Linux 3.12.39
[linux/fpc-iii.git] / mm / hugetlb.c
blobed00a70fb052aa91b250d94192a012c2f52da790
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(file_inode(vma->vm_file));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << huge_page_shift(hstate);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 if (vma->vm_flags & VM_NORESERVE) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
467 return 1;
470 * Only the process that called mmap() has reserves for
471 * private mappings.
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
476 return 0;
479 static void copy_gigantic_page(struct page *dst, struct page *src)
481 int i;
482 struct hstate *h = page_hstate(src);
483 struct page *dst_base = dst;
484 struct page *src_base = src;
486 for (i = 0; i < pages_per_huge_page(h); ) {
487 cond_resched();
488 copy_highpage(dst, src);
490 i++;
491 dst = mem_map_next(dst, dst_base, i);
492 src = mem_map_next(src, src_base, i);
496 void copy_huge_page(struct page *dst, struct page *src)
498 int i;
499 struct hstate *h = page_hstate(src);
501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 copy_gigantic_page(dst, src);
503 return;
506 might_sleep();
507 for (i = 0; i < pages_per_huge_page(h); i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
515 int nid = page_to_nid(page);
516 list_move(&page->lru, &h->hugepage_freelists[nid]);
517 h->free_huge_pages++;
518 h->free_huge_pages_node[nid]++;
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
523 struct page *page;
525 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 if (!is_migrate_isolate_page(page))
527 break;
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
532 if (&h->hugepage_freelists[nid] == &page->lru)
533 return NULL;
534 list_move(&page->lru, &h->hugepage_activelist);
535 set_page_refcounted(page);
536 h->free_huge_pages--;
537 h->free_huge_pages_node[nid]--;
538 return page;
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
544 if (hugepages_treat_as_movable || hugepage_migration_support(h))
545 return GFP_HIGHUSER_MOVABLE;
546 else
547 return GFP_HIGHUSER;
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551 struct vm_area_struct *vma,
552 unsigned long address, int avoid_reserve,
553 long chg)
555 struct page *page = NULL;
556 struct mempolicy *mpol;
557 nodemask_t *nodemask;
558 struct zonelist *zonelist;
559 struct zone *zone;
560 struct zoneref *z;
561 unsigned int cpuset_mems_cookie;
564 * A child process with MAP_PRIVATE mappings created by their parent
565 * have no page reserves. This check ensures that reservations are
566 * not "stolen". The child may still get SIGKILLed
568 if (!vma_has_reserves(vma, chg) &&
569 h->free_huge_pages - h->resv_huge_pages == 0)
570 goto err;
572 /* If reserves cannot be used, ensure enough pages are in the pool */
573 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574 goto err;
576 retry_cpuset:
577 cpuset_mems_cookie = read_mems_allowed_begin();
578 zonelist = huge_zonelist(vma, address,
579 htlb_alloc_mask(h), &mpol, &nodemask);
581 for_each_zone_zonelist_nodemask(zone, z, zonelist,
582 MAX_NR_ZONES - 1, nodemask) {
583 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 page = dequeue_huge_page_node(h, zone_to_nid(zone));
585 if (page) {
586 if (avoid_reserve)
587 break;
588 if (!vma_has_reserves(vma, chg))
589 break;
591 SetPagePrivate(page);
592 h->resv_huge_pages--;
593 break;
598 mpol_cond_put(mpol);
599 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
600 goto retry_cpuset;
601 return page;
603 err:
604 return NULL;
607 static void update_and_free_page(struct hstate *h, struct page *page)
609 int i;
611 VM_BUG_ON(h->order >= MAX_ORDER);
613 h->nr_huge_pages--;
614 h->nr_huge_pages_node[page_to_nid(page)]--;
615 for (i = 0; i < pages_per_huge_page(h); i++) {
616 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617 1 << PG_referenced | 1 << PG_dirty |
618 1 << PG_active | 1 << PG_reserved |
619 1 << PG_private | 1 << PG_writeback);
621 VM_BUG_ON(hugetlb_cgroup_from_page(page));
622 set_compound_page_dtor(page, NULL);
623 set_page_refcounted(page);
624 arch_release_hugepage(page);
625 __free_pages(page, huge_page_order(h));
628 struct hstate *size_to_hstate(unsigned long size)
630 struct hstate *h;
632 for_each_hstate(h) {
633 if (huge_page_size(h) == size)
634 return h;
636 return NULL;
639 static void free_huge_page(struct page *page)
642 * Can't pass hstate in here because it is called from the
643 * compound page destructor.
645 struct hstate *h = page_hstate(page);
646 int nid = page_to_nid(page);
647 struct hugepage_subpool *spool =
648 (struct hugepage_subpool *)page_private(page);
649 bool restore_reserve;
651 set_page_private(page, 0);
652 page->mapping = NULL;
653 BUG_ON(page_count(page));
654 BUG_ON(page_mapcount(page));
655 restore_reserve = PagePrivate(page);
656 ClearPagePrivate(page);
658 spin_lock(&hugetlb_lock);
659 hugetlb_cgroup_uncharge_page(hstate_index(h),
660 pages_per_huge_page(h), page);
661 if (restore_reserve)
662 h->resv_huge_pages++;
664 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665 /* remove the page from active list */
666 list_del(&page->lru);
667 update_and_free_page(h, page);
668 h->surplus_huge_pages--;
669 h->surplus_huge_pages_node[nid]--;
670 } else {
671 arch_clear_hugepage_flags(page);
672 enqueue_huge_page(h, page);
674 spin_unlock(&hugetlb_lock);
675 hugepage_subpool_put_pages(spool, 1);
678 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
680 INIT_LIST_HEAD(&page->lru);
681 set_compound_page_dtor(page, free_huge_page);
682 spin_lock(&hugetlb_lock);
683 set_hugetlb_cgroup(page, NULL);
684 h->nr_huge_pages++;
685 h->nr_huge_pages_node[nid]++;
686 spin_unlock(&hugetlb_lock);
687 put_page(page); /* free it into the hugepage allocator */
690 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
692 int i;
693 int nr_pages = 1 << order;
694 struct page *p = page + 1;
696 /* we rely on prep_new_huge_page to set the destructor */
697 set_compound_order(page, order);
698 __SetPageHead(page);
699 __ClearPageReserved(page);
700 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
701 __SetPageTail(p);
703 * For gigantic hugepages allocated through bootmem at
704 * boot, it's safer to be consistent with the not-gigantic
705 * hugepages and clear the PG_reserved bit from all tail pages
706 * too. Otherwse drivers using get_user_pages() to access tail
707 * pages may get the reference counting wrong if they see
708 * PG_reserved set on a tail page (despite the head page not
709 * having PG_reserved set). Enforcing this consistency between
710 * head and tail pages allows drivers to optimize away a check
711 * on the head page when they need know if put_page() is needed
712 * after get_user_pages().
714 __ClearPageReserved(p);
715 set_page_count(p, 0);
716 p->first_page = page;
721 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
722 * transparent huge pages. See the PageTransHuge() documentation for more
723 * details.
725 int PageHuge(struct page *page)
727 compound_page_dtor *dtor;
729 if (!PageCompound(page))
730 return 0;
732 page = compound_head(page);
733 dtor = get_compound_page_dtor(page);
735 return dtor == free_huge_page;
737 EXPORT_SYMBOL_GPL(PageHuge);
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
743 int PageHeadHuge(struct page *page_head)
745 compound_page_dtor *dtor;
747 if (!PageHead(page_head))
748 return 0;
750 dtor = get_compound_page_dtor(page_head);
752 return dtor == free_huge_page;
754 EXPORT_SYMBOL_GPL(PageHeadHuge);
756 pgoff_t __basepage_index(struct page *page)
758 struct page *page_head = compound_head(page);
759 pgoff_t index = page_index(page_head);
760 unsigned long compound_idx;
762 if (!PageHuge(page_head))
763 return page_index(page);
765 if (compound_order(page_head) >= MAX_ORDER)
766 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
767 else
768 compound_idx = page - page_head;
770 return (index << compound_order(page_head)) + compound_idx;
773 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
775 struct page *page;
777 if (h->order >= MAX_ORDER)
778 return NULL;
780 page = alloc_pages_exact_node(nid,
781 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
782 __GFP_REPEAT|__GFP_NOWARN,
783 huge_page_order(h));
784 if (page) {
785 if (arch_prepare_hugepage(page)) {
786 __free_pages(page, huge_page_order(h));
787 return NULL;
789 prep_new_huge_page(h, page, nid);
792 return page;
796 * common helper functions for hstate_next_node_to_{alloc|free}.
797 * We may have allocated or freed a huge page based on a different
798 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
799 * be outside of *nodes_allowed. Ensure that we use an allowed
800 * node for alloc or free.
802 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
804 nid = next_node(nid, *nodes_allowed);
805 if (nid == MAX_NUMNODES)
806 nid = first_node(*nodes_allowed);
807 VM_BUG_ON(nid >= MAX_NUMNODES);
809 return nid;
812 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
814 if (!node_isset(nid, *nodes_allowed))
815 nid = next_node_allowed(nid, nodes_allowed);
816 return nid;
820 * returns the previously saved node ["this node"] from which to
821 * allocate a persistent huge page for the pool and advance the
822 * next node from which to allocate, handling wrap at end of node
823 * mask.
825 static int hstate_next_node_to_alloc(struct hstate *h,
826 nodemask_t *nodes_allowed)
828 int nid;
830 VM_BUG_ON(!nodes_allowed);
832 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
833 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
835 return nid;
839 * helper for free_pool_huge_page() - return the previously saved
840 * node ["this node"] from which to free a huge page. Advance the
841 * next node id whether or not we find a free huge page to free so
842 * that the next attempt to free addresses the next node.
844 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
846 int nid;
848 VM_BUG_ON(!nodes_allowed);
850 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
851 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
853 return nid;
856 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
858 nr_nodes > 0 && \
859 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
860 nr_nodes--)
862 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
863 for (nr_nodes = nodes_weight(*mask); \
864 nr_nodes > 0 && \
865 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
866 nr_nodes--)
868 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
870 struct page *page;
871 int nr_nodes, node;
872 int ret = 0;
874 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
875 page = alloc_fresh_huge_page_node(h, node);
876 if (page) {
877 ret = 1;
878 break;
882 if (ret)
883 count_vm_event(HTLB_BUDDY_PGALLOC);
884 else
885 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
887 return ret;
891 * Free huge page from pool from next node to free.
892 * Attempt to keep persistent huge pages more or less
893 * balanced over allowed nodes.
894 * Called with hugetlb_lock locked.
896 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
897 bool acct_surplus)
899 int nr_nodes, node;
900 int ret = 0;
902 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
904 * If we're returning unused surplus pages, only examine
905 * nodes with surplus pages.
907 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
908 !list_empty(&h->hugepage_freelists[node])) {
909 struct page *page =
910 list_entry(h->hugepage_freelists[node].next,
911 struct page, lru);
912 list_del(&page->lru);
913 h->free_huge_pages--;
914 h->free_huge_pages_node[node]--;
915 if (acct_surplus) {
916 h->surplus_huge_pages--;
917 h->surplus_huge_pages_node[node]--;
919 update_and_free_page(h, page);
920 ret = 1;
921 break;
925 return ret;
929 * Dissolve a given free hugepage into free buddy pages. This function does
930 * nothing for in-use (including surplus) hugepages.
932 static void dissolve_free_huge_page(struct page *page)
934 spin_lock(&hugetlb_lock);
935 if (PageHuge(page) && !page_count(page)) {
936 struct hstate *h = page_hstate(page);
937 int nid = page_to_nid(page);
938 list_del(&page->lru);
939 h->free_huge_pages--;
940 h->free_huge_pages_node[nid]--;
941 update_and_free_page(h, page);
943 spin_unlock(&hugetlb_lock);
947 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
948 * make specified memory blocks removable from the system.
949 * Note that start_pfn should aligned with (minimum) hugepage size.
951 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
953 unsigned int order = 8 * sizeof(void *);
954 unsigned long pfn;
955 struct hstate *h;
957 /* Set scan step to minimum hugepage size */
958 for_each_hstate(h)
959 if (order > huge_page_order(h))
960 order = huge_page_order(h);
961 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
962 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
963 dissolve_free_huge_page(pfn_to_page(pfn));
966 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
968 struct page *page;
969 unsigned int r_nid;
971 if (h->order >= MAX_ORDER)
972 return NULL;
975 * Assume we will successfully allocate the surplus page to
976 * prevent racing processes from causing the surplus to exceed
977 * overcommit
979 * This however introduces a different race, where a process B
980 * tries to grow the static hugepage pool while alloc_pages() is
981 * called by process A. B will only examine the per-node
982 * counters in determining if surplus huge pages can be
983 * converted to normal huge pages in adjust_pool_surplus(). A
984 * won't be able to increment the per-node counter, until the
985 * lock is dropped by B, but B doesn't drop hugetlb_lock until
986 * no more huge pages can be converted from surplus to normal
987 * state (and doesn't try to convert again). Thus, we have a
988 * case where a surplus huge page exists, the pool is grown, and
989 * the surplus huge page still exists after, even though it
990 * should just have been converted to a normal huge page. This
991 * does not leak memory, though, as the hugepage will be freed
992 * once it is out of use. It also does not allow the counters to
993 * go out of whack in adjust_pool_surplus() as we don't modify
994 * the node values until we've gotten the hugepage and only the
995 * per-node value is checked there.
997 spin_lock(&hugetlb_lock);
998 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
999 spin_unlock(&hugetlb_lock);
1000 return NULL;
1001 } else {
1002 h->nr_huge_pages++;
1003 h->surplus_huge_pages++;
1005 spin_unlock(&hugetlb_lock);
1007 if (nid == NUMA_NO_NODE)
1008 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1009 __GFP_REPEAT|__GFP_NOWARN,
1010 huge_page_order(h));
1011 else
1012 page = alloc_pages_exact_node(nid,
1013 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1014 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1016 if (page && arch_prepare_hugepage(page)) {
1017 __free_pages(page, huge_page_order(h));
1018 page = NULL;
1021 spin_lock(&hugetlb_lock);
1022 if (page) {
1023 INIT_LIST_HEAD(&page->lru);
1024 r_nid = page_to_nid(page);
1025 set_compound_page_dtor(page, free_huge_page);
1026 set_hugetlb_cgroup(page, NULL);
1028 * We incremented the global counters already
1030 h->nr_huge_pages_node[r_nid]++;
1031 h->surplus_huge_pages_node[r_nid]++;
1032 __count_vm_event(HTLB_BUDDY_PGALLOC);
1033 } else {
1034 h->nr_huge_pages--;
1035 h->surplus_huge_pages--;
1036 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1038 spin_unlock(&hugetlb_lock);
1040 return page;
1044 * This allocation function is useful in the context where vma is irrelevant.
1045 * E.g. soft-offlining uses this function because it only cares physical
1046 * address of error page.
1048 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1050 struct page *page = NULL;
1052 spin_lock(&hugetlb_lock);
1053 if (h->free_huge_pages - h->resv_huge_pages > 0)
1054 page = dequeue_huge_page_node(h, nid);
1055 spin_unlock(&hugetlb_lock);
1057 if (!page)
1058 page = alloc_buddy_huge_page(h, nid);
1060 return page;
1064 * Increase the hugetlb pool such that it can accommodate a reservation
1065 * of size 'delta'.
1067 static int gather_surplus_pages(struct hstate *h, int delta)
1069 struct list_head surplus_list;
1070 struct page *page, *tmp;
1071 int ret, i;
1072 int needed, allocated;
1073 bool alloc_ok = true;
1075 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1076 if (needed <= 0) {
1077 h->resv_huge_pages += delta;
1078 return 0;
1081 allocated = 0;
1082 INIT_LIST_HEAD(&surplus_list);
1084 ret = -ENOMEM;
1085 retry:
1086 spin_unlock(&hugetlb_lock);
1087 for (i = 0; i < needed; i++) {
1088 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1089 if (!page) {
1090 alloc_ok = false;
1091 break;
1093 list_add(&page->lru, &surplus_list);
1095 allocated += i;
1098 * After retaking hugetlb_lock, we need to recalculate 'needed'
1099 * because either resv_huge_pages or free_huge_pages may have changed.
1101 spin_lock(&hugetlb_lock);
1102 needed = (h->resv_huge_pages + delta) -
1103 (h->free_huge_pages + allocated);
1104 if (needed > 0) {
1105 if (alloc_ok)
1106 goto retry;
1108 * We were not able to allocate enough pages to
1109 * satisfy the entire reservation so we free what
1110 * we've allocated so far.
1112 goto free;
1115 * The surplus_list now contains _at_least_ the number of extra pages
1116 * needed to accommodate the reservation. Add the appropriate number
1117 * of pages to the hugetlb pool and free the extras back to the buddy
1118 * allocator. Commit the entire reservation here to prevent another
1119 * process from stealing the pages as they are added to the pool but
1120 * before they are reserved.
1122 needed += allocated;
1123 h->resv_huge_pages += delta;
1124 ret = 0;
1126 /* Free the needed pages to the hugetlb pool */
1127 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1128 if ((--needed) < 0)
1129 break;
1131 * This page is now managed by the hugetlb allocator and has
1132 * no users -- drop the buddy allocator's reference.
1134 put_page_testzero(page);
1135 VM_BUG_ON(page_count(page));
1136 enqueue_huge_page(h, page);
1138 free:
1139 spin_unlock(&hugetlb_lock);
1141 /* Free unnecessary surplus pages to the buddy allocator */
1142 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1143 put_page(page);
1144 spin_lock(&hugetlb_lock);
1146 return ret;
1150 * When releasing a hugetlb pool reservation, any surplus pages that were
1151 * allocated to satisfy the reservation must be explicitly freed if they were
1152 * never used.
1153 * Called with hugetlb_lock held.
1155 static void return_unused_surplus_pages(struct hstate *h,
1156 unsigned long unused_resv_pages)
1158 unsigned long nr_pages;
1160 /* Uncommit the reservation */
1161 h->resv_huge_pages -= unused_resv_pages;
1163 /* Cannot return gigantic pages currently */
1164 if (h->order >= MAX_ORDER)
1165 return;
1167 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1170 * We want to release as many surplus pages as possible, spread
1171 * evenly across all nodes with memory. Iterate across these nodes
1172 * until we can no longer free unreserved surplus pages. This occurs
1173 * when the nodes with surplus pages have no free pages.
1174 * free_pool_huge_page() will balance the the freed pages across the
1175 * on-line nodes with memory and will handle the hstate accounting.
1177 while (nr_pages--) {
1178 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1179 break;
1180 cond_resched_lock(&hugetlb_lock);
1185 * Determine if the huge page at addr within the vma has an associated
1186 * reservation. Where it does not we will need to logically increase
1187 * reservation and actually increase subpool usage before an allocation
1188 * can occur. Where any new reservation would be required the
1189 * reservation change is prepared, but not committed. Once the page
1190 * has been allocated from the subpool and instantiated the change should
1191 * be committed via vma_commit_reservation. No action is required on
1192 * failure.
1194 static long vma_needs_reservation(struct hstate *h,
1195 struct vm_area_struct *vma, unsigned long addr)
1197 struct address_space *mapping = vma->vm_file->f_mapping;
1198 struct inode *inode = mapping->host;
1200 if (vma->vm_flags & VM_MAYSHARE) {
1201 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1202 return region_chg(&inode->i_mapping->private_list,
1203 idx, idx + 1);
1205 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206 return 1;
1208 } else {
1209 long err;
1210 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1211 struct resv_map *resv = vma_resv_map(vma);
1213 err = region_chg(&resv->regions, idx, idx + 1);
1214 if (err < 0)
1215 return err;
1216 return 0;
1219 static void vma_commit_reservation(struct hstate *h,
1220 struct vm_area_struct *vma, unsigned long addr)
1222 struct address_space *mapping = vma->vm_file->f_mapping;
1223 struct inode *inode = mapping->host;
1225 if (vma->vm_flags & VM_MAYSHARE) {
1226 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1227 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1229 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1230 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1231 struct resv_map *resv = vma_resv_map(vma);
1233 /* Mark this page used in the map. */
1234 region_add(&resv->regions, idx, idx + 1);
1238 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1239 unsigned long addr, int avoid_reserve)
1241 struct hugepage_subpool *spool = subpool_vma(vma);
1242 struct hstate *h = hstate_vma(vma);
1243 struct page *page;
1244 long chg;
1245 int ret, idx;
1246 struct hugetlb_cgroup *h_cg;
1248 idx = hstate_index(h);
1250 * Processes that did not create the mapping will have no
1251 * reserves and will not have accounted against subpool
1252 * limit. Check that the subpool limit can be made before
1253 * satisfying the allocation MAP_NORESERVE mappings may also
1254 * need pages and subpool limit allocated allocated if no reserve
1255 * mapping overlaps.
1257 chg = vma_needs_reservation(h, vma, addr);
1258 if (chg < 0)
1259 return ERR_PTR(-ENOMEM);
1260 if (chg || avoid_reserve)
1261 if (hugepage_subpool_get_pages(spool, 1))
1262 return ERR_PTR(-ENOSPC);
1264 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1265 if (ret) {
1266 if (chg || avoid_reserve)
1267 hugepage_subpool_put_pages(spool, 1);
1268 return ERR_PTR(-ENOSPC);
1270 spin_lock(&hugetlb_lock);
1271 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1272 if (!page) {
1273 spin_unlock(&hugetlb_lock);
1274 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1275 if (!page) {
1276 hugetlb_cgroup_uncharge_cgroup(idx,
1277 pages_per_huge_page(h),
1278 h_cg);
1279 if (chg || avoid_reserve)
1280 hugepage_subpool_put_pages(spool, 1);
1281 return ERR_PTR(-ENOSPC);
1283 spin_lock(&hugetlb_lock);
1284 list_move(&page->lru, &h->hugepage_activelist);
1285 /* Fall through */
1287 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1288 spin_unlock(&hugetlb_lock);
1290 set_page_private(page, (unsigned long)spool);
1292 vma_commit_reservation(h, vma, addr);
1293 return page;
1297 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1298 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1299 * where no ERR_VALUE is expected to be returned.
1301 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1302 unsigned long addr, int avoid_reserve)
1304 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1305 if (IS_ERR(page))
1306 page = NULL;
1307 return page;
1310 int __weak alloc_bootmem_huge_page(struct hstate *h)
1312 struct huge_bootmem_page *m;
1313 int nr_nodes, node;
1315 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1316 void *addr;
1318 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1319 huge_page_size(h), huge_page_size(h), 0);
1321 if (addr) {
1323 * Use the beginning of the huge page to store the
1324 * huge_bootmem_page struct (until gather_bootmem
1325 * puts them into the mem_map).
1327 m = addr;
1328 goto found;
1331 return 0;
1333 found:
1334 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1335 /* Put them into a private list first because mem_map is not up yet */
1336 list_add(&m->list, &huge_boot_pages);
1337 m->hstate = h;
1338 return 1;
1341 static void prep_compound_huge_page(struct page *page, int order)
1343 if (unlikely(order > (MAX_ORDER - 1)))
1344 prep_compound_gigantic_page(page, order);
1345 else
1346 prep_compound_page(page, order);
1349 /* Put bootmem huge pages into the standard lists after mem_map is up */
1350 static void __init gather_bootmem_prealloc(void)
1352 struct huge_bootmem_page *m;
1354 list_for_each_entry(m, &huge_boot_pages, list) {
1355 struct hstate *h = m->hstate;
1356 struct page *page;
1358 #ifdef CONFIG_HIGHMEM
1359 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1360 free_bootmem_late((unsigned long)m,
1361 sizeof(struct huge_bootmem_page));
1362 #else
1363 page = virt_to_page(m);
1364 #endif
1365 WARN_ON(page_count(page) != 1);
1366 prep_compound_huge_page(page, h->order);
1367 WARN_ON(PageReserved(page));
1368 prep_new_huge_page(h, page, page_to_nid(page));
1370 * If we had gigantic hugepages allocated at boot time, we need
1371 * to restore the 'stolen' pages to totalram_pages in order to
1372 * fix confusing memory reports from free(1) and another
1373 * side-effects, like CommitLimit going negative.
1375 if (h->order > (MAX_ORDER - 1))
1376 adjust_managed_page_count(page, 1 << h->order);
1380 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1382 unsigned long i;
1384 for (i = 0; i < h->max_huge_pages; ++i) {
1385 if (h->order >= MAX_ORDER) {
1386 if (!alloc_bootmem_huge_page(h))
1387 break;
1388 } else if (!alloc_fresh_huge_page(h,
1389 &node_states[N_MEMORY]))
1390 break;
1392 h->max_huge_pages = i;
1395 static void __init hugetlb_init_hstates(void)
1397 struct hstate *h;
1399 for_each_hstate(h) {
1400 /* oversize hugepages were init'ed in early boot */
1401 if (h->order < MAX_ORDER)
1402 hugetlb_hstate_alloc_pages(h);
1406 static char * __init memfmt(char *buf, unsigned long n)
1408 if (n >= (1UL << 30))
1409 sprintf(buf, "%lu GB", n >> 30);
1410 else if (n >= (1UL << 20))
1411 sprintf(buf, "%lu MB", n >> 20);
1412 else
1413 sprintf(buf, "%lu KB", n >> 10);
1414 return buf;
1417 static void __init report_hugepages(void)
1419 struct hstate *h;
1421 for_each_hstate(h) {
1422 char buf[32];
1423 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1424 memfmt(buf, huge_page_size(h)),
1425 h->free_huge_pages);
1429 #ifdef CONFIG_HIGHMEM
1430 static void try_to_free_low(struct hstate *h, unsigned long count,
1431 nodemask_t *nodes_allowed)
1433 int i;
1435 if (h->order >= MAX_ORDER)
1436 return;
1438 for_each_node_mask(i, *nodes_allowed) {
1439 struct page *page, *next;
1440 struct list_head *freel = &h->hugepage_freelists[i];
1441 list_for_each_entry_safe(page, next, freel, lru) {
1442 if (count >= h->nr_huge_pages)
1443 return;
1444 if (PageHighMem(page))
1445 continue;
1446 list_del(&page->lru);
1447 update_and_free_page(h, page);
1448 h->free_huge_pages--;
1449 h->free_huge_pages_node[page_to_nid(page)]--;
1453 #else
1454 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1455 nodemask_t *nodes_allowed)
1458 #endif
1461 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1462 * balanced by operating on them in a round-robin fashion.
1463 * Returns 1 if an adjustment was made.
1465 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1466 int delta)
1468 int nr_nodes, node;
1470 VM_BUG_ON(delta != -1 && delta != 1);
1472 if (delta < 0) {
1473 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1474 if (h->surplus_huge_pages_node[node])
1475 goto found;
1477 } else {
1478 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1479 if (h->surplus_huge_pages_node[node] <
1480 h->nr_huge_pages_node[node])
1481 goto found;
1484 return 0;
1486 found:
1487 h->surplus_huge_pages += delta;
1488 h->surplus_huge_pages_node[node] += delta;
1489 return 1;
1492 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1493 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1494 nodemask_t *nodes_allowed)
1496 unsigned long min_count, ret;
1498 if (h->order >= MAX_ORDER)
1499 return h->max_huge_pages;
1502 * Increase the pool size
1503 * First take pages out of surplus state. Then make up the
1504 * remaining difference by allocating fresh huge pages.
1506 * We might race with alloc_buddy_huge_page() here and be unable
1507 * to convert a surplus huge page to a normal huge page. That is
1508 * not critical, though, it just means the overall size of the
1509 * pool might be one hugepage larger than it needs to be, but
1510 * within all the constraints specified by the sysctls.
1512 spin_lock(&hugetlb_lock);
1513 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1514 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1515 break;
1518 while (count > persistent_huge_pages(h)) {
1520 * If this allocation races such that we no longer need the
1521 * page, free_huge_page will handle it by freeing the page
1522 * and reducing the surplus.
1524 spin_unlock(&hugetlb_lock);
1525 ret = alloc_fresh_huge_page(h, nodes_allowed);
1526 spin_lock(&hugetlb_lock);
1527 if (!ret)
1528 goto out;
1530 /* Bail for signals. Probably ctrl-c from user */
1531 if (signal_pending(current))
1532 goto out;
1536 * Decrease the pool size
1537 * First return free pages to the buddy allocator (being careful
1538 * to keep enough around to satisfy reservations). Then place
1539 * pages into surplus state as needed so the pool will shrink
1540 * to the desired size as pages become free.
1542 * By placing pages into the surplus state independent of the
1543 * overcommit value, we are allowing the surplus pool size to
1544 * exceed overcommit. There are few sane options here. Since
1545 * alloc_buddy_huge_page() is checking the global counter,
1546 * though, we'll note that we're not allowed to exceed surplus
1547 * and won't grow the pool anywhere else. Not until one of the
1548 * sysctls are changed, or the surplus pages go out of use.
1550 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1551 min_count = max(count, min_count);
1552 try_to_free_low(h, min_count, nodes_allowed);
1553 while (min_count < persistent_huge_pages(h)) {
1554 if (!free_pool_huge_page(h, nodes_allowed, 0))
1555 break;
1556 cond_resched_lock(&hugetlb_lock);
1558 while (count < persistent_huge_pages(h)) {
1559 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1560 break;
1562 out:
1563 ret = persistent_huge_pages(h);
1564 spin_unlock(&hugetlb_lock);
1565 return ret;
1568 #define HSTATE_ATTR_RO(_name) \
1569 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1571 #define HSTATE_ATTR(_name) \
1572 static struct kobj_attribute _name##_attr = \
1573 __ATTR(_name, 0644, _name##_show, _name##_store)
1575 static struct kobject *hugepages_kobj;
1576 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1578 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1580 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1582 int i;
1584 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1585 if (hstate_kobjs[i] == kobj) {
1586 if (nidp)
1587 *nidp = NUMA_NO_NODE;
1588 return &hstates[i];
1591 return kobj_to_node_hstate(kobj, nidp);
1594 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1595 struct kobj_attribute *attr, char *buf)
1597 struct hstate *h;
1598 unsigned long nr_huge_pages;
1599 int nid;
1601 h = kobj_to_hstate(kobj, &nid);
1602 if (nid == NUMA_NO_NODE)
1603 nr_huge_pages = h->nr_huge_pages;
1604 else
1605 nr_huge_pages = h->nr_huge_pages_node[nid];
1607 return sprintf(buf, "%lu\n", nr_huge_pages);
1610 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1611 struct kobject *kobj, struct kobj_attribute *attr,
1612 const char *buf, size_t len)
1614 int err;
1615 int nid;
1616 unsigned long count;
1617 struct hstate *h;
1618 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1620 err = kstrtoul(buf, 10, &count);
1621 if (err)
1622 goto out;
1624 h = kobj_to_hstate(kobj, &nid);
1625 if (h->order >= MAX_ORDER) {
1626 err = -EINVAL;
1627 goto out;
1630 if (nid == NUMA_NO_NODE) {
1632 * global hstate attribute
1634 if (!(obey_mempolicy &&
1635 init_nodemask_of_mempolicy(nodes_allowed))) {
1636 NODEMASK_FREE(nodes_allowed);
1637 nodes_allowed = &node_states[N_MEMORY];
1639 } else if (nodes_allowed) {
1641 * per node hstate attribute: adjust count to global,
1642 * but restrict alloc/free to the specified node.
1644 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1645 init_nodemask_of_node(nodes_allowed, nid);
1646 } else
1647 nodes_allowed = &node_states[N_MEMORY];
1649 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1651 if (nodes_allowed != &node_states[N_MEMORY])
1652 NODEMASK_FREE(nodes_allowed);
1654 return len;
1655 out:
1656 NODEMASK_FREE(nodes_allowed);
1657 return err;
1660 static ssize_t nr_hugepages_show(struct kobject *kobj,
1661 struct kobj_attribute *attr, char *buf)
1663 return nr_hugepages_show_common(kobj, attr, buf);
1666 static ssize_t nr_hugepages_store(struct kobject *kobj,
1667 struct kobj_attribute *attr, const char *buf, size_t len)
1669 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1671 HSTATE_ATTR(nr_hugepages);
1673 #ifdef CONFIG_NUMA
1676 * hstate attribute for optionally mempolicy-based constraint on persistent
1677 * huge page alloc/free.
1679 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1680 struct kobj_attribute *attr, char *buf)
1682 return nr_hugepages_show_common(kobj, attr, buf);
1685 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1686 struct kobj_attribute *attr, const char *buf, size_t len)
1688 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1690 HSTATE_ATTR(nr_hugepages_mempolicy);
1691 #endif
1694 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1695 struct kobj_attribute *attr, char *buf)
1697 struct hstate *h = kobj_to_hstate(kobj, NULL);
1698 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1701 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1702 struct kobj_attribute *attr, const char *buf, size_t count)
1704 int err;
1705 unsigned long input;
1706 struct hstate *h = kobj_to_hstate(kobj, NULL);
1708 if (h->order >= MAX_ORDER)
1709 return -EINVAL;
1711 err = kstrtoul(buf, 10, &input);
1712 if (err)
1713 return err;
1715 spin_lock(&hugetlb_lock);
1716 h->nr_overcommit_huge_pages = input;
1717 spin_unlock(&hugetlb_lock);
1719 return count;
1721 HSTATE_ATTR(nr_overcommit_hugepages);
1723 static ssize_t free_hugepages_show(struct kobject *kobj,
1724 struct kobj_attribute *attr, char *buf)
1726 struct hstate *h;
1727 unsigned long free_huge_pages;
1728 int nid;
1730 h = kobj_to_hstate(kobj, &nid);
1731 if (nid == NUMA_NO_NODE)
1732 free_huge_pages = h->free_huge_pages;
1733 else
1734 free_huge_pages = h->free_huge_pages_node[nid];
1736 return sprintf(buf, "%lu\n", free_huge_pages);
1738 HSTATE_ATTR_RO(free_hugepages);
1740 static ssize_t resv_hugepages_show(struct kobject *kobj,
1741 struct kobj_attribute *attr, char *buf)
1743 struct hstate *h = kobj_to_hstate(kobj, NULL);
1744 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1746 HSTATE_ATTR_RO(resv_hugepages);
1748 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1749 struct kobj_attribute *attr, char *buf)
1751 struct hstate *h;
1752 unsigned long surplus_huge_pages;
1753 int nid;
1755 h = kobj_to_hstate(kobj, &nid);
1756 if (nid == NUMA_NO_NODE)
1757 surplus_huge_pages = h->surplus_huge_pages;
1758 else
1759 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1761 return sprintf(buf, "%lu\n", surplus_huge_pages);
1763 HSTATE_ATTR_RO(surplus_hugepages);
1765 static struct attribute *hstate_attrs[] = {
1766 &nr_hugepages_attr.attr,
1767 &nr_overcommit_hugepages_attr.attr,
1768 &free_hugepages_attr.attr,
1769 &resv_hugepages_attr.attr,
1770 &surplus_hugepages_attr.attr,
1771 #ifdef CONFIG_NUMA
1772 &nr_hugepages_mempolicy_attr.attr,
1773 #endif
1774 NULL,
1777 static struct attribute_group hstate_attr_group = {
1778 .attrs = hstate_attrs,
1781 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1782 struct kobject **hstate_kobjs,
1783 struct attribute_group *hstate_attr_group)
1785 int retval;
1786 int hi = hstate_index(h);
1788 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1789 if (!hstate_kobjs[hi])
1790 return -ENOMEM;
1792 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1793 if (retval)
1794 kobject_put(hstate_kobjs[hi]);
1796 return retval;
1799 static void __init hugetlb_sysfs_init(void)
1801 struct hstate *h;
1802 int err;
1804 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1805 if (!hugepages_kobj)
1806 return;
1808 for_each_hstate(h) {
1809 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1810 hstate_kobjs, &hstate_attr_group);
1811 if (err)
1812 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1816 #ifdef CONFIG_NUMA
1819 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1820 * with node devices in node_devices[] using a parallel array. The array
1821 * index of a node device or _hstate == node id.
1822 * This is here to avoid any static dependency of the node device driver, in
1823 * the base kernel, on the hugetlb module.
1825 struct node_hstate {
1826 struct kobject *hugepages_kobj;
1827 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1829 struct node_hstate node_hstates[MAX_NUMNODES];
1832 * A subset of global hstate attributes for node devices
1834 static struct attribute *per_node_hstate_attrs[] = {
1835 &nr_hugepages_attr.attr,
1836 &free_hugepages_attr.attr,
1837 &surplus_hugepages_attr.attr,
1838 NULL,
1841 static struct attribute_group per_node_hstate_attr_group = {
1842 .attrs = per_node_hstate_attrs,
1846 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1847 * Returns node id via non-NULL nidp.
1849 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1851 int nid;
1853 for (nid = 0; nid < nr_node_ids; nid++) {
1854 struct node_hstate *nhs = &node_hstates[nid];
1855 int i;
1856 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1857 if (nhs->hstate_kobjs[i] == kobj) {
1858 if (nidp)
1859 *nidp = nid;
1860 return &hstates[i];
1864 BUG();
1865 return NULL;
1869 * Unregister hstate attributes from a single node device.
1870 * No-op if no hstate attributes attached.
1872 static void hugetlb_unregister_node(struct node *node)
1874 struct hstate *h;
1875 struct node_hstate *nhs = &node_hstates[node->dev.id];
1877 if (!nhs->hugepages_kobj)
1878 return; /* no hstate attributes */
1880 for_each_hstate(h) {
1881 int idx = hstate_index(h);
1882 if (nhs->hstate_kobjs[idx]) {
1883 kobject_put(nhs->hstate_kobjs[idx]);
1884 nhs->hstate_kobjs[idx] = NULL;
1888 kobject_put(nhs->hugepages_kobj);
1889 nhs->hugepages_kobj = NULL;
1893 * hugetlb module exit: unregister hstate attributes from node devices
1894 * that have them.
1896 static void hugetlb_unregister_all_nodes(void)
1898 int nid;
1901 * disable node device registrations.
1903 register_hugetlbfs_with_node(NULL, NULL);
1906 * remove hstate attributes from any nodes that have them.
1908 for (nid = 0; nid < nr_node_ids; nid++)
1909 hugetlb_unregister_node(node_devices[nid]);
1913 * Register hstate attributes for a single node device.
1914 * No-op if attributes already registered.
1916 static void hugetlb_register_node(struct node *node)
1918 struct hstate *h;
1919 struct node_hstate *nhs = &node_hstates[node->dev.id];
1920 int err;
1922 if (nhs->hugepages_kobj)
1923 return; /* already allocated */
1925 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1926 &node->dev.kobj);
1927 if (!nhs->hugepages_kobj)
1928 return;
1930 for_each_hstate(h) {
1931 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1932 nhs->hstate_kobjs,
1933 &per_node_hstate_attr_group);
1934 if (err) {
1935 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1936 h->name, node->dev.id);
1937 hugetlb_unregister_node(node);
1938 break;
1944 * hugetlb init time: register hstate attributes for all registered node
1945 * devices of nodes that have memory. All on-line nodes should have
1946 * registered their associated device by this time.
1948 static void hugetlb_register_all_nodes(void)
1950 int nid;
1952 for_each_node_state(nid, N_MEMORY) {
1953 struct node *node = node_devices[nid];
1954 if (node->dev.id == nid)
1955 hugetlb_register_node(node);
1959 * Let the node device driver know we're here so it can
1960 * [un]register hstate attributes on node hotplug.
1962 register_hugetlbfs_with_node(hugetlb_register_node,
1963 hugetlb_unregister_node);
1965 #else /* !CONFIG_NUMA */
1967 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1969 BUG();
1970 if (nidp)
1971 *nidp = -1;
1972 return NULL;
1975 static void hugetlb_unregister_all_nodes(void) { }
1977 static void hugetlb_register_all_nodes(void) { }
1979 #endif
1981 static void __exit hugetlb_exit(void)
1983 struct hstate *h;
1985 hugetlb_unregister_all_nodes();
1987 for_each_hstate(h) {
1988 kobject_put(hstate_kobjs[hstate_index(h)]);
1991 kobject_put(hugepages_kobj);
1993 module_exit(hugetlb_exit);
1995 static int __init hugetlb_init(void)
1997 /* Some platform decide whether they support huge pages at boot
1998 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1999 * there is no such support
2001 if (HPAGE_SHIFT == 0)
2002 return 0;
2004 if (!size_to_hstate(default_hstate_size)) {
2005 default_hstate_size = HPAGE_SIZE;
2006 if (!size_to_hstate(default_hstate_size))
2007 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2009 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2010 if (default_hstate_max_huge_pages)
2011 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2013 hugetlb_init_hstates();
2014 gather_bootmem_prealloc();
2015 report_hugepages();
2017 hugetlb_sysfs_init();
2018 hugetlb_register_all_nodes();
2019 hugetlb_cgroup_file_init();
2021 return 0;
2023 module_init(hugetlb_init);
2025 /* Should be called on processing a hugepagesz=... option */
2026 void __init hugetlb_add_hstate(unsigned order)
2028 struct hstate *h;
2029 unsigned long i;
2031 if (size_to_hstate(PAGE_SIZE << order)) {
2032 pr_warning("hugepagesz= specified twice, ignoring\n");
2033 return;
2035 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2036 BUG_ON(order == 0);
2037 h = &hstates[hugetlb_max_hstate++];
2038 h->order = order;
2039 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2040 h->nr_huge_pages = 0;
2041 h->free_huge_pages = 0;
2042 for (i = 0; i < MAX_NUMNODES; ++i)
2043 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2044 INIT_LIST_HEAD(&h->hugepage_activelist);
2045 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2046 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2047 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2048 huge_page_size(h)/1024);
2050 parsed_hstate = h;
2053 static int __init hugetlb_nrpages_setup(char *s)
2055 unsigned long *mhp;
2056 static unsigned long *last_mhp;
2059 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2060 * so this hugepages= parameter goes to the "default hstate".
2062 if (!hugetlb_max_hstate)
2063 mhp = &default_hstate_max_huge_pages;
2064 else
2065 mhp = &parsed_hstate->max_huge_pages;
2067 if (mhp == last_mhp) {
2068 pr_warning("hugepages= specified twice without "
2069 "interleaving hugepagesz=, ignoring\n");
2070 return 1;
2073 if (sscanf(s, "%lu", mhp) <= 0)
2074 *mhp = 0;
2077 * Global state is always initialized later in hugetlb_init.
2078 * But we need to allocate >= MAX_ORDER hstates here early to still
2079 * use the bootmem allocator.
2081 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2082 hugetlb_hstate_alloc_pages(parsed_hstate);
2084 last_mhp = mhp;
2086 return 1;
2088 __setup("hugepages=", hugetlb_nrpages_setup);
2090 static int __init hugetlb_default_setup(char *s)
2092 default_hstate_size = memparse(s, &s);
2093 return 1;
2095 __setup("default_hugepagesz=", hugetlb_default_setup);
2097 static unsigned int cpuset_mems_nr(unsigned int *array)
2099 int node;
2100 unsigned int nr = 0;
2102 for_each_node_mask(node, cpuset_current_mems_allowed)
2103 nr += array[node];
2105 return nr;
2108 #ifdef CONFIG_SYSCTL
2109 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2110 struct ctl_table *table, int write,
2111 void __user *buffer, size_t *length, loff_t *ppos)
2113 struct hstate *h = &default_hstate;
2114 unsigned long tmp;
2115 int ret;
2117 if (!hugepages_supported())
2118 return -ENOTSUPP;
2120 tmp = h->max_huge_pages;
2122 if (write && h->order >= MAX_ORDER)
2123 return -EINVAL;
2125 table->data = &tmp;
2126 table->maxlen = sizeof(unsigned long);
2127 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2128 if (ret)
2129 goto out;
2131 if (write) {
2132 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2133 GFP_KERNEL | __GFP_NORETRY);
2134 if (!(obey_mempolicy &&
2135 init_nodemask_of_mempolicy(nodes_allowed))) {
2136 NODEMASK_FREE(nodes_allowed);
2137 nodes_allowed = &node_states[N_MEMORY];
2139 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2141 if (nodes_allowed != &node_states[N_MEMORY])
2142 NODEMASK_FREE(nodes_allowed);
2144 out:
2145 return ret;
2148 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *length, loff_t *ppos)
2152 return hugetlb_sysctl_handler_common(false, table, write,
2153 buffer, length, ppos);
2156 #ifdef CONFIG_NUMA
2157 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2158 void __user *buffer, size_t *length, loff_t *ppos)
2160 return hugetlb_sysctl_handler_common(true, table, write,
2161 buffer, length, ppos);
2163 #endif /* CONFIG_NUMA */
2165 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2166 void __user *buffer,
2167 size_t *length, loff_t *ppos)
2169 struct hstate *h = &default_hstate;
2170 unsigned long tmp;
2171 int ret;
2173 if (!hugepages_supported())
2174 return -ENOTSUPP;
2176 tmp = h->nr_overcommit_huge_pages;
2178 if (write && h->order >= MAX_ORDER)
2179 return -EINVAL;
2181 table->data = &tmp;
2182 table->maxlen = sizeof(unsigned long);
2183 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2184 if (ret)
2185 goto out;
2187 if (write) {
2188 spin_lock(&hugetlb_lock);
2189 h->nr_overcommit_huge_pages = tmp;
2190 spin_unlock(&hugetlb_lock);
2192 out:
2193 return ret;
2196 #endif /* CONFIG_SYSCTL */
2198 void hugetlb_report_meminfo(struct seq_file *m)
2200 struct hstate *h = &default_hstate;
2201 if (!hugepages_supported())
2202 return;
2203 seq_printf(m,
2204 "HugePages_Total: %5lu\n"
2205 "HugePages_Free: %5lu\n"
2206 "HugePages_Rsvd: %5lu\n"
2207 "HugePages_Surp: %5lu\n"
2208 "Hugepagesize: %8lu kB\n",
2209 h->nr_huge_pages,
2210 h->free_huge_pages,
2211 h->resv_huge_pages,
2212 h->surplus_huge_pages,
2213 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2216 int hugetlb_report_node_meminfo(int nid, char *buf)
2218 struct hstate *h = &default_hstate;
2219 if (!hugepages_supported())
2220 return 0;
2221 return sprintf(buf,
2222 "Node %d HugePages_Total: %5u\n"
2223 "Node %d HugePages_Free: %5u\n"
2224 "Node %d HugePages_Surp: %5u\n",
2225 nid, h->nr_huge_pages_node[nid],
2226 nid, h->free_huge_pages_node[nid],
2227 nid, h->surplus_huge_pages_node[nid]);
2230 void hugetlb_show_meminfo(void)
2232 struct hstate *h;
2233 int nid;
2235 if (!hugepages_supported())
2236 return;
2238 for_each_node_state(nid, N_MEMORY)
2239 for_each_hstate(h)
2240 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2241 nid,
2242 h->nr_huge_pages_node[nid],
2243 h->free_huge_pages_node[nid],
2244 h->surplus_huge_pages_node[nid],
2245 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2248 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2249 unsigned long hugetlb_total_pages(void)
2251 struct hstate *h;
2252 unsigned long nr_total_pages = 0;
2254 for_each_hstate(h)
2255 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2256 return nr_total_pages;
2259 static int hugetlb_acct_memory(struct hstate *h, long delta)
2261 int ret = -ENOMEM;
2263 spin_lock(&hugetlb_lock);
2265 * When cpuset is configured, it breaks the strict hugetlb page
2266 * reservation as the accounting is done on a global variable. Such
2267 * reservation is completely rubbish in the presence of cpuset because
2268 * the reservation is not checked against page availability for the
2269 * current cpuset. Application can still potentially OOM'ed by kernel
2270 * with lack of free htlb page in cpuset that the task is in.
2271 * Attempt to enforce strict accounting with cpuset is almost
2272 * impossible (or too ugly) because cpuset is too fluid that
2273 * task or memory node can be dynamically moved between cpusets.
2275 * The change of semantics for shared hugetlb mapping with cpuset is
2276 * undesirable. However, in order to preserve some of the semantics,
2277 * we fall back to check against current free page availability as
2278 * a best attempt and hopefully to minimize the impact of changing
2279 * semantics that cpuset has.
2281 if (delta > 0) {
2282 if (gather_surplus_pages(h, delta) < 0)
2283 goto out;
2285 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2286 return_unused_surplus_pages(h, delta);
2287 goto out;
2291 ret = 0;
2292 if (delta < 0)
2293 return_unused_surplus_pages(h, (unsigned long) -delta);
2295 out:
2296 spin_unlock(&hugetlb_lock);
2297 return ret;
2300 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2302 struct resv_map *resv = vma_resv_map(vma);
2305 * This new VMA should share its siblings reservation map if present.
2306 * The VMA will only ever have a valid reservation map pointer where
2307 * it is being copied for another still existing VMA. As that VMA
2308 * has a reference to the reservation map it cannot disappear until
2309 * after this open call completes. It is therefore safe to take a
2310 * new reference here without additional locking.
2312 if (resv)
2313 kref_get(&resv->refs);
2316 static void resv_map_put(struct vm_area_struct *vma)
2318 struct resv_map *resv = vma_resv_map(vma);
2320 if (!resv)
2321 return;
2322 kref_put(&resv->refs, resv_map_release);
2325 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2327 struct hstate *h = hstate_vma(vma);
2328 struct resv_map *resv = vma_resv_map(vma);
2329 struct hugepage_subpool *spool = subpool_vma(vma);
2330 unsigned long reserve;
2331 unsigned long start;
2332 unsigned long end;
2334 if (resv) {
2335 start = vma_hugecache_offset(h, vma, vma->vm_start);
2336 end = vma_hugecache_offset(h, vma, vma->vm_end);
2338 reserve = (end - start) -
2339 region_count(&resv->regions, start, end);
2341 resv_map_put(vma);
2343 if (reserve) {
2344 hugetlb_acct_memory(h, -reserve);
2345 hugepage_subpool_put_pages(spool, reserve);
2351 * We cannot handle pagefaults against hugetlb pages at all. They cause
2352 * handle_mm_fault() to try to instantiate regular-sized pages in the
2353 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2354 * this far.
2356 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2358 BUG();
2359 return 0;
2362 const struct vm_operations_struct hugetlb_vm_ops = {
2363 .fault = hugetlb_vm_op_fault,
2364 .open = hugetlb_vm_op_open,
2365 .close = hugetlb_vm_op_close,
2368 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2369 int writable)
2371 pte_t entry;
2373 if (writable) {
2374 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2375 vma->vm_page_prot)));
2376 } else {
2377 entry = huge_pte_wrprotect(mk_huge_pte(page,
2378 vma->vm_page_prot));
2380 entry = pte_mkyoung(entry);
2381 entry = pte_mkhuge(entry);
2382 entry = arch_make_huge_pte(entry, vma, page, writable);
2384 return entry;
2387 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2388 unsigned long address, pte_t *ptep)
2390 pte_t entry;
2392 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2393 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2394 update_mmu_cache(vma, address, ptep);
2397 static int is_hugetlb_entry_migration(pte_t pte)
2399 swp_entry_t swp;
2401 if (huge_pte_none(pte) || pte_present(pte))
2402 return 0;
2403 swp = pte_to_swp_entry(pte);
2404 if (non_swap_entry(swp) && is_migration_entry(swp))
2405 return 1;
2406 else
2407 return 0;
2410 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2412 swp_entry_t swp;
2414 if (huge_pte_none(pte) || pte_present(pte))
2415 return 0;
2416 swp = pte_to_swp_entry(pte);
2417 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2418 return 1;
2419 else
2420 return 0;
2423 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2424 struct vm_area_struct *vma)
2426 pte_t *src_pte, *dst_pte, entry;
2427 struct page *ptepage;
2428 unsigned long addr;
2429 int cow;
2430 struct hstate *h = hstate_vma(vma);
2431 unsigned long sz = huge_page_size(h);
2433 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2435 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2436 src_pte = huge_pte_offset(src, addr);
2437 if (!src_pte)
2438 continue;
2439 dst_pte = huge_pte_alloc(dst, addr, sz);
2440 if (!dst_pte)
2441 goto nomem;
2443 /* If the pagetables are shared don't copy or take references */
2444 if (dst_pte == src_pte)
2445 continue;
2447 spin_lock(&dst->page_table_lock);
2448 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2449 entry = huge_ptep_get(src_pte);
2450 if (huge_pte_none(entry)) { /* skip none entry */
2452 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2453 is_hugetlb_entry_hwpoisoned(entry))) {
2454 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2456 if (is_write_migration_entry(swp_entry) && cow) {
2458 * COW mappings require pages in both
2459 * parent and child to be set to read.
2461 make_migration_entry_read(&swp_entry);
2462 entry = swp_entry_to_pte(swp_entry);
2463 set_huge_pte_at(src, addr, src_pte, entry);
2465 set_huge_pte_at(dst, addr, dst_pte, entry);
2466 } else {
2467 if (cow)
2468 huge_ptep_set_wrprotect(src, addr, src_pte);
2469 entry = huge_ptep_get(src_pte);
2470 ptepage = pte_page(entry);
2471 get_page(ptepage);
2472 page_dup_rmap(ptepage);
2473 set_huge_pte_at(dst, addr, dst_pte, entry);
2475 spin_unlock(&src->page_table_lock);
2476 spin_unlock(&dst->page_table_lock);
2478 return 0;
2480 nomem:
2481 return -ENOMEM;
2484 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2485 unsigned long start, unsigned long end,
2486 struct page *ref_page)
2488 int force_flush = 0;
2489 struct mm_struct *mm = vma->vm_mm;
2490 unsigned long address;
2491 pte_t *ptep;
2492 pte_t pte;
2493 struct page *page;
2494 struct hstate *h = hstate_vma(vma);
2495 unsigned long sz = huge_page_size(h);
2496 const unsigned long mmun_start = start; /* For mmu_notifiers */
2497 const unsigned long mmun_end = end; /* For mmu_notifiers */
2499 WARN_ON(!is_vm_hugetlb_page(vma));
2500 BUG_ON(start & ~huge_page_mask(h));
2501 BUG_ON(end & ~huge_page_mask(h));
2503 tlb_start_vma(tlb, vma);
2504 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2505 again:
2506 spin_lock(&mm->page_table_lock);
2507 for (address = start; address < end; address += sz) {
2508 ptep = huge_pte_offset(mm, address);
2509 if (!ptep)
2510 continue;
2512 if (huge_pmd_unshare(mm, &address, ptep))
2513 continue;
2515 pte = huge_ptep_get(ptep);
2516 if (huge_pte_none(pte))
2517 continue;
2520 * Migrating hugepage or HWPoisoned hugepage is already
2521 * unmapped and its refcount is dropped, so just clear pte here.
2523 if (unlikely(!pte_present(pte))) {
2524 huge_pte_clear(mm, address, ptep);
2525 continue;
2528 page = pte_page(pte);
2530 * If a reference page is supplied, it is because a specific
2531 * page is being unmapped, not a range. Ensure the page we
2532 * are about to unmap is the actual page of interest.
2534 if (ref_page) {
2535 if (page != ref_page)
2536 continue;
2539 * Mark the VMA as having unmapped its page so that
2540 * future faults in this VMA will fail rather than
2541 * looking like data was lost
2543 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2546 pte = huge_ptep_get_and_clear(mm, address, ptep);
2547 tlb_remove_tlb_entry(tlb, ptep, address);
2548 if (huge_pte_dirty(pte))
2549 set_page_dirty(page);
2551 page_remove_rmap(page);
2552 force_flush = !__tlb_remove_page(tlb, page);
2553 if (force_flush)
2554 break;
2555 /* Bail out after unmapping reference page if supplied */
2556 if (ref_page)
2557 break;
2559 spin_unlock(&mm->page_table_lock);
2561 * mmu_gather ran out of room to batch pages, we break out of
2562 * the PTE lock to avoid doing the potential expensive TLB invalidate
2563 * and page-free while holding it.
2565 if (force_flush) {
2566 force_flush = 0;
2567 tlb_flush_mmu(tlb);
2568 if (address < end && !ref_page)
2569 goto again;
2571 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2572 tlb_end_vma(tlb, vma);
2575 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2576 struct vm_area_struct *vma, unsigned long start,
2577 unsigned long end, struct page *ref_page)
2579 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2582 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2583 * test will fail on a vma being torn down, and not grab a page table
2584 * on its way out. We're lucky that the flag has such an appropriate
2585 * name, and can in fact be safely cleared here. We could clear it
2586 * before the __unmap_hugepage_range above, but all that's necessary
2587 * is to clear it before releasing the i_mmap_mutex. This works
2588 * because in the context this is called, the VMA is about to be
2589 * destroyed and the i_mmap_mutex is held.
2591 vma->vm_flags &= ~VM_MAYSHARE;
2594 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2595 unsigned long end, struct page *ref_page)
2597 struct mm_struct *mm;
2598 struct mmu_gather tlb;
2600 mm = vma->vm_mm;
2602 tlb_gather_mmu(&tlb, mm, start, end);
2603 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2604 tlb_finish_mmu(&tlb, start, end);
2608 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2609 * mappping it owns the reserve page for. The intention is to unmap the page
2610 * from other VMAs and let the children be SIGKILLed if they are faulting the
2611 * same region.
2613 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2614 struct page *page, unsigned long address)
2616 struct hstate *h = hstate_vma(vma);
2617 struct vm_area_struct *iter_vma;
2618 struct address_space *mapping;
2619 pgoff_t pgoff;
2622 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2623 * from page cache lookup which is in HPAGE_SIZE units.
2625 address = address & huge_page_mask(h);
2626 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2627 vma->vm_pgoff;
2628 mapping = file_inode(vma->vm_file)->i_mapping;
2631 * Take the mapping lock for the duration of the table walk. As
2632 * this mapping should be shared between all the VMAs,
2633 * __unmap_hugepage_range() is called as the lock is already held
2635 mutex_lock(&mapping->i_mmap_mutex);
2636 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2637 /* Do not unmap the current VMA */
2638 if (iter_vma == vma)
2639 continue;
2642 * Unmap the page from other VMAs without their own reserves.
2643 * They get marked to be SIGKILLed if they fault in these
2644 * areas. This is because a future no-page fault on this VMA
2645 * could insert a zeroed page instead of the data existing
2646 * from the time of fork. This would look like data corruption
2648 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2649 unmap_hugepage_range(iter_vma, address,
2650 address + huge_page_size(h), page);
2652 mutex_unlock(&mapping->i_mmap_mutex);
2654 return 1;
2658 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2659 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2660 * cannot race with other handlers or page migration.
2661 * Keep the pte_same checks anyway to make transition from the mutex easier.
2663 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2664 unsigned long address, pte_t *ptep, pte_t pte,
2665 struct page *pagecache_page)
2667 struct hstate *h = hstate_vma(vma);
2668 struct page *old_page, *new_page;
2669 int outside_reserve = 0;
2670 unsigned long mmun_start; /* For mmu_notifiers */
2671 unsigned long mmun_end; /* For mmu_notifiers */
2673 old_page = pte_page(pte);
2675 retry_avoidcopy:
2676 /* If no-one else is actually using this page, avoid the copy
2677 * and just make the page writable */
2678 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2679 page_move_anon_rmap(old_page, vma, address);
2680 set_huge_ptep_writable(vma, address, ptep);
2681 return 0;
2685 * If the process that created a MAP_PRIVATE mapping is about to
2686 * perform a COW due to a shared page count, attempt to satisfy
2687 * the allocation without using the existing reserves. The pagecache
2688 * page is used to determine if the reserve at this address was
2689 * consumed or not. If reserves were used, a partial faulted mapping
2690 * at the time of fork() could consume its reserves on COW instead
2691 * of the full address range.
2693 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2694 old_page != pagecache_page)
2695 outside_reserve = 1;
2697 page_cache_get(old_page);
2699 /* Drop page_table_lock as buddy allocator may be called */
2700 spin_unlock(&mm->page_table_lock);
2701 new_page = alloc_huge_page(vma, address, outside_reserve);
2703 if (IS_ERR(new_page)) {
2704 long err = PTR_ERR(new_page);
2705 page_cache_release(old_page);
2708 * If a process owning a MAP_PRIVATE mapping fails to COW,
2709 * it is due to references held by a child and an insufficient
2710 * huge page pool. To guarantee the original mappers
2711 * reliability, unmap the page from child processes. The child
2712 * may get SIGKILLed if it later faults.
2714 if (outside_reserve) {
2715 BUG_ON(huge_pte_none(pte));
2716 if (unmap_ref_private(mm, vma, old_page, address)) {
2717 BUG_ON(huge_pte_none(pte));
2718 spin_lock(&mm->page_table_lock);
2719 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2720 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2721 goto retry_avoidcopy;
2723 * race occurs while re-acquiring page_table_lock, and
2724 * our job is done.
2726 return 0;
2728 WARN_ON_ONCE(1);
2731 /* Caller expects lock to be held */
2732 spin_lock(&mm->page_table_lock);
2733 if (err == -ENOMEM)
2734 return VM_FAULT_OOM;
2735 else
2736 return VM_FAULT_SIGBUS;
2740 * When the original hugepage is shared one, it does not have
2741 * anon_vma prepared.
2743 if (unlikely(anon_vma_prepare(vma))) {
2744 page_cache_release(new_page);
2745 page_cache_release(old_page);
2746 /* Caller expects lock to be held */
2747 spin_lock(&mm->page_table_lock);
2748 return VM_FAULT_OOM;
2751 copy_user_huge_page(new_page, old_page, address, vma,
2752 pages_per_huge_page(h));
2753 __SetPageUptodate(new_page);
2755 mmun_start = address & huge_page_mask(h);
2756 mmun_end = mmun_start + huge_page_size(h);
2757 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2759 * Retake the page_table_lock to check for racing updates
2760 * before the page tables are altered
2762 spin_lock(&mm->page_table_lock);
2763 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2764 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2765 ClearPagePrivate(new_page);
2767 /* Break COW */
2768 huge_ptep_clear_flush(vma, address, ptep);
2769 set_huge_pte_at(mm, address, ptep,
2770 make_huge_pte(vma, new_page, 1));
2771 page_remove_rmap(old_page);
2772 hugepage_add_new_anon_rmap(new_page, vma, address);
2773 /* Make the old page be freed below */
2774 new_page = old_page;
2776 spin_unlock(&mm->page_table_lock);
2777 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2778 page_cache_release(new_page);
2779 page_cache_release(old_page);
2781 /* Caller expects lock to be held */
2782 spin_lock(&mm->page_table_lock);
2783 return 0;
2786 /* Return the pagecache page at a given address within a VMA */
2787 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2788 struct vm_area_struct *vma, unsigned long address)
2790 struct address_space *mapping;
2791 pgoff_t idx;
2793 mapping = vma->vm_file->f_mapping;
2794 idx = vma_hugecache_offset(h, vma, address);
2796 return find_lock_page(mapping, idx);
2800 * Return whether there is a pagecache page to back given address within VMA.
2801 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2803 static bool hugetlbfs_pagecache_present(struct hstate *h,
2804 struct vm_area_struct *vma, unsigned long address)
2806 struct address_space *mapping;
2807 pgoff_t idx;
2808 struct page *page;
2810 mapping = vma->vm_file->f_mapping;
2811 idx = vma_hugecache_offset(h, vma, address);
2813 page = find_get_page(mapping, idx);
2814 if (page)
2815 put_page(page);
2816 return page != NULL;
2819 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2820 unsigned long address, pte_t *ptep, unsigned int flags)
2822 struct hstate *h = hstate_vma(vma);
2823 int ret = VM_FAULT_SIGBUS;
2824 int anon_rmap = 0;
2825 pgoff_t idx;
2826 unsigned long size;
2827 struct page *page;
2828 struct address_space *mapping;
2829 pte_t new_pte;
2832 * Currently, we are forced to kill the process in the event the
2833 * original mapper has unmapped pages from the child due to a failed
2834 * COW. Warn that such a situation has occurred as it may not be obvious
2836 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2837 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2838 current->pid);
2839 return ret;
2842 mapping = vma->vm_file->f_mapping;
2843 idx = vma_hugecache_offset(h, vma, address);
2846 * Use page lock to guard against racing truncation
2847 * before we get page_table_lock.
2849 retry:
2850 page = find_lock_page(mapping, idx);
2851 if (!page) {
2852 size = i_size_read(mapping->host) >> huge_page_shift(h);
2853 if (idx >= size)
2854 goto out;
2855 page = alloc_huge_page(vma, address, 0);
2856 if (IS_ERR(page)) {
2857 ret = PTR_ERR(page);
2858 if (ret == -ENOMEM)
2859 ret = VM_FAULT_OOM;
2860 else
2861 ret = VM_FAULT_SIGBUS;
2862 goto out;
2864 clear_huge_page(page, address, pages_per_huge_page(h));
2865 __SetPageUptodate(page);
2867 if (vma->vm_flags & VM_MAYSHARE) {
2868 int err;
2869 struct inode *inode = mapping->host;
2871 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2872 if (err) {
2873 put_page(page);
2874 if (err == -EEXIST)
2875 goto retry;
2876 goto out;
2878 ClearPagePrivate(page);
2880 spin_lock(&inode->i_lock);
2881 inode->i_blocks += blocks_per_huge_page(h);
2882 spin_unlock(&inode->i_lock);
2883 } else {
2884 lock_page(page);
2885 if (unlikely(anon_vma_prepare(vma))) {
2886 ret = VM_FAULT_OOM;
2887 goto backout_unlocked;
2889 anon_rmap = 1;
2891 } else {
2893 * If memory error occurs between mmap() and fault, some process
2894 * don't have hwpoisoned swap entry for errored virtual address.
2895 * So we need to block hugepage fault by PG_hwpoison bit check.
2897 if (unlikely(PageHWPoison(page))) {
2898 ret = VM_FAULT_HWPOISON |
2899 VM_FAULT_SET_HINDEX(hstate_index(h));
2900 goto backout_unlocked;
2905 * If we are going to COW a private mapping later, we examine the
2906 * pending reservations for this page now. This will ensure that
2907 * any allocations necessary to record that reservation occur outside
2908 * the spinlock.
2910 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2911 if (vma_needs_reservation(h, vma, address) < 0) {
2912 ret = VM_FAULT_OOM;
2913 goto backout_unlocked;
2916 spin_lock(&mm->page_table_lock);
2917 size = i_size_read(mapping->host) >> huge_page_shift(h);
2918 if (idx >= size)
2919 goto backout;
2921 ret = 0;
2922 if (!huge_pte_none(huge_ptep_get(ptep)))
2923 goto backout;
2925 if (anon_rmap) {
2926 ClearPagePrivate(page);
2927 hugepage_add_new_anon_rmap(page, vma, address);
2929 else
2930 page_dup_rmap(page);
2931 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2932 && (vma->vm_flags & VM_SHARED)));
2933 set_huge_pte_at(mm, address, ptep, new_pte);
2935 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2936 /* Optimization, do the COW without a second fault */
2937 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2940 spin_unlock(&mm->page_table_lock);
2941 unlock_page(page);
2942 out:
2943 return ret;
2945 backout:
2946 spin_unlock(&mm->page_table_lock);
2947 backout_unlocked:
2948 unlock_page(page);
2949 put_page(page);
2950 goto out;
2953 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2954 unsigned long address, unsigned int flags)
2956 pte_t *ptep;
2957 pte_t entry;
2958 int ret;
2959 struct page *page = NULL;
2960 struct page *pagecache_page = NULL;
2961 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2962 struct hstate *h = hstate_vma(vma);
2964 address &= huge_page_mask(h);
2966 ptep = huge_pte_offset(mm, address);
2967 if (ptep) {
2968 entry = huge_ptep_get(ptep);
2969 if (unlikely(is_hugetlb_entry_migration(entry))) {
2970 migration_entry_wait_huge(mm, ptep);
2971 return 0;
2972 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2973 return VM_FAULT_HWPOISON_LARGE |
2974 VM_FAULT_SET_HINDEX(hstate_index(h));
2977 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2978 if (!ptep)
2979 return VM_FAULT_OOM;
2982 * Serialize hugepage allocation and instantiation, so that we don't
2983 * get spurious allocation failures if two CPUs race to instantiate
2984 * the same page in the page cache.
2986 mutex_lock(&hugetlb_instantiation_mutex);
2987 entry = huge_ptep_get(ptep);
2988 if (huge_pte_none(entry)) {
2989 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2990 goto out_mutex;
2993 ret = 0;
2996 * If we are going to COW the mapping later, we examine the pending
2997 * reservations for this page now. This will ensure that any
2998 * allocations necessary to record that reservation occur outside the
2999 * spinlock. For private mappings, we also lookup the pagecache
3000 * page now as it is used to determine if a reservation has been
3001 * consumed.
3003 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3004 if (vma_needs_reservation(h, vma, address) < 0) {
3005 ret = VM_FAULT_OOM;
3006 goto out_mutex;
3009 if (!(vma->vm_flags & VM_MAYSHARE))
3010 pagecache_page = hugetlbfs_pagecache_page(h,
3011 vma, address);
3015 * hugetlb_cow() requires page locks of pte_page(entry) and
3016 * pagecache_page, so here we need take the former one
3017 * when page != pagecache_page or !pagecache_page.
3018 * Note that locking order is always pagecache_page -> page,
3019 * so no worry about deadlock.
3021 page = pte_page(entry);
3022 get_page(page);
3023 if (page != pagecache_page)
3024 lock_page(page);
3026 spin_lock(&mm->page_table_lock);
3027 /* Check for a racing update before calling hugetlb_cow */
3028 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3029 goto out_page_table_lock;
3032 if (flags & FAULT_FLAG_WRITE) {
3033 if (!huge_pte_write(entry)) {
3034 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3035 pagecache_page);
3036 goto out_page_table_lock;
3038 entry = huge_pte_mkdirty(entry);
3040 entry = pte_mkyoung(entry);
3041 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3042 flags & FAULT_FLAG_WRITE))
3043 update_mmu_cache(vma, address, ptep);
3045 out_page_table_lock:
3046 spin_unlock(&mm->page_table_lock);
3048 if (pagecache_page) {
3049 unlock_page(pagecache_page);
3050 put_page(pagecache_page);
3052 if (page != pagecache_page)
3053 unlock_page(page);
3054 put_page(page);
3056 out_mutex:
3057 mutex_unlock(&hugetlb_instantiation_mutex);
3059 return ret;
3062 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3063 struct page **pages, struct vm_area_struct **vmas,
3064 unsigned long *position, unsigned long *nr_pages,
3065 long i, unsigned int flags)
3067 unsigned long pfn_offset;
3068 unsigned long vaddr = *position;
3069 unsigned long remainder = *nr_pages;
3070 struct hstate *h = hstate_vma(vma);
3072 spin_lock(&mm->page_table_lock);
3073 while (vaddr < vma->vm_end && remainder) {
3074 pte_t *pte;
3075 int absent;
3076 struct page *page;
3079 * Some archs (sparc64, sh*) have multiple pte_ts to
3080 * each hugepage. We have to make sure we get the
3081 * first, for the page indexing below to work.
3083 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3084 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3087 * When coredumping, it suits get_dump_page if we just return
3088 * an error where there's an empty slot with no huge pagecache
3089 * to back it. This way, we avoid allocating a hugepage, and
3090 * the sparse dumpfile avoids allocating disk blocks, but its
3091 * huge holes still show up with zeroes where they need to be.
3093 if (absent && (flags & FOLL_DUMP) &&
3094 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3095 remainder = 0;
3096 break;
3100 * We need call hugetlb_fault for both hugepages under migration
3101 * (in which case hugetlb_fault waits for the migration,) and
3102 * hwpoisoned hugepages (in which case we need to prevent the
3103 * caller from accessing to them.) In order to do this, we use
3104 * here is_swap_pte instead of is_hugetlb_entry_migration and
3105 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3106 * both cases, and because we can't follow correct pages
3107 * directly from any kind of swap entries.
3109 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3110 ((flags & FOLL_WRITE) &&
3111 !huge_pte_write(huge_ptep_get(pte)))) {
3112 int ret;
3114 spin_unlock(&mm->page_table_lock);
3115 ret = hugetlb_fault(mm, vma, vaddr,
3116 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3117 spin_lock(&mm->page_table_lock);
3118 if (!(ret & VM_FAULT_ERROR))
3119 continue;
3121 remainder = 0;
3122 break;
3125 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3126 page = pte_page(huge_ptep_get(pte));
3127 same_page:
3128 if (pages) {
3129 pages[i] = mem_map_offset(page, pfn_offset);
3130 get_page(pages[i]);
3133 if (vmas)
3134 vmas[i] = vma;
3136 vaddr += PAGE_SIZE;
3137 ++pfn_offset;
3138 --remainder;
3139 ++i;
3140 if (vaddr < vma->vm_end && remainder &&
3141 pfn_offset < pages_per_huge_page(h)) {
3143 * We use pfn_offset to avoid touching the pageframes
3144 * of this compound page.
3146 goto same_page;
3149 spin_unlock(&mm->page_table_lock);
3150 *nr_pages = remainder;
3151 *position = vaddr;
3153 return i ? i : -EFAULT;
3156 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3157 unsigned long address, unsigned long end, pgprot_t newprot)
3159 struct mm_struct *mm = vma->vm_mm;
3160 unsigned long start = address;
3161 pte_t *ptep;
3162 pte_t pte;
3163 struct hstate *h = hstate_vma(vma);
3164 unsigned long pages = 0;
3166 BUG_ON(address >= end);
3167 flush_cache_range(vma, address, end);
3169 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3170 spin_lock(&mm->page_table_lock);
3171 for (; address < end; address += huge_page_size(h)) {
3172 ptep = huge_pte_offset(mm, address);
3173 if (!ptep)
3174 continue;
3175 if (huge_pmd_unshare(mm, &address, ptep)) {
3176 pages++;
3177 continue;
3179 pte = huge_ptep_get(ptep);
3180 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3181 continue;
3183 if (unlikely(is_hugetlb_entry_migration(pte))) {
3184 swp_entry_t entry = pte_to_swp_entry(pte);
3186 if (is_write_migration_entry(entry)) {
3187 pte_t newpte;
3189 make_migration_entry_read(&entry);
3190 newpte = swp_entry_to_pte(entry);
3191 set_huge_pte_at(mm, address, ptep, newpte);
3192 pages++;
3194 continue;
3196 if (!huge_pte_none(pte)) {
3197 pte = huge_ptep_get_and_clear(mm, address, ptep);
3198 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3199 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3200 set_huge_pte_at(mm, address, ptep, pte);
3201 pages++;
3204 spin_unlock(&mm->page_table_lock);
3206 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3207 * may have cleared our pud entry and done put_page on the page table:
3208 * once we release i_mmap_mutex, another task can do the final put_page
3209 * and that page table be reused and filled with junk.
3211 flush_tlb_range(vma, start, end);
3212 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3214 return pages << h->order;
3217 int hugetlb_reserve_pages(struct inode *inode,
3218 long from, long to,
3219 struct vm_area_struct *vma,
3220 vm_flags_t vm_flags)
3222 long ret, chg;
3223 struct hstate *h = hstate_inode(inode);
3224 struct hugepage_subpool *spool = subpool_inode(inode);
3227 * Only apply hugepage reservation if asked. At fault time, an
3228 * attempt will be made for VM_NORESERVE to allocate a page
3229 * without using reserves
3231 if (vm_flags & VM_NORESERVE)
3232 return 0;
3235 * Shared mappings base their reservation on the number of pages that
3236 * are already allocated on behalf of the file. Private mappings need
3237 * to reserve the full area even if read-only as mprotect() may be
3238 * called to make the mapping read-write. Assume !vma is a shm mapping
3240 if (!vma || vma->vm_flags & VM_MAYSHARE)
3241 chg = region_chg(&inode->i_mapping->private_list, from, to);
3242 else {
3243 struct resv_map *resv_map = resv_map_alloc();
3244 if (!resv_map)
3245 return -ENOMEM;
3247 chg = to - from;
3249 set_vma_resv_map(vma, resv_map);
3250 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3253 if (chg < 0) {
3254 ret = chg;
3255 goto out_err;
3258 /* There must be enough pages in the subpool for the mapping */
3259 if (hugepage_subpool_get_pages(spool, chg)) {
3260 ret = -ENOSPC;
3261 goto out_err;
3265 * Check enough hugepages are available for the reservation.
3266 * Hand the pages back to the subpool if there are not
3268 ret = hugetlb_acct_memory(h, chg);
3269 if (ret < 0) {
3270 hugepage_subpool_put_pages(spool, chg);
3271 goto out_err;
3275 * Account for the reservations made. Shared mappings record regions
3276 * that have reservations as they are shared by multiple VMAs.
3277 * When the last VMA disappears, the region map says how much
3278 * the reservation was and the page cache tells how much of
3279 * the reservation was consumed. Private mappings are per-VMA and
3280 * only the consumed reservations are tracked. When the VMA
3281 * disappears, the original reservation is the VMA size and the
3282 * consumed reservations are stored in the map. Hence, nothing
3283 * else has to be done for private mappings here
3285 if (!vma || vma->vm_flags & VM_MAYSHARE)
3286 region_add(&inode->i_mapping->private_list, from, to);
3287 return 0;
3288 out_err:
3289 if (vma)
3290 resv_map_put(vma);
3291 return ret;
3294 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3296 struct hstate *h = hstate_inode(inode);
3297 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3298 struct hugepage_subpool *spool = subpool_inode(inode);
3300 spin_lock(&inode->i_lock);
3301 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3302 spin_unlock(&inode->i_lock);
3304 hugepage_subpool_put_pages(spool, (chg - freed));
3305 hugetlb_acct_memory(h, -(chg - freed));
3308 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3309 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3310 struct vm_area_struct *vma,
3311 unsigned long addr, pgoff_t idx)
3313 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3314 svma->vm_start;
3315 unsigned long sbase = saddr & PUD_MASK;
3316 unsigned long s_end = sbase + PUD_SIZE;
3318 /* Allow segments to share if only one is marked locked */
3319 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3320 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3323 * match the virtual addresses, permission and the alignment of the
3324 * page table page.
3326 if (pmd_index(addr) != pmd_index(saddr) ||
3327 vm_flags != svm_flags ||
3328 sbase < svma->vm_start || svma->vm_end < s_end)
3329 return 0;
3331 return saddr;
3334 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3336 unsigned long base = addr & PUD_MASK;
3337 unsigned long end = base + PUD_SIZE;
3340 * check on proper vm_flags and page table alignment
3342 if (vma->vm_flags & VM_MAYSHARE &&
3343 vma->vm_start <= base && end <= vma->vm_end)
3344 return 1;
3345 return 0;
3349 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3350 * and returns the corresponding pte. While this is not necessary for the
3351 * !shared pmd case because we can allocate the pmd later as well, it makes the
3352 * code much cleaner. pmd allocation is essential for the shared case because
3353 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3354 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3355 * bad pmd for sharing.
3357 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3359 struct vm_area_struct *vma = find_vma(mm, addr);
3360 struct address_space *mapping = vma->vm_file->f_mapping;
3361 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3362 vma->vm_pgoff;
3363 struct vm_area_struct *svma;
3364 unsigned long saddr;
3365 pte_t *spte = NULL;
3366 pte_t *pte;
3368 if (!vma_shareable(vma, addr))
3369 return (pte_t *)pmd_alloc(mm, pud, addr);
3371 mutex_lock(&mapping->i_mmap_mutex);
3372 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3373 if (svma == vma)
3374 continue;
3376 saddr = page_table_shareable(svma, vma, addr, idx);
3377 if (saddr) {
3378 spte = huge_pte_offset(svma->vm_mm, saddr);
3379 if (spte) {
3380 get_page(virt_to_page(spte));
3381 break;
3386 if (!spte)
3387 goto out;
3389 spin_lock(&mm->page_table_lock);
3390 if (pud_none(*pud))
3391 pud_populate(mm, pud,
3392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3393 else
3394 put_page(virt_to_page(spte));
3395 spin_unlock(&mm->page_table_lock);
3396 out:
3397 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3398 mutex_unlock(&mapping->i_mmap_mutex);
3399 return pte;
3403 * unmap huge page backed by shared pte.
3405 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3406 * indicated by page_count > 1, unmap is achieved by clearing pud and
3407 * decrementing the ref count. If count == 1, the pte page is not shared.
3409 * called with vma->vm_mm->page_table_lock held.
3411 * returns: 1 successfully unmapped a shared pte page
3412 * 0 the underlying pte page is not shared, or it is the last user
3414 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3416 pgd_t *pgd = pgd_offset(mm, *addr);
3417 pud_t *pud = pud_offset(pgd, *addr);
3419 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3420 if (page_count(virt_to_page(ptep)) == 1)
3421 return 0;
3423 pud_clear(pud);
3424 put_page(virt_to_page(ptep));
3425 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3426 return 1;
3428 #define want_pmd_share() (1)
3429 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3430 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3432 return NULL;
3434 #define want_pmd_share() (0)
3435 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3437 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3438 pte_t *huge_pte_alloc(struct mm_struct *mm,
3439 unsigned long addr, unsigned long sz)
3441 pgd_t *pgd;
3442 pud_t *pud;
3443 pte_t *pte = NULL;
3445 pgd = pgd_offset(mm, addr);
3446 pud = pud_alloc(mm, pgd, addr);
3447 if (pud) {
3448 if (sz == PUD_SIZE) {
3449 pte = (pte_t *)pud;
3450 } else {
3451 BUG_ON(sz != PMD_SIZE);
3452 if (want_pmd_share() && pud_none(*pud))
3453 pte = huge_pmd_share(mm, addr, pud);
3454 else
3455 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3458 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3460 return pte;
3463 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3465 pgd_t *pgd;
3466 pud_t *pud;
3467 pmd_t *pmd = NULL;
3469 pgd = pgd_offset(mm, addr);
3470 if (pgd_present(*pgd)) {
3471 pud = pud_offset(pgd, addr);
3472 if (pud_present(*pud)) {
3473 if (pud_huge(*pud))
3474 return (pte_t *)pud;
3475 pmd = pmd_offset(pud, addr);
3478 return (pte_t *) pmd;
3481 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3484 * These functions are overwritable if your architecture needs its own
3485 * behavior.
3487 struct page * __weak
3488 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3489 int write)
3491 return ERR_PTR(-EINVAL);
3494 struct page * __weak
3495 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3496 pmd_t *pmd, int flags)
3498 struct page *page = NULL;
3499 spinlock_t *ptl;
3500 retry:
3501 ptl = &mm->page_table_lock;
3502 spin_lock(ptl);
3504 * make sure that the address range covered by this pmd is not
3505 * unmapped from other threads.
3507 if (!pmd_huge(*pmd))
3508 goto out;
3509 if (pmd_present(*pmd)) {
3510 page = pte_page(*(pte_t *)pmd) +
3511 ((address & ~PMD_MASK) >> PAGE_SHIFT);
3512 if (flags & FOLL_GET)
3513 get_page(page);
3514 } else {
3515 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3516 spin_unlock(ptl);
3517 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3518 goto retry;
3521 * hwpoisoned entry is treated as no_page_table in
3522 * follow_page_mask().
3525 out:
3526 spin_unlock(ptl);
3527 return page;
3530 struct page * __weak
3531 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3532 pud_t *pud, int flags)
3534 if (flags & FOLL_GET)
3535 return NULL;
3537 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3540 #ifdef CONFIG_MEMORY_FAILURE
3542 /* Should be called in hugetlb_lock */
3543 static int is_hugepage_on_freelist(struct page *hpage)
3545 struct page *page;
3546 struct page *tmp;
3547 struct hstate *h = page_hstate(hpage);
3548 int nid = page_to_nid(hpage);
3550 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3551 if (page == hpage)
3552 return 1;
3553 return 0;
3557 * This function is called from memory failure code.
3558 * Assume the caller holds page lock of the head page.
3560 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3562 struct hstate *h = page_hstate(hpage);
3563 int nid = page_to_nid(hpage);
3564 int ret = -EBUSY;
3566 spin_lock(&hugetlb_lock);
3567 if (is_hugepage_on_freelist(hpage)) {
3569 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3570 * but dangling hpage->lru can trigger list-debug warnings
3571 * (this happens when we call unpoison_memory() on it),
3572 * so let it point to itself with list_del_init().
3574 list_del_init(&hpage->lru);
3575 set_page_refcounted(hpage);
3576 h->free_huge_pages--;
3577 h->free_huge_pages_node[nid]--;
3578 ret = 0;
3580 spin_unlock(&hugetlb_lock);
3581 return ret;
3583 #endif
3585 bool isolate_huge_page(struct page *page, struct list_head *list)
3587 VM_BUG_ON(!PageHead(page));
3588 if (!get_page_unless_zero(page))
3589 return false;
3590 spin_lock(&hugetlb_lock);
3591 list_move_tail(&page->lru, list);
3592 spin_unlock(&hugetlb_lock);
3593 return true;
3596 void putback_active_hugepage(struct page *page)
3598 VM_BUG_ON(!PageHead(page));
3599 spin_lock(&hugetlb_lock);
3600 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3601 spin_unlock(&hugetlb_lock);
3602 put_page(page);
3605 bool is_hugepage_active(struct page *page)
3607 VM_BUG_ON(!PageHuge(page));
3609 * This function can be called for a tail page because the caller,
3610 * scan_movable_pages, scans through a given pfn-range which typically
3611 * covers one memory block. In systems using gigantic hugepage (1GB
3612 * for x86_64,) a hugepage is larger than a memory block, and we don't
3613 * support migrating such large hugepages for now, so return false
3614 * when called for tail pages.
3616 if (PageTail(page))
3617 return false;
3619 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3620 * so we should return false for them.
3622 if (unlikely(PageHWPoison(page)))
3623 return false;
3624 return page_count(page) > 0;