Linux 3.12.39
[linux/fpc-iii.git] / mm / compaction.c
blobddcdbe0e42d9e7aff3eafab773cedd3e61daf0af
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
24 count_vm_event(item);
27 static inline void count_compact_events(enum vm_event_item item, long delta)
29 count_vm_events(item, delta);
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head *freelist)
43 struct page *page, *next;
44 unsigned long count = 0;
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
52 return count;
55 static void map_pages(struct list_head *list)
57 struct page *page;
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype)
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
75 if (cc->ignore_skip_hint)
76 return true;
78 return !get_pageblock_skip(page);
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
86 static void __reset_isolation_suitable(struct zone *zone)
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
92 zone->compact_cached_migrate_pfn[0] = start_pfn;
93 zone->compact_cached_migrate_pfn[1] = start_pfn;
94 zone->compact_cached_free_pfn = end_pfn;
95 zone->compact_blockskip_flush = false;
97 /* Walk the zone and mark every pageblock as suitable for isolation */
98 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
99 struct page *page;
101 cond_resched();
103 if (!pfn_valid(pfn))
104 continue;
106 page = pfn_to_page(pfn);
107 if (zone != page_zone(page))
108 continue;
110 clear_pageblock_skip(page);
114 void reset_isolation_suitable(pg_data_t *pgdat)
116 int zoneid;
118 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
119 struct zone *zone = &pgdat->node_zones[zoneid];
120 if (!populated_zone(zone))
121 continue;
123 /* Only flush if a full compaction finished recently */
124 if (zone->compact_blockskip_flush)
125 __reset_isolation_suitable(zone);
130 * If no pages were isolated then mark this pageblock to be skipped in the
131 * future. The information is later cleared by __reset_isolation_suitable().
133 static void update_pageblock_skip(struct compact_control *cc,
134 struct page *page, unsigned long nr_isolated,
135 bool set_unsuitable, bool migrate_scanner)
137 struct zone *zone = cc->zone;
138 unsigned long pfn;
140 if (cc->ignore_skip_hint)
141 return;
143 if (!page)
144 return;
146 if (nr_isolated)
147 return;
150 * Only skip pageblocks when all forms of compaction will be known to
151 * fail in the near future.
153 if (set_unsuitable)
154 set_pageblock_skip(page);
156 pfn = page_to_pfn(page);
158 /* Update where async and sync compaction should restart */
159 if (migrate_scanner) {
160 if (cc->finished_update_migrate)
161 return;
162 if (pfn > zone->compact_cached_migrate_pfn[0])
163 zone->compact_cached_migrate_pfn[0] = pfn;
164 if (cc->mode != MIGRATE_ASYNC &&
165 pfn > zone->compact_cached_migrate_pfn[1])
166 zone->compact_cached_migrate_pfn[1] = pfn;
167 } else {
168 if (cc->finished_update_free)
169 return;
170 if (pfn < zone->compact_cached_free_pfn)
171 zone->compact_cached_free_pfn = pfn;
174 #else
175 static inline bool isolation_suitable(struct compact_control *cc,
176 struct page *page)
178 return true;
181 static void update_pageblock_skip(struct compact_control *cc,
182 struct page *page, unsigned long nr_isolated,
183 bool set_unsuitable, bool migrate_scanner)
186 #endif /* CONFIG_COMPACTION */
188 static inline bool should_release_lock(spinlock_t *lock)
190 return need_resched() || spin_is_contended(lock);
194 * Compaction requires the taking of some coarse locks that are potentially
195 * very heavily contended. Check if the process needs to be scheduled or
196 * if the lock is contended. For async compaction, back out in the event
197 * if contention is severe. For sync compaction, schedule.
199 * Returns true if the lock is held.
200 * Returns false if the lock is released and compaction should abort
202 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
203 bool locked, struct compact_control *cc)
205 if (should_release_lock(lock)) {
206 if (locked) {
207 spin_unlock_irqrestore(lock, *flags);
208 locked = false;
211 /* async aborts if taking too long or contended */
212 if (cc->mode == MIGRATE_ASYNC) {
213 cc->contended = true;
214 return false;
217 cond_resched();
220 if (!locked)
221 spin_lock_irqsave(lock, *flags);
222 return true;
226 * Aside from avoiding lock contention, compaction also periodically checks
227 * need_resched() and either schedules in sync compaction or aborts async
228 * compaction. This is similar to what compact_checklock_irqsave() does, but
229 * is used where no lock is concerned.
231 * Returns false when no scheduling was needed, or sync compaction scheduled.
232 * Returns true when async compaction should abort.
234 static inline bool compact_should_abort(struct compact_control *cc)
236 /* async compaction aborts if contended */
237 if (need_resched()) {
238 if (cc->mode == MIGRATE_ASYNC) {
239 cc->contended = true;
240 return true;
243 cond_resched();
246 return false;
249 /* Returns true if the page is within a block suitable for migration to */
250 static bool suitable_migration_target(struct page *page)
252 /* If the page is a large free page, then disallow migration */
253 if (PageBuddy(page) && page_order(page) >= pageblock_order)
254 return false;
256 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
257 if (migrate_async_suitable(get_pageblock_migratetype(page)))
258 return true;
260 /* Otherwise skip the block */
261 return false;
265 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
266 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
267 * pages inside of the pageblock (even though it may still end up isolating
268 * some pages).
270 static unsigned long isolate_freepages_block(struct compact_control *cc,
271 unsigned long blockpfn,
272 unsigned long end_pfn,
273 struct list_head *freelist,
274 bool strict)
276 int nr_scanned = 0, total_isolated = 0;
277 struct page *cursor, *valid_page = NULL;
278 unsigned long flags;
279 bool locked = false;
280 bool checked_pageblock = false;
282 cursor = pfn_to_page(blockpfn);
284 /* Isolate free pages. */
285 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
286 int isolated, i;
287 struct page *page = cursor;
289 nr_scanned++;
290 if (!pfn_valid_within(blockpfn))
291 goto isolate_fail;
293 if (!valid_page)
294 valid_page = page;
295 if (!PageBuddy(page))
296 goto isolate_fail;
299 * The zone lock must be held to isolate freepages.
300 * Unfortunately this is a very coarse lock and can be
301 * heavily contended if there are parallel allocations
302 * or parallel compactions. For async compaction do not
303 * spin on the lock and we acquire the lock as late as
304 * possible.
306 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
307 locked, cc);
308 if (!locked)
309 break;
311 /* Recheck this is a suitable migration target under lock */
312 if (!strict && !checked_pageblock) {
314 * We need to check suitability of pageblock only once
315 * and this isolate_freepages_block() is called with
316 * pageblock range, so just check once is sufficient.
318 checked_pageblock = true;
319 if (!suitable_migration_target(page))
320 break;
323 /* Recheck this is a buddy page under lock */
324 if (!PageBuddy(page))
325 goto isolate_fail;
327 /* Found a free page, break it into order-0 pages */
328 isolated = split_free_page(page);
329 total_isolated += isolated;
330 for (i = 0; i < isolated; i++) {
331 list_add(&page->lru, freelist);
332 page++;
335 /* If a page was split, advance to the end of it */
336 if (isolated) {
337 blockpfn += isolated - 1;
338 cursor += isolated - 1;
339 continue;
342 isolate_fail:
343 if (strict)
344 break;
345 else
346 continue;
350 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
353 * If strict isolation is requested by CMA then check that all the
354 * pages requested were isolated. If there were any failures, 0 is
355 * returned and CMA will fail.
357 if (strict && blockpfn < end_pfn)
358 total_isolated = 0;
360 if (locked)
361 spin_unlock_irqrestore(&cc->zone->lock, flags);
363 /* Update the pageblock-skip if the whole pageblock was scanned */
364 if (blockpfn == end_pfn)
365 update_pageblock_skip(cc, valid_page, total_isolated, true,
366 false);
368 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
369 if (total_isolated)
370 count_compact_events(COMPACTISOLATED, total_isolated);
371 return total_isolated;
375 * isolate_freepages_range() - isolate free pages.
376 * @start_pfn: The first PFN to start isolating.
377 * @end_pfn: The one-past-last PFN.
379 * Non-free pages, invalid PFNs, or zone boundaries within the
380 * [start_pfn, end_pfn) range are considered errors, cause function to
381 * undo its actions and return zero.
383 * Otherwise, function returns one-past-the-last PFN of isolated page
384 * (which may be greater then end_pfn if end fell in a middle of
385 * a free page).
387 unsigned long
388 isolate_freepages_range(struct compact_control *cc,
389 unsigned long start_pfn, unsigned long end_pfn)
391 unsigned long isolated, pfn, block_end_pfn;
392 LIST_HEAD(freelist);
394 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
395 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
396 break;
399 * On subsequent iterations ALIGN() is actually not needed,
400 * but we keep it that we not to complicate the code.
402 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
403 block_end_pfn = min(block_end_pfn, end_pfn);
405 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
406 &freelist, true);
409 * In strict mode, isolate_freepages_block() returns 0 if
410 * there are any holes in the block (ie. invalid PFNs or
411 * non-free pages).
413 if (!isolated)
414 break;
417 * If we managed to isolate pages, it is always (1 << n) *
418 * pageblock_nr_pages for some non-negative n. (Max order
419 * page may span two pageblocks).
423 /* split_free_page does not map the pages */
424 map_pages(&freelist);
426 if (pfn < end_pfn) {
427 /* Loop terminated early, cleanup. */
428 release_freepages(&freelist);
429 return 0;
432 /* We don't use freelists for anything. */
433 return pfn;
436 /* Update the number of anon and file isolated pages in the zone */
437 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
439 struct page *page;
440 unsigned int count[2] = { 0, };
442 list_for_each_entry(page, &cc->migratepages, lru)
443 count[!!page_is_file_cache(page)]++;
445 /* If locked we can use the interrupt unsafe versions */
446 if (locked) {
447 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
448 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
449 } else {
450 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
451 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
455 /* Similar to reclaim, but different enough that they don't share logic */
456 static bool too_many_isolated(struct zone *zone)
458 unsigned long active, inactive, isolated;
460 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
461 zone_page_state(zone, NR_INACTIVE_ANON);
462 active = zone_page_state(zone, NR_ACTIVE_FILE) +
463 zone_page_state(zone, NR_ACTIVE_ANON);
464 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
465 zone_page_state(zone, NR_ISOLATED_ANON);
467 return isolated > (inactive + active) / 2;
471 * isolate_migratepages_range() - isolate all migrate-able pages in range.
472 * @zone: Zone pages are in.
473 * @cc: Compaction control structure.
474 * @low_pfn: The first PFN of the range.
475 * @end_pfn: The one-past-the-last PFN of the range.
476 * @unevictable: true if it allows to isolate unevictable pages
478 * Isolate all pages that can be migrated from the range specified by
479 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
480 * pending), otherwise PFN of the first page that was not scanned
481 * (which may be both less, equal to or more then end_pfn).
483 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
484 * zero.
486 * Apart from cc->migratepages and cc->nr_migratetypes this function
487 * does not modify any cc's fields, in particular it does not modify
488 * (or read for that matter) cc->migrate_pfn.
490 unsigned long
491 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
492 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
494 unsigned long last_pageblock_nr = 0, pageblock_nr;
495 unsigned long nr_scanned = 0, nr_isolated = 0;
496 struct list_head *migratelist = &cc->migratepages;
497 struct lruvec *lruvec;
498 unsigned long flags;
499 bool locked = false;
500 struct page *page = NULL, *valid_page = NULL;
501 bool set_unsuitable = true;
502 const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
503 ISOLATE_ASYNC_MIGRATE : 0) |
504 (unevictable ? ISOLATE_UNEVICTABLE : 0);
507 * Ensure that there are not too many pages isolated from the LRU
508 * list by either parallel reclaimers or compaction. If there are,
509 * delay for some time until fewer pages are isolated
511 while (unlikely(too_many_isolated(zone))) {
512 /* async migration should just abort */
513 if (cc->mode == MIGRATE_ASYNC)
514 return 0;
516 congestion_wait(BLK_RW_ASYNC, HZ/10);
518 if (fatal_signal_pending(current))
519 return 0;
522 if (compact_should_abort(cc))
523 return 0;
525 /* Time to isolate some pages for migration */
526 for (; low_pfn < end_pfn; low_pfn++) {
527 /* give a chance to irqs before checking need_resched() */
528 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
529 if (should_release_lock(&zone->lru_lock)) {
530 spin_unlock_irqrestore(&zone->lru_lock, flags);
531 locked = false;
536 * migrate_pfn does not necessarily start aligned to a
537 * pageblock. Ensure that pfn_valid is called when moving
538 * into a new MAX_ORDER_NR_PAGES range in case of large
539 * memory holes within the zone
541 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
542 if (!pfn_valid(low_pfn)) {
543 low_pfn += MAX_ORDER_NR_PAGES - 1;
544 continue;
548 if (!pfn_valid_within(low_pfn))
549 continue;
550 nr_scanned++;
553 * Get the page and ensure the page is within the same zone.
554 * See the comment in isolate_freepages about overlapping
555 * nodes. It is deliberate that the new zone lock is not taken
556 * as memory compaction should not move pages between nodes.
558 page = pfn_to_page(low_pfn);
559 if (page_zone(page) != zone)
560 continue;
562 if (!valid_page)
563 valid_page = page;
565 /* If isolation recently failed, do not retry */
566 pageblock_nr = low_pfn >> pageblock_order;
567 if (last_pageblock_nr != pageblock_nr) {
568 int mt;
570 last_pageblock_nr = pageblock_nr;
571 if (!isolation_suitable(cc, page))
572 goto next_pageblock;
575 * For async migration, also only scan in MOVABLE
576 * blocks. Async migration is optimistic to see if
577 * the minimum amount of work satisfies the allocation
579 mt = get_pageblock_migratetype(page);
580 if (cc->mode == MIGRATE_ASYNC &&
581 !migrate_async_suitable(mt)) {
582 set_unsuitable = false;
583 goto next_pageblock;
587 /* Skip if free */
588 if (PageBuddy(page))
589 continue;
592 * Check may be lockless but that's ok as we recheck later.
593 * It's possible to migrate LRU pages and balloon pages
594 * Skip any other type of page
596 if (!PageLRU(page)) {
597 if (unlikely(balloon_page_movable(page))) {
598 if (locked && balloon_page_isolate(page)) {
599 /* Successfully isolated */
600 goto isolate_success;
603 continue;
607 * PageLRU is set. lru_lock normally excludes isolation
608 * splitting and collapsing (collapsing has already happened
609 * if PageLRU is set) but the lock is not necessarily taken
610 * here and it is wasteful to take it just to check transhuge.
611 * Check TransHuge without lock and skip the whole pageblock if
612 * it's either a transhuge or hugetlbfs page, as calling
613 * compound_order() without preventing THP from splitting the
614 * page underneath us may return surprising results.
616 if (PageTransHuge(page)) {
617 if (!locked)
618 goto next_pageblock;
619 low_pfn += (1 << compound_order(page)) - 1;
620 continue;
624 * Migration will fail if an anonymous page is pinned in memory,
625 * so avoid taking lru_lock and isolating it unnecessarily in an
626 * admittedly racy check.
628 if (!page_mapping(page) &&
629 page_count(page) > page_mapcount(page))
630 continue;
632 /* Check if it is ok to still hold the lock */
633 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
634 locked, cc);
635 if (!locked || fatal_signal_pending(current))
636 break;
638 /* Recheck PageLRU and PageTransHuge under lock */
639 if (!PageLRU(page))
640 continue;
641 if (PageTransHuge(page)) {
642 low_pfn += (1 << compound_order(page)) - 1;
643 continue;
646 lruvec = mem_cgroup_page_lruvec(page, zone);
648 /* Try isolate the page */
649 if (__isolate_lru_page(page, mode) != 0)
650 continue;
652 VM_BUG_ON(PageTransCompound(page));
654 /* Successfully isolated */
655 del_page_from_lru_list(page, lruvec, page_lru(page));
657 isolate_success:
658 cc->finished_update_migrate = true;
659 list_add(&page->lru, migratelist);
660 cc->nr_migratepages++;
661 nr_isolated++;
663 /* Avoid isolating too much */
664 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
665 ++low_pfn;
666 break;
669 continue;
671 next_pageblock:
672 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
675 acct_isolated(zone, locked, cc);
677 if (locked)
678 spin_unlock_irqrestore(&zone->lru_lock, flags);
681 * Update the pageblock-skip information and cached scanner pfn,
682 * if the whole pageblock was scanned without isolating any page.
684 if (low_pfn == end_pfn)
685 update_pageblock_skip(cc, valid_page, nr_isolated,
686 set_unsuitable, true);
688 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
690 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
691 if (nr_isolated)
692 count_compact_events(COMPACTISOLATED, nr_isolated);
694 return low_pfn;
697 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
698 #ifdef CONFIG_COMPACTION
700 * Based on information in the current compact_control, find blocks
701 * suitable for isolating free pages from and then isolate them.
703 static void isolate_freepages(struct zone *zone,
704 struct compact_control *cc)
706 struct page *page;
707 unsigned long block_start_pfn; /* start of current pageblock */
708 unsigned long block_end_pfn; /* end of current pageblock */
709 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
710 int nr_freepages = cc->nr_freepages;
711 struct list_head *freelist = &cc->freepages;
714 * Initialise the free scanner. The starting point is where we last
715 * successfully isolated from, zone-cached value, or the end of the
716 * zone when isolating for the first time. We need this aligned to
717 * the pageblock boundary, because we do
718 * block_start_pfn -= pageblock_nr_pages in the for loop.
719 * For ending point, take care when isolating in last pageblock of a
720 * a zone which ends in the middle of a pageblock.
721 * The low boundary is the end of the pageblock the migration scanner
722 * is using.
724 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
725 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
726 zone_end_pfn(zone));
727 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
730 * Isolate free pages until enough are available to migrate the
731 * pages on cc->migratepages. We stop searching if the migrate
732 * and free page scanners meet or enough free pages are isolated.
734 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
735 block_end_pfn = block_start_pfn,
736 block_start_pfn -= pageblock_nr_pages) {
737 unsigned long isolated;
740 * This can iterate a massively long zone without finding any
741 * suitable migration targets, so periodically check if we need
742 * to schedule, or even abort async compaction.
744 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
745 && compact_should_abort(cc))
746 break;
748 if (!pfn_valid(block_start_pfn))
749 continue;
752 * Check for overlapping nodes/zones. It's possible on some
753 * configurations to have a setup like
754 * node0 node1 node0
755 * i.e. it's possible that all pages within a zones range of
756 * pages do not belong to a single zone.
758 page = pfn_to_page(block_start_pfn);
759 if (page_zone(page) != zone)
760 continue;
762 /* Check the block is suitable for migration */
763 if (!suitable_migration_target(page))
764 continue;
766 /* If isolation recently failed, do not retry */
767 if (!isolation_suitable(cc, page))
768 continue;
770 /* Found a block suitable for isolating free pages from */
771 cc->free_pfn = block_start_pfn;
772 isolated = isolate_freepages_block(cc, block_start_pfn,
773 block_end_pfn, freelist, false);
774 nr_freepages += isolated;
777 * Set a flag that we successfully isolated in this pageblock.
778 * In the next loop iteration, zone->compact_cached_free_pfn
779 * will not be updated and thus it will effectively contain the
780 * highest pageblock we isolated pages from.
782 if (isolated)
783 cc->finished_update_free = true;
786 * isolate_freepages_block() might have aborted due to async
787 * compaction being contended
789 if (cc->contended)
790 break;
793 /* split_free_page does not map the pages */
794 map_pages(freelist);
797 * If we crossed the migrate scanner, we want to keep it that way
798 * so that compact_finished() may detect this
800 if (block_start_pfn < low_pfn)
801 cc->free_pfn = cc->migrate_pfn;
803 cc->nr_freepages = nr_freepages;
807 * This is a migrate-callback that "allocates" freepages by taking pages
808 * from the isolated freelists in the block we are migrating to.
810 static struct page *compaction_alloc(struct page *migratepage,
811 unsigned long data,
812 int **result)
814 struct compact_control *cc = (struct compact_control *)data;
815 struct page *freepage;
818 * Isolate free pages if necessary, and if we are not aborting due to
819 * contention.
821 if (list_empty(&cc->freepages)) {
822 if (!cc->contended)
823 isolate_freepages(cc->zone, cc);
825 if (list_empty(&cc->freepages))
826 return NULL;
829 freepage = list_entry(cc->freepages.next, struct page, lru);
830 list_del(&freepage->lru);
831 cc->nr_freepages--;
833 return freepage;
837 * This is a migrate-callback that "frees" freepages back to the isolated
838 * freelist. All pages on the freelist are from the same zone, so there is no
839 * special handling needed for NUMA.
841 static void compaction_free(struct page *page, unsigned long data)
843 struct compact_control *cc = (struct compact_control *)data;
845 list_add(&page->lru, &cc->freepages);
846 cc->nr_freepages++;
849 /* possible outcome of isolate_migratepages */
850 typedef enum {
851 ISOLATE_ABORT, /* Abort compaction now */
852 ISOLATE_NONE, /* No pages isolated, continue scanning */
853 ISOLATE_SUCCESS, /* Pages isolated, migrate */
854 } isolate_migrate_t;
857 * Isolate all pages that can be migrated from the block pointed to by
858 * the migrate scanner within compact_control.
860 static isolate_migrate_t isolate_migratepages(struct zone *zone,
861 struct compact_control *cc)
863 unsigned long low_pfn, end_pfn;
865 /* Do not scan outside zone boundaries */
866 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
868 /* Only scan within a pageblock boundary */
869 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
871 /* Do not cross the free scanner or scan within a memory hole */
872 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
873 cc->migrate_pfn = end_pfn;
874 return ISOLATE_NONE;
877 /* Perform the isolation */
878 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
879 if (!low_pfn || cc->contended)
880 return ISOLATE_ABORT;
882 cc->migrate_pfn = low_pfn;
884 return ISOLATE_SUCCESS;
887 static int compact_finished(struct zone *zone,
888 struct compact_control *cc)
890 unsigned int order;
891 unsigned long watermark;
893 if (cc->contended || fatal_signal_pending(current))
894 return COMPACT_PARTIAL;
896 /* Compaction run completes if the migrate and free scanner meet */
897 if (cc->free_pfn <= cc->migrate_pfn) {
898 /* Let the next compaction start anew. */
899 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
900 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
901 zone->compact_cached_free_pfn = zone_end_pfn(zone);
904 * Mark that the PG_migrate_skip information should be cleared
905 * by kswapd when it goes to sleep. kswapd does not set the
906 * flag itself as the decision to be clear should be directly
907 * based on an allocation request.
909 if (!current_is_kswapd())
910 zone->compact_blockskip_flush = true;
912 return COMPACT_COMPLETE;
916 * order == -1 is expected when compacting via
917 * /proc/sys/vm/compact_memory
919 if (cc->order == -1)
920 return COMPACT_CONTINUE;
922 /* Compaction run is not finished if the watermark is not met */
923 watermark = low_wmark_pages(zone);
924 watermark += (1 << cc->order);
926 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
927 return COMPACT_CONTINUE;
929 /* Direct compactor: Is a suitable page free? */
930 for (order = cc->order; order < MAX_ORDER; order++) {
931 struct free_area *area = &zone->free_area[order];
933 /* Job done if page is free of the right migratetype */
934 if (!list_empty(&area->free_list[cc->migratetype]))
935 return COMPACT_PARTIAL;
937 /* Job done if allocation would set block type */
938 if (order >= pageblock_order && area->nr_free)
939 return COMPACT_PARTIAL;
942 return COMPACT_CONTINUE;
946 * compaction_suitable: Is this suitable to run compaction on this zone now?
947 * Returns
948 * COMPACT_SKIPPED - If there are too few free pages for compaction
949 * COMPACT_PARTIAL - If the allocation would succeed without compaction
950 * COMPACT_CONTINUE - If compaction should run now
952 unsigned long compaction_suitable(struct zone *zone, int order)
954 int fragindex;
955 unsigned long watermark;
958 * order == -1 is expected when compacting via
959 * /proc/sys/vm/compact_memory
961 if (order == -1)
962 return COMPACT_CONTINUE;
965 * Watermarks for order-0 must be met for compaction. Note the 2UL.
966 * This is because during migration, copies of pages need to be
967 * allocated and for a short time, the footprint is higher
969 watermark = low_wmark_pages(zone) + (2UL << order);
970 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
971 return COMPACT_SKIPPED;
974 * fragmentation index determines if allocation failures are due to
975 * low memory or external fragmentation
977 * index of -1000 implies allocations might succeed depending on
978 * watermarks
979 * index towards 0 implies failure is due to lack of memory
980 * index towards 1000 implies failure is due to fragmentation
982 * Only compact if a failure would be due to fragmentation.
984 fragindex = fragmentation_index(zone, order);
985 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
986 return COMPACT_SKIPPED;
988 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
989 0, 0))
990 return COMPACT_PARTIAL;
992 return COMPACT_CONTINUE;
995 static int compact_zone(struct zone *zone, struct compact_control *cc)
997 int ret;
998 unsigned long start_pfn = zone->zone_start_pfn;
999 unsigned long end_pfn = zone_end_pfn(zone);
1000 const bool sync = cc->mode != MIGRATE_ASYNC;
1002 ret = compaction_suitable(zone, cc->order);
1003 switch (ret) {
1004 case COMPACT_PARTIAL:
1005 case COMPACT_SKIPPED:
1006 /* Compaction is likely to fail */
1007 return ret;
1008 case COMPACT_CONTINUE:
1009 /* Fall through to compaction */
1014 * Clear pageblock skip if there were failures recently and compaction
1015 * is about to be retried after being deferred. kswapd does not do
1016 * this reset as it'll reset the cached information when going to sleep.
1018 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1019 __reset_isolation_suitable(zone);
1022 * Setup to move all movable pages to the end of the zone. Used cached
1023 * information on where the scanners should start but check that it
1024 * is initialised by ensuring the values are within zone boundaries.
1026 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1027 cc->free_pfn = zone->compact_cached_free_pfn;
1028 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1029 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1030 zone->compact_cached_free_pfn = cc->free_pfn;
1032 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1033 cc->migrate_pfn = start_pfn;
1034 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1035 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1038 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1040 migrate_prep_local();
1042 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1043 int err;
1045 switch (isolate_migratepages(zone, cc)) {
1046 case ISOLATE_ABORT:
1047 ret = COMPACT_PARTIAL;
1048 putback_movable_pages(&cc->migratepages);
1049 cc->nr_migratepages = 0;
1050 goto out;
1051 case ISOLATE_NONE:
1052 continue;
1053 case ISOLATE_SUCCESS:
1057 if (!cc->nr_migratepages)
1058 continue;
1060 err = migrate_pages(&cc->migratepages, compaction_alloc,
1061 compaction_free, (unsigned long)cc, cc->mode,
1062 MR_COMPACTION);
1064 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1065 &cc->migratepages);
1067 /* All pages were either migrated or will be released */
1068 cc->nr_migratepages = 0;
1069 if (err) {
1070 putback_movable_pages(&cc->migratepages);
1072 * migrate_pages() may return -ENOMEM when scanners meet
1073 * and we want compact_finished() to detect it
1075 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1076 ret = COMPACT_PARTIAL;
1077 goto out;
1082 out:
1083 /* Release free pages and check accounting */
1084 cc->nr_freepages -= release_freepages(&cc->freepages);
1085 VM_BUG_ON(cc->nr_freepages != 0);
1087 trace_mm_compaction_end(ret);
1089 return ret;
1092 static unsigned long compact_zone_order(struct zone *zone, int order,
1093 gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1095 unsigned long ret;
1096 struct compact_control cc = {
1097 .nr_freepages = 0,
1098 .nr_migratepages = 0,
1099 .order = order,
1100 .migratetype = allocflags_to_migratetype(gfp_mask),
1101 .zone = zone,
1102 .mode = mode,
1104 INIT_LIST_HEAD(&cc.freepages);
1105 INIT_LIST_HEAD(&cc.migratepages);
1107 ret = compact_zone(zone, &cc);
1109 VM_BUG_ON(!list_empty(&cc.freepages));
1110 VM_BUG_ON(!list_empty(&cc.migratepages));
1112 *contended = cc.contended;
1113 return ret;
1116 int sysctl_extfrag_threshold = 500;
1119 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1120 * @zonelist: The zonelist used for the current allocation
1121 * @order: The order of the current allocation
1122 * @gfp_mask: The GFP mask of the current allocation
1123 * @nodemask: The allowed nodes to allocate from
1124 * @mode: The migration mode for async, sync light, or sync migration
1125 * @contended: Return value that is true if compaction was aborted due to lock contention
1126 * @page: Optionally capture a free page of the requested order during compaction
1128 * This is the main entry point for direct page compaction.
1130 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1131 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1132 enum migrate_mode mode, bool *contended)
1134 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1135 int may_enter_fs = gfp_mask & __GFP_FS;
1136 int may_perform_io = gfp_mask & __GFP_IO;
1137 struct zoneref *z;
1138 struct zone *zone;
1139 int rc = COMPACT_SKIPPED;
1140 int alloc_flags = 0;
1142 /* Check if the GFP flags allow compaction */
1143 if (!order || !may_enter_fs || !may_perform_io)
1144 return rc;
1146 count_compact_event(COMPACTSTALL);
1148 #ifdef CONFIG_CMA
1149 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1150 alloc_flags |= ALLOC_CMA;
1151 #endif
1152 /* Compact each zone in the list */
1153 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1154 nodemask) {
1155 int status;
1157 status = compact_zone_order(zone, order, gfp_mask, mode,
1158 contended);
1159 rc = max(status, rc);
1161 /* If a normal allocation would succeed, stop compacting */
1162 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1163 alloc_flags))
1164 break;
1167 return rc;
1171 /* Compact all zones within a node */
1172 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1174 int zoneid;
1175 struct zone *zone;
1177 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1179 zone = &pgdat->node_zones[zoneid];
1180 if (!populated_zone(zone))
1181 continue;
1183 cc->nr_freepages = 0;
1184 cc->nr_migratepages = 0;
1185 cc->zone = zone;
1186 INIT_LIST_HEAD(&cc->freepages);
1187 INIT_LIST_HEAD(&cc->migratepages);
1189 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1190 compact_zone(zone, cc);
1192 if (cc->order > 0) {
1193 if (zone_watermark_ok(zone, cc->order,
1194 low_wmark_pages(zone), 0, 0))
1195 compaction_defer_reset(zone, cc->order, false);
1198 VM_BUG_ON(!list_empty(&cc->freepages));
1199 VM_BUG_ON(!list_empty(&cc->migratepages));
1203 void compact_pgdat(pg_data_t *pgdat, int order)
1205 struct compact_control cc = {
1206 .order = order,
1207 .mode = MIGRATE_ASYNC,
1210 if (!order)
1211 return;
1213 __compact_pgdat(pgdat, &cc);
1216 static void compact_node(int nid)
1218 struct compact_control cc = {
1219 .order = -1,
1220 .mode = MIGRATE_SYNC,
1221 .ignore_skip_hint = true,
1224 __compact_pgdat(NODE_DATA(nid), &cc);
1227 /* Compact all nodes in the system */
1228 static void compact_nodes(void)
1230 int nid;
1232 /* Flush pending updates to the LRU lists */
1233 lru_add_drain_all();
1235 for_each_online_node(nid)
1236 compact_node(nid);
1239 /* The written value is actually unused, all memory is compacted */
1240 int sysctl_compact_memory;
1242 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1243 int sysctl_compaction_handler(struct ctl_table *table, int write,
1244 void __user *buffer, size_t *length, loff_t *ppos)
1246 if (write)
1247 compact_nodes();
1249 return 0;
1252 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1253 void __user *buffer, size_t *length, loff_t *ppos)
1255 proc_dointvec_minmax(table, write, buffer, length, ppos);
1257 return 0;
1260 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1261 ssize_t sysfs_compact_node(struct device *dev,
1262 struct device_attribute *attr,
1263 const char *buf, size_t count)
1265 int nid = dev->id;
1267 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1268 /* Flush pending updates to the LRU lists */
1269 lru_add_drain_all();
1271 compact_node(nid);
1274 return count;
1276 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1278 int compaction_register_node(struct node *node)
1280 return device_create_file(&node->dev, &dev_attr_compact);
1283 void compaction_unregister_node(struct node *node)
1285 return device_remove_file(&node->dev, &dev_attr_compact);
1287 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1289 #endif /* CONFIG_COMPACTION */