1370 #ifdef CONFIG_PROVE_RCU_DELAY
1371 if ((prandom_u32() % (rcu_num_nodes
+ 1)) == 0 &&
1372 system_state
== SYSTEM_RUNNING
)
1374 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1378 mutex_unlock(&rsp
->onoff_mutex
);
1383 * Do one round of quiescent-state forcing.
1385 int rcu_gp_fqs(struct rcu_state
*rsp
, int fqs_state_in
)
1387 int fqs_state
= fqs_state_in
;
1388 bool isidle
= false;
1390 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1393 if (fqs_state
== RCU_SAVE_DYNTICK
) {
1394 /* Collect dyntick-idle snapshots. */
1395 if (is_sysidle_rcu_state(rsp
)) {
1397 maxj
= jiffies
- ULONG_MAX
/ 4;
1399 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
1401 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
1402 fqs_state
= RCU_FORCE_QS
;
1404 /* Handle dyntick-idle and offline CPUs. */
1406 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
1408 /* Clear flag to prevent immediate re-entry. */
1409 if (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
1410 raw_spin_lock_irq(&rnp
->lock
);
1411 rsp
->gp_flags
&= ~RCU_GP_FLAG_FQS
;
1412 raw_spin_unlock_irq(&rnp
->lock
);
1418 * Clean up after the old grace period.
1420 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
1422 unsigned long gp_duration
;
1424 struct rcu_data
*rdp
;
1425 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1427 raw_spin_lock_irq(&rnp
->lock
);
1428 gp_duration
= jiffies
- rsp
->gp_start
;
1429 if (gp_duration
> rsp
->gp_max
)
1430 rsp
->gp_max
= gp_duration
;
1433 * We know the grace period is complete, but to everyone else
1434 * it appears to still be ongoing. But it is also the case
1435 * that to everyone else it looks like there is nothing that
1436 * they can do to advance the grace period. It is therefore
1437 * safe for us to drop the lock in order to mark the grace
1438 * period as completed in all of the rcu_node structures.
1440 raw_spin_unlock_irq(&rnp
->lock
);
1443 * Propagate new ->completed value to rcu_node structures so
1444 * that other CPUs don't have to wait until the start of the next
1445 * grace period to process their callbacks. This also avoids
1446 * some nasty RCU grace-period initialization races by forcing
1447 * the end of the current grace period to be completely recorded in
1448 * all of the rcu_node structures before the beginning of the next
1449 * grace period is recorded in any of the rcu_node structures.
1451 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1452 raw_spin_lock_irq(&rnp
->lock
);
1453 ACCESS_ONCE(rnp
->completed
) = rsp
->gpnum
;
1454 rdp
= this_cpu_ptr(rsp
->rda
);
1455 if (rnp
== rdp
->mynode
)
1456 __note_gp_changes(rsp
, rnp
, rdp
);
1457 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
1458 raw_spin_unlock_irq(&rnp
->lock
);
1461 rnp
= rcu_get_root(rsp
);
1462 raw_spin_lock_irq(&rnp
->lock
);
1463 rcu_nocb_gp_set(rnp
, nocb
);
1465 rsp
->completed
= rsp
->gpnum
; /* Declare grace period done. */
1466 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
1467 rsp
->fqs_state
= RCU_GP_IDLE
;
1468 rdp
= this_cpu_ptr(rsp
->rda
);
1469 rcu_advance_cbs(rsp
, rnp
, rdp
); /* Reduce false positives below. */
1470 if (cpu_needs_another_gp(rsp
, rdp
))
1472 raw_spin_unlock_irq(&rnp
->lock
);
1476 * Body of kthread that handles grace periods.
1478 static int __noreturn
rcu_gp_kthread(void *arg
)
1483 struct rcu_state
*rsp
= arg
;
1484 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1488 /* Handle grace-period start. */
1490 wait_event_interruptible(rsp
->gp_wq
,
1493 if ((rsp
->gp_flags
& RCU_GP_FLAG_INIT
) &&
1497 flush_signals(current
);
1500 /* Handle quiescent-state forcing. */
1501 fqs_state
= RCU_SAVE_DYNTICK
;
1502 j
= jiffies_till_first_fqs
;
1505 jiffies_till_first_fqs
= HZ
;
1508 rsp
->jiffies_force_qs
= jiffies
+ j
;
1509 ret
= wait_event_interruptible_timeout(rsp
->gp_wq
,
1510 (rsp
->gp_flags
& RCU_GP_FLAG_FQS
) ||
1511 (!ACCESS_ONCE(rnp
->qsmask
) &&
1512 !rcu_preempt_blocked_readers_cgp(rnp
)),
1514 /* If grace period done, leave loop. */
1515 if (!ACCESS_ONCE(rnp
->qsmask
) &&
1516 !rcu_preempt_blocked_readers_cgp(rnp
))
1518 /* If time for quiescent-state forcing, do it. */
1519 if (ret
== 0 || (rsp
->gp_flags
& RCU_GP_FLAG_FQS
)) {
1520 fqs_state
= rcu_gp_fqs(rsp
, fqs_state
);
1523 /* Deal with stray signal. */
1525 flush_signals(current
);
1527 j
= jiffies_till_next_fqs
;
1530 jiffies_till_next_fqs
= HZ
;
1533 jiffies_till_next_fqs
= 1;
1537 /* Handle grace-period end. */
1538 rcu_gp_cleanup(rsp
);
1542 static void rsp_wakeup(struct irq_work
*work
)
1544 struct rcu_state
*rsp
= container_of(work
, struct rcu_state
, wakeup_work
);
1546 /* Wake up rcu_gp_kthread() to start the grace period. */
1547 rcu_gp_kthread_wake(rsp
);
1551 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1552 * in preparation for detecting the next grace period. The caller must hold
1553 * the root node's ->lock and hard irqs must be disabled.
1555 * Note that it is legal for a dying CPU (which is marked as offline) to
1556 * invoke this function. This can happen when the dying CPU reports its
1560 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1561 struct rcu_data
*rdp
)
1563 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
1565 * Either we have not yet spawned the grace-period
1566 * task, this CPU does not need another grace period,
1567 * or a grace period is already in progress.
1568 * Either way, don't start a new grace period.
1572 rsp
->gp_flags
= RCU_GP_FLAG_INIT
;
1575 * We can't do wakeups while holding the rnp->lock, as that
1576 * could cause possible deadlocks with the rq->lock. Defer
1577 * the wakeup to interrupt context. And don't bother waking
1578 * up the running kthread.
1580 if (current
!= rsp
->gp_kthread
)
1581 irq_work_queue(&rsp
->wakeup_work
);
1585 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1586 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1587 * is invoked indirectly from rcu_advance_cbs(), which would result in
1588 * endless recursion -- or would do so if it wasn't for the self-deadlock
1589 * that is encountered beforehand.
1592 rcu_start_gp(struct rcu_state
*rsp
)
1594 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1595 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1598 * If there is no grace period in progress right now, any
1599 * callbacks we have up to this point will be satisfied by the
1600 * next grace period. Also, advancing the callbacks reduces the
1601 * probability of false positives from cpu_needs_another_gp()
1602 * resulting in pointless grace periods. So, advance callbacks
1603 * then start the grace period!
1605 rcu_advance_cbs(rsp
, rnp
, rdp
);
1606 rcu_start_gp_advanced(rsp
, rnp
, rdp
);
1610 * Report a full set of quiescent states to the specified rcu_state
1611 * data structure. This involves cleaning up after the prior grace
1612 * period and letting rcu_start_gp() start up the next grace period
1613 * if one is needed. Note that the caller must hold rnp->lock, which
1614 * is released before return.
1616 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
1617 __releases(rcu_get_root(rsp
)->lock
)
1619 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
1620 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
1621 rcu_gp_kthread_wake(rsp
);
1625 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1626 * Allows quiescent states for a group of CPUs to be reported at one go
1627 * to the specified rcu_node structure, though all the CPUs in the group
1628 * must be represented by the same rcu_node structure (which need not be
1629 * a leaf rcu_node structure, though it often will be). That structure's
1630 * lock must be held upon entry, and it is released before return.
1633 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
1634 struct rcu_node
*rnp
, unsigned long flags
)
1635 __releases(rnp
->lock
)
1637 struct rcu_node
*rnp_c
;
1639 /* Walk up the rcu_node hierarchy. */
1641 if (!(rnp
->qsmask
& mask
)) {
1643 /* Our bit has already been cleared, so done. */
1644 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1647 rnp
->qsmask
&= ~mask
;
1648 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
1649 mask
, rnp
->qsmask
, rnp
->level
,
1650 rnp
->grplo
, rnp
->grphi
,
1652 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1654 /* Other bits still set at this level, so done. */
1655 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1658 mask
= rnp
->grpmask
;
1659 if (rnp
->parent
== NULL
) {
1661 /* No more levels. Exit loop holding root lock. */
1665 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1668 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1669 WARN_ON_ONCE(rnp_c
->qsmask
);
1673 * Get here if we are the last CPU to pass through a quiescent
1674 * state for this grace period. Invoke rcu_report_qs_rsp()
1675 * to clean up and start the next grace period if one is needed.
1677 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1681 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1682 * structure. This must be either called from the specified CPU, or
1683 * called when the specified CPU is known to be offline (and when it is
1684 * also known that no other CPU is concurrently trying to help the offline
1685 * CPU). The lastcomp argument is used to make sure we are still in the
1686 * grace period of interest. We don't want to end the current grace period
1687 * based on quiescent states detected in an earlier grace period!
1690 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1692 unsigned long flags
;
1694 struct rcu_node
*rnp
;
1697 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1698 if (rdp
->passed_quiesce
== 0 || rdp
->gpnum
!= rnp
->gpnum
||
1699 rnp
->completed
== rnp
->gpnum
) {
1702 * The grace period in which this quiescent state was
1703 * recorded has ended, so don't report it upwards.
1704 * We will instead need a new quiescent state that lies
1705 * within the current grace period.
1707 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1708 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1711 mask
= rdp
->grpmask
;
1712 if ((rnp
->qsmask
& mask
) == 0) {
1713 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1715 rdp
->qs_pending
= 0;
1718 * This GP can't end until cpu checks in, so all of our
1719 * callbacks can be processed during the next GP.
1721 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1723 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1728 * Check to see if there is a new grace period of which this CPU
1729 * is not yet aware, and if so, set up local rcu_data state for it.
1730 * Otherwise, see if this CPU has just passed through its first
1731 * quiescent state for this grace period, and record that fact if so.
1734 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1736 /* Check for grace-period ends and beginnings. */
1737 note_gp_changes(rsp
, rdp
);
1740 * Does this CPU still need to do its part for current grace period?
1741 * If no, return and let the other CPUs do their part as well.
1743 if (!rdp
->qs_pending
)
1747 * Was there a quiescent state since the beginning of the grace
1748 * period? If no, then exit and wait for the next call.
1750 if (!rdp
->passed_quiesce
)
1754 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1757 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
1760 #ifdef CONFIG_HOTPLUG_CPU
1763 * Send the specified CPU's RCU callbacks to the orphanage. The
1764 * specified CPU must be offline, and the caller must hold the
1768 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
1769 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1771 /* No-CBs CPUs do not have orphanable callbacks. */
1772 if (rcu_is_nocb_cpu(rdp
->cpu
))
1776 * Orphan the callbacks. First adjust the counts. This is safe
1777 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1778 * cannot be running now. Thus no memory barrier is required.
1780 if (rdp
->nxtlist
!= NULL
) {
1781 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
1782 rsp
->qlen
+= rdp
->qlen
;
1783 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1785 ACCESS_ONCE(rdp
->qlen
) = 0;
1789 * Next, move those callbacks still needing a grace period to
1790 * the orphanage, where some other CPU will pick them up.
1791 * Some of the callbacks might have gone partway through a grace
1792 * period, but that is too bad. They get to start over because we
1793 * cannot assume that grace periods are synchronized across CPUs.
1794 * We don't bother updating the ->nxttail[] array yet, instead
1795 * we just reset the whole thing later on.
1797 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
1798 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1799 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
1800 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1804 * Then move the ready-to-invoke callbacks to the orphanage,
1805 * where some other CPU will pick them up. These will not be
1806 * required to pass though another grace period: They are done.
1808 if (rdp
->nxtlist
!= NULL
) {
1809 *rsp
->orphan_donetail
= rdp
->nxtlist
;
1810 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1813 /* Finally, initialize the rcu_data structure's list to empty. */
1814 init_callback_list(rdp
);
1818 * Adopt the RCU callbacks from the specified rcu_state structure's
1819 * orphanage. The caller must hold the ->orphan_lock.
1821 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1824 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
1826 /* No-CBs CPUs are handled specially. */
1827 if (rcu_nocb_adopt_orphan_cbs(rsp
, rdp
))
1830 /* Do the accounting first. */
1831 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
1832 rdp
->qlen
+= rsp
->qlen
;
1833 rdp
->n_cbs_adopted
+= rsp
->qlen
;
1834 if (rsp
->qlen_lazy
!= rsp
->qlen
)
1835 rcu_idle_count_callbacks_posted();
1840 * We do not need a memory barrier here because the only way we
1841 * can get here if there is an rcu_barrier() in flight is if
1842 * we are the task doing the rcu_barrier().
1845 /* First adopt the ready-to-invoke callbacks. */
1846 if (rsp
->orphan_donelist
!= NULL
) {
1847 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1848 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
1849 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
1850 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1851 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
1852 rsp
->orphan_donelist
= NULL
;
1853 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
1856 /* And then adopt the callbacks that still need a grace period. */
1857 if (rsp
->orphan_nxtlist
!= NULL
) {
1858 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
1859 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
1860 rsp
->orphan_nxtlist
= NULL
;
1861 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
1866 * Trace the fact that this CPU is going offline.
1868 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1870 RCU_TRACE(unsigned long mask
);
1871 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
1872 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
1874 RCU_TRACE(mask
= rdp
->grpmask
);
1875 trace_rcu_grace_period(rsp
->name
,
1876 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
1881 * The CPU has been completely removed, and some other CPU is reporting
1882 * this fact from process context. Do the remainder of the cleanup,
1883 * including orphaning the outgoing CPU's RCU callbacks, and also
1884 * adopting them. There can only be one CPU hotplug operation at a time,
1885 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1887 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1889 unsigned long flags
;
1891 int need_report
= 0;
1892 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1893 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
1895 /* Adjust any no-longer-needed kthreads. */
1896 rcu_boost_kthread_setaffinity(rnp
, -1);
1898 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1900 /* Exclude any attempts to start a new grace period. */
1901 mutex_lock(&rsp
->onoff_mutex
);
1902 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
1904 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1905 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
1906 rcu_adopt_orphan_cbs(rsp
);
1908 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1909 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1911 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1912 rnp
->qsmaskinit
&= ~mask
;
1913 if (rnp
->qsmaskinit
!= 0) {
1914 if (rnp
!= rdp
->mynode
)
1915 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1918 if (rnp
== rdp
->mynode
)
1919 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1921 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1922 mask
= rnp
->grpmask
;
1924 } while (rnp
!= NULL
);
1927 * We still hold the leaf rcu_node structure lock here, and
1928 * irqs are still disabled. The reason for this subterfuge is
1929 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1930 * held leads to deadlock.
1932 raw_spin_unlock(&rsp
->orphan_lock
); /* irqs remain disabled. */
1934 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1935 rcu_report_unblock_qs_rnp(rnp
, flags
);
1937 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1938 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1939 rcu_report_exp_rnp(rsp
, rnp
, true);
1940 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
1941 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1942 cpu
, rdp
->qlen
, rdp
->nxtlist
);
1943 init_callback_list(rdp
);
1944 /* Disallow further callbacks on this CPU. */
1945 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
1946 mutex_unlock(&rsp
->onoff_mutex
);
1949 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1951 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1955 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1959 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1962 * Invoke any RCU callbacks that have made it to the end of their grace
1963 * period. Thottle as specified by rdp->blimit.
1965 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1967 unsigned long flags
;
1968 struct rcu_head
*next
, *list
, **tail
;
1969 long bl
, count
, count_lazy
;
1972 /* If no callbacks are ready, just return. */
1973 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
1974 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
1975 trace_rcu_batch_end(rsp
->name
, 0, !!ACCESS_ONCE(rdp
->nxtlist
),
1976 need_resched(), is_idle_task(current
),
1977 rcu_is_callbacks_kthread());
1982 * Extract the list of ready callbacks, disabling to prevent
1983 * races with call_rcu() from interrupt handlers.
1985 local_irq_save(flags
);
1986 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1988 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
1989 list
= rdp
->nxtlist
;
1990 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1991 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1992 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1993 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
1994 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1995 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1996 local_irq_restore(flags
);
1998 /* Invoke callbacks. */
1999 count
= count_lazy
= 0;
2003 debug_rcu_head_unqueue(list
);
2004 if (__rcu_reclaim(rsp
->name
, list
))
2007 /* Stop only if limit reached and CPU has something to do. */
2008 if (++count
>= bl
&&
2010 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2014 local_irq_save(flags
);
2015 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2016 is_idle_task(current
),
2017 rcu_is_callbacks_kthread());
2019 /* Update count, and requeue any remaining callbacks. */
2021 *tail
= rdp
->nxtlist
;
2022 rdp
->nxtlist
= list
;
2023 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2024 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2025 rdp
->nxttail
[i
] = tail
;
2029 smp_mb(); /* List handling before counting for rcu_barrier(). */
2030 rdp
->qlen_lazy
-= count_lazy
;
2031 ACCESS_ONCE(rdp
->qlen
) -= count
;
2032 rdp
->n_cbs_invoked
+= count
;
2034 /* Reinstate batch limit if we have worked down the excess. */
2035 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2036 rdp
->blimit
= blimit
;
2038 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2039 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2040 rdp
->qlen_last_fqs_check
= 0;
2041 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2042 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2043 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2044 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2046 local_irq_restore(flags
);
2048 /* Re-invoke RCU core processing if there are callbacks remaining. */
2049 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2054 * Check to see if this CPU is in a non-context-switch quiescent state
2055 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2056 * Also schedule RCU core processing.
2058 * This function must be called from hardirq context. It is normally
2059 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2060 * false, there is no point in invoking rcu_check_callbacks().
2062 void rcu_check_callbacks(int cpu
, int user
)
2064 trace_rcu_utilization(TPS("Start scheduler-tick"));
2065 increment_cpu_stall_ticks();
2066 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2069 * Get here if this CPU took its interrupt from user
2070 * mode or from the idle loop, and if this is not a
2071 * nested interrupt. In this case, the CPU is in
2072 * a quiescent state, so note it.
2074 * No memory barrier is required here because both
2075 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2076 * variables that other CPUs neither access nor modify,
2077 * at least not while the corresponding CPU is online.
2083 } else if (!in_softirq()) {
2086 * Get here if this CPU did not take its interrupt from
2087 * softirq, in other words, if it is not interrupting
2088 * a rcu_bh read-side critical section. This is an _bh
2089 * critical section, so note it.
2094 rcu_preempt_check_callbacks(cpu
);
2095 if (rcu_pending(cpu
))
2097 trace_rcu_utilization(TPS("End scheduler-tick"));
2101 * Scan the leaf rcu_node structures, processing dyntick state for any that
2102 * have not yet encountered a quiescent state, using the function specified.
2103 * Also initiate boosting for any threads blocked on the root rcu_node.
2105 * The caller must have suppressed start of new grace periods.
2107 static void force_qs_rnp(struct rcu_state
*rsp
,
2108 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2109 unsigned long *maxj
),
2110 bool *isidle
, unsigned long *maxj
)
2114 unsigned long flags
;
2116 struct rcu_node
*rnp
;
2118 rcu_for_each_leaf_node(rsp
, rnp
) {
2121 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2122 if (!rcu_gp_in_progress(rsp
)) {
2123 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2126 if (rnp
->qsmask
== 0) {
2127 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
2132 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
2133 if ((rnp
->qsmask
& bit
) != 0) {
2134 if ((rnp
->qsmaskinit
& bit
) != 0)
2136 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2142 /* rcu_report_qs_rnp() releases rnp->lock. */
2143 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
2146 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2148 rnp
= rcu_get_root(rsp
);
2149 if (rnp
->qsmask
== 0) {
2150 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2151 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
2156 * Force quiescent states on reluctant CPUs, and also detect which
2157 * CPUs are in dyntick-idle mode.
2159 static void force_quiescent_state(struct rcu_state
*rsp
)
2161 unsigned long flags
;
2163 struct rcu_node
*rnp
;
2164 struct rcu_node
*rnp_old
= NULL
;
2166 /* Funnel through hierarchy to reduce memory contention. */
2167 rnp
= per_cpu_ptr(rsp
->rda
, raw_smp_processor_id())->mynode
;
2168 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2169 ret
= (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2170 !raw_spin_trylock(&rnp
->fqslock
);
2171 if (rnp_old
!= NULL
)
2172 raw_spin_unlock(&rnp_old
->fqslock
);
2174 rsp
->n_force_qs_lh
++;
2179 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2181 /* Reached the root of the rcu_node tree, acquire lock. */
2182 raw_spin_lock_irqsave(&rnp_old
->lock
, flags
);
2183 raw_spin_unlock(&rnp_old
->fqslock
);
2184 if (ACCESS_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2185 rsp
->n_force_qs_lh
++;
2186 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2187 return; /* Someone beat us to it. */
2189 rsp
->gp_flags
|= RCU_GP_FLAG_FQS
;
2190 raw_spin_unlock_irqrestore(&rnp_old
->lock
, flags
);
2191 rcu_gp_kthread_wake(rsp
);
2195 * This does the RCU core processing work for the specified rcu_state
2196 * and rcu_data structures. This may be called only from the CPU to
2197 * whom the rdp belongs.
2200 __rcu_process_callbacks(struct rcu_state
*rsp
)
2202 unsigned long flags
;
2203 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
2205 WARN_ON_ONCE(rdp
->beenonline
== 0);
2207 /* Update RCU state based on any recent quiescent states. */
2208 rcu_check_quiescent_state(rsp
, rdp
);
2210 /* Does this CPU require a not-yet-started grace period? */
2211 local_irq_save(flags
);
2212 if (cpu_needs_another_gp(rsp
, rdp
)) {
2213 raw_spin_lock(&rcu_get_root(rsp
)->lock
); /* irqs disabled. */
2215 raw_spin_unlock_irqrestore(&rcu_get_root(rsp
)->lock
, flags
);
2217 local_irq_restore(flags
);
2220 /* If there are callbacks ready, invoke them. */
2221 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2222 invoke_rcu_callbacks(rsp
, rdp
);
2226 * Do RCU core processing for the current CPU.
2228 static void rcu_process_callbacks(struct softirq_action
*unused
)
2230 struct rcu_state
*rsp
;
2232 if (cpu_is_offline(smp_processor_id()))
2234 trace_rcu_utilization(TPS("Start RCU core"));
2235 for_each_rcu_flavor(rsp
)
2236 __rcu_process_callbacks(rsp
);
2237 trace_rcu_utilization(TPS("End RCU core"));
2241 * Schedule RCU callback invocation. If the specified type of RCU
2242 * does not support RCU priority boosting, just do a direct call,
2243 * otherwise wake up the per-CPU kernel kthread. Note that because we
2244 * are running on the current CPU with interrupts disabled, the
2245 * rcu_cpu_kthread_task cannot disappear out from under us.
2247 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2249 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
2251 if (likely(!rsp
->boost
)) {
2252 rcu_do_batch(rsp
, rdp
);
2255 invoke_rcu_callbacks_kthread();
2258 static void invoke_rcu_core(void)
2260 if (cpu_online(smp_processor_id()))
2261 raise_softirq(RCU_SOFTIRQ
);
2265 * Handle any core-RCU processing required by a call_rcu() invocation.
2267 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2268 struct rcu_head
*head
, unsigned long flags
)
2271 * If called from an extended quiescent state, invoke the RCU
2272 * core in order to force a re-evaluation of RCU's idleness.
2274 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2277 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2278 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2282 * Force the grace period if too many callbacks or too long waiting.
2283 * Enforce hysteresis, and don't invoke force_quiescent_state()
2284 * if some other CPU has recently done so. Also, don't bother
2285 * invoking force_quiescent_state() if the newly enqueued callback
2286 * is the only one waiting for a grace period to complete.
2288 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
2290 /* Are we ignoring a completed grace period? */
2291 note_gp_changes(rsp
, rdp
);
2293 /* Start a new grace period if one not already started. */
2294 if (!rcu_gp_in_progress(rsp
)) {
2295 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
2297 raw_spin_lock(&rnp_root
->lock
);
2299 raw_spin_unlock(&rnp_root
->lock
);
2301 /* Give the grace period a kick. */
2302 rdp
->blimit
= LONG_MAX
;
2303 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
2304 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
2305 force_quiescent_state(rsp
);
2306 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2307 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2313 * RCU callback function to leak a callback.
2315 static void rcu_leak_callback(struct rcu_head
*rhp
)
2320 * Helper function for call_rcu() and friends. The cpu argument will
2321 * normally be -1, indicating "currently running CPU". It may specify
2322 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2323 * is expected to specify a CPU.
2326 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
2327 struct rcu_state
*rsp
, int cpu
, bool lazy
)
2329 unsigned long flags
;
2330 struct rcu_data
*rdp
;
2332 WARN_ON_ONCE((unsigned long)head
& 0x3); /* Misaligned rcu_head! */
2333 if (debug_rcu_head_queue(head
)) {
2334 /* Probable double call_rcu(), so leak the callback. */
2335 ACCESS_ONCE(head
->func
) = rcu_leak_callback
;
2336 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2343 * Opportunistically note grace-period endings and beginnings.
2344 * Note that we might see a beginning right after we see an
2345 * end, but never vice versa, since this CPU has to pass through
2346 * a quiescent state betweentimes.
2348 local_irq_save(flags
);
2349 rdp
= this_cpu_ptr(rsp
->rda
);
2351 /* Add the callback to our list. */
2352 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
2356 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2357 offline
= !__call_rcu_nocb(rdp
, head
, lazy
);
2358 WARN_ON_ONCE(offline
);
2359 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2360 local_irq_restore(flags
);
2363 ACCESS_ONCE(rdp
->qlen
)++;
2367 rcu_idle_count_callbacks_posted();
2368 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2369 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
2370 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
2372 if (__is_kfree_rcu_offset((unsigned long)func
))
2373 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
2374 rdp
->qlen_lazy
, rdp
->qlen
);
2376 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
2378 /* Go handle any RCU core processing required. */
2379 __call_rcu_core(rsp
, rdp
, head
, flags
);
2380 local_irq_restore(flags
);
2384 * Queue an RCU-sched callback for invocation after a grace period.
2386 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
2388 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
2390 EXPORT_SYMBOL_GPL(call_rcu_sched
);
2393 * Queue an RCU callback for invocation after a quicker grace period.
2395 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
2397 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
2399 EXPORT_SYMBOL_GPL(call_rcu_bh
);
2402 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2403 * any blocking grace-period wait automatically implies a grace period
2404 * if there is only one CPU online at any point time during execution
2405 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2406 * occasionally incorrectly indicate that there are multiple CPUs online
2407 * when there was in fact only one the whole time, as this just adds
2408 * some overhead: RCU still operates correctly.
2410 static inline int rcu_blocking_is_gp(void)
2414 might_sleep(); /* Check for RCU read-side critical section. */
2416 ret
= num_online_cpus() <= 1;
2422 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2424 * Control will return to the caller some time after a full rcu-sched
2425 * grace period has elapsed, in other words after all currently executing
2426 * rcu-sched read-side critical sections have completed. These read-side
2427 * critical sections are delimited by rcu_read_lock_sched() and
2428 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2429 * local_irq_disable(), and so on may be used in place of
2430 * rcu_read_lock_sched().
2432 * This means that all preempt_disable code sequences, including NMI and
2433 * non-threaded hardware-interrupt handlers, in progress on entry will
2434 * have completed before this primitive returns. However, this does not
2435 * guarantee that softirq handlers will have completed, since in some
2436 * kernels, these handlers can run in process context, and can block.
2438 * Note that this guarantee implies further memory-ordering guarantees.
2439 * On systems with more than one CPU, when synchronize_sched() returns,
2440 * each CPU is guaranteed to have executed a full memory barrier since the
2441 * end of its last RCU-sched read-side critical section whose beginning
2442 * preceded the call to synchronize_sched(). In addition, each CPU having
2443 * an RCU read-side critical section that extends beyond the return from
2444 * synchronize_sched() is guaranteed to have executed a full memory barrier
2445 * after the beginning of synchronize_sched() and before the beginning of
2446 * that RCU read-side critical section. Note that these guarantees include
2447 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2448 * that are executing in the kernel.
2450 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2451 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2452 * to have executed a full memory barrier during the execution of
2453 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2454 * again only if the system has more than one CPU).
2456 * This primitive provides the guarantees made by the (now removed)
2457 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2458 * guarantees that rcu_read_lock() sections will have completed.
2459 * In "classic RCU", these two guarantees happen to be one and
2460 * the same, but can differ in realtime RCU implementations.
2462 void synchronize_sched(void)
2464 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2465 !lock_is_held(&rcu_lock_map
) &&
2466 !lock_is_held(&rcu_sched_lock_map
),
2467 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2468 if (rcu_blocking_is_gp())
2471 synchronize_sched_expedited();
2473 wait_rcu_gp(call_rcu_sched
);
2475 EXPORT_SYMBOL_GPL(synchronize_sched
);
2478 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2480 * Control will return to the caller some time after a full rcu_bh grace
2481 * period has elapsed, in other words after all currently executing rcu_bh
2482 * read-side critical sections have completed. RCU read-side critical
2483 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2484 * and may be nested.
2486 * See the description of synchronize_sched() for more detailed information
2487 * on memory ordering guarantees.
2489 void synchronize_rcu_bh(void)
2491 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2492 !lock_is_held(&rcu_lock_map
) &&
2493 !lock_is_held(&rcu_sched_lock_map
),
2494 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2495 if (rcu_blocking_is_gp())
2498 synchronize_rcu_bh_expedited();
2500 wait_rcu_gp(call_rcu_bh
);
2502 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
2504 static int synchronize_sched_expedited_cpu_stop(void *data
)
2507 * There must be a full memory barrier on each affected CPU
2508 * between the time that try_stop_cpus() is called and the
2509 * time that it returns.
2511 * In the current initial implementation of cpu_stop, the
2512 * above condition is already met when the control reaches
2513 * this point and the following smp_mb() is not strictly
2514 * necessary. Do smp_mb() anyway for documentation and
2515 * robustness against future implementation changes.
2517 smp_mb(); /* See above comment block. */
2522 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2524 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2525 * approach to force the grace period to end quickly. This consumes
2526 * significant time on all CPUs and is unfriendly to real-time workloads,
2527 * so is thus not recommended for any sort of common-case code. In fact,
2528 * if you are using synchronize_sched_expedited() in a loop, please
2529 * restructure your code to batch your updates, and then use a single
2530 * synchronize_sched() instead.
2532 * Note that it is illegal to call this function while holding any lock
2533 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2534 * to call this function from a CPU-hotplug notifier. Failing to observe
2535 * these restriction will result in deadlock.
2537 * This implementation can be thought of as an application of ticket
2538 * locking to RCU, with sync_sched_expedited_started and
2539 * sync_sched_expedited_done taking on the roles of the halves
2540 * of the ticket-lock word. Each task atomically increments
2541 * sync_sched_expedited_started upon entry, snapshotting the old value,
2542 * then attempts to stop all the CPUs. If this succeeds, then each
2543 * CPU will have executed a context switch, resulting in an RCU-sched
2544 * grace period. We are then done, so we use atomic_cmpxchg() to
2545 * update sync_sched_expedited_done to match our snapshot -- but
2546 * only if someone else has not already advanced past our snapshot.
2548 * On the other hand, if try_stop_cpus() fails, we check the value
2549 * of sync_sched_expedited_done. If it has advanced past our
2550 * initial snapshot, then someone else must have forced a grace period
2551 * some time after we took our snapshot. In this case, our work is
2552 * done for us, and we can simply return. Otherwise, we try again,
2553 * but keep our initial snapshot for purposes of checking for someone
2554 * doing our work for us.
2556 * If we fail too many times in a row, we fall back to synchronize_sched().
2558 void synchronize_sched_expedited(void)
2560 long firstsnap
, s
, snap
;
2562 struct rcu_state
*rsp
= &rcu_sched_state
;
2565 * If we are in danger of counter wrap, just do synchronize_sched().
2566 * By allowing sync_sched_expedited_started to advance no more than
2567 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2568 * that more than 3.5 billion CPUs would be required to force a
2569 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2570 * course be required on a 64-bit system.
2572 if (ULONG_CMP_GE((ulong
)atomic_long_read(&rsp
->expedited_start
),
2573 (ulong
)atomic_long_read(&rsp
->expedited_done
) +
2575 synchronize_sched();
2576 atomic_long_inc(&rsp
->expedited_wrap
);
2581 * Take a ticket. Note that atomic_inc_return() implies a
2582 * full memory barrier.
2584 snap
= atomic_long_inc_return(&rsp
->expedited_start
);
2587 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2590 * Each pass through the following loop attempts to force a
2591 * context switch on each CPU.
2593 while (try_stop_cpus(cpu_online_mask
,
2594 synchronize_sched_expedited_cpu_stop
,
2597 atomic_long_inc(&rsp
->expedited_tryfail
);
2599 /* Check to see if someone else did our work for us. */
2600 s
= atomic_long_read(&rsp
->expedited_done
);
2601 if (ULONG_CMP_GE((ulong
)s
, (ulong
)firstsnap
)) {
2602 /* ensure test happens before caller kfree */
2603 smp_mb__before_atomic_inc(); /* ^^^ */
2604 atomic_long_inc(&rsp
->expedited_workdone1
);
2608 /* No joy, try again later. Or just synchronize_sched(). */
2609 if (trycount
++ < 10) {
2610 udelay(trycount
* num_online_cpus());
2612 wait_rcu_gp(call_rcu_sched
);
2613 atomic_long_inc(&rsp
->expedited_normal
);
2617 /* Recheck to see if someone else did our work for us. */
2618 s
= atomic_long_read(&rsp
->expedited_done
);
2619 if (ULONG_CMP_GE((ulong
)s
, (ulong
)firstsnap
)) {
2620 /* ensure test happens before caller kfree */
2621 smp_mb__before_atomic_inc(); /* ^^^ */
2622 atomic_long_inc(&rsp
->expedited_workdone2
);
2627 * Refetching sync_sched_expedited_started allows later
2628 * callers to piggyback on our grace period. We retry
2629 * after they started, so our grace period works for them,
2630 * and they started after our first try, so their grace
2631 * period works for us.
2634 snap
= atomic_long_read(&rsp
->expedited_start
);
2635 smp_mb(); /* ensure read is before try_stop_cpus(). */
2637 atomic_long_inc(&rsp
->expedited_stoppedcpus
);
2640 * Everyone up to our most recent fetch is covered by our grace
2641 * period. Update the counter, but only if our work is still
2642 * relevant -- which it won't be if someone who started later
2643 * than we did already did their update.
2646 atomic_long_inc(&rsp
->expedited_done_tries
);
2647 s
= atomic_long_read(&rsp
->expedited_done
);
2648 if (ULONG_CMP_GE((ulong
)s
, (ulong
)snap
)) {
2649 /* ensure test happens before caller kfree */
2650 smp_mb__before_atomic_inc(); /* ^^^ */
2651 atomic_long_inc(&rsp
->expedited_done_lost
);
2654 } while (atomic_long_cmpxchg(&rsp
->expedited_done
, s
, snap
) != s
);
2655 atomic_long_inc(&rsp
->expedited_done_exit
);
2659 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
2662 * Check to see if there is any immediate RCU-related work to be done
2663 * by the current CPU, for the specified type of RCU, returning 1 if so.
2664 * The checks are in order of increasing expense: checks that can be
2665 * carried out against CPU-local state are performed first. However,
2666 * we must check for CPU stalls first, else we might not get a chance.
2668 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2670 struct rcu_node
*rnp
= rdp
->mynode
;
2672 rdp
->n_rcu_pending
++;
2674 /* Check for CPU stalls, if enabled. */
2675 check_cpu_stall(rsp
, rdp
);
2677 /* Is the RCU core waiting for a quiescent state from this CPU? */
2678 if (rcu_scheduler_fully_active
&&
2679 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
2680 rdp
->n_rp_qs_pending
++;
2681 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
2682 rdp
->n_rp_report_qs
++;
2686 /* Does this CPU have callbacks ready to invoke? */
2687 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
2688 rdp
->n_rp_cb_ready
++;
2692 /* Has RCU gone idle with this CPU needing another grace period? */
2693 if (cpu_needs_another_gp(rsp
, rdp
)) {
2694 rdp
->n_rp_cpu_needs_gp
++;
2698 /* Has another RCU grace period completed? */
2699 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
2700 rdp
->n_rp_gp_completed
++;
2704 /* Has a new RCU grace period started? */
2705 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
2706 rdp
->n_rp_gp_started
++;
2711 rdp
->n_rp_need_nothing
++;
2716 * Check to see if there is any immediate RCU-related work to be done
2717 * by the current CPU, returning 1 if so. This function is part of the
2718 * RCU implementation; it is -not- an exported member of the RCU API.
2720 static int rcu_pending(int cpu
)
2722 struct rcu_state
*rsp
;
2724 for_each_rcu_flavor(rsp
)
2725 if (__rcu_pending(rsp
, per_cpu_ptr(rsp
->rda
, cpu
)))
2731 * Return true if the specified CPU has any callback. If all_lazy is
2732 * non-NULL, store an indication of whether all callbacks are lazy.
2733 * (If there are no callbacks, all of them are deemed to be lazy.)
2735 static int rcu_cpu_has_callbacks(int cpu
, bool *all_lazy
)
2739 struct rcu_data
*rdp
;
2740 struct rcu_state
*rsp
;
2742 for_each_rcu_flavor(rsp
) {
2743 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2744 if (rdp
->qlen
!= rdp
->qlen_lazy
)
2755 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2756 * the compiler is expected to optimize this away.
2758 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
2759 int cpu
, unsigned long done
)
2761 trace_rcu_barrier(rsp
->name
, s
, cpu
,
2762 atomic_read(&rsp
->barrier_cpu_count
), done
);
2766 * RCU callback function for _rcu_barrier(). If we are last, wake
2767 * up the task executing _rcu_barrier().
2769 static void rcu_barrier_callback(struct rcu_head
*rhp
)
2771 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
2772 struct rcu_state
*rsp
= rdp
->rsp
;
2774 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
2775 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->n_barrier_done
);
2776 complete(&rsp
->barrier_completion
);
2778 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->n_barrier_done
);
2783 * Called with preemption disabled, and from cross-cpu IRQ context.
2785 static void rcu_barrier_func(void *type
)
2787 struct rcu_state
*rsp
= type
;
2788 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
2790 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->n_barrier_done
);
2791 atomic_inc(&rsp
->barrier_cpu_count
);
2792 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
2796 * Orchestrate the specified type of RCU barrier, waiting for all
2797 * RCU callbacks of the specified type to complete.
2799 static void _rcu_barrier(struct rcu_state
*rsp
)
2802 struct rcu_data
*rdp
;
2803 unsigned long snap
= ACCESS_ONCE(rsp
->n_barrier_done
);
2804 unsigned long snap_done
;
2806 _rcu_barrier_trace(rsp
, "Begin", -1, snap
);
2808 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2809 mutex_lock(&rsp
->barrier_mutex
);
2812 * Ensure that all prior references, including to ->n_barrier_done,
2813 * are ordered before the _rcu_barrier() machinery.
2815 smp_mb(); /* See above block comment. */
2818 * Recheck ->n_barrier_done to see if others did our work for us.
2819 * This means checking ->n_barrier_done for an even-to-odd-to-even
2820 * transition. The "if" expression below therefore rounds the old
2821 * value up to the next even number and adds two before comparing.
2823 snap_done
= rsp
->n_barrier_done
;
2824 _rcu_barrier_trace(rsp
, "Check", -1, snap_done
);
2827 * If the value in snap is odd, we needed to wait for the current
2828 * rcu_barrier() to complete, then wait for the next one, in other
2829 * words, we need the value of snap_done to be three larger than
2830 * the value of snap. On the other hand, if the value in snap is
2831 * even, we only had to wait for the next rcu_barrier() to complete,
2832 * in other words, we need the value of snap_done to be only two
2833 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2834 * this for us (thank you, Linus!).
2836 if (ULONG_CMP_GE(snap_done
, (snap
+ 3) & ~0x1)) {
2837 _rcu_barrier_trace(rsp
, "EarlyExit", -1, snap_done
);
2838 smp_mb(); /* caller's subsequent code after above check. */
2839 mutex_unlock(&rsp
->barrier_mutex
);
2844 * Increment ->n_barrier_done to avoid duplicate work. Use
2845 * ACCESS_ONCE() to prevent the compiler from speculating
2846 * the increment to precede the early-exit check.
2848 ACCESS_ONCE(rsp
->n_barrier_done
)++;
2849 WARN_ON_ONCE((rsp
->n_barrier_done
& 0x1) != 1);
2850 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->n_barrier_done
);
2851 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2854 * Initialize the count to one rather than to zero in order to
2855 * avoid a too-soon return to zero in case of a short grace period
2856 * (or preemption of this task). Exclude CPU-hotplug operations
2857 * to ensure that no offline CPU has callbacks queued.
2859 init_completion(&rsp
->barrier_completion
);
2860 atomic_set(&rsp
->barrier_cpu_count
, 1);
2864 * Force each CPU with callbacks to register a new callback.
2865 * When that callback is invoked, we will know that all of the
2866 * corresponding CPU's preceding callbacks have been invoked.
2868 for_each_possible_cpu(cpu
) {
2869 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
2871 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2872 if (rcu_is_nocb_cpu(cpu
)) {
2873 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
2874 rsp
->n_barrier_done
);
2875 atomic_inc(&rsp
->barrier_cpu_count
);
2876 __call_rcu(&rdp
->barrier_head
, rcu_barrier_callback
,
2878 } else if (ACCESS_ONCE(rdp
->qlen
)) {
2879 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
2880 rsp
->n_barrier_done
);
2881 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
2883 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
2884 rsp
->n_barrier_done
);
2890 * Now that we have an rcu_barrier_callback() callback on each
2891 * CPU, and thus each counted, remove the initial count.
2893 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
2894 complete(&rsp
->barrier_completion
);
2896 /* Increment ->n_barrier_done to prevent duplicate work. */
2897 smp_mb(); /* Keep increment after above mechanism. */
2898 ACCESS_ONCE(rsp
->n_barrier_done
)++;
2899 WARN_ON_ONCE((rsp
->n_barrier_done
& 0x1) != 0);
2900 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->n_barrier_done
);
2901 smp_mb(); /* Keep increment before caller's subsequent code. */
2903 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2904 wait_for_completion(&rsp
->barrier_completion
);
2906 /* Other rcu_barrier() invocations can now safely proceed. */
2907 mutex_unlock(&rsp
->barrier_mutex
);
2911 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2913 void rcu_barrier_bh(void)
2915 _rcu_barrier(&rcu_bh_state
);
2917 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2920 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2922 void rcu_barrier_sched(void)
2924 _rcu_barrier(&rcu_sched_state
);
2926 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2929 * Do boot-time initialization of a CPU's per-CPU RCU data.
2932 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2934 unsigned long flags
;
2935 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2936 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2938 /* Set up local state, ensuring consistent view of global state. */
2939 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2940 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2941 init_callback_list(rdp
);
2943 ACCESS_ONCE(rdp
->qlen
) = 0;
2944 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2945 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
2946 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
2949 rcu_boot_init_nocb_percpu_data(rdp
);
2950 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2954 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2955 * offline event can be happening at a given time. Note also that we
2956 * can accept some slop in the rsp->completed access due to the fact
2957 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2960 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2962 unsigned long flags
;
2964 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2965 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2967 /* Exclude new grace periods. */
2968 mutex_lock(&rsp
->onoff_mutex
);
2970 /* Set up local state, ensuring consistent view of global state. */
2971 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2972 rdp
->beenonline
= 1; /* We have now been online. */
2973 rdp
->preemptible
= preemptible
;
2974 rdp
->qlen_last_fqs_check
= 0;
2975 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2976 rdp
->blimit
= blimit
;
2977 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
2978 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2979 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
2980 atomic_set(&rdp
->dynticks
->dynticks
,
2981 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
2982 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2984 /* Add CPU to rcu_node bitmasks. */
2986 mask
= rdp
->grpmask
;
2988 /* Exclude any attempts to start a new GP on small systems. */
2989 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2990 rnp
->qsmaskinit
|= mask
;
2991 mask
= rnp
->grpmask
;
2992 if (rnp
== rdp
->mynode
) {
2994 * If there is a grace period in progress, we will
2995 * set up to wait for it next time we run the
2998 rdp
->gpnum
= rnp
->completed
;
2999 rdp
->completed
= rnp
->completed
;
3000 rdp
->passed_quiesce
= 0;
3001 rdp
->qs_pending
= 0;
3002 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3004 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
3006 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
3007 local_irq_restore(flags
);
3009 mutex_unlock(&rsp
->onoff_mutex
);
3012 static void rcu_prepare_cpu(int cpu
)
3014 struct rcu_state
*rsp
;
3016 for_each_rcu_flavor(rsp
)
3017 rcu_init_percpu_data(cpu
, rsp
,
3018 strcmp(rsp
->name
, "rcu_preempt") == 0);
3022 * Handle CPU online/offline notification events.
3024 static int rcu_cpu_notify(struct notifier_block
*self
,
3025 unsigned long action
, void *hcpu
)
3027 long cpu
= (long)hcpu
;
3028 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
3029 struct rcu_node
*rnp
= rdp
->mynode
;
3030 struct rcu_state
*rsp
;
3032 trace_rcu_utilization(TPS("Start CPU hotplug"));
3034 case CPU_UP_PREPARE
:
3035 case CPU_UP_PREPARE_FROZEN
:
3036 rcu_prepare_cpu(cpu
);
3037 rcu_prepare_kthreads(cpu
);
3040 case CPU_DOWN_FAILED
:
3041 rcu_boost_kthread_setaffinity(rnp
, -1);
3043 case CPU_DOWN_PREPARE
:
3044 rcu_boost_kthread_setaffinity(rnp
, cpu
);
3047 case CPU_DYING_FROZEN
:
3048 for_each_rcu_flavor(rsp
)
3049 rcu_cleanup_dying_cpu(rsp
);
3052 case CPU_DEAD_FROZEN
:
3053 case CPU_UP_CANCELED
:
3054 case CPU_UP_CANCELED_FROZEN
:
3055 for_each_rcu_flavor(rsp
)
3056 rcu_cleanup_dead_cpu(cpu
, rsp
);
3061 trace_rcu_utilization(TPS("End CPU hotplug"));
3065 static int rcu_pm_notify(struct notifier_block
*self
,
3066 unsigned long action
, void *hcpu
)
3069 case PM_HIBERNATION_PREPARE
:
3070 case PM_SUSPEND_PREPARE
:
3071 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3074 case PM_POST_HIBERNATION
:
3075 case PM_POST_SUSPEND
:
3085 * Spawn the kthread that handles this RCU flavor's grace periods.
3087 static int __init
rcu_spawn_gp_kthread(void)
3089 unsigned long flags
;
3090 struct rcu_node
*rnp
;
3091 struct rcu_state
*rsp
;
3092 struct task_struct
*t
;
3094 for_each_rcu_flavor(rsp
) {
3095 t
= kthread_run(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3097 rnp
= rcu_get_root(rsp
);
3098 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
3099 rsp
->gp_kthread
= t
;
3100 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
3101 rcu_spawn_nocb_kthreads(rsp
);
3105 early_initcall(rcu_spawn_gp_kthread
);
3108 * This function is invoked towards the end of the scheduler's initialization
3109 * process. Before this is called, the idle task might contain
3110 * RCU read-side critical sections (during which time, this idle
3111 * task is booting the system). After this function is called, the
3112 * idle tasks are prohibited from containing RCU read-side critical
3113 * sections. This function also enables RCU lockdep checking.
3115 void rcu_scheduler_starting(void)
3117 WARN_ON(num_online_cpus() != 1);
3118 WARN_ON(nr_context_switches() > 0);
3119 rcu_scheduler_active
= 1;
3123 * Compute the per-level fanout, either using the exact fanout specified
3124 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3126 #ifdef CONFIG_RCU_FANOUT_EXACT
3127 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
3131 for (i
= rcu_num_lvls
- 1; i
> 0; i
--)
3132 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
3133 rsp
->levelspread
[0] = rcu_fanout_leaf
;
3135 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3136 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
3143 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3144 ccur
= rsp
->levelcnt
[i
];
3145 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
3149 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3152 * Helper function for rcu_init() that initializes one rcu_state structure.
3154 static void __init
rcu_init_one(struct rcu_state
*rsp
,
3155 struct rcu_data __percpu
*rda
)
3157 static char *buf
[] = { "rcu_node_0",
3160 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3161 static char *fqs
[] = { "rcu_node_fqs_0",
3164 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3168 struct rcu_node
*rnp
;
3170 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3172 /* Silence gcc 4.8 warning about array index out of range. */
3173 if (rcu_num_lvls
> RCU_NUM_LVLS
)
3174 panic("rcu_init_one: rcu_num_lvls overflow");
3176 /* Initialize the level-tracking arrays. */
3178 for (i
= 0; i
< rcu_num_lvls
; i
++)
3179 rsp
->levelcnt
[i
] = num_rcu_lvl
[i
];
3180 for (i
= 1; i
< rcu_num_lvls
; i
++)
3181 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
3182 rcu_init_levelspread(rsp
);
3184 /* Initialize the elements themselves, starting from the leaves. */
3186 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3187 cpustride
*= rsp
->levelspread
[i
];
3188 rnp
= rsp
->level
[i
];
3189 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
3190 raw_spin_lock_init(&rnp
->lock
);
3191 lockdep_set_class_and_name(&rnp
->lock
,
3192 &rcu_node_class
[i
], buf
[i
]);
3193 raw_spin_lock_init(&rnp
->fqslock
);
3194 lockdep_set_class_and_name(&rnp
->fqslock
,
3195 &rcu_fqs_class
[i
], fqs
[i
]);
3196 rnp
->gpnum
= rsp
->gpnum
;
3197 rnp
->completed
= rsp
->completed
;
3199 rnp
->qsmaskinit
= 0;
3200 rnp
->grplo
= j
* cpustride
;
3201 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
3202 if (rnp
->grphi
>= NR_CPUS
)
3203 rnp
->grphi
= NR_CPUS
- 1;
3209 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
3210 rnp
->grpmask
= 1UL << rnp
->grpnum
;
3211 rnp
->parent
= rsp
->level
[i
- 1] +
3212 j
/ rsp
->levelspread
[i
- 1];
3215 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
3216 rcu_init_one_nocb(rnp
);
3221 init_waitqueue_head(&rsp
->gp_wq
);
3222 init_irq_work(&rsp
->wakeup_work
, rsp_wakeup
);
3223 rnp
= rsp
->level
[rcu_num_lvls
- 1];
3224 for_each_possible_cpu(i
) {
3225 while (i
> rnp
->grphi
)
3227 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
3228 rcu_boot_init_percpu_data(i
, rsp
);
3230 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
3234 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3235 * replace the definitions in rcutree.h because those are needed to size
3236 * the ->node array in the rcu_state structure.
3238 static void __init
rcu_init_geometry(void)
3244 int rcu_capacity
[MAX_RCU_LVLS
+ 1];
3247 * Initialize any unspecified boot parameters.
3248 * The default values of jiffies_till_first_fqs and
3249 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3250 * value, which is a function of HZ, then adding one for each
3251 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3253 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
3254 if (jiffies_till_first_fqs
== ULONG_MAX
)
3255 jiffies_till_first_fqs
= d
;
3256 if (jiffies_till_next_fqs
== ULONG_MAX
)
3257 jiffies_till_next_fqs
= d
;
3259 /* If the compile-time values are accurate, just leave. */
3260 if (rcu_fanout_leaf
== CONFIG_RCU_FANOUT_LEAF
&&
3261 nr_cpu_ids
== NR_CPUS
)
3265 * Compute number of nodes that can be handled an rcu_node tree
3266 * with the given number of levels. Setting rcu_capacity[0] makes
3267 * some of the arithmetic easier.
3269 rcu_capacity
[0] = 1;
3270 rcu_capacity
[1] = rcu_fanout_leaf
;
3271 for (i
= 2; i
<= MAX_RCU_LVLS
; i
++)
3272 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * CONFIG_RCU_FANOUT
;
3275 * The boot-time rcu_fanout_leaf parameter is only permitted
3276 * to increase the leaf-level fanout, not decrease it. Of course,
3277 * the leaf-level fanout cannot exceed the number of bits in
3278 * the rcu_node masks. Finally, the tree must be able to accommodate
3279 * the configured number of CPUs. Complain and fall back to the
3280 * compile-time values if these limits are exceeded.
3282 if (rcu_fanout_leaf
< CONFIG_RCU_FANOUT_LEAF
||
3283 rcu_fanout_leaf
> sizeof(unsigned long) * 8 ||
3284 n
> rcu_capacity
[MAX_RCU_LVLS
]) {
3289 /* Calculate the number of rcu_nodes at each level of the tree. */
3290 for (i
= 1; i
<= MAX_RCU_LVLS
; i
++)
3291 if (n
<= rcu_capacity
[i
]) {
3292 for (j
= 0; j
<= i
; j
++)
3294 DIV_ROUND_UP(n
, rcu_capacity
[i
- j
]);
3296 for (j
= i
+ 1; j
<= MAX_RCU_LVLS
; j
++)
3301 /* Calculate the total number of rcu_node structures. */
3303 for (i
= 0; i
<= MAX_RCU_LVLS
; i
++)
3304 rcu_num_nodes
+= num_rcu_lvl
[i
];
3308 void __init
rcu_init(void)
3312 rcu_bootup_announce();
3313 rcu_init_geometry();
3314 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
3315 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
3316 __rcu_init_preempt();
3317 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
3320 * We don't need protection against CPU-hotplug here because
3321 * this is called early in boot, before either interrupts
3322 * or the scheduler are operational.
3324 cpu_notifier(rcu_cpu_notify
, 0);
3325 pm_notifier(rcu_pm_notify
, 0);
3326 for_each_online_cpu(cpu
)
3327 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
3330 #include "rcutree_plugin.h"