Linux 3.12.39
[linux/fpc-iii.git] / mm / memcontrol.c
blobff648969e402557a95e2c0e3e3abda44983d54df
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
63 #include <asm/uaccess.h>
65 #include <trace/events/vmscan.h>
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
84 #else
85 #define do_swap_account 0
86 #endif
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "writeback",
95 "swap",
98 enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS,
106 static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
113 static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
127 enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
129 MEM_CGROUP_TARGET_SOFTLIMIT,
130 MEM_CGROUP_TARGET_NUMAINFO,
131 MEM_CGROUP_NTARGETS,
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
137 struct mem_cgroup_stat_cpu {
138 long count[MEM_CGROUP_STAT_NSTATS];
139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 unsigned long nr_page_events;
141 unsigned long targets[MEM_CGROUP_NTARGETS];
144 struct mem_cgroup_reclaim_iter {
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
149 struct mem_cgroup *last_visited;
150 unsigned long last_dead_count;
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
157 * per-zone information in memory controller.
159 struct mem_cgroup_per_zone {
160 struct lruvec lruvec;
161 unsigned long lru_size[NR_LRU_LISTS];
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
170 /* use container_of */
173 struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
182 struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
187 struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197 struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold;
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
212 struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
220 struct mem_cgroup_threshold_ary *spare;
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
243 struct mem_cgroup {
244 struct cgroup_subsys_state css;
246 * the counter to account for memory usage
248 struct res_counter res;
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
253 /* css_online() has been completed */
254 int initialized;
257 * the counter to account for mem+swap usage.
259 struct res_counter memsw;
262 * the counter to account for kernel memory usage.
264 struct res_counter kmem;
266 * Should the accounting and control be hierarchical, per subtree?
268 bool use_hierarchy;
269 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
271 bool oom_lock;
272 atomic_t under_oom;
273 atomic_t oom_wakeups;
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
298 unsigned long move_charge_at_immigrate;
300 * set > 0 if pages under this cgroup are moving to other cgroup.
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
306 * percpu counter.
308 struct mem_cgroup_stat_cpu __percpu *stat;
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
316 atomic_t dead_count;
317 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
318 struct tcp_memcontrol tcp_mem;
319 #endif
320 #if defined(CONFIG_MEMCG_KMEM)
321 /* analogous to slab_common's slab_caches list. per-memcg */
322 struct list_head memcg_slab_caches;
323 /* Not a spinlock, we can take a lot of time walking the list */
324 struct mutex slab_caches_mutex;
325 /* Index in the kmem_cache->memcg_params->memcg_caches array */
326 int kmemcg_id;
327 #endif
329 int last_scanned_node;
330 #if MAX_NUMNODES > 1
331 nodemask_t scan_nodes;
332 atomic_t numainfo_events;
333 atomic_t numainfo_updating;
334 #endif
336 struct mem_cgroup_per_node *nodeinfo[0];
337 /* WARNING: nodeinfo must be the last member here */
340 static size_t memcg_size(void)
342 return sizeof(struct mem_cgroup) +
343 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
346 /* internal only representation about the status of kmem accounting. */
347 enum {
348 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
353 /* We account when limit is on, but only after call sites are patched */
354 #define KMEM_ACCOUNTED_MASK \
355 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
357 #ifdef CONFIG_MEMCG_KMEM
358 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
360 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
368 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
370 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
375 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
378 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
381 * Our caller must use css_get() first, because memcg_uncharge_kmem()
382 * will call css_put() if it sees the memcg is dead.
384 smp_wmb();
385 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
386 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
389 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
391 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
392 &memcg->kmem_account_flags);
394 #endif
396 /* Stuffs for move charges at task migration. */
398 * Types of charges to be moved. "move_charge_at_immitgrate" and
399 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
401 enum move_type {
402 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
403 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
404 NR_MOVE_TYPE,
407 /* "mc" and its members are protected by cgroup_mutex */
408 static struct move_charge_struct {
409 spinlock_t lock; /* for from, to */
410 struct mem_cgroup *from;
411 struct mem_cgroup *to;
412 unsigned long immigrate_flags;
413 unsigned long precharge;
414 unsigned long moved_charge;
415 unsigned long moved_swap;
416 struct task_struct *moving_task; /* a task moving charges */
417 wait_queue_head_t waitq; /* a waitq for other context */
418 } mc = {
419 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
423 static bool move_anon(void)
425 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
428 static bool move_file(void)
430 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
434 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
435 * limit reclaim to prevent infinite loops, if they ever occur.
437 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
438 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
440 enum charge_type {
441 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
442 MEM_CGROUP_CHARGE_TYPE_ANON,
443 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
444 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
445 NR_CHARGE_TYPE,
448 /* for encoding cft->private value on file */
449 enum res_type {
450 _MEM,
451 _MEMSWAP,
452 _OOM_TYPE,
453 _KMEM,
456 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
457 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
458 #define MEMFILE_ATTR(val) ((val) & 0xffff)
459 /* Used for OOM nofiier */
460 #define OOM_CONTROL (0)
463 * Reclaim flags for mem_cgroup_hierarchical_reclaim
465 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
466 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
467 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
468 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
471 * The memcg_create_mutex will be held whenever a new cgroup is created.
472 * As a consequence, any change that needs to protect against new child cgroups
473 * appearing has to hold it as well.
475 static DEFINE_MUTEX(memcg_create_mutex);
477 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
479 return s ? container_of(s, struct mem_cgroup, css) : NULL;
482 /* Some nice accessors for the vmpressure. */
483 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
485 if (!memcg)
486 memcg = root_mem_cgroup;
487 return &memcg->vmpressure;
490 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
492 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
495 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
497 return &mem_cgroup_from_css(css)->vmpressure;
500 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
502 return (memcg == root_mem_cgroup);
505 /* Writing them here to avoid exposing memcg's inner layout */
506 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
508 void sock_update_memcg(struct sock *sk)
510 if (mem_cgroup_sockets_enabled) {
511 struct mem_cgroup *memcg;
512 struct cg_proto *cg_proto;
514 BUG_ON(!sk->sk_prot->proto_cgroup);
516 /* Socket cloning can throw us here with sk_cgrp already
517 * filled. It won't however, necessarily happen from
518 * process context. So the test for root memcg given
519 * the current task's memcg won't help us in this case.
521 * Respecting the original socket's memcg is a better
522 * decision in this case.
524 if (sk->sk_cgrp) {
525 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
526 css_get(&sk->sk_cgrp->memcg->css);
527 return;
530 rcu_read_lock();
531 memcg = mem_cgroup_from_task(current);
532 cg_proto = sk->sk_prot->proto_cgroup(memcg);
533 if (!mem_cgroup_is_root(memcg) &&
534 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
535 sk->sk_cgrp = cg_proto;
537 rcu_read_unlock();
540 EXPORT_SYMBOL(sock_update_memcg);
542 void sock_release_memcg(struct sock *sk)
544 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
545 struct mem_cgroup *memcg;
546 WARN_ON(!sk->sk_cgrp->memcg);
547 memcg = sk->sk_cgrp->memcg;
548 css_put(&sk->sk_cgrp->memcg->css);
552 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
554 if (!memcg || mem_cgroup_is_root(memcg))
555 return NULL;
557 return &memcg->tcp_mem.cg_proto;
559 EXPORT_SYMBOL(tcp_proto_cgroup);
561 static void disarm_sock_keys(struct mem_cgroup *memcg)
563 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
564 return;
565 static_key_slow_dec(&memcg_socket_limit_enabled);
567 #else
568 static void disarm_sock_keys(struct mem_cgroup *memcg)
571 #endif
573 #ifdef CONFIG_MEMCG_KMEM
575 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
576 * There are two main reasons for not using the css_id for this:
577 * 1) this works better in sparse environments, where we have a lot of memcgs,
578 * but only a few kmem-limited. Or also, if we have, for instance, 200
579 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
580 * 200 entry array for that.
582 * 2) In order not to violate the cgroup API, we would like to do all memory
583 * allocation in ->create(). At that point, we haven't yet allocated the
584 * css_id. Having a separate index prevents us from messing with the cgroup
585 * core for this
587 * The current size of the caches array is stored in
588 * memcg_limited_groups_array_size. It will double each time we have to
589 * increase it.
591 static DEFINE_IDA(kmem_limited_groups);
592 int memcg_limited_groups_array_size;
595 * MIN_SIZE is different than 1, because we would like to avoid going through
596 * the alloc/free process all the time. In a small machine, 4 kmem-limited
597 * cgroups is a reasonable guess. In the future, it could be a parameter or
598 * tunable, but that is strictly not necessary.
600 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
601 * this constant directly from cgroup, but it is understandable that this is
602 * better kept as an internal representation in cgroup.c. In any case, the
603 * css_id space is not getting any smaller, and we don't have to necessarily
604 * increase ours as well if it increases.
606 #define MEMCG_CACHES_MIN_SIZE 4
607 #define MEMCG_CACHES_MAX_SIZE 65535
610 * A lot of the calls to the cache allocation functions are expected to be
611 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
612 * conditional to this static branch, we'll have to allow modules that does
613 * kmem_cache_alloc and the such to see this symbol as well
615 struct static_key memcg_kmem_enabled_key;
616 EXPORT_SYMBOL(memcg_kmem_enabled_key);
618 static void disarm_kmem_keys(struct mem_cgroup *memcg)
620 if (memcg_kmem_is_active(memcg)) {
621 static_key_slow_dec(&memcg_kmem_enabled_key);
622 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
625 * This check can't live in kmem destruction function,
626 * since the charges will outlive the cgroup
628 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
630 #else
631 static void disarm_kmem_keys(struct mem_cgroup *memcg)
634 #endif /* CONFIG_MEMCG_KMEM */
636 static void disarm_static_keys(struct mem_cgroup *memcg)
638 disarm_sock_keys(memcg);
639 disarm_kmem_keys(memcg);
642 static void drain_all_stock_async(struct mem_cgroup *memcg);
644 static struct mem_cgroup_per_zone *
645 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
648 return &memcg->nodeinfo[nid]->zoneinfo[zid];
651 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
653 return &memcg->css;
656 static struct mem_cgroup_per_zone *
657 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
659 int nid = page_to_nid(page);
660 int zid = page_zonenum(page);
662 return mem_cgroup_zoneinfo(memcg, nid, zid);
665 static struct mem_cgroup_tree_per_zone *
666 soft_limit_tree_node_zone(int nid, int zid)
668 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
671 static struct mem_cgroup_tree_per_zone *
672 soft_limit_tree_from_page(struct page *page)
674 int nid = page_to_nid(page);
675 int zid = page_zonenum(page);
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
680 static void
681 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
682 struct mem_cgroup_per_zone *mz,
683 struct mem_cgroup_tree_per_zone *mctz,
684 unsigned long long new_usage_in_excess)
686 struct rb_node **p = &mctz->rb_root.rb_node;
687 struct rb_node *parent = NULL;
688 struct mem_cgroup_per_zone *mz_node;
690 if (mz->on_tree)
691 return;
693 mz->usage_in_excess = new_usage_in_excess;
694 if (!mz->usage_in_excess)
695 return;
696 while (*p) {
697 parent = *p;
698 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
699 tree_node);
700 if (mz->usage_in_excess < mz_node->usage_in_excess)
701 p = &(*p)->rb_left;
703 * We can't avoid mem cgroups that are over their soft
704 * limit by the same amount
706 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
707 p = &(*p)->rb_right;
709 rb_link_node(&mz->tree_node, parent, p);
710 rb_insert_color(&mz->tree_node, &mctz->rb_root);
711 mz->on_tree = true;
714 static void
715 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
716 struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
719 if (!mz->on_tree)
720 return;
721 rb_erase(&mz->tree_node, &mctz->rb_root);
722 mz->on_tree = false;
725 static void
726 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
727 struct mem_cgroup_per_zone *mz,
728 struct mem_cgroup_tree_per_zone *mctz)
730 spin_lock(&mctz->lock);
731 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
732 spin_unlock(&mctz->lock);
736 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
738 unsigned long long excess;
739 struct mem_cgroup_per_zone *mz;
740 struct mem_cgroup_tree_per_zone *mctz;
741 int nid = page_to_nid(page);
742 int zid = page_zonenum(page);
743 mctz = soft_limit_tree_from_page(page);
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
751 excess = res_counter_soft_limit_excess(&memcg->res);
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
756 if (excess || mz->on_tree) {
757 spin_lock(&mctz->lock);
758 /* if on-tree, remove it */
759 if (mz->on_tree)
760 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
762 * Insert again. mz->usage_in_excess will be updated.
763 * If excess is 0, no tree ops.
765 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
766 spin_unlock(&mctz->lock);
771 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
773 int node, zone;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
777 for_each_node(node) {
778 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
779 mz = mem_cgroup_zoneinfo(memcg, node, zone);
780 mctz = soft_limit_tree_node_zone(node, zone);
781 mem_cgroup_remove_exceeded(memcg, mz, mctz);
786 static struct mem_cgroup_per_zone *
787 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
789 struct rb_node *rightmost = NULL;
790 struct mem_cgroup_per_zone *mz;
792 retry:
793 mz = NULL;
794 rightmost = rb_last(&mctz->rb_root);
795 if (!rightmost)
796 goto done; /* Nothing to reclaim from */
798 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
800 * Remove the node now but someone else can add it back,
801 * we will to add it back at the end of reclaim to its correct
802 * position in the tree.
804 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
805 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
806 !css_tryget(&mz->memcg->css))
807 goto retry;
808 done:
809 return mz;
812 static struct mem_cgroup_per_zone *
813 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
815 struct mem_cgroup_per_zone *mz;
817 spin_lock(&mctz->lock);
818 mz = __mem_cgroup_largest_soft_limit_node(mctz);
819 spin_unlock(&mctz->lock);
820 return mz;
824 * Implementation Note: reading percpu statistics for memcg.
826 * Both of vmstat[] and percpu_counter has threshold and do periodic
827 * synchronization to implement "quick" read. There are trade-off between
828 * reading cost and precision of value. Then, we may have a chance to implement
829 * a periodic synchronizion of counter in memcg's counter.
831 * But this _read() function is used for user interface now. The user accounts
832 * memory usage by memory cgroup and he _always_ requires exact value because
833 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
834 * have to visit all online cpus and make sum. So, for now, unnecessary
835 * synchronization is not implemented. (just implemented for cpu hotplug)
837 * If there are kernel internal actions which can make use of some not-exact
838 * value, and reading all cpu value can be performance bottleneck in some
839 * common workload, threashold and synchonization as vmstat[] should be
840 * implemented.
842 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
843 enum mem_cgroup_stat_index idx)
845 long val = 0;
846 int cpu;
848 get_online_cpus();
849 for_each_online_cpu(cpu)
850 val += per_cpu(memcg->stat->count[idx], cpu);
851 #ifdef CONFIG_HOTPLUG_CPU
852 spin_lock(&memcg->pcp_counter_lock);
853 val += memcg->nocpu_base.count[idx];
854 spin_unlock(&memcg->pcp_counter_lock);
855 #endif
856 put_online_cpus();
857 return val;
860 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
861 bool charge)
863 int val = (charge) ? 1 : -1;
864 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
867 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_index idx)
870 unsigned long val = 0;
871 int cpu;
873 get_online_cpus();
874 for_each_online_cpu(cpu)
875 val += per_cpu(memcg->stat->events[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.events[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 put_online_cpus();
882 return val;
885 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
886 struct page *page,
887 bool anon, int nr_pages)
889 preempt_disable();
892 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
893 * counted as CACHE even if it's on ANON LRU.
895 if (anon)
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
897 nr_pages);
898 else
899 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
900 nr_pages);
902 if (PageTransHuge(page))
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
904 nr_pages);
906 /* pagein of a big page is an event. So, ignore page size */
907 if (nr_pages > 0)
908 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
909 else {
910 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
911 nr_pages = -nr_pages; /* for event */
914 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
916 preempt_enable();
919 unsigned long
920 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
922 struct mem_cgroup_per_zone *mz;
924 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
925 return mz->lru_size[lru];
928 static unsigned long
929 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
930 unsigned int lru_mask)
932 struct mem_cgroup_per_zone *mz;
933 enum lru_list lru;
934 unsigned long ret = 0;
936 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
938 for_each_lru(lru) {
939 if (BIT(lru) & lru_mask)
940 ret += mz->lru_size[lru];
942 return ret;
945 static unsigned long
946 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
947 int nid, unsigned int lru_mask)
949 u64 total = 0;
950 int zid;
952 for (zid = 0; zid < MAX_NR_ZONES; zid++)
953 total += mem_cgroup_zone_nr_lru_pages(memcg,
954 nid, zid, lru_mask);
956 return total;
959 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
960 unsigned int lru_mask)
962 int nid;
963 u64 total = 0;
965 for_each_node_state(nid, N_MEMORY)
966 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
967 return total;
970 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
971 enum mem_cgroup_events_target target)
973 unsigned long val, next;
975 val = __this_cpu_read(memcg->stat->nr_page_events);
976 next = __this_cpu_read(memcg->stat->targets[target]);
977 /* from time_after() in jiffies.h */
978 if ((long)next - (long)val < 0) {
979 switch (target) {
980 case MEM_CGROUP_TARGET_THRESH:
981 next = val + THRESHOLDS_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_SOFTLIMIT:
984 next = val + SOFTLIMIT_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_NUMAINFO:
987 next = val + NUMAINFO_EVENTS_TARGET;
988 break;
989 default:
990 break;
992 __this_cpu_write(memcg->stat->targets[target], next);
993 return true;
995 return false;
999 * Check events in order.
1002 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 preempt_disable();
1005 /* threshold event is triggered in finer grain than soft limit */
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
1008 bool do_softlimit;
1009 bool do_numainfo __maybe_unused;
1011 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_SOFTLIMIT);
1013 #if MAX_NUMNODES > 1
1014 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_NUMAINFO);
1016 #endif
1017 preempt_enable();
1019 mem_cgroup_threshold(memcg);
1020 if (unlikely(do_softlimit))
1021 mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 if (unlikely(do_numainfo))
1024 atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 } else
1027 preempt_enable();
1030 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1033 * mm_update_next_owner() may clear mm->owner to NULL
1034 * if it races with swapoff, page migration, etc.
1035 * So this can be called with p == NULL.
1037 if (unlikely(!p))
1038 return NULL;
1040 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1043 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1045 struct mem_cgroup *memcg = NULL;
1047 if (!mm)
1048 return NULL;
1050 * Because we have no locks, mm->owner's may be being moved to other
1051 * cgroup. We use css_tryget() here even if this looks
1052 * pessimistic (rather than adding locks here).
1054 rcu_read_lock();
1055 do {
1056 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 if (unlikely(!memcg))
1058 break;
1059 } while (!css_tryget(&memcg->css));
1060 rcu_read_unlock();
1061 return memcg;
1065 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1066 * ref. count) or NULL if the whole root's subtree has been visited.
1068 * helper function to be used by mem_cgroup_iter
1070 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1071 struct mem_cgroup *last_visited)
1073 struct cgroup_subsys_state *prev_css, *next_css;
1075 prev_css = last_visited ? &last_visited->css : NULL;
1076 skip_node:
1077 next_css = css_next_descendant_pre(prev_css, &root->css);
1080 * Even if we found a group we have to make sure it is
1081 * alive. css && !memcg means that the groups should be
1082 * skipped and we should continue the tree walk.
1083 * last_visited css is safe to use because it is
1084 * protected by css_get and the tree walk is rcu safe.
1086 * We do not take a reference on the root of the tree walk
1087 * because we might race with the root removal when it would
1088 * be the only node in the iterated hierarchy and mem_cgroup_iter
1089 * would end up in an endless loop because it expects that at
1090 * least one valid node will be returned. Root cannot disappear
1091 * because caller of the iterator should hold it already so
1092 * skipping css reference should be safe.
1094 if (next_css) {
1095 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097 if (next_css == &root->css)
1098 return memcg;
1100 if (css_tryget(next_css)) {
1101 if (memcg->initialized) {
1103 * Make sure the memcg is initialized:
1104 * mem_cgroup_css_online() orders the the
1105 * initialization against setting the flag.
1107 smp_rmb();
1108 return memcg;
1110 css_put(next_css);
1113 prev_css = next_css;
1114 goto skip_node;
1117 return NULL;
1120 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1123 * When a group in the hierarchy below root is destroyed, the
1124 * hierarchy iterator can no longer be trusted since it might
1125 * have pointed to the destroyed group. Invalidate it.
1127 atomic_inc(&root->dead_count);
1130 static struct mem_cgroup *
1131 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1132 struct mem_cgroup *root,
1133 int *sequence)
1135 struct mem_cgroup *position = NULL;
1137 * A cgroup destruction happens in two stages: offlining and
1138 * release. They are separated by a RCU grace period.
1140 * If the iterator is valid, we may still race with an
1141 * offlining. The RCU lock ensures the object won't be
1142 * released, tryget will fail if we lost the race.
1144 *sequence = atomic_read(&root->dead_count);
1145 if (iter->last_dead_count == *sequence) {
1146 smp_rmb();
1147 position = iter->last_visited;
1150 * We cannot take a reference to root because we might race
1151 * with root removal and returning NULL would end up in
1152 * an endless loop on the iterator user level when root
1153 * would be returned all the time.
1155 if (position && position != root &&
1156 !css_tryget(&position->css))
1157 position = NULL;
1159 return position;
1162 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1163 struct mem_cgroup *last_visited,
1164 struct mem_cgroup *new_position,
1165 struct mem_cgroup *root,
1166 int sequence)
1168 /* root reference counting symmetric to mem_cgroup_iter_load */
1169 if (last_visited && last_visited != root)
1170 css_put(&last_visited->css);
1172 * We store the sequence count from the time @last_visited was
1173 * loaded successfully instead of rereading it here so that we
1174 * don't lose destruction events in between. We could have
1175 * raced with the destruction of @new_position after all.
1177 iter->last_visited = new_position;
1178 smp_wmb();
1179 iter->last_dead_count = sequence;
1183 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1184 * @root: hierarchy root
1185 * @prev: previously returned memcg, NULL on first invocation
1186 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 * Returns references to children of the hierarchy below @root, or
1189 * @root itself, or %NULL after a full round-trip.
1191 * Caller must pass the return value in @prev on subsequent
1192 * invocations for reference counting, or use mem_cgroup_iter_break()
1193 * to cancel a hierarchy walk before the round-trip is complete.
1195 * Reclaimers can specify a zone and a priority level in @reclaim to
1196 * divide up the memcgs in the hierarchy among all concurrent
1197 * reclaimers operating on the same zone and priority.
1199 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1200 struct mem_cgroup *prev,
1201 struct mem_cgroup_reclaim_cookie *reclaim)
1203 struct mem_cgroup *memcg = NULL;
1204 struct mem_cgroup *last_visited = NULL;
1206 if (mem_cgroup_disabled())
1207 return NULL;
1209 if (!root)
1210 root = root_mem_cgroup;
1212 if (prev && !reclaim)
1213 last_visited = prev;
1215 if (!root->use_hierarchy && root != root_mem_cgroup) {
1216 if (prev)
1217 goto out_css_put;
1218 return root;
1221 rcu_read_lock();
1222 while (!memcg) {
1223 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1224 int uninitialized_var(seq);
1226 if (reclaim) {
1227 int nid = zone_to_nid(reclaim->zone);
1228 int zid = zone_idx(reclaim->zone);
1229 struct mem_cgroup_per_zone *mz;
1231 mz = mem_cgroup_zoneinfo(root, nid, zid);
1232 iter = &mz->reclaim_iter[reclaim->priority];
1233 if (prev && reclaim->generation != iter->generation) {
1234 iter->last_visited = NULL;
1235 goto out_unlock;
1238 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1241 memcg = __mem_cgroup_iter_next(root, last_visited);
1243 if (reclaim) {
1244 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1245 seq);
1247 if (!memcg)
1248 iter->generation++;
1249 else if (!prev && memcg)
1250 reclaim->generation = iter->generation;
1253 if (prev && !memcg)
1254 goto out_unlock;
1256 out_unlock:
1257 rcu_read_unlock();
1258 out_css_put:
1259 if (prev && prev != root)
1260 css_put(&prev->css);
1262 return memcg;
1266 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1267 * @root: hierarchy root
1268 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270 void mem_cgroup_iter_break(struct mem_cgroup *root,
1271 struct mem_cgroup *prev)
1273 if (!root)
1274 root = root_mem_cgroup;
1275 if (prev && prev != root)
1276 css_put(&prev->css);
1280 * Iteration constructs for visiting all cgroups (under a tree). If
1281 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1282 * be used for reference counting.
1284 #define for_each_mem_cgroup_tree(iter, root) \
1285 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1286 iter != NULL; \
1287 iter = mem_cgroup_iter(root, iter, NULL))
1289 #define for_each_mem_cgroup(iter) \
1290 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1291 iter != NULL; \
1292 iter = mem_cgroup_iter(NULL, iter, NULL))
1294 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1296 struct mem_cgroup *memcg;
1298 rcu_read_lock();
1299 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1300 if (unlikely(!memcg))
1301 goto out;
1303 switch (idx) {
1304 case PGFAULT:
1305 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1306 break;
1307 case PGMAJFAULT:
1308 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1309 break;
1310 default:
1311 BUG();
1313 out:
1314 rcu_read_unlock();
1316 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1319 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1320 * @zone: zone of the wanted lruvec
1321 * @memcg: memcg of the wanted lruvec
1323 * Returns the lru list vector holding pages for the given @zone and
1324 * @mem. This can be the global zone lruvec, if the memory controller
1325 * is disabled.
1327 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1328 struct mem_cgroup *memcg)
1330 struct mem_cgroup_per_zone *mz;
1331 struct lruvec *lruvec;
1333 if (mem_cgroup_disabled()) {
1334 lruvec = &zone->lruvec;
1335 goto out;
1338 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1339 lruvec = &mz->lruvec;
1340 out:
1342 * Since a node can be onlined after the mem_cgroup was created,
1343 * we have to be prepared to initialize lruvec->zone here;
1344 * and if offlined then reonlined, we need to reinitialize it.
1346 if (unlikely(lruvec->zone != zone))
1347 lruvec->zone = zone;
1348 return lruvec;
1352 * Following LRU functions are allowed to be used without PCG_LOCK.
1353 * Operations are called by routine of global LRU independently from memcg.
1354 * What we have to take care of here is validness of pc->mem_cgroup.
1356 * Changes to pc->mem_cgroup happens when
1357 * 1. charge
1358 * 2. moving account
1359 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1360 * It is added to LRU before charge.
1361 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1362 * When moving account, the page is not on LRU. It's isolated.
1366 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1367 * @page: the page
1368 * @zone: zone of the page
1370 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1372 struct mem_cgroup_per_zone *mz;
1373 struct mem_cgroup *memcg;
1374 struct page_cgroup *pc;
1375 struct lruvec *lruvec;
1377 if (mem_cgroup_disabled()) {
1378 lruvec = &zone->lruvec;
1379 goto out;
1382 pc = lookup_page_cgroup(page);
1383 memcg = pc->mem_cgroup;
1386 * Surreptitiously switch any uncharged offlist page to root:
1387 * an uncharged page off lru does nothing to secure
1388 * its former mem_cgroup from sudden removal.
1390 * Our caller holds lru_lock, and PageCgroupUsed is updated
1391 * under page_cgroup lock: between them, they make all uses
1392 * of pc->mem_cgroup safe.
1394 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1395 pc->mem_cgroup = memcg = root_mem_cgroup;
1397 mz = page_cgroup_zoneinfo(memcg, page);
1398 lruvec = &mz->lruvec;
1399 out:
1401 * Since a node can be onlined after the mem_cgroup was created,
1402 * we have to be prepared to initialize lruvec->zone here;
1403 * and if offlined then reonlined, we need to reinitialize it.
1405 if (unlikely(lruvec->zone != zone))
1406 lruvec->zone = zone;
1407 return lruvec;
1411 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1412 * @lruvec: mem_cgroup per zone lru vector
1413 * @lru: index of lru list the page is sitting on
1414 * @nr_pages: positive when adding or negative when removing
1416 * This function must be called when a page is added to or removed from an
1417 * lru list.
1419 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1420 int nr_pages)
1422 struct mem_cgroup_per_zone *mz;
1423 unsigned long *lru_size;
1425 if (mem_cgroup_disabled())
1426 return;
1428 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1429 lru_size = mz->lru_size + lru;
1430 *lru_size += nr_pages;
1431 VM_BUG_ON((long)(*lru_size) < 0);
1435 * Checks whether given mem is same or in the root_mem_cgroup's
1436 * hierarchy subtree
1438 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1439 struct mem_cgroup *memcg)
1441 if (root_memcg == memcg)
1442 return true;
1443 if (!root_memcg->use_hierarchy || !memcg)
1444 return false;
1445 return css_is_ancestor(&memcg->css, &root_memcg->css);
1448 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
1451 bool ret;
1453 rcu_read_lock();
1454 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1455 rcu_read_unlock();
1456 return ret;
1459 bool task_in_mem_cgroup(struct task_struct *task,
1460 const struct mem_cgroup *memcg)
1462 struct mem_cgroup *curr = NULL;
1463 struct task_struct *p;
1464 bool ret;
1466 p = find_lock_task_mm(task);
1467 if (p) {
1468 curr = try_get_mem_cgroup_from_mm(p->mm);
1469 task_unlock(p);
1470 } else {
1472 * All threads may have already detached their mm's, but the oom
1473 * killer still needs to detect if they have already been oom
1474 * killed to prevent needlessly killing additional tasks.
1476 rcu_read_lock();
1477 curr = mem_cgroup_from_task(task);
1478 if (curr)
1479 css_get(&curr->css);
1480 rcu_read_unlock();
1482 if (!curr)
1483 return false;
1485 * We should check use_hierarchy of "memcg" not "curr". Because checking
1486 * use_hierarchy of "curr" here make this function true if hierarchy is
1487 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1488 * hierarchy(even if use_hierarchy is disabled in "memcg").
1490 ret = mem_cgroup_same_or_subtree(memcg, curr);
1491 css_put(&curr->css);
1492 return ret;
1495 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1497 unsigned long inactive_ratio;
1498 unsigned long inactive;
1499 unsigned long active;
1500 unsigned long gb;
1502 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1503 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1505 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1506 if (gb)
1507 inactive_ratio = int_sqrt(10 * gb);
1508 else
1509 inactive_ratio = 1;
1511 return inactive * inactive_ratio < active;
1514 #define mem_cgroup_from_res_counter(counter, member) \
1515 container_of(counter, struct mem_cgroup, member)
1518 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1519 * @memcg: the memory cgroup
1521 * Returns the maximum amount of memory @mem can be charged with, in
1522 * pages.
1524 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1526 unsigned long long margin;
1528 margin = res_counter_margin(&memcg->res);
1529 if (do_swap_account)
1530 margin = min(margin, res_counter_margin(&memcg->memsw));
1531 return margin >> PAGE_SHIFT;
1534 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1536 /* root ? */
1537 if (!css_parent(&memcg->css))
1538 return vm_swappiness;
1540 return memcg->swappiness;
1544 * memcg->moving_account is used for checking possibility that some thread is
1545 * calling move_account(). When a thread on CPU-A starts moving pages under
1546 * a memcg, other threads should check memcg->moving_account under
1547 * rcu_read_lock(), like this:
1549 * CPU-A CPU-B
1550 * rcu_read_lock()
1551 * memcg->moving_account+1 if (memcg->mocing_account)
1552 * take heavy locks.
1553 * synchronize_rcu() update something.
1554 * rcu_read_unlock()
1555 * start move here.
1558 /* for quick checking without looking up memcg */
1559 atomic_t memcg_moving __read_mostly;
1561 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1563 atomic_inc(&memcg_moving);
1564 atomic_inc(&memcg->moving_account);
1565 synchronize_rcu();
1568 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1571 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1572 * We check NULL in callee rather than caller.
1574 if (memcg) {
1575 atomic_dec(&memcg_moving);
1576 atomic_dec(&memcg->moving_account);
1581 * 2 routines for checking "mem" is under move_account() or not.
1583 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1584 * is used for avoiding races in accounting. If true,
1585 * pc->mem_cgroup may be overwritten.
1587 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1588 * under hierarchy of moving cgroups. This is for
1589 * waiting at hith-memory prressure caused by "move".
1592 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1594 VM_BUG_ON(!rcu_read_lock_held());
1595 return atomic_read(&memcg->moving_account) > 0;
1598 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1600 struct mem_cgroup *from;
1601 struct mem_cgroup *to;
1602 bool ret = false;
1604 * Unlike task_move routines, we access mc.to, mc.from not under
1605 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1607 spin_lock(&mc.lock);
1608 from = mc.from;
1609 to = mc.to;
1610 if (!from)
1611 goto unlock;
1613 ret = mem_cgroup_same_or_subtree(memcg, from)
1614 || mem_cgroup_same_or_subtree(memcg, to);
1615 unlock:
1616 spin_unlock(&mc.lock);
1617 return ret;
1620 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1622 if (mc.moving_task && current != mc.moving_task) {
1623 if (mem_cgroup_under_move(memcg)) {
1624 DEFINE_WAIT(wait);
1625 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1626 /* moving charge context might have finished. */
1627 if (mc.moving_task)
1628 schedule();
1629 finish_wait(&mc.waitq, &wait);
1630 return true;
1633 return false;
1637 * Take this lock when
1638 * - a code tries to modify page's memcg while it's USED.
1639 * - a code tries to modify page state accounting in a memcg.
1640 * see mem_cgroup_stolen(), too.
1642 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1643 unsigned long *flags)
1645 spin_lock_irqsave(&memcg->move_lock, *flags);
1648 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1649 unsigned long *flags)
1651 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1654 #define K(x) ((x) << (PAGE_SHIFT-10))
1656 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1657 * @memcg: The memory cgroup that went over limit
1658 * @p: Task that is going to be killed
1660 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1661 * enabled
1663 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1665 struct cgroup *task_cgrp;
1666 struct cgroup *mem_cgrp;
1668 * Need a buffer in BSS, can't rely on allocations. The code relies
1669 * on the assumption that OOM is serialized for memory controller.
1670 * If this assumption is broken, revisit this code.
1672 static char memcg_name[PATH_MAX];
1673 int ret;
1674 struct mem_cgroup *iter;
1675 unsigned int i;
1677 if (!p)
1678 return;
1680 rcu_read_lock();
1682 mem_cgrp = memcg->css.cgroup;
1683 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1685 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1686 if (ret < 0) {
1688 * Unfortunately, we are unable to convert to a useful name
1689 * But we'll still print out the usage information
1691 rcu_read_unlock();
1692 goto done;
1694 rcu_read_unlock();
1696 pr_info("Task in %s killed", memcg_name);
1698 rcu_read_lock();
1699 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1700 if (ret < 0) {
1701 rcu_read_unlock();
1702 goto done;
1704 rcu_read_unlock();
1707 * Continues from above, so we don't need an KERN_ level
1709 pr_cont(" as a result of limit of %s\n", memcg_name);
1710 done:
1712 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1713 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1714 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1715 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1716 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1717 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1718 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1719 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1720 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1721 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1722 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1723 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1725 for_each_mem_cgroup_tree(iter, memcg) {
1726 pr_info("Memory cgroup stats");
1728 rcu_read_lock();
1729 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1730 if (!ret)
1731 pr_cont(" for %s", memcg_name);
1732 rcu_read_unlock();
1733 pr_cont(":");
1735 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1736 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1737 continue;
1738 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1739 K(mem_cgroup_read_stat(iter, i)));
1742 for (i = 0; i < NR_LRU_LISTS; i++)
1743 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1744 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1746 pr_cont("\n");
1751 * This function returns the number of memcg under hierarchy tree. Returns
1752 * 1(self count) if no children.
1754 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1756 int num = 0;
1757 struct mem_cgroup *iter;
1759 for_each_mem_cgroup_tree(iter, memcg)
1760 num++;
1761 return num;
1765 * Return the memory (and swap, if configured) limit for a memcg.
1767 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1769 u64 limit;
1771 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1774 * Do not consider swap space if we cannot swap due to swappiness
1776 if (mem_cgroup_swappiness(memcg)) {
1777 u64 memsw;
1779 limit += total_swap_pages << PAGE_SHIFT;
1780 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1783 * If memsw is finite and limits the amount of swap space
1784 * available to this memcg, return that limit.
1786 limit = min(limit, memsw);
1789 return limit;
1792 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1793 int order)
1795 struct mem_cgroup *iter;
1796 unsigned long chosen_points = 0;
1797 unsigned long totalpages;
1798 unsigned int points = 0;
1799 struct task_struct *chosen = NULL;
1802 * If current has a pending SIGKILL or is exiting, then automatically
1803 * select it. The goal is to allow it to allocate so that it may
1804 * quickly exit and free its memory.
1806 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1807 set_thread_flag(TIF_MEMDIE);
1808 return;
1811 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1812 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1813 for_each_mem_cgroup_tree(iter, memcg) {
1814 struct css_task_iter it;
1815 struct task_struct *task;
1817 css_task_iter_start(&iter->css, &it);
1818 while ((task = css_task_iter_next(&it))) {
1819 switch (oom_scan_process_thread(task, totalpages, NULL,
1820 false)) {
1821 case OOM_SCAN_SELECT:
1822 if (chosen)
1823 put_task_struct(chosen);
1824 chosen = task;
1825 chosen_points = ULONG_MAX;
1826 get_task_struct(chosen);
1827 /* fall through */
1828 case OOM_SCAN_CONTINUE:
1829 continue;
1830 case OOM_SCAN_ABORT:
1831 css_task_iter_end(&it);
1832 mem_cgroup_iter_break(memcg, iter);
1833 if (chosen)
1834 put_task_struct(chosen);
1835 return;
1836 case OOM_SCAN_OK:
1837 break;
1839 points = oom_badness(task, memcg, NULL, totalpages);
1840 if (!points || points < chosen_points)
1841 continue;
1842 /* Prefer thread group leaders for display purposes */
1843 if (points == chosen_points &&
1844 thread_group_leader(chosen))
1845 continue;
1847 if (chosen)
1848 put_task_struct(chosen);
1849 chosen = task;
1850 chosen_points = points;
1851 get_task_struct(chosen);
1853 css_task_iter_end(&it);
1856 if (!chosen)
1857 return;
1858 points = chosen_points * 1000 / totalpages;
1859 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1860 NULL, "Memory cgroup out of memory");
1863 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1864 gfp_t gfp_mask,
1865 unsigned long flags)
1867 unsigned long total = 0;
1868 bool noswap = false;
1869 int loop;
1871 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1872 noswap = true;
1873 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1874 noswap = true;
1876 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1877 if (loop)
1878 drain_all_stock_async(memcg);
1879 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1881 * Allow limit shrinkers, which are triggered directly
1882 * by userspace, to catch signals and stop reclaim
1883 * after minimal progress, regardless of the margin.
1885 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1886 break;
1887 if (mem_cgroup_margin(memcg))
1888 break;
1890 * If nothing was reclaimed after two attempts, there
1891 * may be no reclaimable pages in this hierarchy.
1893 if (loop && !total)
1894 break;
1896 return total;
1900 * test_mem_cgroup_node_reclaimable
1901 * @memcg: the target memcg
1902 * @nid: the node ID to be checked.
1903 * @noswap : specify true here if the user wants flle only information.
1905 * This function returns whether the specified memcg contains any
1906 * reclaimable pages on a node. Returns true if there are any reclaimable
1907 * pages in the node.
1909 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1910 int nid, bool noswap)
1912 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1913 return true;
1914 if (noswap || !total_swap_pages)
1915 return false;
1916 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1917 return true;
1918 return false;
1921 #if MAX_NUMNODES > 1
1924 * Always updating the nodemask is not very good - even if we have an empty
1925 * list or the wrong list here, we can start from some node and traverse all
1926 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1929 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1931 int nid;
1933 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1934 * pagein/pageout changes since the last update.
1936 if (!atomic_read(&memcg->numainfo_events))
1937 return;
1938 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1939 return;
1941 /* make a nodemask where this memcg uses memory from */
1942 memcg->scan_nodes = node_states[N_MEMORY];
1944 for_each_node_mask(nid, node_states[N_MEMORY]) {
1946 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1947 node_clear(nid, memcg->scan_nodes);
1950 atomic_set(&memcg->numainfo_events, 0);
1951 atomic_set(&memcg->numainfo_updating, 0);
1955 * Selecting a node where we start reclaim from. Because what we need is just
1956 * reducing usage counter, start from anywhere is O,K. Considering
1957 * memory reclaim from current node, there are pros. and cons.
1959 * Freeing memory from current node means freeing memory from a node which
1960 * we'll use or we've used. So, it may make LRU bad. And if several threads
1961 * hit limits, it will see a contention on a node. But freeing from remote
1962 * node means more costs for memory reclaim because of memory latency.
1964 * Now, we use round-robin. Better algorithm is welcomed.
1966 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1968 int node;
1970 mem_cgroup_may_update_nodemask(memcg);
1971 node = memcg->last_scanned_node;
1973 node = next_node(node, memcg->scan_nodes);
1974 if (node == MAX_NUMNODES)
1975 node = first_node(memcg->scan_nodes);
1977 * We call this when we hit limit, not when pages are added to LRU.
1978 * No LRU may hold pages because all pages are UNEVICTABLE or
1979 * memcg is too small and all pages are not on LRU. In that case,
1980 * we use curret node.
1982 if (unlikely(node == MAX_NUMNODES))
1983 node = numa_node_id();
1985 memcg->last_scanned_node = node;
1986 return node;
1990 * Check all nodes whether it contains reclaimable pages or not.
1991 * For quick scan, we make use of scan_nodes. This will allow us to skip
1992 * unused nodes. But scan_nodes is lazily updated and may not cotain
1993 * enough new information. We need to do double check.
1995 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1997 int nid;
2000 * quick check...making use of scan_node.
2001 * We can skip unused nodes.
2003 if (!nodes_empty(memcg->scan_nodes)) {
2004 for (nid = first_node(memcg->scan_nodes);
2005 nid < MAX_NUMNODES;
2006 nid = next_node(nid, memcg->scan_nodes)) {
2008 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2009 return true;
2013 * Check rest of nodes.
2015 for_each_node_state(nid, N_MEMORY) {
2016 if (node_isset(nid, memcg->scan_nodes))
2017 continue;
2018 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2019 return true;
2021 return false;
2024 #else
2025 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2027 return 0;
2030 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2032 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2034 #endif
2036 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2037 struct zone *zone,
2038 gfp_t gfp_mask,
2039 unsigned long *total_scanned)
2041 struct mem_cgroup *victim = NULL;
2042 int total = 0;
2043 int loop = 0;
2044 unsigned long excess;
2045 unsigned long nr_scanned;
2046 struct mem_cgroup_reclaim_cookie reclaim = {
2047 .zone = zone,
2048 .priority = 0,
2051 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2053 while (1) {
2054 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2055 if (!victim) {
2056 loop++;
2057 if (loop >= 2) {
2059 * If we have not been able to reclaim
2060 * anything, it might because there are
2061 * no reclaimable pages under this hierarchy
2063 if (!total)
2064 break;
2066 * We want to do more targeted reclaim.
2067 * excess >> 2 is not to excessive so as to
2068 * reclaim too much, nor too less that we keep
2069 * coming back to reclaim from this cgroup
2071 if (total >= (excess >> 2) ||
2072 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2073 break;
2075 continue;
2077 if (!mem_cgroup_reclaimable(victim, false))
2078 continue;
2079 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2080 zone, &nr_scanned);
2081 *total_scanned += nr_scanned;
2082 if (!res_counter_soft_limit_excess(&root_memcg->res))
2083 break;
2085 mem_cgroup_iter_break(root_memcg, victim);
2086 return total;
2089 #ifdef CONFIG_LOCKDEP
2090 static struct lockdep_map memcg_oom_lock_dep_map = {
2091 .name = "memcg_oom_lock",
2093 #endif
2095 static DEFINE_SPINLOCK(memcg_oom_lock);
2098 * Check OOM-Killer is already running under our hierarchy.
2099 * If someone is running, return false.
2101 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2103 struct mem_cgroup *iter, *failed = NULL;
2105 spin_lock(&memcg_oom_lock);
2107 for_each_mem_cgroup_tree(iter, memcg) {
2108 if (iter->oom_lock) {
2110 * this subtree of our hierarchy is already locked
2111 * so we cannot give a lock.
2113 failed = iter;
2114 mem_cgroup_iter_break(memcg, iter);
2115 break;
2116 } else
2117 iter->oom_lock = true;
2120 if (failed) {
2122 * OK, we failed to lock the whole subtree so we have
2123 * to clean up what we set up to the failing subtree
2125 for_each_mem_cgroup_tree(iter, memcg) {
2126 if (iter == failed) {
2127 mem_cgroup_iter_break(memcg, iter);
2128 break;
2130 iter->oom_lock = false;
2132 } else
2133 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2135 spin_unlock(&memcg_oom_lock);
2137 return !failed;
2140 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2142 struct mem_cgroup *iter;
2144 spin_lock(&memcg_oom_lock);
2145 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2146 for_each_mem_cgroup_tree(iter, memcg)
2147 iter->oom_lock = false;
2148 spin_unlock(&memcg_oom_lock);
2151 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2153 struct mem_cgroup *iter;
2155 for_each_mem_cgroup_tree(iter, memcg)
2156 atomic_inc(&iter->under_oom);
2159 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2161 struct mem_cgroup *iter;
2164 * When a new child is created while the hierarchy is under oom,
2165 * mem_cgroup_oom_lock() may not be called. We have to use
2166 * atomic_add_unless() here.
2168 for_each_mem_cgroup_tree(iter, memcg)
2169 atomic_add_unless(&iter->under_oom, -1, 0);
2172 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2174 struct oom_wait_info {
2175 struct mem_cgroup *memcg;
2176 wait_queue_t wait;
2179 static int memcg_oom_wake_function(wait_queue_t *wait,
2180 unsigned mode, int sync, void *arg)
2182 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2183 struct mem_cgroup *oom_wait_memcg;
2184 struct oom_wait_info *oom_wait_info;
2186 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2187 oom_wait_memcg = oom_wait_info->memcg;
2190 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2191 * Then we can use css_is_ancestor without taking care of RCU.
2193 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2194 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2195 return 0;
2196 return autoremove_wake_function(wait, mode, sync, arg);
2199 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2201 atomic_inc(&memcg->oom_wakeups);
2202 /* for filtering, pass "memcg" as argument. */
2203 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2206 static void memcg_oom_recover(struct mem_cgroup *memcg)
2208 if (memcg && atomic_read(&memcg->under_oom))
2209 memcg_wakeup_oom(memcg);
2212 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2214 if (!current->memcg_oom.may_oom)
2215 return;
2217 * We are in the middle of the charge context here, so we
2218 * don't want to block when potentially sitting on a callstack
2219 * that holds all kinds of filesystem and mm locks.
2221 * Also, the caller may handle a failed allocation gracefully
2222 * (like optional page cache readahead) and so an OOM killer
2223 * invocation might not even be necessary.
2225 * That's why we don't do anything here except remember the
2226 * OOM context and then deal with it at the end of the page
2227 * fault when the stack is unwound, the locks are released,
2228 * and when we know whether the fault was overall successful.
2230 css_get(&memcg->css);
2231 current->memcg_oom.memcg = memcg;
2232 current->memcg_oom.gfp_mask = mask;
2233 current->memcg_oom.order = order;
2237 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2238 * @handle: actually kill/wait or just clean up the OOM state
2240 * This has to be called at the end of a page fault if the memcg OOM
2241 * handler was enabled.
2243 * Memcg supports userspace OOM handling where failed allocations must
2244 * sleep on a waitqueue until the userspace task resolves the
2245 * situation. Sleeping directly in the charge context with all kinds
2246 * of locks held is not a good idea, instead we remember an OOM state
2247 * in the task and mem_cgroup_oom_synchronize() has to be called at
2248 * the end of the page fault to complete the OOM handling.
2250 * Returns %true if an ongoing memcg OOM situation was detected and
2251 * completed, %false otherwise.
2253 bool mem_cgroup_oom_synchronize(bool handle)
2255 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2256 struct oom_wait_info owait;
2257 bool locked;
2259 /* OOM is global, do not handle */
2260 if (!memcg)
2261 return false;
2263 if (!handle)
2264 goto cleanup;
2266 owait.memcg = memcg;
2267 owait.wait.flags = 0;
2268 owait.wait.func = memcg_oom_wake_function;
2269 owait.wait.private = current;
2270 INIT_LIST_HEAD(&owait.wait.task_list);
2272 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2273 mem_cgroup_mark_under_oom(memcg);
2275 locked = mem_cgroup_oom_trylock(memcg);
2277 if (locked)
2278 mem_cgroup_oom_notify(memcg);
2280 if (locked && !memcg->oom_kill_disable) {
2281 mem_cgroup_unmark_under_oom(memcg);
2282 finish_wait(&memcg_oom_waitq, &owait.wait);
2283 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2284 current->memcg_oom.order);
2285 } else {
2286 schedule();
2287 mem_cgroup_unmark_under_oom(memcg);
2288 finish_wait(&memcg_oom_waitq, &owait.wait);
2291 if (locked) {
2292 mem_cgroup_oom_unlock(memcg);
2294 * There is no guarantee that an OOM-lock contender
2295 * sees the wakeups triggered by the OOM kill
2296 * uncharges. Wake any sleepers explicitely.
2298 memcg_oom_recover(memcg);
2300 cleanup:
2301 current->memcg_oom.memcg = NULL;
2302 css_put(&memcg->css);
2303 return true;
2307 * Currently used to update mapped file statistics, but the routine can be
2308 * generalized to update other statistics as well.
2310 * Notes: Race condition
2312 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2313 * it tends to be costly. But considering some conditions, we doesn't need
2314 * to do so _always_.
2316 * Considering "charge", lock_page_cgroup() is not required because all
2317 * file-stat operations happen after a page is attached to radix-tree. There
2318 * are no race with "charge".
2320 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2321 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2322 * if there are race with "uncharge". Statistics itself is properly handled
2323 * by flags.
2325 * Considering "move", this is an only case we see a race. To make the race
2326 * small, we check mm->moving_account and detect there are possibility of race
2327 * If there is, we take a lock.
2330 void __mem_cgroup_begin_update_page_stat(struct page *page,
2331 bool *locked, unsigned long *flags)
2333 struct mem_cgroup *memcg;
2334 struct page_cgroup *pc;
2336 pc = lookup_page_cgroup(page);
2337 again:
2338 memcg = pc->mem_cgroup;
2339 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2340 return;
2342 * If this memory cgroup is not under account moving, we don't
2343 * need to take move_lock_mem_cgroup(). Because we already hold
2344 * rcu_read_lock(), any calls to move_account will be delayed until
2345 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2347 if (!mem_cgroup_stolen(memcg))
2348 return;
2350 move_lock_mem_cgroup(memcg, flags);
2351 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2352 move_unlock_mem_cgroup(memcg, flags);
2353 goto again;
2355 *locked = true;
2358 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2360 struct page_cgroup *pc = lookup_page_cgroup(page);
2363 * It's guaranteed that pc->mem_cgroup never changes while
2364 * lock is held because a routine modifies pc->mem_cgroup
2365 * should take move_lock_mem_cgroup().
2367 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2370 void mem_cgroup_update_page_stat(struct page *page,
2371 enum mem_cgroup_stat_index idx, int val)
2373 struct mem_cgroup *memcg;
2374 struct page_cgroup *pc = lookup_page_cgroup(page);
2375 unsigned long uninitialized_var(flags);
2377 if (mem_cgroup_disabled())
2378 return;
2380 VM_BUG_ON(!rcu_read_lock_held());
2381 memcg = pc->mem_cgroup;
2382 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2383 return;
2385 this_cpu_add(memcg->stat->count[idx], val);
2389 * size of first charge trial. "32" comes from vmscan.c's magic value.
2390 * TODO: maybe necessary to use big numbers in big irons.
2392 #define CHARGE_BATCH 32U
2393 struct memcg_stock_pcp {
2394 struct mem_cgroup *cached; /* this never be root cgroup */
2395 unsigned int nr_pages;
2396 struct work_struct work;
2397 unsigned long flags;
2398 #define FLUSHING_CACHED_CHARGE 0
2400 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2401 static DEFINE_MUTEX(percpu_charge_mutex);
2404 * consume_stock: Try to consume stocked charge on this cpu.
2405 * @memcg: memcg to consume from.
2406 * @nr_pages: how many pages to charge.
2408 * The charges will only happen if @memcg matches the current cpu's memcg
2409 * stock, and at least @nr_pages are available in that stock. Failure to
2410 * service an allocation will refill the stock.
2412 * returns true if successful, false otherwise.
2414 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 struct memcg_stock_pcp *stock;
2417 bool ret = true;
2419 if (nr_pages > CHARGE_BATCH)
2420 return false;
2422 stock = &get_cpu_var(memcg_stock);
2423 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2424 stock->nr_pages -= nr_pages;
2425 else /* need to call res_counter_charge */
2426 ret = false;
2427 put_cpu_var(memcg_stock);
2428 return ret;
2432 * Returns stocks cached in percpu to res_counter and reset cached information.
2434 static void drain_stock(struct memcg_stock_pcp *stock)
2436 struct mem_cgroup *old = stock->cached;
2438 if (stock->nr_pages) {
2439 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2441 res_counter_uncharge(&old->res, bytes);
2442 if (do_swap_account)
2443 res_counter_uncharge(&old->memsw, bytes);
2444 stock->nr_pages = 0;
2446 stock->cached = NULL;
2450 * This must be called under preempt disabled or must be called by
2451 * a thread which is pinned to local cpu.
2453 static void drain_local_stock(struct work_struct *dummy)
2455 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2456 drain_stock(stock);
2457 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2460 static void __init memcg_stock_init(void)
2462 int cpu;
2464 for_each_possible_cpu(cpu) {
2465 struct memcg_stock_pcp *stock =
2466 &per_cpu(memcg_stock, cpu);
2467 INIT_WORK(&stock->work, drain_local_stock);
2472 * Cache charges(val) which is from res_counter, to local per_cpu area.
2473 * This will be consumed by consume_stock() function, later.
2475 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2477 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2479 if (stock->cached != memcg) { /* reset if necessary */
2480 drain_stock(stock);
2481 stock->cached = memcg;
2483 stock->nr_pages += nr_pages;
2484 put_cpu_var(memcg_stock);
2488 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2489 * of the hierarchy under it. sync flag says whether we should block
2490 * until the work is done.
2492 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2494 int cpu, curcpu;
2496 /* Notify other cpus that system-wide "drain" is running */
2497 get_online_cpus();
2498 curcpu = get_cpu();
2499 for_each_online_cpu(cpu) {
2500 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2501 struct mem_cgroup *memcg;
2503 memcg = stock->cached;
2504 if (!memcg || !stock->nr_pages)
2505 continue;
2506 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2507 continue;
2508 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2509 if (cpu == curcpu)
2510 drain_local_stock(&stock->work);
2511 else
2512 schedule_work_on(cpu, &stock->work);
2515 put_cpu();
2517 if (!sync)
2518 goto out;
2520 for_each_online_cpu(cpu) {
2521 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2522 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2523 flush_work(&stock->work);
2525 out:
2526 put_online_cpus();
2530 * Tries to drain stocked charges in other cpus. This function is asynchronous
2531 * and just put a work per cpu for draining localy on each cpu. Caller can
2532 * expects some charges will be back to res_counter later but cannot wait for
2533 * it.
2535 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2538 * If someone calls draining, avoid adding more kworker runs.
2540 if (!mutex_trylock(&percpu_charge_mutex))
2541 return;
2542 drain_all_stock(root_memcg, false);
2543 mutex_unlock(&percpu_charge_mutex);
2546 /* This is a synchronous drain interface. */
2547 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2549 /* called when force_empty is called */
2550 mutex_lock(&percpu_charge_mutex);
2551 drain_all_stock(root_memcg, true);
2552 mutex_unlock(&percpu_charge_mutex);
2556 * This function drains percpu counter value from DEAD cpu and
2557 * move it to local cpu. Note that this function can be preempted.
2559 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2561 int i;
2563 spin_lock(&memcg->pcp_counter_lock);
2564 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2565 long x = per_cpu(memcg->stat->count[i], cpu);
2567 per_cpu(memcg->stat->count[i], cpu) = 0;
2568 memcg->nocpu_base.count[i] += x;
2570 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2571 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2573 per_cpu(memcg->stat->events[i], cpu) = 0;
2574 memcg->nocpu_base.events[i] += x;
2576 spin_unlock(&memcg->pcp_counter_lock);
2579 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2580 unsigned long action,
2581 void *hcpu)
2583 int cpu = (unsigned long)hcpu;
2584 struct memcg_stock_pcp *stock;
2585 struct mem_cgroup *iter;
2587 if (action == CPU_ONLINE)
2588 return NOTIFY_OK;
2590 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2591 return NOTIFY_OK;
2593 for_each_mem_cgroup(iter)
2594 mem_cgroup_drain_pcp_counter(iter, cpu);
2596 stock = &per_cpu(memcg_stock, cpu);
2597 drain_stock(stock);
2598 return NOTIFY_OK;
2602 /* See __mem_cgroup_try_charge() for details */
2603 enum {
2604 CHARGE_OK, /* success */
2605 CHARGE_RETRY, /* need to retry but retry is not bad */
2606 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2607 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2610 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2611 unsigned int nr_pages, unsigned int min_pages,
2612 bool invoke_oom)
2614 unsigned long csize = nr_pages * PAGE_SIZE;
2615 struct mem_cgroup *mem_over_limit;
2616 struct res_counter *fail_res;
2617 unsigned long flags = 0;
2618 int ret;
2620 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2622 if (likely(!ret)) {
2623 if (!do_swap_account)
2624 return CHARGE_OK;
2625 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2626 if (likely(!ret))
2627 return CHARGE_OK;
2629 res_counter_uncharge(&memcg->res, csize);
2630 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2631 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2632 } else
2633 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2635 * Never reclaim on behalf of optional batching, retry with a
2636 * single page instead.
2638 if (nr_pages > min_pages)
2639 return CHARGE_RETRY;
2641 if (!(gfp_mask & __GFP_WAIT))
2642 return CHARGE_WOULDBLOCK;
2644 if (gfp_mask & __GFP_NORETRY)
2645 return CHARGE_NOMEM;
2647 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2648 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2649 return CHARGE_RETRY;
2651 * Even though the limit is exceeded at this point, reclaim
2652 * may have been able to free some pages. Retry the charge
2653 * before killing the task.
2655 * Only for regular pages, though: huge pages are rather
2656 * unlikely to succeed so close to the limit, and we fall back
2657 * to regular pages anyway in case of failure.
2659 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2660 return CHARGE_RETRY;
2663 * At task move, charge accounts can be doubly counted. So, it's
2664 * better to wait until the end of task_move if something is going on.
2666 if (mem_cgroup_wait_acct_move(mem_over_limit))
2667 return CHARGE_RETRY;
2669 if (invoke_oom)
2670 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2672 return CHARGE_NOMEM;
2676 * __mem_cgroup_try_charge() does
2677 * 1. detect memcg to be charged against from passed *mm and *ptr,
2678 * 2. update res_counter
2679 * 3. call memory reclaim if necessary.
2681 * In some special case, if the task is fatal, fatal_signal_pending() or
2682 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2683 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2684 * as possible without any hazards. 2: all pages should have a valid
2685 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2686 * pointer, that is treated as a charge to root_mem_cgroup.
2688 * So __mem_cgroup_try_charge() will return
2689 * 0 ... on success, filling *ptr with a valid memcg pointer.
2690 * -ENOMEM ... charge failure because of resource limits.
2691 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2693 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2694 * the oom-killer can be invoked.
2696 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2697 gfp_t gfp_mask,
2698 unsigned int nr_pages,
2699 struct mem_cgroup **ptr,
2700 bool oom)
2702 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2703 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2704 struct mem_cgroup *memcg = NULL;
2705 int ret;
2708 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2709 * in system level. So, allow to go ahead dying process in addition to
2710 * MEMDIE process.
2712 if (unlikely(test_thread_flag(TIF_MEMDIE)
2713 || fatal_signal_pending(current)))
2714 goto bypass;
2716 if (unlikely(task_in_memcg_oom(current)))
2717 goto nomem;
2719 if (gfp_mask & __GFP_NOFAIL)
2720 oom = false;
2723 * We always charge the cgroup the mm_struct belongs to.
2724 * The mm_struct's mem_cgroup changes on task migration if the
2725 * thread group leader migrates. It's possible that mm is not
2726 * set, if so charge the root memcg (happens for pagecache usage).
2728 if (!*ptr && !mm)
2729 *ptr = root_mem_cgroup;
2730 again:
2731 if (*ptr) { /* css should be a valid one */
2732 memcg = *ptr;
2733 if (mem_cgroup_is_root(memcg))
2734 goto done;
2735 if (consume_stock(memcg, nr_pages))
2736 goto done;
2737 css_get(&memcg->css);
2738 } else {
2739 struct task_struct *p;
2741 rcu_read_lock();
2742 p = rcu_dereference(mm->owner);
2744 * Because we don't have task_lock(), "p" can exit.
2745 * In that case, "memcg" can point to root or p can be NULL with
2746 * race with swapoff. Then, we have small risk of mis-accouning.
2747 * But such kind of mis-account by race always happens because
2748 * we don't have cgroup_mutex(). It's overkill and we allo that
2749 * small race, here.
2750 * (*) swapoff at el will charge against mm-struct not against
2751 * task-struct. So, mm->owner can be NULL.
2753 memcg = mem_cgroup_from_task(p);
2754 if (!memcg)
2755 memcg = root_mem_cgroup;
2756 if (mem_cgroup_is_root(memcg)) {
2757 rcu_read_unlock();
2758 goto done;
2760 if (consume_stock(memcg, nr_pages)) {
2762 * It seems dagerous to access memcg without css_get().
2763 * But considering how consume_stok works, it's not
2764 * necessary. If consume_stock success, some charges
2765 * from this memcg are cached on this cpu. So, we
2766 * don't need to call css_get()/css_tryget() before
2767 * calling consume_stock().
2769 rcu_read_unlock();
2770 goto done;
2772 /* after here, we may be blocked. we need to get refcnt */
2773 if (!css_tryget(&memcg->css)) {
2774 rcu_read_unlock();
2775 goto again;
2777 rcu_read_unlock();
2780 do {
2781 bool invoke_oom = oom && !nr_oom_retries;
2783 /* If killed, bypass charge */
2784 if (fatal_signal_pending(current)) {
2785 css_put(&memcg->css);
2786 goto bypass;
2789 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2790 nr_pages, invoke_oom);
2791 switch (ret) {
2792 case CHARGE_OK:
2793 break;
2794 case CHARGE_RETRY: /* not in OOM situation but retry */
2795 batch = nr_pages;
2796 css_put(&memcg->css);
2797 memcg = NULL;
2798 goto again;
2799 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2800 css_put(&memcg->css);
2801 goto nomem;
2802 case CHARGE_NOMEM: /* OOM routine works */
2803 if (!oom || invoke_oom) {
2804 css_put(&memcg->css);
2805 goto nomem;
2807 nr_oom_retries--;
2808 break;
2810 } while (ret != CHARGE_OK);
2812 if (batch > nr_pages)
2813 refill_stock(memcg, batch - nr_pages);
2814 css_put(&memcg->css);
2815 done:
2816 *ptr = memcg;
2817 return 0;
2818 nomem:
2819 if (!(gfp_mask & __GFP_NOFAIL)) {
2820 *ptr = NULL;
2821 return -ENOMEM;
2823 bypass:
2824 *ptr = root_mem_cgroup;
2825 return -EINTR;
2829 * Somemtimes we have to undo a charge we got by try_charge().
2830 * This function is for that and do uncharge, put css's refcnt.
2831 * gotten by try_charge().
2833 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2834 unsigned int nr_pages)
2836 if (!mem_cgroup_is_root(memcg)) {
2837 unsigned long bytes = nr_pages * PAGE_SIZE;
2839 res_counter_uncharge(&memcg->res, bytes);
2840 if (do_swap_account)
2841 res_counter_uncharge(&memcg->memsw, bytes);
2846 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2847 * This is useful when moving usage to parent cgroup.
2849 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2850 unsigned int nr_pages)
2852 unsigned long bytes = nr_pages * PAGE_SIZE;
2854 if (mem_cgroup_is_root(memcg))
2855 return;
2857 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2858 if (do_swap_account)
2859 res_counter_uncharge_until(&memcg->memsw,
2860 memcg->memsw.parent, bytes);
2864 * A helper function to get mem_cgroup from ID. must be called under
2865 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2866 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2867 * called against removed memcg.)
2869 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2871 struct cgroup_subsys_state *css;
2873 /* ID 0 is unused ID */
2874 if (!id)
2875 return NULL;
2876 css = css_lookup(&mem_cgroup_subsys, id);
2877 if (!css)
2878 return NULL;
2879 return mem_cgroup_from_css(css);
2882 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2884 struct mem_cgroup *memcg = NULL;
2885 struct page_cgroup *pc;
2886 unsigned short id;
2887 swp_entry_t ent;
2889 VM_BUG_ON(!PageLocked(page));
2891 pc = lookup_page_cgroup(page);
2892 lock_page_cgroup(pc);
2893 if (PageCgroupUsed(pc)) {
2894 memcg = pc->mem_cgroup;
2895 if (memcg && !css_tryget(&memcg->css))
2896 memcg = NULL;
2897 } else if (PageSwapCache(page)) {
2898 ent.val = page_private(page);
2899 id = lookup_swap_cgroup_id(ent);
2900 rcu_read_lock();
2901 memcg = mem_cgroup_lookup(id);
2902 if (memcg && !css_tryget(&memcg->css))
2903 memcg = NULL;
2904 rcu_read_unlock();
2906 unlock_page_cgroup(pc);
2907 return memcg;
2910 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2911 struct page *page,
2912 unsigned int nr_pages,
2913 enum charge_type ctype,
2914 bool lrucare)
2916 struct page_cgroup *pc = lookup_page_cgroup(page);
2917 struct zone *uninitialized_var(zone);
2918 struct lruvec *lruvec;
2919 bool was_on_lru = false;
2920 bool anon;
2922 lock_page_cgroup(pc);
2923 VM_BUG_ON(PageCgroupUsed(pc));
2925 * we don't need page_cgroup_lock about tail pages, becase they are not
2926 * accessed by any other context at this point.
2930 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2931 * may already be on some other mem_cgroup's LRU. Take care of it.
2933 if (lrucare) {
2934 zone = page_zone(page);
2935 spin_lock_irq(&zone->lru_lock);
2936 if (PageLRU(page)) {
2937 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2938 ClearPageLRU(page);
2939 del_page_from_lru_list(page, lruvec, page_lru(page));
2940 was_on_lru = true;
2944 pc->mem_cgroup = memcg;
2946 * We access a page_cgroup asynchronously without lock_page_cgroup().
2947 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2948 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2949 * before USED bit, we need memory barrier here.
2950 * See mem_cgroup_add_lru_list(), etc.
2952 smp_wmb();
2953 SetPageCgroupUsed(pc);
2955 if (lrucare) {
2956 if (was_on_lru) {
2957 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2958 VM_BUG_ON(PageLRU(page));
2959 SetPageLRU(page);
2960 add_page_to_lru_list(page, lruvec, page_lru(page));
2962 spin_unlock_irq(&zone->lru_lock);
2965 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2966 anon = true;
2967 else
2968 anon = false;
2970 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2971 unlock_page_cgroup(pc);
2974 * "charge_statistics" updated event counter. Then, check it.
2975 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2976 * if they exceeds softlimit.
2978 memcg_check_events(memcg, page);
2981 static DEFINE_MUTEX(set_limit_mutex);
2983 #ifdef CONFIG_MEMCG_KMEM
2984 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2986 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2987 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2991 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2992 * in the memcg_cache_params struct.
2994 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2996 struct kmem_cache *cachep;
2998 VM_BUG_ON(p->is_root_cache);
2999 cachep = p->root_cache;
3000 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
3003 #ifdef CONFIG_SLABINFO
3004 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
3005 struct cftype *cft, struct seq_file *m)
3007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3008 struct memcg_cache_params *params;
3010 if (!memcg_can_account_kmem(memcg))
3011 return -EIO;
3013 print_slabinfo_header(m);
3015 mutex_lock(&memcg->slab_caches_mutex);
3016 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3017 cache_show(memcg_params_to_cache(params), m);
3018 mutex_unlock(&memcg->slab_caches_mutex);
3020 return 0;
3022 #endif
3024 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3026 struct res_counter *fail_res;
3027 struct mem_cgroup *_memcg;
3028 int ret = 0;
3029 bool may_oom;
3031 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3032 if (ret)
3033 return ret;
3036 * Conditions under which we can wait for the oom_killer. Those are
3037 * the same conditions tested by the core page allocator
3039 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3041 _memcg = memcg;
3042 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3043 &_memcg, may_oom);
3045 if (ret == -EINTR) {
3047 * __mem_cgroup_try_charge() chosed to bypass to root due to
3048 * OOM kill or fatal signal. Since our only options are to
3049 * either fail the allocation or charge it to this cgroup, do
3050 * it as a temporary condition. But we can't fail. From a
3051 * kmem/slab perspective, the cache has already been selected,
3052 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3053 * our minds.
3055 * This condition will only trigger if the task entered
3056 * memcg_charge_kmem in a sane state, but was OOM-killed during
3057 * __mem_cgroup_try_charge() above. Tasks that were already
3058 * dying when the allocation triggers should have been already
3059 * directed to the root cgroup in memcontrol.h
3061 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3062 if (do_swap_account)
3063 res_counter_charge_nofail(&memcg->memsw, size,
3064 &fail_res);
3065 ret = 0;
3066 } else if (ret)
3067 res_counter_uncharge(&memcg->kmem, size);
3069 return ret;
3072 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3074 res_counter_uncharge(&memcg->res, size);
3075 if (do_swap_account)
3076 res_counter_uncharge(&memcg->memsw, size);
3078 /* Not down to 0 */
3079 if (res_counter_uncharge(&memcg->kmem, size))
3080 return;
3083 * Releases a reference taken in kmem_cgroup_css_offline in case
3084 * this last uncharge is racing with the offlining code or it is
3085 * outliving the memcg existence.
3087 * The memory barrier imposed by test&clear is paired with the
3088 * explicit one in memcg_kmem_mark_dead().
3090 if (memcg_kmem_test_and_clear_dead(memcg))
3091 css_put(&memcg->css);
3094 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3096 if (!memcg)
3097 return;
3099 mutex_lock(&memcg->slab_caches_mutex);
3100 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3101 mutex_unlock(&memcg->slab_caches_mutex);
3105 * helper for acessing a memcg's index. It will be used as an index in the
3106 * child cache array in kmem_cache, and also to derive its name. This function
3107 * will return -1 when this is not a kmem-limited memcg.
3109 int memcg_cache_id(struct mem_cgroup *memcg)
3111 return memcg ? memcg->kmemcg_id : -1;
3115 * This ends up being protected by the set_limit mutex, during normal
3116 * operation, because that is its main call site.
3118 * But when we create a new cache, we can call this as well if its parent
3119 * is kmem-limited. That will have to hold set_limit_mutex as well.
3121 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3123 int num, ret;
3125 num = ida_simple_get(&kmem_limited_groups,
3126 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3127 if (num < 0)
3128 return num;
3130 * After this point, kmem_accounted (that we test atomically in
3131 * the beginning of this conditional), is no longer 0. This
3132 * guarantees only one process will set the following boolean
3133 * to true. We don't need test_and_set because we're protected
3134 * by the set_limit_mutex anyway.
3136 memcg_kmem_set_activated(memcg);
3138 ret = memcg_update_all_caches(num+1);
3139 if (ret) {
3140 ida_simple_remove(&kmem_limited_groups, num);
3141 memcg_kmem_clear_activated(memcg);
3142 return ret;
3145 memcg->kmemcg_id = num;
3146 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3147 mutex_init(&memcg->slab_caches_mutex);
3148 return 0;
3151 static size_t memcg_caches_array_size(int num_groups)
3153 ssize_t size;
3154 if (num_groups <= 0)
3155 return 0;
3157 size = 2 * num_groups;
3158 if (size < MEMCG_CACHES_MIN_SIZE)
3159 size = MEMCG_CACHES_MIN_SIZE;
3160 else if (size > MEMCG_CACHES_MAX_SIZE)
3161 size = MEMCG_CACHES_MAX_SIZE;
3163 return size;
3167 * We should update the current array size iff all caches updates succeed. This
3168 * can only be done from the slab side. The slab mutex needs to be held when
3169 * calling this.
3171 void memcg_update_array_size(int num)
3173 if (num > memcg_limited_groups_array_size)
3174 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3177 static void kmem_cache_destroy_work_func(struct work_struct *w);
3179 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3181 struct memcg_cache_params *cur_params = s->memcg_params;
3183 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3185 if (num_groups > memcg_limited_groups_array_size) {
3186 int i;
3187 ssize_t size = memcg_caches_array_size(num_groups);
3189 size *= sizeof(void *);
3190 size += offsetof(struct memcg_cache_params, memcg_caches);
3192 s->memcg_params = kzalloc(size, GFP_KERNEL);
3193 if (!s->memcg_params) {
3194 s->memcg_params = cur_params;
3195 return -ENOMEM;
3198 s->memcg_params->is_root_cache = true;
3201 * There is the chance it will be bigger than
3202 * memcg_limited_groups_array_size, if we failed an allocation
3203 * in a cache, in which case all caches updated before it, will
3204 * have a bigger array.
3206 * But if that is the case, the data after
3207 * memcg_limited_groups_array_size is certainly unused
3209 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3210 if (!cur_params->memcg_caches[i])
3211 continue;
3212 s->memcg_params->memcg_caches[i] =
3213 cur_params->memcg_caches[i];
3217 * Ideally, we would wait until all caches succeed, and only
3218 * then free the old one. But this is not worth the extra
3219 * pointer per-cache we'd have to have for this.
3221 * It is not a big deal if some caches are left with a size
3222 * bigger than the others. And all updates will reset this
3223 * anyway.
3225 kfree(cur_params);
3227 return 0;
3230 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3231 struct kmem_cache *root_cache)
3233 size_t size;
3235 if (!memcg_kmem_enabled())
3236 return 0;
3238 if (!memcg) {
3239 size = offsetof(struct memcg_cache_params, memcg_caches);
3240 size += memcg_limited_groups_array_size * sizeof(void *);
3241 } else
3242 size = sizeof(struct memcg_cache_params);
3244 s->memcg_params = kzalloc(size, GFP_KERNEL);
3245 if (!s->memcg_params)
3246 return -ENOMEM;
3248 if (memcg) {
3249 s->memcg_params->memcg = memcg;
3250 s->memcg_params->root_cache = root_cache;
3251 INIT_WORK(&s->memcg_params->destroy,
3252 kmem_cache_destroy_work_func);
3253 } else
3254 s->memcg_params->is_root_cache = true;
3256 return 0;
3259 void memcg_release_cache(struct kmem_cache *s)
3261 struct kmem_cache *root;
3262 struct mem_cgroup *memcg;
3263 int id;
3266 * This happens, for instance, when a root cache goes away before we
3267 * add any memcg.
3269 if (!s->memcg_params)
3270 return;
3272 if (s->memcg_params->is_root_cache)
3273 goto out;
3275 memcg = s->memcg_params->memcg;
3276 id = memcg_cache_id(memcg);
3278 root = s->memcg_params->root_cache;
3279 root->memcg_params->memcg_caches[id] = NULL;
3281 mutex_lock(&memcg->slab_caches_mutex);
3282 list_del(&s->memcg_params->list);
3283 mutex_unlock(&memcg->slab_caches_mutex);
3285 css_put(&memcg->css);
3286 out:
3287 kfree(s->memcg_params);
3291 * During the creation a new cache, we need to disable our accounting mechanism
3292 * altogether. This is true even if we are not creating, but rather just
3293 * enqueing new caches to be created.
3295 * This is because that process will trigger allocations; some visible, like
3296 * explicit kmallocs to auxiliary data structures, name strings and internal
3297 * cache structures; some well concealed, like INIT_WORK() that can allocate
3298 * objects during debug.
3300 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3301 * to it. This may not be a bounded recursion: since the first cache creation
3302 * failed to complete (waiting on the allocation), we'll just try to create the
3303 * cache again, failing at the same point.
3305 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3306 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3307 * inside the following two functions.
3309 static inline void memcg_stop_kmem_account(void)
3311 VM_BUG_ON(!current->mm);
3312 current->memcg_kmem_skip_account++;
3315 static inline void memcg_resume_kmem_account(void)
3317 VM_BUG_ON(!current->mm);
3318 current->memcg_kmem_skip_account--;
3321 static void kmem_cache_destroy_work_func(struct work_struct *w)
3323 struct kmem_cache *cachep;
3324 struct memcg_cache_params *p;
3326 p = container_of(w, struct memcg_cache_params, destroy);
3328 cachep = memcg_params_to_cache(p);
3331 * If we get down to 0 after shrink, we could delete right away.
3332 * However, memcg_release_pages() already puts us back in the workqueue
3333 * in that case. If we proceed deleting, we'll get a dangling
3334 * reference, and removing the object from the workqueue in that case
3335 * is unnecessary complication. We are not a fast path.
3337 * Note that this case is fundamentally different from racing with
3338 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3339 * kmem_cache_shrink, not only we would be reinserting a dead cache
3340 * into the queue, but doing so from inside the worker racing to
3341 * destroy it.
3343 * So if we aren't down to zero, we'll just schedule a worker and try
3344 * again
3346 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3347 kmem_cache_shrink(cachep);
3348 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3349 return;
3350 } else
3351 kmem_cache_destroy(cachep);
3354 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3356 if (!cachep->memcg_params->dead)
3357 return;
3360 * There are many ways in which we can get here.
3362 * We can get to a memory-pressure situation while the delayed work is
3363 * still pending to run. The vmscan shrinkers can then release all
3364 * cache memory and get us to destruction. If this is the case, we'll
3365 * be executed twice, which is a bug (the second time will execute over
3366 * bogus data). In this case, cancelling the work should be fine.
3368 * But we can also get here from the worker itself, if
3369 * kmem_cache_shrink is enough to shake all the remaining objects and
3370 * get the page count to 0. In this case, we'll deadlock if we try to
3371 * cancel the work (the worker runs with an internal lock held, which
3372 * is the same lock we would hold for cancel_work_sync().)
3374 * Since we can't possibly know who got us here, just refrain from
3375 * running if there is already work pending
3377 if (work_pending(&cachep->memcg_params->destroy))
3378 return;
3380 * We have to defer the actual destroying to a workqueue, because
3381 * we might currently be in a context that cannot sleep.
3383 schedule_work(&cachep->memcg_params->destroy);
3387 * This lock protects updaters, not readers. We want readers to be as fast as
3388 * they can, and they will either see NULL or a valid cache value. Our model
3389 * allow them to see NULL, in which case the root memcg will be selected.
3391 * We need this lock because multiple allocations to the same cache from a non
3392 * will span more than one worker. Only one of them can create the cache.
3394 static DEFINE_MUTEX(memcg_cache_mutex);
3397 * Called with memcg_cache_mutex held
3399 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3400 struct kmem_cache *s)
3402 struct kmem_cache *new;
3403 static char *tmp_name = NULL;
3405 lockdep_assert_held(&memcg_cache_mutex);
3408 * kmem_cache_create_memcg duplicates the given name and
3409 * cgroup_name for this name requires RCU context.
3410 * This static temporary buffer is used to prevent from
3411 * pointless shortliving allocation.
3413 if (!tmp_name) {
3414 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3415 if (!tmp_name)
3416 return NULL;
3419 rcu_read_lock();
3420 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3421 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3422 rcu_read_unlock();
3424 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3425 (s->flags & ~SLAB_PANIC), s->ctor, s);
3427 if (new)
3428 new->allocflags |= __GFP_KMEMCG;
3430 return new;
3433 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3434 struct kmem_cache *cachep)
3436 struct kmem_cache *new_cachep;
3437 int idx;
3439 BUG_ON(!memcg_can_account_kmem(memcg));
3441 idx = memcg_cache_id(memcg);
3443 mutex_lock(&memcg_cache_mutex);
3444 new_cachep = cachep->memcg_params->memcg_caches[idx];
3445 if (new_cachep) {
3446 css_put(&memcg->css);
3447 goto out;
3450 new_cachep = kmem_cache_dup(memcg, cachep);
3451 if (new_cachep == NULL) {
3452 new_cachep = cachep;
3453 css_put(&memcg->css);
3454 goto out;
3457 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3459 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3461 * the readers won't lock, make sure everybody sees the updated value,
3462 * so they won't put stuff in the queue again for no reason
3464 wmb();
3465 out:
3466 mutex_unlock(&memcg_cache_mutex);
3467 return new_cachep;
3470 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3472 struct kmem_cache *c;
3473 int i;
3475 if (!s->memcg_params)
3476 return;
3477 if (!s->memcg_params->is_root_cache)
3478 return;
3481 * If the cache is being destroyed, we trust that there is no one else
3482 * requesting objects from it. Even if there are, the sanity checks in
3483 * kmem_cache_destroy should caught this ill-case.
3485 * Still, we don't want anyone else freeing memcg_caches under our
3486 * noses, which can happen if a new memcg comes to life. As usual,
3487 * we'll take the set_limit_mutex to protect ourselves against this.
3489 mutex_lock(&set_limit_mutex);
3490 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3491 c = s->memcg_params->memcg_caches[i];
3492 if (!c)
3493 continue;
3496 * We will now manually delete the caches, so to avoid races
3497 * we need to cancel all pending destruction workers and
3498 * proceed with destruction ourselves.
3500 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3501 * and that could spawn the workers again: it is likely that
3502 * the cache still have active pages until this very moment.
3503 * This would lead us back to mem_cgroup_destroy_cache.
3505 * But that will not execute at all if the "dead" flag is not
3506 * set, so flip it down to guarantee we are in control.
3508 c->memcg_params->dead = false;
3509 cancel_work_sync(&c->memcg_params->destroy);
3510 kmem_cache_destroy(c);
3512 mutex_unlock(&set_limit_mutex);
3515 struct create_work {
3516 struct mem_cgroup *memcg;
3517 struct kmem_cache *cachep;
3518 struct work_struct work;
3521 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3523 struct kmem_cache *cachep;
3524 struct memcg_cache_params *params;
3526 if (!memcg_kmem_is_active(memcg))
3527 return;
3529 mutex_lock(&memcg->slab_caches_mutex);
3530 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3531 cachep = memcg_params_to_cache(params);
3532 cachep->memcg_params->dead = true;
3533 schedule_work(&cachep->memcg_params->destroy);
3535 mutex_unlock(&memcg->slab_caches_mutex);
3538 static void memcg_create_cache_work_func(struct work_struct *w)
3540 struct create_work *cw;
3542 cw = container_of(w, struct create_work, work);
3543 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3544 kfree(cw);
3548 * Enqueue the creation of a per-memcg kmem_cache.
3550 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3551 struct kmem_cache *cachep)
3553 struct create_work *cw;
3555 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3556 if (cw == NULL) {
3557 css_put(&memcg->css);
3558 return;
3561 cw->memcg = memcg;
3562 cw->cachep = cachep;
3564 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3565 schedule_work(&cw->work);
3568 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3569 struct kmem_cache *cachep)
3572 * We need to stop accounting when we kmalloc, because if the
3573 * corresponding kmalloc cache is not yet created, the first allocation
3574 * in __memcg_create_cache_enqueue will recurse.
3576 * However, it is better to enclose the whole function. Depending on
3577 * the debugging options enabled, INIT_WORK(), for instance, can
3578 * trigger an allocation. This too, will make us recurse. Because at
3579 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3580 * the safest choice is to do it like this, wrapping the whole function.
3582 memcg_stop_kmem_account();
3583 __memcg_create_cache_enqueue(memcg, cachep);
3584 memcg_resume_kmem_account();
3587 * Return the kmem_cache we're supposed to use for a slab allocation.
3588 * We try to use the current memcg's version of the cache.
3590 * If the cache does not exist yet, if we are the first user of it,
3591 * we either create it immediately, if possible, or create it asynchronously
3592 * in a workqueue.
3593 * In the latter case, we will let the current allocation go through with
3594 * the original cache.
3596 * Can't be called in interrupt context or from kernel threads.
3597 * This function needs to be called with rcu_read_lock() held.
3599 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3600 gfp_t gfp)
3602 struct mem_cgroup *memcg;
3603 int idx;
3605 VM_BUG_ON(!cachep->memcg_params);
3606 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3608 if (!current->mm || current->memcg_kmem_skip_account)
3609 return cachep;
3611 rcu_read_lock();
3612 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3614 if (!memcg_can_account_kmem(memcg))
3615 goto out;
3617 idx = memcg_cache_id(memcg);
3620 * barrier to mare sure we're always seeing the up to date value. The
3621 * code updating memcg_caches will issue a write barrier to match this.
3623 read_barrier_depends();
3624 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3625 cachep = cachep->memcg_params->memcg_caches[idx];
3626 goto out;
3629 /* The corresponding put will be done in the workqueue. */
3630 if (!css_tryget(&memcg->css))
3631 goto out;
3632 rcu_read_unlock();
3635 * If we are in a safe context (can wait, and not in interrupt
3636 * context), we could be be predictable and return right away.
3637 * This would guarantee that the allocation being performed
3638 * already belongs in the new cache.
3640 * However, there are some clashes that can arrive from locking.
3641 * For instance, because we acquire the slab_mutex while doing
3642 * kmem_cache_dup, this means no further allocation could happen
3643 * with the slab_mutex held.
3645 * Also, because cache creation issue get_online_cpus(), this
3646 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3647 * that ends up reversed during cpu hotplug. (cpuset allocates
3648 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3649 * better to defer everything.
3651 memcg_create_cache_enqueue(memcg, cachep);
3652 return cachep;
3653 out:
3654 rcu_read_unlock();
3655 return cachep;
3657 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3660 * We need to verify if the allocation against current->mm->owner's memcg is
3661 * possible for the given order. But the page is not allocated yet, so we'll
3662 * need a further commit step to do the final arrangements.
3664 * It is possible for the task to switch cgroups in this mean time, so at
3665 * commit time, we can't rely on task conversion any longer. We'll then use
3666 * the handle argument to return to the caller which cgroup we should commit
3667 * against. We could also return the memcg directly and avoid the pointer
3668 * passing, but a boolean return value gives better semantics considering
3669 * the compiled-out case as well.
3671 * Returning true means the allocation is possible.
3673 bool
3674 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3676 struct mem_cgroup *memcg;
3677 int ret;
3679 *_memcg = NULL;
3682 * Disabling accounting is only relevant for some specific memcg
3683 * internal allocations. Therefore we would initially not have such
3684 * check here, since direct calls to the page allocator that are marked
3685 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3686 * concerned with cache allocations, and by having this test at
3687 * memcg_kmem_get_cache, we are already able to relay the allocation to
3688 * the root cache and bypass the memcg cache altogether.
3690 * There is one exception, though: the SLUB allocator does not create
3691 * large order caches, but rather service large kmallocs directly from
3692 * the page allocator. Therefore, the following sequence when backed by
3693 * the SLUB allocator:
3695 * memcg_stop_kmem_account();
3696 * kmalloc(<large_number>)
3697 * memcg_resume_kmem_account();
3699 * would effectively ignore the fact that we should skip accounting,
3700 * since it will drive us directly to this function without passing
3701 * through the cache selector memcg_kmem_get_cache. Such large
3702 * allocations are extremely rare but can happen, for instance, for the
3703 * cache arrays. We bring this test here.
3705 if (!current->mm || current->memcg_kmem_skip_account)
3706 return true;
3708 memcg = try_get_mem_cgroup_from_mm(current->mm);
3711 * very rare case described in mem_cgroup_from_task. Unfortunately there
3712 * isn't much we can do without complicating this too much, and it would
3713 * be gfp-dependent anyway. Just let it go
3715 if (unlikely(!memcg))
3716 return true;
3718 if (!memcg_can_account_kmem(memcg)) {
3719 css_put(&memcg->css);
3720 return true;
3723 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3724 if (!ret)
3725 *_memcg = memcg;
3727 css_put(&memcg->css);
3728 return (ret == 0);
3731 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3732 int order)
3734 struct page_cgroup *pc;
3736 VM_BUG_ON(mem_cgroup_is_root(memcg));
3738 /* The page allocation failed. Revert */
3739 if (!page) {
3740 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3741 return;
3744 pc = lookup_page_cgroup(page);
3745 lock_page_cgroup(pc);
3746 pc->mem_cgroup = memcg;
3747 SetPageCgroupUsed(pc);
3748 unlock_page_cgroup(pc);
3751 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3753 struct mem_cgroup *memcg = NULL;
3754 struct page_cgroup *pc;
3757 pc = lookup_page_cgroup(page);
3759 * Fast unlocked return. Theoretically might have changed, have to
3760 * check again after locking.
3762 if (!PageCgroupUsed(pc))
3763 return;
3765 lock_page_cgroup(pc);
3766 if (PageCgroupUsed(pc)) {
3767 memcg = pc->mem_cgroup;
3768 ClearPageCgroupUsed(pc);
3770 unlock_page_cgroup(pc);
3773 * We trust that only if there is a memcg associated with the page, it
3774 * is a valid allocation
3776 if (!memcg)
3777 return;
3779 VM_BUG_ON(mem_cgroup_is_root(memcg));
3780 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3782 #else
3783 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3786 #endif /* CONFIG_MEMCG_KMEM */
3788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3790 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3792 * Because tail pages are not marked as "used", set it. We're under
3793 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3794 * charge/uncharge will be never happen and move_account() is done under
3795 * compound_lock(), so we don't have to take care of races.
3797 void mem_cgroup_split_huge_fixup(struct page *head)
3799 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3800 struct page_cgroup *pc;
3801 struct mem_cgroup *memcg;
3802 int i;
3804 if (mem_cgroup_disabled())
3805 return;
3807 memcg = head_pc->mem_cgroup;
3808 for (i = 1; i < HPAGE_PMD_NR; i++) {
3809 pc = head_pc + i;
3810 pc->mem_cgroup = memcg;
3811 smp_wmb();/* see __commit_charge() */
3812 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3814 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3815 HPAGE_PMD_NR);
3817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3819 static inline
3820 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3821 struct mem_cgroup *to,
3822 unsigned int nr_pages,
3823 enum mem_cgroup_stat_index idx)
3825 /* Update stat data for mem_cgroup */
3826 preempt_disable();
3827 __this_cpu_sub(from->stat->count[idx], nr_pages);
3828 __this_cpu_add(to->stat->count[idx], nr_pages);
3829 preempt_enable();
3833 * mem_cgroup_move_account - move account of the page
3834 * @page: the page
3835 * @nr_pages: number of regular pages (>1 for huge pages)
3836 * @pc: page_cgroup of the page.
3837 * @from: mem_cgroup which the page is moved from.
3838 * @to: mem_cgroup which the page is moved to. @from != @to.
3840 * The caller must confirm following.
3841 * - page is not on LRU (isolate_page() is useful.)
3842 * - compound_lock is held when nr_pages > 1
3844 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3845 * from old cgroup.
3847 static int mem_cgroup_move_account(struct page *page,
3848 unsigned int nr_pages,
3849 struct page_cgroup *pc,
3850 struct mem_cgroup *from,
3851 struct mem_cgroup *to)
3853 unsigned long flags;
3854 int ret;
3855 bool anon = PageAnon(page);
3857 VM_BUG_ON(from == to);
3858 VM_BUG_ON(PageLRU(page));
3860 * The page is isolated from LRU. So, collapse function
3861 * will not handle this page. But page splitting can happen.
3862 * Do this check under compound_page_lock(). The caller should
3863 * hold it.
3865 ret = -EBUSY;
3866 if (nr_pages > 1 && !PageTransHuge(page))
3867 goto out;
3869 lock_page_cgroup(pc);
3871 ret = -EINVAL;
3872 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3873 goto unlock;
3875 move_lock_mem_cgroup(from, &flags);
3877 if (!anon && page_mapped(page))
3878 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3879 MEM_CGROUP_STAT_FILE_MAPPED);
3881 if (PageWriteback(page))
3882 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3883 MEM_CGROUP_STAT_WRITEBACK);
3885 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3887 /* caller should have done css_get */
3888 pc->mem_cgroup = to;
3889 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3890 move_unlock_mem_cgroup(from, &flags);
3891 ret = 0;
3892 unlock:
3893 unlock_page_cgroup(pc);
3895 * check events
3897 memcg_check_events(to, page);
3898 memcg_check_events(from, page);
3899 out:
3900 return ret;
3904 * mem_cgroup_move_parent - moves page to the parent group
3905 * @page: the page to move
3906 * @pc: page_cgroup of the page
3907 * @child: page's cgroup
3909 * move charges to its parent or the root cgroup if the group has no
3910 * parent (aka use_hierarchy==0).
3911 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3912 * mem_cgroup_move_account fails) the failure is always temporary and
3913 * it signals a race with a page removal/uncharge or migration. In the
3914 * first case the page is on the way out and it will vanish from the LRU
3915 * on the next attempt and the call should be retried later.
3916 * Isolation from the LRU fails only if page has been isolated from
3917 * the LRU since we looked at it and that usually means either global
3918 * reclaim or migration going on. The page will either get back to the
3919 * LRU or vanish.
3920 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3921 * (!PageCgroupUsed) or moved to a different group. The page will
3922 * disappear in the next attempt.
3924 static int mem_cgroup_move_parent(struct page *page,
3925 struct page_cgroup *pc,
3926 struct mem_cgroup *child)
3928 struct mem_cgroup *parent;
3929 unsigned int nr_pages;
3930 unsigned long uninitialized_var(flags);
3931 int ret;
3933 VM_BUG_ON(mem_cgroup_is_root(child));
3935 ret = -EBUSY;
3936 if (!get_page_unless_zero(page))
3937 goto out;
3938 if (isolate_lru_page(page))
3939 goto put;
3941 nr_pages = hpage_nr_pages(page);
3943 parent = parent_mem_cgroup(child);
3945 * If no parent, move charges to root cgroup.
3947 if (!parent)
3948 parent = root_mem_cgroup;
3950 if (nr_pages > 1) {
3951 VM_BUG_ON(!PageTransHuge(page));
3952 flags = compound_lock_irqsave(page);
3955 ret = mem_cgroup_move_account(page, nr_pages,
3956 pc, child, parent);
3957 if (!ret)
3958 __mem_cgroup_cancel_local_charge(child, nr_pages);
3960 if (nr_pages > 1)
3961 compound_unlock_irqrestore(page, flags);
3962 putback_lru_page(page);
3963 put:
3964 put_page(page);
3965 out:
3966 return ret;
3970 * Charge the memory controller for page usage.
3971 * Return
3972 * 0 if the charge was successful
3973 * < 0 if the cgroup is over its limit
3975 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3976 gfp_t gfp_mask, enum charge_type ctype)
3978 struct mem_cgroup *memcg = NULL;
3979 unsigned int nr_pages = 1;
3980 bool oom = true;
3981 int ret;
3983 if (PageTransHuge(page)) {
3984 nr_pages <<= compound_order(page);
3985 VM_BUG_ON(!PageTransHuge(page));
3987 * Never OOM-kill a process for a huge page. The
3988 * fault handler will fall back to regular pages.
3990 oom = false;
3993 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3994 if (ret == -ENOMEM)
3995 return ret;
3996 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3997 return 0;
4000 int mem_cgroup_newpage_charge(struct page *page,
4001 struct mm_struct *mm, gfp_t gfp_mask)
4003 if (mem_cgroup_disabled())
4004 return 0;
4005 VM_BUG_ON(page_mapped(page));
4006 VM_BUG_ON(page->mapping && !PageAnon(page));
4007 VM_BUG_ON(!mm);
4008 return mem_cgroup_charge_common(page, mm, gfp_mask,
4009 MEM_CGROUP_CHARGE_TYPE_ANON);
4013 * While swap-in, try_charge -> commit or cancel, the page is locked.
4014 * And when try_charge() successfully returns, one refcnt to memcg without
4015 * struct page_cgroup is acquired. This refcnt will be consumed by
4016 * "commit()" or removed by "cancel()"
4018 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4019 struct page *page,
4020 gfp_t mask,
4021 struct mem_cgroup **memcgp)
4023 struct mem_cgroup *memcg;
4024 struct page_cgroup *pc;
4025 int ret;
4027 pc = lookup_page_cgroup(page);
4029 * Every swap fault against a single page tries to charge the
4030 * page, bail as early as possible. shmem_unuse() encounters
4031 * already charged pages, too. The USED bit is protected by
4032 * the page lock, which serializes swap cache removal, which
4033 * in turn serializes uncharging.
4035 if (PageCgroupUsed(pc))
4036 return 0;
4037 if (!do_swap_account)
4038 goto charge_cur_mm;
4039 memcg = try_get_mem_cgroup_from_page(page);
4040 if (!memcg)
4041 goto charge_cur_mm;
4042 *memcgp = memcg;
4043 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4044 css_put(&memcg->css);
4045 if (ret == -EINTR)
4046 ret = 0;
4047 return ret;
4048 charge_cur_mm:
4049 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4050 if (ret == -EINTR)
4051 ret = 0;
4052 return ret;
4055 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4056 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4058 *memcgp = NULL;
4059 if (mem_cgroup_disabled())
4060 return 0;
4062 * A racing thread's fault, or swapoff, may have already
4063 * updated the pte, and even removed page from swap cache: in
4064 * those cases unuse_pte()'s pte_same() test will fail; but
4065 * there's also a KSM case which does need to charge the page.
4067 if (!PageSwapCache(page)) {
4068 int ret;
4070 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4071 if (ret == -EINTR)
4072 ret = 0;
4073 return ret;
4075 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4078 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4080 if (mem_cgroup_disabled())
4081 return;
4082 if (!memcg)
4083 return;
4084 __mem_cgroup_cancel_charge(memcg, 1);
4087 static void
4088 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4089 enum charge_type ctype)
4091 if (mem_cgroup_disabled())
4092 return;
4093 if (!memcg)
4094 return;
4096 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4098 * Now swap is on-memory. This means this page may be
4099 * counted both as mem and swap....double count.
4100 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4101 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4102 * may call delete_from_swap_cache() before reach here.
4104 if (do_swap_account && PageSwapCache(page)) {
4105 swp_entry_t ent = {.val = page_private(page)};
4106 mem_cgroup_uncharge_swap(ent);
4110 void mem_cgroup_commit_charge_swapin(struct page *page,
4111 struct mem_cgroup *memcg)
4113 __mem_cgroup_commit_charge_swapin(page, memcg,
4114 MEM_CGROUP_CHARGE_TYPE_ANON);
4117 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4118 gfp_t gfp_mask)
4120 struct mem_cgroup *memcg = NULL;
4121 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4122 int ret;
4124 if (mem_cgroup_disabled())
4125 return 0;
4126 if (PageCompound(page))
4127 return 0;
4129 if (!PageSwapCache(page))
4130 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4131 else { /* page is swapcache/shmem */
4132 ret = __mem_cgroup_try_charge_swapin(mm, page,
4133 gfp_mask, &memcg);
4134 if (!ret)
4135 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4137 return ret;
4140 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4141 unsigned int nr_pages,
4142 const enum charge_type ctype)
4144 struct memcg_batch_info *batch = NULL;
4145 bool uncharge_memsw = true;
4147 /* If swapout, usage of swap doesn't decrease */
4148 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4149 uncharge_memsw = false;
4151 batch = &current->memcg_batch;
4153 * In usual, we do css_get() when we remember memcg pointer.
4154 * But in this case, we keep res->usage until end of a series of
4155 * uncharges. Then, it's ok to ignore memcg's refcnt.
4157 if (!batch->memcg)
4158 batch->memcg = memcg;
4160 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4161 * In those cases, all pages freed continuously can be expected to be in
4162 * the same cgroup and we have chance to coalesce uncharges.
4163 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4164 * because we want to do uncharge as soon as possible.
4167 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4168 goto direct_uncharge;
4170 if (nr_pages > 1)
4171 goto direct_uncharge;
4174 * In typical case, batch->memcg == mem. This means we can
4175 * merge a series of uncharges to an uncharge of res_counter.
4176 * If not, we uncharge res_counter ony by one.
4178 if (batch->memcg != memcg)
4179 goto direct_uncharge;
4180 /* remember freed charge and uncharge it later */
4181 batch->nr_pages++;
4182 if (uncharge_memsw)
4183 batch->memsw_nr_pages++;
4184 return;
4185 direct_uncharge:
4186 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4187 if (uncharge_memsw)
4188 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4189 if (unlikely(batch->memcg != memcg))
4190 memcg_oom_recover(memcg);
4194 * uncharge if !page_mapped(page)
4196 static struct mem_cgroup *
4197 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4198 bool end_migration)
4200 struct mem_cgroup *memcg = NULL;
4201 unsigned int nr_pages = 1;
4202 struct page_cgroup *pc;
4203 bool anon;
4205 if (mem_cgroup_disabled())
4206 return NULL;
4208 if (PageTransHuge(page)) {
4209 nr_pages <<= compound_order(page);
4210 VM_BUG_ON(!PageTransHuge(page));
4213 * Check if our page_cgroup is valid
4215 pc = lookup_page_cgroup(page);
4216 if (unlikely(!PageCgroupUsed(pc)))
4217 return NULL;
4219 lock_page_cgroup(pc);
4221 memcg = pc->mem_cgroup;
4223 if (!PageCgroupUsed(pc))
4224 goto unlock_out;
4226 anon = PageAnon(page);
4228 switch (ctype) {
4229 case MEM_CGROUP_CHARGE_TYPE_ANON:
4231 * Generally PageAnon tells if it's the anon statistics to be
4232 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4233 * used before page reached the stage of being marked PageAnon.
4235 anon = true;
4236 /* fallthrough */
4237 case MEM_CGROUP_CHARGE_TYPE_DROP:
4238 /* See mem_cgroup_prepare_migration() */
4239 if (page_mapped(page))
4240 goto unlock_out;
4242 * Pages under migration may not be uncharged. But
4243 * end_migration() /must/ be the one uncharging the
4244 * unused post-migration page and so it has to call
4245 * here with the migration bit still set. See the
4246 * res_counter handling below.
4248 if (!end_migration && PageCgroupMigration(pc))
4249 goto unlock_out;
4250 break;
4251 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4252 if (!PageAnon(page)) { /* Shared memory */
4253 if (page->mapping && !page_is_file_cache(page))
4254 goto unlock_out;
4255 } else if (page_mapped(page)) /* Anon */
4256 goto unlock_out;
4257 break;
4258 default:
4259 break;
4262 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4264 ClearPageCgroupUsed(pc);
4266 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4267 * freed from LRU. This is safe because uncharged page is expected not
4268 * to be reused (freed soon). Exception is SwapCache, it's handled by
4269 * special functions.
4272 unlock_page_cgroup(pc);
4274 * even after unlock, we have memcg->res.usage here and this memcg
4275 * will never be freed, so it's safe to call css_get().
4277 memcg_check_events(memcg, page);
4278 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4279 mem_cgroup_swap_statistics(memcg, true);
4280 css_get(&memcg->css);
4283 * Migration does not charge the res_counter for the
4284 * replacement page, so leave it alone when phasing out the
4285 * page that is unused after the migration.
4287 if (!end_migration && !mem_cgroup_is_root(memcg))
4288 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4290 return memcg;
4292 unlock_out:
4293 unlock_page_cgroup(pc);
4294 return NULL;
4297 void mem_cgroup_uncharge_page(struct page *page)
4299 /* early check. */
4300 if (page_mapped(page))
4301 return;
4302 VM_BUG_ON(page->mapping && !PageAnon(page));
4304 * If the page is in swap cache, uncharge should be deferred
4305 * to the swap path, which also properly accounts swap usage
4306 * and handles memcg lifetime.
4308 * Note that this check is not stable and reclaim may add the
4309 * page to swap cache at any time after this. However, if the
4310 * page is not in swap cache by the time page->mapcount hits
4311 * 0, there won't be any page table references to the swap
4312 * slot, and reclaim will free it and not actually write the
4313 * page to disk.
4315 if (PageSwapCache(page))
4316 return;
4317 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4320 void mem_cgroup_uncharge_cache_page(struct page *page)
4322 VM_BUG_ON(page_mapped(page));
4323 VM_BUG_ON(page->mapping);
4324 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4328 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4329 * In that cases, pages are freed continuously and we can expect pages
4330 * are in the same memcg. All these calls itself limits the number of
4331 * pages freed at once, then uncharge_start/end() is called properly.
4332 * This may be called prural(2) times in a context,
4335 void mem_cgroup_uncharge_start(void)
4337 current->memcg_batch.do_batch++;
4338 /* We can do nest. */
4339 if (current->memcg_batch.do_batch == 1) {
4340 current->memcg_batch.memcg = NULL;
4341 current->memcg_batch.nr_pages = 0;
4342 current->memcg_batch.memsw_nr_pages = 0;
4346 void mem_cgroup_uncharge_end(void)
4348 struct memcg_batch_info *batch = &current->memcg_batch;
4350 if (!batch->do_batch)
4351 return;
4353 batch->do_batch--;
4354 if (batch->do_batch) /* If stacked, do nothing. */
4355 return;
4357 if (!batch->memcg)
4358 return;
4360 * This "batch->memcg" is valid without any css_get/put etc...
4361 * bacause we hide charges behind us.
4363 if (batch->nr_pages)
4364 res_counter_uncharge(&batch->memcg->res,
4365 batch->nr_pages * PAGE_SIZE);
4366 if (batch->memsw_nr_pages)
4367 res_counter_uncharge(&batch->memcg->memsw,
4368 batch->memsw_nr_pages * PAGE_SIZE);
4369 memcg_oom_recover(batch->memcg);
4370 /* forget this pointer (for sanity check) */
4371 batch->memcg = NULL;
4374 #ifdef CONFIG_SWAP
4376 * called after __delete_from_swap_cache() and drop "page" account.
4377 * memcg information is recorded to swap_cgroup of "ent"
4379 void
4380 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4382 struct mem_cgroup *memcg;
4383 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4385 if (!swapout) /* this was a swap cache but the swap is unused ! */
4386 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4388 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4391 * record memcg information, if swapout && memcg != NULL,
4392 * css_get() was called in uncharge().
4394 if (do_swap_account && swapout && memcg)
4395 swap_cgroup_record(ent, css_id(&memcg->css));
4397 #endif
4399 #ifdef CONFIG_MEMCG_SWAP
4401 * called from swap_entry_free(). remove record in swap_cgroup and
4402 * uncharge "memsw" account.
4404 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4406 struct mem_cgroup *memcg;
4407 unsigned short id;
4409 if (!do_swap_account)
4410 return;
4412 id = swap_cgroup_record(ent, 0);
4413 rcu_read_lock();
4414 memcg = mem_cgroup_lookup(id);
4415 if (memcg) {
4417 * We uncharge this because swap is freed.
4418 * This memcg can be obsolete one. We avoid calling css_tryget
4420 if (!mem_cgroup_is_root(memcg))
4421 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4422 mem_cgroup_swap_statistics(memcg, false);
4423 css_put(&memcg->css);
4425 rcu_read_unlock();
4429 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4430 * @entry: swap entry to be moved
4431 * @from: mem_cgroup which the entry is moved from
4432 * @to: mem_cgroup which the entry is moved to
4434 * It succeeds only when the swap_cgroup's record for this entry is the same
4435 * as the mem_cgroup's id of @from.
4437 * Returns 0 on success, -EINVAL on failure.
4439 * The caller must have charged to @to, IOW, called res_counter_charge() about
4440 * both res and memsw, and called css_get().
4442 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4443 struct mem_cgroup *from, struct mem_cgroup *to)
4445 unsigned short old_id, new_id;
4447 old_id = css_id(&from->css);
4448 new_id = css_id(&to->css);
4450 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4451 mem_cgroup_swap_statistics(from, false);
4452 mem_cgroup_swap_statistics(to, true);
4454 * This function is only called from task migration context now.
4455 * It postpones res_counter and refcount handling till the end
4456 * of task migration(mem_cgroup_clear_mc()) for performance
4457 * improvement. But we cannot postpone css_get(to) because if
4458 * the process that has been moved to @to does swap-in, the
4459 * refcount of @to might be decreased to 0.
4461 * We are in attach() phase, so the cgroup is guaranteed to be
4462 * alive, so we can just call css_get().
4464 css_get(&to->css);
4465 return 0;
4467 return -EINVAL;
4469 #else
4470 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4471 struct mem_cgroup *from, struct mem_cgroup *to)
4473 return -EINVAL;
4475 #endif
4478 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4479 * page belongs to.
4481 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4482 struct mem_cgroup **memcgp)
4484 struct mem_cgroup *memcg = NULL;
4485 unsigned int nr_pages = 1;
4486 struct page_cgroup *pc;
4487 enum charge_type ctype;
4489 *memcgp = NULL;
4491 if (mem_cgroup_disabled())
4492 return;
4494 if (PageTransHuge(page))
4495 nr_pages <<= compound_order(page);
4497 pc = lookup_page_cgroup(page);
4498 lock_page_cgroup(pc);
4499 if (PageCgroupUsed(pc)) {
4500 memcg = pc->mem_cgroup;
4501 css_get(&memcg->css);
4503 * At migrating an anonymous page, its mapcount goes down
4504 * to 0 and uncharge() will be called. But, even if it's fully
4505 * unmapped, migration may fail and this page has to be
4506 * charged again. We set MIGRATION flag here and delay uncharge
4507 * until end_migration() is called
4509 * Corner Case Thinking
4510 * A)
4511 * When the old page was mapped as Anon and it's unmap-and-freed
4512 * while migration was ongoing.
4513 * If unmap finds the old page, uncharge() of it will be delayed
4514 * until end_migration(). If unmap finds a new page, it's
4515 * uncharged when it make mapcount to be 1->0. If unmap code
4516 * finds swap_migration_entry, the new page will not be mapped
4517 * and end_migration() will find it(mapcount==0).
4519 * B)
4520 * When the old page was mapped but migraion fails, the kernel
4521 * remaps it. A charge for it is kept by MIGRATION flag even
4522 * if mapcount goes down to 0. We can do remap successfully
4523 * without charging it again.
4525 * C)
4526 * The "old" page is under lock_page() until the end of
4527 * migration, so, the old page itself will not be swapped-out.
4528 * If the new page is swapped out before end_migraton, our
4529 * hook to usual swap-out path will catch the event.
4531 if (PageAnon(page))
4532 SetPageCgroupMigration(pc);
4534 unlock_page_cgroup(pc);
4536 * If the page is not charged at this point,
4537 * we return here.
4539 if (!memcg)
4540 return;
4542 *memcgp = memcg;
4544 * We charge new page before it's used/mapped. So, even if unlock_page()
4545 * is called before end_migration, we can catch all events on this new
4546 * page. In the case new page is migrated but not remapped, new page's
4547 * mapcount will be finally 0 and we call uncharge in end_migration().
4549 if (PageAnon(page))
4550 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4551 else
4552 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4554 * The page is committed to the memcg, but it's not actually
4555 * charged to the res_counter since we plan on replacing the
4556 * old one and only one page is going to be left afterwards.
4558 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4561 /* remove redundant charge if migration failed*/
4562 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4563 struct page *oldpage, struct page *newpage, bool migration_ok)
4565 struct page *used, *unused;
4566 struct page_cgroup *pc;
4567 bool anon;
4569 if (!memcg)
4570 return;
4572 if (!migration_ok) {
4573 used = oldpage;
4574 unused = newpage;
4575 } else {
4576 used = newpage;
4577 unused = oldpage;
4579 anon = PageAnon(used);
4580 __mem_cgroup_uncharge_common(unused,
4581 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4582 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4583 true);
4584 css_put(&memcg->css);
4586 * We disallowed uncharge of pages under migration because mapcount
4587 * of the page goes down to zero, temporarly.
4588 * Clear the flag and check the page should be charged.
4590 pc = lookup_page_cgroup(oldpage);
4591 lock_page_cgroup(pc);
4592 ClearPageCgroupMigration(pc);
4593 unlock_page_cgroup(pc);
4596 * If a page is a file cache, radix-tree replacement is very atomic
4597 * and we can skip this check. When it was an Anon page, its mapcount
4598 * goes down to 0. But because we added MIGRATION flage, it's not
4599 * uncharged yet. There are several case but page->mapcount check
4600 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4601 * check. (see prepare_charge() also)
4603 if (anon)
4604 mem_cgroup_uncharge_page(used);
4608 * At replace page cache, newpage is not under any memcg but it's on
4609 * LRU. So, this function doesn't touch res_counter but handles LRU
4610 * in correct way. Both pages are locked so we cannot race with uncharge.
4612 void mem_cgroup_replace_page_cache(struct page *oldpage,
4613 struct page *newpage)
4615 struct mem_cgroup *memcg = NULL;
4616 struct page_cgroup *pc;
4617 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4619 if (mem_cgroup_disabled())
4620 return;
4622 pc = lookup_page_cgroup(oldpage);
4623 /* fix accounting on old pages */
4624 lock_page_cgroup(pc);
4625 if (PageCgroupUsed(pc)) {
4626 memcg = pc->mem_cgroup;
4627 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4628 ClearPageCgroupUsed(pc);
4630 unlock_page_cgroup(pc);
4633 * When called from shmem_replace_page(), in some cases the
4634 * oldpage has already been charged, and in some cases not.
4636 if (!memcg)
4637 return;
4639 * Even if newpage->mapping was NULL before starting replacement,
4640 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4641 * LRU while we overwrite pc->mem_cgroup.
4643 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4646 #ifdef CONFIG_DEBUG_VM
4647 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4649 struct page_cgroup *pc;
4651 pc = lookup_page_cgroup(page);
4653 * Can be NULL while feeding pages into the page allocator for
4654 * the first time, i.e. during boot or memory hotplug;
4655 * or when mem_cgroup_disabled().
4657 if (likely(pc) && PageCgroupUsed(pc))
4658 return pc;
4659 return NULL;
4662 bool mem_cgroup_bad_page_check(struct page *page)
4664 if (mem_cgroup_disabled())
4665 return false;
4667 return lookup_page_cgroup_used(page) != NULL;
4670 void mem_cgroup_print_bad_page(struct page *page)
4672 struct page_cgroup *pc;
4674 pc = lookup_page_cgroup_used(page);
4675 if (pc) {
4676 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4677 pc, pc->flags, pc->mem_cgroup);
4680 #endif
4682 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4683 unsigned long long val)
4685 int retry_count;
4686 u64 memswlimit, memlimit;
4687 int ret = 0;
4688 int children = mem_cgroup_count_children(memcg);
4689 u64 curusage, oldusage;
4690 int enlarge;
4693 * For keeping hierarchical_reclaim simple, how long we should retry
4694 * is depends on callers. We set our retry-count to be function
4695 * of # of children which we should visit in this loop.
4697 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4699 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4701 enlarge = 0;
4702 while (retry_count) {
4703 if (signal_pending(current)) {
4704 ret = -EINTR;
4705 break;
4708 * Rather than hide all in some function, I do this in
4709 * open coded manner. You see what this really does.
4710 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4712 mutex_lock(&set_limit_mutex);
4713 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4714 if (memswlimit < val) {
4715 ret = -EINVAL;
4716 mutex_unlock(&set_limit_mutex);
4717 break;
4720 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4721 if (memlimit < val)
4722 enlarge = 1;
4724 ret = res_counter_set_limit(&memcg->res, val);
4725 if (!ret) {
4726 if (memswlimit == val)
4727 memcg->memsw_is_minimum = true;
4728 else
4729 memcg->memsw_is_minimum = false;
4731 mutex_unlock(&set_limit_mutex);
4733 if (!ret)
4734 break;
4736 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4737 MEM_CGROUP_RECLAIM_SHRINK);
4738 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4739 /* Usage is reduced ? */
4740 if (curusage >= oldusage)
4741 retry_count--;
4742 else
4743 oldusage = curusage;
4745 if (!ret && enlarge)
4746 memcg_oom_recover(memcg);
4748 return ret;
4751 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4752 unsigned long long val)
4754 int retry_count;
4755 u64 memlimit, memswlimit, oldusage, curusage;
4756 int children = mem_cgroup_count_children(memcg);
4757 int ret = -EBUSY;
4758 int enlarge = 0;
4760 /* see mem_cgroup_resize_res_limit */
4761 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4762 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4763 while (retry_count) {
4764 if (signal_pending(current)) {
4765 ret = -EINTR;
4766 break;
4769 * Rather than hide all in some function, I do this in
4770 * open coded manner. You see what this really does.
4771 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4773 mutex_lock(&set_limit_mutex);
4774 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4775 if (memlimit > val) {
4776 ret = -EINVAL;
4777 mutex_unlock(&set_limit_mutex);
4778 break;
4780 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4781 if (memswlimit < val)
4782 enlarge = 1;
4783 ret = res_counter_set_limit(&memcg->memsw, val);
4784 if (!ret) {
4785 if (memlimit == val)
4786 memcg->memsw_is_minimum = true;
4787 else
4788 memcg->memsw_is_minimum = false;
4790 mutex_unlock(&set_limit_mutex);
4792 if (!ret)
4793 break;
4795 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4796 MEM_CGROUP_RECLAIM_NOSWAP |
4797 MEM_CGROUP_RECLAIM_SHRINK);
4798 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4799 /* Usage is reduced ? */
4800 if (curusage >= oldusage)
4801 retry_count--;
4802 else
4803 oldusage = curusage;
4805 if (!ret && enlarge)
4806 memcg_oom_recover(memcg);
4807 return ret;
4810 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4811 gfp_t gfp_mask,
4812 unsigned long *total_scanned)
4814 unsigned long nr_reclaimed = 0;
4815 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4816 unsigned long reclaimed;
4817 int loop = 0;
4818 struct mem_cgroup_tree_per_zone *mctz;
4819 unsigned long long excess;
4820 unsigned long nr_scanned;
4822 if (order > 0)
4823 return 0;
4825 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4827 * This loop can run a while, specially if mem_cgroup's continuously
4828 * keep exceeding their soft limit and putting the system under
4829 * pressure
4831 do {
4832 if (next_mz)
4833 mz = next_mz;
4834 else
4835 mz = mem_cgroup_largest_soft_limit_node(mctz);
4836 if (!mz)
4837 break;
4839 nr_scanned = 0;
4840 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4841 gfp_mask, &nr_scanned);
4842 nr_reclaimed += reclaimed;
4843 *total_scanned += nr_scanned;
4844 spin_lock(&mctz->lock);
4847 * If we failed to reclaim anything from this memory cgroup
4848 * it is time to move on to the next cgroup
4850 next_mz = NULL;
4851 if (!reclaimed) {
4852 do {
4854 * Loop until we find yet another one.
4856 * By the time we get the soft_limit lock
4857 * again, someone might have aded the
4858 * group back on the RB tree. Iterate to
4859 * make sure we get a different mem.
4860 * mem_cgroup_largest_soft_limit_node returns
4861 * NULL if no other cgroup is present on
4862 * the tree
4864 next_mz =
4865 __mem_cgroup_largest_soft_limit_node(mctz);
4866 if (next_mz == mz)
4867 css_put(&next_mz->memcg->css);
4868 else /* next_mz == NULL or other memcg */
4869 break;
4870 } while (1);
4872 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4873 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4875 * One school of thought says that we should not add
4876 * back the node to the tree if reclaim returns 0.
4877 * But our reclaim could return 0, simply because due
4878 * to priority we are exposing a smaller subset of
4879 * memory to reclaim from. Consider this as a longer
4880 * term TODO.
4882 /* If excess == 0, no tree ops */
4883 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4884 spin_unlock(&mctz->lock);
4885 css_put(&mz->memcg->css);
4886 loop++;
4888 * Could not reclaim anything and there are no more
4889 * mem cgroups to try or we seem to be looping without
4890 * reclaiming anything.
4892 if (!nr_reclaimed &&
4893 (next_mz == NULL ||
4894 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4895 break;
4896 } while (!nr_reclaimed);
4897 if (next_mz)
4898 css_put(&next_mz->memcg->css);
4899 return nr_reclaimed;
4903 * mem_cgroup_force_empty_list - clears LRU of a group
4904 * @memcg: group to clear
4905 * @node: NUMA node
4906 * @zid: zone id
4907 * @lru: lru to to clear
4909 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4910 * reclaim the pages page themselves - pages are moved to the parent (or root)
4911 * group.
4913 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4914 int node, int zid, enum lru_list lru)
4916 struct lruvec *lruvec;
4917 unsigned long flags;
4918 struct list_head *list;
4919 struct page *busy;
4920 struct zone *zone;
4922 zone = &NODE_DATA(node)->node_zones[zid];
4923 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4924 list = &lruvec->lists[lru];
4926 busy = NULL;
4927 do {
4928 struct page_cgroup *pc;
4929 struct page *page;
4931 spin_lock_irqsave(&zone->lru_lock, flags);
4932 if (list_empty(list)) {
4933 spin_unlock_irqrestore(&zone->lru_lock, flags);
4934 break;
4936 page = list_entry(list->prev, struct page, lru);
4937 if (busy == page) {
4938 list_move(&page->lru, list);
4939 busy = NULL;
4940 spin_unlock_irqrestore(&zone->lru_lock, flags);
4941 continue;
4943 spin_unlock_irqrestore(&zone->lru_lock, flags);
4945 pc = lookup_page_cgroup(page);
4947 if (mem_cgroup_move_parent(page, pc, memcg)) {
4948 /* found lock contention or "pc" is obsolete. */
4949 busy = page;
4950 cond_resched();
4951 } else
4952 busy = NULL;
4953 } while (!list_empty(list));
4957 * make mem_cgroup's charge to be 0 if there is no task by moving
4958 * all the charges and pages to the parent.
4959 * This enables deleting this mem_cgroup.
4961 * Caller is responsible for holding css reference on the memcg.
4963 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4965 int node, zid;
4966 u64 usage;
4968 do {
4969 /* This is for making all *used* pages to be on LRU. */
4970 lru_add_drain_all();
4971 drain_all_stock_sync(memcg);
4972 mem_cgroup_start_move(memcg);
4973 for_each_node_state(node, N_MEMORY) {
4974 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4975 enum lru_list lru;
4976 for_each_lru(lru) {
4977 mem_cgroup_force_empty_list(memcg,
4978 node, zid, lru);
4982 mem_cgroup_end_move(memcg);
4983 memcg_oom_recover(memcg);
4984 cond_resched();
4987 * Kernel memory may not necessarily be trackable to a specific
4988 * process. So they are not migrated, and therefore we can't
4989 * expect their value to drop to 0 here.
4990 * Having res filled up with kmem only is enough.
4992 * This is a safety check because mem_cgroup_force_empty_list
4993 * could have raced with mem_cgroup_replace_page_cache callers
4994 * so the lru seemed empty but the page could have been added
4995 * right after the check. RES_USAGE should be safe as we always
4996 * charge before adding to the LRU.
4998 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4999 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5000 } while (usage > 0);
5003 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5005 lockdep_assert_held(&memcg_create_mutex);
5007 * The lock does not prevent addition or deletion to the list
5008 * of children, but it prevents a new child from being
5009 * initialized based on this parent in css_online(), so it's
5010 * enough to decide whether hierarchically inherited
5011 * attributes can still be changed or not.
5013 return memcg->use_hierarchy &&
5014 !list_empty(&memcg->css.cgroup->children);
5018 * Reclaims as many pages from the given memcg as possible and moves
5019 * the rest to the parent.
5021 * Caller is responsible for holding css reference for memcg.
5023 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5025 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5026 struct cgroup *cgrp = memcg->css.cgroup;
5028 /* returns EBUSY if there is a task or if we come here twice. */
5029 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5030 return -EBUSY;
5032 /* we call try-to-free pages for make this cgroup empty */
5033 lru_add_drain_all();
5034 /* try to free all pages in this cgroup */
5035 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5036 int progress;
5038 if (signal_pending(current))
5039 return -EINTR;
5041 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5042 false);
5043 if (!progress) {
5044 nr_retries--;
5045 /* maybe some writeback is necessary */
5046 congestion_wait(BLK_RW_ASYNC, HZ/10);
5050 lru_add_drain();
5051 mem_cgroup_reparent_charges(memcg);
5053 return 0;
5056 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5057 unsigned int event)
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5061 if (mem_cgroup_is_root(memcg))
5062 return -EINVAL;
5063 return mem_cgroup_force_empty(memcg);
5066 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5067 struct cftype *cft)
5069 return mem_cgroup_from_css(css)->use_hierarchy;
5072 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5073 struct cftype *cft, u64 val)
5075 int retval = 0;
5076 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5077 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5079 mutex_lock(&memcg_create_mutex);
5081 if (memcg->use_hierarchy == val)
5082 goto out;
5085 * If parent's use_hierarchy is set, we can't make any modifications
5086 * in the child subtrees. If it is unset, then the change can
5087 * occur, provided the current cgroup has no children.
5089 * For the root cgroup, parent_mem is NULL, we allow value to be
5090 * set if there are no children.
5092 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5093 (val == 1 || val == 0)) {
5094 if (list_empty(&memcg->css.cgroup->children))
5095 memcg->use_hierarchy = val;
5096 else
5097 retval = -EBUSY;
5098 } else
5099 retval = -EINVAL;
5101 out:
5102 mutex_unlock(&memcg_create_mutex);
5104 return retval;
5108 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5109 enum mem_cgroup_stat_index idx)
5111 struct mem_cgroup *iter;
5112 long val = 0;
5114 /* Per-cpu values can be negative, use a signed accumulator */
5115 for_each_mem_cgroup_tree(iter, memcg)
5116 val += mem_cgroup_read_stat(iter, idx);
5118 if (val < 0) /* race ? */
5119 val = 0;
5120 return val;
5123 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5125 u64 val;
5127 if (!mem_cgroup_is_root(memcg)) {
5128 if (!swap)
5129 return res_counter_read_u64(&memcg->res, RES_USAGE);
5130 else
5131 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5135 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5136 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5138 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5139 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5141 if (swap)
5142 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5144 return val << PAGE_SHIFT;
5147 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5148 struct cftype *cft, struct file *file,
5149 char __user *buf, size_t nbytes, loff_t *ppos)
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 char str[64];
5153 u64 val;
5154 int name, len;
5155 enum res_type type;
5157 type = MEMFILE_TYPE(cft->private);
5158 name = MEMFILE_ATTR(cft->private);
5160 switch (type) {
5161 case _MEM:
5162 if (name == RES_USAGE)
5163 val = mem_cgroup_usage(memcg, false);
5164 else
5165 val = res_counter_read_u64(&memcg->res, name);
5166 break;
5167 case _MEMSWAP:
5168 if (name == RES_USAGE)
5169 val = mem_cgroup_usage(memcg, true);
5170 else
5171 val = res_counter_read_u64(&memcg->memsw, name);
5172 break;
5173 case _KMEM:
5174 val = res_counter_read_u64(&memcg->kmem, name);
5175 break;
5176 default:
5177 BUG();
5180 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5181 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5184 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5186 int ret = -EINVAL;
5187 #ifdef CONFIG_MEMCG_KMEM
5188 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5190 * For simplicity, we won't allow this to be disabled. It also can't
5191 * be changed if the cgroup has children already, or if tasks had
5192 * already joined.
5194 * If tasks join before we set the limit, a person looking at
5195 * kmem.usage_in_bytes will have no way to determine when it took
5196 * place, which makes the value quite meaningless.
5198 * After it first became limited, changes in the value of the limit are
5199 * of course permitted.
5201 mutex_lock(&memcg_create_mutex);
5202 mutex_lock(&set_limit_mutex);
5203 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5204 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5205 ret = -EBUSY;
5206 goto out;
5208 ret = res_counter_set_limit(&memcg->kmem, val);
5209 VM_BUG_ON(ret);
5211 ret = memcg_update_cache_sizes(memcg);
5212 if (ret) {
5213 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5214 goto out;
5216 static_key_slow_inc(&memcg_kmem_enabled_key);
5218 * setting the active bit after the inc will guarantee no one
5219 * starts accounting before all call sites are patched
5221 memcg_kmem_set_active(memcg);
5222 } else
5223 ret = res_counter_set_limit(&memcg->kmem, val);
5224 out:
5225 mutex_unlock(&set_limit_mutex);
5226 mutex_unlock(&memcg_create_mutex);
5227 #endif
5228 return ret;
5231 #ifdef CONFIG_MEMCG_KMEM
5232 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5234 int ret = 0;
5235 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5236 if (!parent)
5237 goto out;
5239 memcg->kmem_account_flags = parent->kmem_account_flags;
5241 * When that happen, we need to disable the static branch only on those
5242 * memcgs that enabled it. To achieve this, we would be forced to
5243 * complicate the code by keeping track of which memcgs were the ones
5244 * that actually enabled limits, and which ones got it from its
5245 * parents.
5247 * It is a lot simpler just to do static_key_slow_inc() on every child
5248 * that is accounted.
5250 if (!memcg_kmem_is_active(memcg))
5251 goto out;
5254 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5255 * memcg is active already. If the later initialization fails then the
5256 * cgroup core triggers the cleanup so we do not have to do it here.
5258 static_key_slow_inc(&memcg_kmem_enabled_key);
5260 mutex_lock(&set_limit_mutex);
5261 memcg_stop_kmem_account();
5262 ret = memcg_update_cache_sizes(memcg);
5263 memcg_resume_kmem_account();
5264 mutex_unlock(&set_limit_mutex);
5265 out:
5266 return ret;
5268 #endif /* CONFIG_MEMCG_KMEM */
5271 * The user of this function is...
5272 * RES_LIMIT.
5274 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5275 const char *buffer)
5277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5278 enum res_type type;
5279 int name;
5280 unsigned long long val;
5281 int ret;
5283 type = MEMFILE_TYPE(cft->private);
5284 name = MEMFILE_ATTR(cft->private);
5286 switch (name) {
5287 case RES_LIMIT:
5288 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5289 ret = -EINVAL;
5290 break;
5292 /* This function does all necessary parse...reuse it */
5293 ret = res_counter_memparse_write_strategy(buffer, &val);
5294 if (ret)
5295 break;
5296 if (type == _MEM)
5297 ret = mem_cgroup_resize_limit(memcg, val);
5298 else if (type == _MEMSWAP)
5299 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5300 else if (type == _KMEM)
5301 ret = memcg_update_kmem_limit(css, val);
5302 else
5303 return -EINVAL;
5304 break;
5305 case RES_SOFT_LIMIT:
5306 ret = res_counter_memparse_write_strategy(buffer, &val);
5307 if (ret)
5308 break;
5310 * For memsw, soft limits are hard to implement in terms
5311 * of semantics, for now, we support soft limits for
5312 * control without swap
5314 if (type == _MEM)
5315 ret = res_counter_set_soft_limit(&memcg->res, val);
5316 else
5317 ret = -EINVAL;
5318 break;
5319 default:
5320 ret = -EINVAL; /* should be BUG() ? */
5321 break;
5323 return ret;
5326 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5327 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5329 unsigned long long min_limit, min_memsw_limit, tmp;
5331 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5332 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5333 if (!memcg->use_hierarchy)
5334 goto out;
5336 while (css_parent(&memcg->css)) {
5337 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5338 if (!memcg->use_hierarchy)
5339 break;
5340 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5341 min_limit = min(min_limit, tmp);
5342 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5343 min_memsw_limit = min(min_memsw_limit, tmp);
5345 out:
5346 *mem_limit = min_limit;
5347 *memsw_limit = min_memsw_limit;
5350 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5352 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5353 int name;
5354 enum res_type type;
5356 type = MEMFILE_TYPE(event);
5357 name = MEMFILE_ATTR(event);
5359 switch (name) {
5360 case RES_MAX_USAGE:
5361 if (type == _MEM)
5362 res_counter_reset_max(&memcg->res);
5363 else if (type == _MEMSWAP)
5364 res_counter_reset_max(&memcg->memsw);
5365 else if (type == _KMEM)
5366 res_counter_reset_max(&memcg->kmem);
5367 else
5368 return -EINVAL;
5369 break;
5370 case RES_FAILCNT:
5371 if (type == _MEM)
5372 res_counter_reset_failcnt(&memcg->res);
5373 else if (type == _MEMSWAP)
5374 res_counter_reset_failcnt(&memcg->memsw);
5375 else if (type == _KMEM)
5376 res_counter_reset_failcnt(&memcg->kmem);
5377 else
5378 return -EINVAL;
5379 break;
5382 return 0;
5385 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5386 struct cftype *cft)
5388 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5391 #ifdef CONFIG_MMU
5392 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5393 struct cftype *cft, u64 val)
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5397 if (val >= (1 << NR_MOVE_TYPE))
5398 return -EINVAL;
5401 * No kind of locking is needed in here, because ->can_attach() will
5402 * check this value once in the beginning of the process, and then carry
5403 * on with stale data. This means that changes to this value will only
5404 * affect task migrations starting after the change.
5406 memcg->move_charge_at_immigrate = val;
5407 return 0;
5409 #else
5410 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5411 struct cftype *cft, u64 val)
5413 return -ENOSYS;
5415 #endif
5417 #ifdef CONFIG_NUMA
5418 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5419 struct cftype *cft, struct seq_file *m)
5421 int nid;
5422 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5423 unsigned long node_nr;
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5427 seq_printf(m, "total=%lu", total_nr);
5428 for_each_node_state(nid, N_MEMORY) {
5429 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5430 seq_printf(m, " N%d=%lu", nid, node_nr);
5432 seq_putc(m, '\n');
5434 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5435 seq_printf(m, "file=%lu", file_nr);
5436 for_each_node_state(nid, N_MEMORY) {
5437 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5438 LRU_ALL_FILE);
5439 seq_printf(m, " N%d=%lu", nid, node_nr);
5441 seq_putc(m, '\n');
5443 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5444 seq_printf(m, "anon=%lu", anon_nr);
5445 for_each_node_state(nid, N_MEMORY) {
5446 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5447 LRU_ALL_ANON);
5448 seq_printf(m, " N%d=%lu", nid, node_nr);
5450 seq_putc(m, '\n');
5452 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5453 seq_printf(m, "unevictable=%lu", unevictable_nr);
5454 for_each_node_state(nid, N_MEMORY) {
5455 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5456 BIT(LRU_UNEVICTABLE));
5457 seq_printf(m, " N%d=%lu", nid, node_nr);
5459 seq_putc(m, '\n');
5460 return 0;
5462 #endif /* CONFIG_NUMA */
5464 static inline void mem_cgroup_lru_names_not_uptodate(void)
5466 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5469 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5470 struct seq_file *m)
5472 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5473 struct mem_cgroup *mi;
5474 unsigned int i;
5476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5478 continue;
5479 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5480 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5483 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5484 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5485 mem_cgroup_read_events(memcg, i));
5487 for (i = 0; i < NR_LRU_LISTS; i++)
5488 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5489 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5491 /* Hierarchical information */
5493 unsigned long long limit, memsw_limit;
5494 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5495 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5496 if (do_swap_account)
5497 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5498 memsw_limit);
5501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5502 long long val = 0;
5504 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5505 continue;
5506 for_each_mem_cgroup_tree(mi, memcg)
5507 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5508 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5511 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5512 unsigned long long val = 0;
5514 for_each_mem_cgroup_tree(mi, memcg)
5515 val += mem_cgroup_read_events(mi, i);
5516 seq_printf(m, "total_%s %llu\n",
5517 mem_cgroup_events_names[i], val);
5520 for (i = 0; i < NR_LRU_LISTS; i++) {
5521 unsigned long long val = 0;
5523 for_each_mem_cgroup_tree(mi, memcg)
5524 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5525 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5528 #ifdef CONFIG_DEBUG_VM
5530 int nid, zid;
5531 struct mem_cgroup_per_zone *mz;
5532 struct zone_reclaim_stat *rstat;
5533 unsigned long recent_rotated[2] = {0, 0};
5534 unsigned long recent_scanned[2] = {0, 0};
5536 for_each_online_node(nid)
5537 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5538 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5539 rstat = &mz->lruvec.reclaim_stat;
5541 recent_rotated[0] += rstat->recent_rotated[0];
5542 recent_rotated[1] += rstat->recent_rotated[1];
5543 recent_scanned[0] += rstat->recent_scanned[0];
5544 recent_scanned[1] += rstat->recent_scanned[1];
5546 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5547 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5548 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5549 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5551 #endif
5553 return 0;
5556 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5557 struct cftype *cft)
5559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5561 return mem_cgroup_swappiness(memcg);
5564 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5565 struct cftype *cft, u64 val)
5567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5568 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5570 if (val > 100 || !parent)
5571 return -EINVAL;
5573 mutex_lock(&memcg_create_mutex);
5575 /* If under hierarchy, only empty-root can set this value */
5576 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5577 mutex_unlock(&memcg_create_mutex);
5578 return -EINVAL;
5581 memcg->swappiness = val;
5583 mutex_unlock(&memcg_create_mutex);
5585 return 0;
5588 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5590 struct mem_cgroup_threshold_ary *t;
5591 u64 usage;
5592 int i;
5594 rcu_read_lock();
5595 if (!swap)
5596 t = rcu_dereference(memcg->thresholds.primary);
5597 else
5598 t = rcu_dereference(memcg->memsw_thresholds.primary);
5600 if (!t)
5601 goto unlock;
5603 usage = mem_cgroup_usage(memcg, swap);
5606 * current_threshold points to threshold just below or equal to usage.
5607 * If it's not true, a threshold was crossed after last
5608 * call of __mem_cgroup_threshold().
5610 i = t->current_threshold;
5613 * Iterate backward over array of thresholds starting from
5614 * current_threshold and check if a threshold is crossed.
5615 * If none of thresholds below usage is crossed, we read
5616 * only one element of the array here.
5618 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5619 eventfd_signal(t->entries[i].eventfd, 1);
5621 /* i = current_threshold + 1 */
5622 i++;
5625 * Iterate forward over array of thresholds starting from
5626 * current_threshold+1 and check if a threshold is crossed.
5627 * If none of thresholds above usage is crossed, we read
5628 * only one element of the array here.
5630 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5631 eventfd_signal(t->entries[i].eventfd, 1);
5633 /* Update current_threshold */
5634 t->current_threshold = i - 1;
5635 unlock:
5636 rcu_read_unlock();
5639 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5641 while (memcg) {
5642 __mem_cgroup_threshold(memcg, false);
5643 if (do_swap_account)
5644 __mem_cgroup_threshold(memcg, true);
5646 memcg = parent_mem_cgroup(memcg);
5650 static int compare_thresholds(const void *a, const void *b)
5652 const struct mem_cgroup_threshold *_a = a;
5653 const struct mem_cgroup_threshold *_b = b;
5655 if (_a->threshold > _b->threshold)
5656 return 1;
5658 if (_a->threshold < _b->threshold)
5659 return -1;
5661 return 0;
5664 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5666 struct mem_cgroup_eventfd_list *ev;
5668 spin_lock(&memcg_oom_lock);
5670 list_for_each_entry(ev, &memcg->oom_notify, list)
5671 eventfd_signal(ev->eventfd, 1);
5673 spin_unlock(&memcg_oom_lock);
5674 return 0;
5677 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5679 struct mem_cgroup *iter;
5681 for_each_mem_cgroup_tree(iter, memcg)
5682 mem_cgroup_oom_notify_cb(iter);
5685 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5686 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5689 struct mem_cgroup_thresholds *thresholds;
5690 struct mem_cgroup_threshold_ary *new;
5691 enum res_type type = MEMFILE_TYPE(cft->private);
5692 u64 threshold, usage;
5693 int i, size, ret;
5695 ret = res_counter_memparse_write_strategy(args, &threshold);
5696 if (ret)
5697 return ret;
5699 mutex_lock(&memcg->thresholds_lock);
5701 if (type == _MEM)
5702 thresholds = &memcg->thresholds;
5703 else if (type == _MEMSWAP)
5704 thresholds = &memcg->memsw_thresholds;
5705 else
5706 BUG();
5708 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5710 /* Check if a threshold crossed before adding a new one */
5711 if (thresholds->primary)
5712 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5714 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5716 /* Allocate memory for new array of thresholds */
5717 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5718 GFP_KERNEL);
5719 if (!new) {
5720 ret = -ENOMEM;
5721 goto unlock;
5723 new->size = size;
5725 /* Copy thresholds (if any) to new array */
5726 if (thresholds->primary) {
5727 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5728 sizeof(struct mem_cgroup_threshold));
5731 /* Add new threshold */
5732 new->entries[size - 1].eventfd = eventfd;
5733 new->entries[size - 1].threshold = threshold;
5735 /* Sort thresholds. Registering of new threshold isn't time-critical */
5736 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5737 compare_thresholds, NULL);
5739 /* Find current threshold */
5740 new->current_threshold = -1;
5741 for (i = 0; i < size; i++) {
5742 if (new->entries[i].threshold <= usage) {
5744 * new->current_threshold will not be used until
5745 * rcu_assign_pointer(), so it's safe to increment
5746 * it here.
5748 ++new->current_threshold;
5749 } else
5750 break;
5753 /* Free old spare buffer and save old primary buffer as spare */
5754 kfree(thresholds->spare);
5755 thresholds->spare = thresholds->primary;
5757 rcu_assign_pointer(thresholds->primary, new);
5759 /* To be sure that nobody uses thresholds */
5760 synchronize_rcu();
5762 unlock:
5763 mutex_unlock(&memcg->thresholds_lock);
5765 return ret;
5768 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5769 struct cftype *cft, struct eventfd_ctx *eventfd)
5771 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5772 struct mem_cgroup_thresholds *thresholds;
5773 struct mem_cgroup_threshold_ary *new;
5774 enum res_type type = MEMFILE_TYPE(cft->private);
5775 u64 usage;
5776 int i, j, size;
5778 mutex_lock(&memcg->thresholds_lock);
5779 if (type == _MEM)
5780 thresholds = &memcg->thresholds;
5781 else if (type == _MEMSWAP)
5782 thresholds = &memcg->memsw_thresholds;
5783 else
5784 BUG();
5786 if (!thresholds->primary)
5787 goto unlock;
5789 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5791 /* Check if a threshold crossed before removing */
5792 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5794 /* Calculate new number of threshold */
5795 size = 0;
5796 for (i = 0; i < thresholds->primary->size; i++) {
5797 if (thresholds->primary->entries[i].eventfd != eventfd)
5798 size++;
5801 new = thresholds->spare;
5803 /* Set thresholds array to NULL if we don't have thresholds */
5804 if (!size) {
5805 kfree(new);
5806 new = NULL;
5807 goto swap_buffers;
5810 new->size = size;
5812 /* Copy thresholds and find current threshold */
5813 new->current_threshold = -1;
5814 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5815 if (thresholds->primary->entries[i].eventfd == eventfd)
5816 continue;
5818 new->entries[j] = thresholds->primary->entries[i];
5819 if (new->entries[j].threshold <= usage) {
5821 * new->current_threshold will not be used
5822 * until rcu_assign_pointer(), so it's safe to increment
5823 * it here.
5825 ++new->current_threshold;
5827 j++;
5830 swap_buffers:
5831 /* Swap primary and spare array */
5832 thresholds->spare = thresholds->primary;
5833 /* If all events are unregistered, free the spare array */
5834 if (!new) {
5835 kfree(thresholds->spare);
5836 thresholds->spare = NULL;
5839 rcu_assign_pointer(thresholds->primary, new);
5841 /* To be sure that nobody uses thresholds */
5842 synchronize_rcu();
5843 unlock:
5844 mutex_unlock(&memcg->thresholds_lock);
5847 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5848 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851 struct mem_cgroup_eventfd_list *event;
5852 enum res_type type = MEMFILE_TYPE(cft->private);
5854 BUG_ON(type != _OOM_TYPE);
5855 event = kmalloc(sizeof(*event), GFP_KERNEL);
5856 if (!event)
5857 return -ENOMEM;
5859 spin_lock(&memcg_oom_lock);
5861 event->eventfd = eventfd;
5862 list_add(&event->list, &memcg->oom_notify);
5864 /* already in OOM ? */
5865 if (atomic_read(&memcg->under_oom))
5866 eventfd_signal(eventfd, 1);
5867 spin_unlock(&memcg_oom_lock);
5869 return 0;
5872 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5873 struct cftype *cft, struct eventfd_ctx *eventfd)
5875 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5876 struct mem_cgroup_eventfd_list *ev, *tmp;
5877 enum res_type type = MEMFILE_TYPE(cft->private);
5879 BUG_ON(type != _OOM_TYPE);
5881 spin_lock(&memcg_oom_lock);
5883 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5884 if (ev->eventfd == eventfd) {
5885 list_del(&ev->list);
5886 kfree(ev);
5890 spin_unlock(&memcg_oom_lock);
5893 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5894 struct cftype *cft, struct cgroup_map_cb *cb)
5896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5898 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5900 if (atomic_read(&memcg->under_oom))
5901 cb->fill(cb, "under_oom", 1);
5902 else
5903 cb->fill(cb, "under_oom", 0);
5904 return 0;
5907 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5908 struct cftype *cft, u64 val)
5910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5911 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5913 /* cannot set to root cgroup and only 0 and 1 are allowed */
5914 if (!parent || !((val == 0) || (val == 1)))
5915 return -EINVAL;
5917 mutex_lock(&memcg_create_mutex);
5918 /* oom-kill-disable is a flag for subhierarchy. */
5919 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5920 mutex_unlock(&memcg_create_mutex);
5921 return -EINVAL;
5923 memcg->oom_kill_disable = val;
5924 if (!val)
5925 memcg_oom_recover(memcg);
5926 mutex_unlock(&memcg_create_mutex);
5927 return 0;
5930 #ifdef CONFIG_MEMCG_KMEM
5931 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5933 int ret;
5935 memcg->kmemcg_id = -1;
5936 ret = memcg_propagate_kmem(memcg);
5937 if (ret)
5938 return ret;
5940 return mem_cgroup_sockets_init(memcg, ss);
5943 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5945 mem_cgroup_sockets_destroy(memcg);
5948 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5950 if (!memcg_kmem_is_active(memcg))
5951 return;
5954 * kmem charges can outlive the cgroup. In the case of slab
5955 * pages, for instance, a page contain objects from various
5956 * processes. As we prevent from taking a reference for every
5957 * such allocation we have to be careful when doing uncharge
5958 * (see memcg_uncharge_kmem) and here during offlining.
5960 * The idea is that that only the _last_ uncharge which sees
5961 * the dead memcg will drop the last reference. An additional
5962 * reference is taken here before the group is marked dead
5963 * which is then paired with css_put during uncharge resp. here.
5965 * Although this might sound strange as this path is called from
5966 * css_offline() when the referencemight have dropped down to 0
5967 * and shouldn't be incremented anymore (css_tryget would fail)
5968 * we do not have other options because of the kmem allocations
5969 * lifetime.
5971 css_get(&memcg->css);
5973 memcg_kmem_mark_dead(memcg);
5975 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5976 return;
5978 if (memcg_kmem_test_and_clear_dead(memcg))
5979 css_put(&memcg->css);
5981 #else
5982 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5984 return 0;
5987 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5991 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5994 #endif
5996 static struct cftype mem_cgroup_files[] = {
5998 .name = "usage_in_bytes",
5999 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6000 .read = mem_cgroup_read,
6001 .register_event = mem_cgroup_usage_register_event,
6002 .unregister_event = mem_cgroup_usage_unregister_event,
6005 .name = "max_usage_in_bytes",
6006 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6007 .trigger = mem_cgroup_reset,
6008 .read = mem_cgroup_read,
6011 .name = "limit_in_bytes",
6012 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6013 .write_string = mem_cgroup_write,
6014 .read = mem_cgroup_read,
6017 .name = "soft_limit_in_bytes",
6018 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6019 .write_string = mem_cgroup_write,
6020 .read = mem_cgroup_read,
6023 .name = "failcnt",
6024 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6029 .name = "stat",
6030 .read_seq_string = memcg_stat_show,
6033 .name = "force_empty",
6034 .trigger = mem_cgroup_force_empty_write,
6037 .name = "use_hierarchy",
6038 .flags = CFTYPE_INSANE,
6039 .write_u64 = mem_cgroup_hierarchy_write,
6040 .read_u64 = mem_cgroup_hierarchy_read,
6043 .name = "swappiness",
6044 .read_u64 = mem_cgroup_swappiness_read,
6045 .write_u64 = mem_cgroup_swappiness_write,
6048 .name = "move_charge_at_immigrate",
6049 .read_u64 = mem_cgroup_move_charge_read,
6050 .write_u64 = mem_cgroup_move_charge_write,
6053 .name = "oom_control",
6054 .read_map = mem_cgroup_oom_control_read,
6055 .write_u64 = mem_cgroup_oom_control_write,
6056 .register_event = mem_cgroup_oom_register_event,
6057 .unregister_event = mem_cgroup_oom_unregister_event,
6058 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6061 .name = "pressure_level",
6062 .register_event = vmpressure_register_event,
6063 .unregister_event = vmpressure_unregister_event,
6065 #ifdef CONFIG_NUMA
6067 .name = "numa_stat",
6068 .read_seq_string = memcg_numa_stat_show,
6070 #endif
6071 #ifdef CONFIG_MEMCG_KMEM
6073 .name = "kmem.limit_in_bytes",
6074 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6075 .write_string = mem_cgroup_write,
6076 .read = mem_cgroup_read,
6079 .name = "kmem.usage_in_bytes",
6080 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6081 .read = mem_cgroup_read,
6084 .name = "kmem.failcnt",
6085 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6086 .trigger = mem_cgroup_reset,
6087 .read = mem_cgroup_read,
6090 .name = "kmem.max_usage_in_bytes",
6091 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6092 .trigger = mem_cgroup_reset,
6093 .read = mem_cgroup_read,
6095 #ifdef CONFIG_SLABINFO
6097 .name = "kmem.slabinfo",
6098 .read_seq_string = mem_cgroup_slabinfo_read,
6100 #endif
6101 #endif
6102 { }, /* terminate */
6105 #ifdef CONFIG_MEMCG_SWAP
6106 static struct cftype memsw_cgroup_files[] = {
6108 .name = "memsw.usage_in_bytes",
6109 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6110 .read = mem_cgroup_read,
6111 .register_event = mem_cgroup_usage_register_event,
6112 .unregister_event = mem_cgroup_usage_unregister_event,
6115 .name = "memsw.max_usage_in_bytes",
6116 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6117 .trigger = mem_cgroup_reset,
6118 .read = mem_cgroup_read,
6121 .name = "memsw.limit_in_bytes",
6122 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6123 .write_string = mem_cgroup_write,
6124 .read = mem_cgroup_read,
6127 .name = "memsw.failcnt",
6128 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6129 .trigger = mem_cgroup_reset,
6130 .read = mem_cgroup_read,
6132 { }, /* terminate */
6134 #endif
6135 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6137 struct mem_cgroup_per_node *pn;
6138 struct mem_cgroup_per_zone *mz;
6139 int zone, tmp = node;
6141 * This routine is called against possible nodes.
6142 * But it's BUG to call kmalloc() against offline node.
6144 * TODO: this routine can waste much memory for nodes which will
6145 * never be onlined. It's better to use memory hotplug callback
6146 * function.
6148 if (!node_state(node, N_NORMAL_MEMORY))
6149 tmp = -1;
6150 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6151 if (!pn)
6152 return 1;
6154 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6155 mz = &pn->zoneinfo[zone];
6156 lruvec_init(&mz->lruvec);
6157 mz->usage_in_excess = 0;
6158 mz->on_tree = false;
6159 mz->memcg = memcg;
6161 memcg->nodeinfo[node] = pn;
6162 return 0;
6165 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6167 kfree(memcg->nodeinfo[node]);
6170 static struct mem_cgroup *mem_cgroup_alloc(void)
6172 struct mem_cgroup *memcg;
6173 size_t size = memcg_size();
6175 /* Can be very big if nr_node_ids is very big */
6176 if (size < PAGE_SIZE)
6177 memcg = kzalloc(size, GFP_KERNEL);
6178 else
6179 memcg = vzalloc(size);
6181 if (!memcg)
6182 return NULL;
6184 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6185 if (!memcg->stat)
6186 goto out_free;
6187 spin_lock_init(&memcg->pcp_counter_lock);
6188 return memcg;
6190 out_free:
6191 if (size < PAGE_SIZE)
6192 kfree(memcg);
6193 else
6194 vfree(memcg);
6195 return NULL;
6199 * At destroying mem_cgroup, references from swap_cgroup can remain.
6200 * (scanning all at force_empty is too costly...)
6202 * Instead of clearing all references at force_empty, we remember
6203 * the number of reference from swap_cgroup and free mem_cgroup when
6204 * it goes down to 0.
6206 * Removal of cgroup itself succeeds regardless of refs from swap.
6209 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6211 int node;
6212 size_t size = memcg_size();
6214 mem_cgroup_remove_from_trees(memcg);
6215 free_css_id(&mem_cgroup_subsys, &memcg->css);
6217 for_each_node(node)
6218 free_mem_cgroup_per_zone_info(memcg, node);
6220 free_percpu(memcg->stat);
6223 * We need to make sure that (at least for now), the jump label
6224 * destruction code runs outside of the cgroup lock. This is because
6225 * get_online_cpus(), which is called from the static_branch update,
6226 * can't be called inside the cgroup_lock. cpusets are the ones
6227 * enforcing this dependency, so if they ever change, we might as well.
6229 * schedule_work() will guarantee this happens. Be careful if you need
6230 * to move this code around, and make sure it is outside
6231 * the cgroup_lock.
6233 disarm_static_keys(memcg);
6234 if (size < PAGE_SIZE)
6235 kfree(memcg);
6236 else
6237 vfree(memcg);
6241 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6243 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6245 if (!memcg->res.parent)
6246 return NULL;
6247 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6249 EXPORT_SYMBOL(parent_mem_cgroup);
6251 static void __init mem_cgroup_soft_limit_tree_init(void)
6253 struct mem_cgroup_tree_per_node *rtpn;
6254 struct mem_cgroup_tree_per_zone *rtpz;
6255 int tmp, node, zone;
6257 for_each_node(node) {
6258 tmp = node;
6259 if (!node_state(node, N_NORMAL_MEMORY))
6260 tmp = -1;
6261 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6262 BUG_ON(!rtpn);
6264 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6266 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6267 rtpz = &rtpn->rb_tree_per_zone[zone];
6268 rtpz->rb_root = RB_ROOT;
6269 spin_lock_init(&rtpz->lock);
6274 static struct cgroup_subsys_state * __ref
6275 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6277 struct mem_cgroup *memcg;
6278 long error = -ENOMEM;
6279 int node;
6281 memcg = mem_cgroup_alloc();
6282 if (!memcg)
6283 return ERR_PTR(error);
6285 for_each_node(node)
6286 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6287 goto free_out;
6289 /* root ? */
6290 if (parent_css == NULL) {
6291 root_mem_cgroup = memcg;
6292 res_counter_init(&memcg->res, NULL);
6293 res_counter_init(&memcg->memsw, NULL);
6294 res_counter_init(&memcg->kmem, NULL);
6297 memcg->last_scanned_node = MAX_NUMNODES;
6298 INIT_LIST_HEAD(&memcg->oom_notify);
6299 memcg->move_charge_at_immigrate = 0;
6300 mutex_init(&memcg->thresholds_lock);
6301 spin_lock_init(&memcg->move_lock);
6302 vmpressure_init(&memcg->vmpressure);
6304 return &memcg->css;
6306 free_out:
6307 __mem_cgroup_free(memcg);
6308 return ERR_PTR(error);
6311 static int
6312 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6315 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6316 int error = 0;
6318 if (!parent)
6319 return 0;
6321 mutex_lock(&memcg_create_mutex);
6323 memcg->use_hierarchy = parent->use_hierarchy;
6324 memcg->oom_kill_disable = parent->oom_kill_disable;
6325 memcg->swappiness = mem_cgroup_swappiness(parent);
6327 if (parent->use_hierarchy) {
6328 res_counter_init(&memcg->res, &parent->res);
6329 res_counter_init(&memcg->memsw, &parent->memsw);
6330 res_counter_init(&memcg->kmem, &parent->kmem);
6333 * No need to take a reference to the parent because cgroup
6334 * core guarantees its existence.
6336 } else {
6337 res_counter_init(&memcg->res, NULL);
6338 res_counter_init(&memcg->memsw, NULL);
6339 res_counter_init(&memcg->kmem, NULL);
6341 * Deeper hierachy with use_hierarchy == false doesn't make
6342 * much sense so let cgroup subsystem know about this
6343 * unfortunate state in our controller.
6345 if (parent != root_mem_cgroup)
6346 mem_cgroup_subsys.broken_hierarchy = true;
6349 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6350 mutex_unlock(&memcg_create_mutex);
6352 if (!error) {
6354 * Make sure the memcg is initialized: mem_cgroup_iter()
6355 * orders reading memcg->initialized against its callers
6356 * reading the memcg members.
6358 smp_wmb();
6359 memcg->initialized = 1;
6361 return error;
6365 * Announce all parents that a group from their hierarchy is gone.
6367 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6369 struct mem_cgroup *parent = memcg;
6371 while ((parent = parent_mem_cgroup(parent)))
6372 mem_cgroup_iter_invalidate(parent);
6375 * if the root memcg is not hierarchical we have to check it
6376 * explicitely.
6378 if (!root_mem_cgroup->use_hierarchy)
6379 mem_cgroup_iter_invalidate(root_mem_cgroup);
6382 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6384 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6385 struct cgroup_subsys_state *iter;
6387 kmem_cgroup_css_offline(memcg);
6389 mem_cgroup_invalidate_reclaim_iterators(memcg);
6392 * This requires that offlining is serialized. Right now that is
6393 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6395 rcu_read_lock();
6396 css_for_each_descendant_post(iter, css) {
6397 rcu_read_unlock();
6398 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6399 rcu_read_lock();
6401 rcu_read_unlock();
6403 mem_cgroup_destroy_all_caches(memcg);
6404 vmpressure_cleanup(&memcg->vmpressure);
6407 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6409 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6411 * XXX: css_offline() would be where we should reparent all
6412 * memory to prepare the cgroup for destruction. However,
6413 * memcg does not do css_tryget() and res_counter charging
6414 * under the same RCU lock region, which means that charging
6415 * could race with offlining. Offlining only happens to
6416 * cgroups with no tasks in them but charges can show up
6417 * without any tasks from the swapin path when the target
6418 * memcg is looked up from the swapout record and not from the
6419 * current task as it usually is. A race like this can leak
6420 * charges and put pages with stale cgroup pointers into
6421 * circulation:
6423 * #0 #1
6424 * lookup_swap_cgroup_id()
6425 * rcu_read_lock()
6426 * mem_cgroup_lookup()
6427 * css_tryget()
6428 * rcu_read_unlock()
6429 * disable css_tryget()
6430 * call_rcu()
6431 * offline_css()
6432 * reparent_charges()
6433 * res_counter_charge()
6434 * css_put()
6435 * css_free()
6436 * pc->mem_cgroup = dead memcg
6437 * add page to lru
6439 * The bulk of the charges are still moved in offline_css() to
6440 * avoid pinning a lot of pages in case a long-term reference
6441 * like a swapout record is deferring the css_free() to long
6442 * after offlining. But this makes sure we catch any charges
6443 * made after offlining:
6445 mem_cgroup_reparent_charges(memcg);
6447 memcg_destroy_kmem(memcg);
6448 __mem_cgroup_free(memcg);
6451 #ifdef CONFIG_MMU
6452 /* Handlers for move charge at task migration. */
6453 #define PRECHARGE_COUNT_AT_ONCE 256
6454 static int mem_cgroup_do_precharge(unsigned long count)
6456 int ret = 0;
6457 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6458 struct mem_cgroup *memcg = mc.to;
6460 if (mem_cgroup_is_root(memcg)) {
6461 mc.precharge += count;
6462 /* we don't need css_get for root */
6463 return ret;
6465 /* try to charge at once */
6466 if (count > 1) {
6467 struct res_counter *dummy;
6469 * "memcg" cannot be under rmdir() because we've already checked
6470 * by cgroup_lock_live_cgroup() that it is not removed and we
6471 * are still under the same cgroup_mutex. So we can postpone
6472 * css_get().
6474 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6475 goto one_by_one;
6476 if (do_swap_account && res_counter_charge(&memcg->memsw,
6477 PAGE_SIZE * count, &dummy)) {
6478 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6479 goto one_by_one;
6481 mc.precharge += count;
6482 return ret;
6484 one_by_one:
6485 /* fall back to one by one charge */
6486 while (count--) {
6487 if (signal_pending(current)) {
6488 ret = -EINTR;
6489 break;
6491 if (!batch_count--) {
6492 batch_count = PRECHARGE_COUNT_AT_ONCE;
6493 cond_resched();
6495 ret = __mem_cgroup_try_charge(NULL,
6496 GFP_KERNEL, 1, &memcg, false);
6497 if (ret)
6498 /* mem_cgroup_clear_mc() will do uncharge later */
6499 return ret;
6500 mc.precharge++;
6502 return ret;
6506 * get_mctgt_type - get target type of moving charge
6507 * @vma: the vma the pte to be checked belongs
6508 * @addr: the address corresponding to the pte to be checked
6509 * @ptent: the pte to be checked
6510 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6512 * Returns
6513 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6514 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6515 * move charge. if @target is not NULL, the page is stored in target->page
6516 * with extra refcnt got(Callers should handle it).
6517 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6518 * target for charge migration. if @target is not NULL, the entry is stored
6519 * in target->ent.
6521 * Called with pte lock held.
6523 union mc_target {
6524 struct page *page;
6525 swp_entry_t ent;
6528 enum mc_target_type {
6529 MC_TARGET_NONE = 0,
6530 MC_TARGET_PAGE,
6531 MC_TARGET_SWAP,
6534 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6535 unsigned long addr, pte_t ptent)
6537 struct page *page = vm_normal_page(vma, addr, ptent);
6539 if (!page || !page_mapped(page))
6540 return NULL;
6541 if (PageAnon(page)) {
6542 /* we don't move shared anon */
6543 if (!move_anon())
6544 return NULL;
6545 } else if (!move_file())
6546 /* we ignore mapcount for file pages */
6547 return NULL;
6548 if (!get_page_unless_zero(page))
6549 return NULL;
6551 return page;
6554 #ifdef CONFIG_SWAP
6555 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6556 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6558 struct page *page = NULL;
6559 swp_entry_t ent = pte_to_swp_entry(ptent);
6561 if (!move_anon() || non_swap_entry(ent))
6562 return NULL;
6564 * Because lookup_swap_cache() updates some statistics counter,
6565 * we call find_get_page() with swapper_space directly.
6567 page = find_get_page(swap_address_space(ent), ent.val);
6568 if (do_swap_account)
6569 entry->val = ent.val;
6571 return page;
6573 #else
6574 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6575 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6577 return NULL;
6579 #endif
6581 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6582 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6584 struct page *page = NULL;
6585 struct address_space *mapping;
6586 pgoff_t pgoff;
6588 if (!vma->vm_file) /* anonymous vma */
6589 return NULL;
6590 if (!move_file())
6591 return NULL;
6593 mapping = vma->vm_file->f_mapping;
6594 if (pte_none(ptent))
6595 pgoff = linear_page_index(vma, addr);
6596 else /* pte_file(ptent) is true */
6597 pgoff = pte_to_pgoff(ptent);
6599 /* page is moved even if it's not RSS of this task(page-faulted). */
6600 page = find_get_page(mapping, pgoff);
6602 #ifdef CONFIG_SWAP
6603 /* shmem/tmpfs may report page out on swap: account for that too. */
6604 if (radix_tree_exceptional_entry(page)) {
6605 swp_entry_t swap = radix_to_swp_entry(page);
6606 if (do_swap_account)
6607 *entry = swap;
6608 page = find_get_page(swap_address_space(swap), swap.val);
6610 #endif
6611 return page;
6614 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6615 unsigned long addr, pte_t ptent, union mc_target *target)
6617 struct page *page = NULL;
6618 struct page_cgroup *pc;
6619 enum mc_target_type ret = MC_TARGET_NONE;
6620 swp_entry_t ent = { .val = 0 };
6622 if (pte_present(ptent))
6623 page = mc_handle_present_pte(vma, addr, ptent);
6624 else if (is_swap_pte(ptent))
6625 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6626 else if (pte_none(ptent) || pte_file(ptent))
6627 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6629 if (!page && !ent.val)
6630 return ret;
6631 if (page) {
6632 pc = lookup_page_cgroup(page);
6634 * Do only loose check w/o page_cgroup lock.
6635 * mem_cgroup_move_account() checks the pc is valid or not under
6636 * the lock.
6638 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6639 ret = MC_TARGET_PAGE;
6640 if (target)
6641 target->page = page;
6643 if (!ret || !target)
6644 put_page(page);
6646 /* There is a swap entry and a page doesn't exist or isn't charged */
6647 if (ent.val && !ret &&
6648 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6649 ret = MC_TARGET_SWAP;
6650 if (target)
6651 target->ent = ent;
6653 return ret;
6656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6658 * We don't consider swapping or file mapped pages because THP does not
6659 * support them for now.
6660 * Caller should make sure that pmd_trans_huge(pmd) is true.
6662 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6663 unsigned long addr, pmd_t pmd, union mc_target *target)
6665 struct page *page = NULL;
6666 struct page_cgroup *pc;
6667 enum mc_target_type ret = MC_TARGET_NONE;
6669 page = pmd_page(pmd);
6670 VM_BUG_ON(!page || !PageHead(page));
6671 if (!move_anon())
6672 return ret;
6673 pc = lookup_page_cgroup(page);
6674 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6675 ret = MC_TARGET_PAGE;
6676 if (target) {
6677 get_page(page);
6678 target->page = page;
6681 return ret;
6683 #else
6684 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6685 unsigned long addr, pmd_t pmd, union mc_target *target)
6687 return MC_TARGET_NONE;
6689 #endif
6691 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6692 unsigned long addr, unsigned long end,
6693 struct mm_walk *walk)
6695 struct vm_area_struct *vma = walk->private;
6696 pte_t *pte;
6697 spinlock_t *ptl;
6699 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6700 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6701 mc.precharge += HPAGE_PMD_NR;
6702 spin_unlock(&vma->vm_mm->page_table_lock);
6703 return 0;
6706 if (pmd_trans_unstable(pmd))
6707 return 0;
6708 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6709 for (; addr != end; pte++, addr += PAGE_SIZE)
6710 if (get_mctgt_type(vma, addr, *pte, NULL))
6711 mc.precharge++; /* increment precharge temporarily */
6712 pte_unmap_unlock(pte - 1, ptl);
6713 cond_resched();
6715 return 0;
6718 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6720 unsigned long precharge;
6721 struct vm_area_struct *vma;
6723 down_read(&mm->mmap_sem);
6724 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6725 struct mm_walk mem_cgroup_count_precharge_walk = {
6726 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6727 .mm = mm,
6728 .private = vma,
6730 if (is_vm_hugetlb_page(vma))
6731 continue;
6732 walk_page_range(vma->vm_start, vma->vm_end,
6733 &mem_cgroup_count_precharge_walk);
6735 up_read(&mm->mmap_sem);
6737 precharge = mc.precharge;
6738 mc.precharge = 0;
6740 return precharge;
6743 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6745 unsigned long precharge = mem_cgroup_count_precharge(mm);
6747 VM_BUG_ON(mc.moving_task);
6748 mc.moving_task = current;
6749 return mem_cgroup_do_precharge(precharge);
6752 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6753 static void __mem_cgroup_clear_mc(void)
6755 struct mem_cgroup *from = mc.from;
6756 struct mem_cgroup *to = mc.to;
6757 int i;
6759 /* we must uncharge all the leftover precharges from mc.to */
6760 if (mc.precharge) {
6761 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6762 mc.precharge = 0;
6765 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6766 * we must uncharge here.
6768 if (mc.moved_charge) {
6769 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6770 mc.moved_charge = 0;
6772 /* we must fixup refcnts and charges */
6773 if (mc.moved_swap) {
6774 /* uncharge swap account from the old cgroup */
6775 if (!mem_cgroup_is_root(mc.from))
6776 res_counter_uncharge(&mc.from->memsw,
6777 PAGE_SIZE * mc.moved_swap);
6779 for (i = 0; i < mc.moved_swap; i++)
6780 css_put(&mc.from->css);
6782 if (!mem_cgroup_is_root(mc.to)) {
6784 * we charged both to->res and to->memsw, so we should
6785 * uncharge to->res.
6787 res_counter_uncharge(&mc.to->res,
6788 PAGE_SIZE * mc.moved_swap);
6790 /* we've already done css_get(mc.to) */
6791 mc.moved_swap = 0;
6793 memcg_oom_recover(from);
6794 memcg_oom_recover(to);
6795 wake_up_all(&mc.waitq);
6798 static void mem_cgroup_clear_mc(void)
6800 struct mem_cgroup *from = mc.from;
6803 * we must clear moving_task before waking up waiters at the end of
6804 * task migration.
6806 mc.moving_task = NULL;
6807 __mem_cgroup_clear_mc();
6808 spin_lock(&mc.lock);
6809 mc.from = NULL;
6810 mc.to = NULL;
6811 spin_unlock(&mc.lock);
6812 mem_cgroup_end_move(from);
6815 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6816 struct cgroup_taskset *tset)
6818 struct task_struct *p = cgroup_taskset_first(tset);
6819 int ret = 0;
6820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6821 unsigned long move_charge_at_immigrate;
6824 * We are now commited to this value whatever it is. Changes in this
6825 * tunable will only affect upcoming migrations, not the current one.
6826 * So we need to save it, and keep it going.
6828 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6829 if (move_charge_at_immigrate) {
6830 struct mm_struct *mm;
6831 struct mem_cgroup *from = mem_cgroup_from_task(p);
6833 VM_BUG_ON(from == memcg);
6835 mm = get_task_mm(p);
6836 if (!mm)
6837 return 0;
6838 /* We move charges only when we move a owner of the mm */
6839 if (mm->owner == p) {
6840 VM_BUG_ON(mc.from);
6841 VM_BUG_ON(mc.to);
6842 VM_BUG_ON(mc.precharge);
6843 VM_BUG_ON(mc.moved_charge);
6844 VM_BUG_ON(mc.moved_swap);
6845 mem_cgroup_start_move(from);
6846 spin_lock(&mc.lock);
6847 mc.from = from;
6848 mc.to = memcg;
6849 mc.immigrate_flags = move_charge_at_immigrate;
6850 spin_unlock(&mc.lock);
6851 /* We set mc.moving_task later */
6853 ret = mem_cgroup_precharge_mc(mm);
6854 if (ret)
6855 mem_cgroup_clear_mc();
6857 mmput(mm);
6859 return ret;
6862 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6863 struct cgroup_taskset *tset)
6865 mem_cgroup_clear_mc();
6868 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6869 unsigned long addr, unsigned long end,
6870 struct mm_walk *walk)
6872 int ret = 0;
6873 struct vm_area_struct *vma = walk->private;
6874 pte_t *pte;
6875 spinlock_t *ptl;
6876 enum mc_target_type target_type;
6877 union mc_target target;
6878 struct page *page;
6879 struct page_cgroup *pc;
6882 * We don't take compound_lock() here but no race with splitting thp
6883 * happens because:
6884 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6885 * under splitting, which means there's no concurrent thp split,
6886 * - if another thread runs into split_huge_page() just after we
6887 * entered this if-block, the thread must wait for page table lock
6888 * to be unlocked in __split_huge_page_splitting(), where the main
6889 * part of thp split is not executed yet.
6891 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6892 if (mc.precharge < HPAGE_PMD_NR) {
6893 spin_unlock(&vma->vm_mm->page_table_lock);
6894 return 0;
6896 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6897 if (target_type == MC_TARGET_PAGE) {
6898 page = target.page;
6899 if (!isolate_lru_page(page)) {
6900 pc = lookup_page_cgroup(page);
6901 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6902 pc, mc.from, mc.to)) {
6903 mc.precharge -= HPAGE_PMD_NR;
6904 mc.moved_charge += HPAGE_PMD_NR;
6906 putback_lru_page(page);
6908 put_page(page);
6910 spin_unlock(&vma->vm_mm->page_table_lock);
6911 return 0;
6914 if (pmd_trans_unstable(pmd))
6915 return 0;
6916 retry:
6917 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6918 for (; addr != end; addr += PAGE_SIZE) {
6919 pte_t ptent = *(pte++);
6920 swp_entry_t ent;
6922 if (!mc.precharge)
6923 break;
6925 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6926 case MC_TARGET_PAGE:
6927 page = target.page;
6928 if (isolate_lru_page(page))
6929 goto put;
6930 pc = lookup_page_cgroup(page);
6931 if (!mem_cgroup_move_account(page, 1, pc,
6932 mc.from, mc.to)) {
6933 mc.precharge--;
6934 /* we uncharge from mc.from later. */
6935 mc.moved_charge++;
6937 putback_lru_page(page);
6938 put: /* get_mctgt_type() gets the page */
6939 put_page(page);
6940 break;
6941 case MC_TARGET_SWAP:
6942 ent = target.ent;
6943 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6944 mc.precharge--;
6945 /* we fixup refcnts and charges later. */
6946 mc.moved_swap++;
6948 break;
6949 default:
6950 break;
6953 pte_unmap_unlock(pte - 1, ptl);
6954 cond_resched();
6956 if (addr != end) {
6958 * We have consumed all precharges we got in can_attach().
6959 * We try charge one by one, but don't do any additional
6960 * charges to mc.to if we have failed in charge once in attach()
6961 * phase.
6963 ret = mem_cgroup_do_precharge(1);
6964 if (!ret)
6965 goto retry;
6968 return ret;
6971 static void mem_cgroup_move_charge(struct mm_struct *mm)
6973 struct vm_area_struct *vma;
6975 lru_add_drain_all();
6976 retry:
6977 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6979 * Someone who are holding the mmap_sem might be waiting in
6980 * waitq. So we cancel all extra charges, wake up all waiters,
6981 * and retry. Because we cancel precharges, we might not be able
6982 * to move enough charges, but moving charge is a best-effort
6983 * feature anyway, so it wouldn't be a big problem.
6985 __mem_cgroup_clear_mc();
6986 cond_resched();
6987 goto retry;
6989 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6990 int ret;
6991 struct mm_walk mem_cgroup_move_charge_walk = {
6992 .pmd_entry = mem_cgroup_move_charge_pte_range,
6993 .mm = mm,
6994 .private = vma,
6996 if (is_vm_hugetlb_page(vma))
6997 continue;
6998 ret = walk_page_range(vma->vm_start, vma->vm_end,
6999 &mem_cgroup_move_charge_walk);
7000 if (ret)
7002 * means we have consumed all precharges and failed in
7003 * doing additional charge. Just abandon here.
7005 break;
7007 up_read(&mm->mmap_sem);
7010 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7011 struct cgroup_taskset *tset)
7013 struct task_struct *p = cgroup_taskset_first(tset);
7014 struct mm_struct *mm = get_task_mm(p);
7016 if (mm) {
7017 if (mc.to)
7018 mem_cgroup_move_charge(mm);
7019 mmput(mm);
7021 if (mc.to)
7022 mem_cgroup_clear_mc();
7024 #else /* !CONFIG_MMU */
7025 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7026 struct cgroup_taskset *tset)
7028 return 0;
7030 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7031 struct cgroup_taskset *tset)
7034 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7035 struct cgroup_taskset *tset)
7038 #endif
7041 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7042 * to verify sane_behavior flag on each mount attempt.
7044 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7047 * use_hierarchy is forced with sane_behavior. cgroup core
7048 * guarantees that @root doesn't have any children, so turning it
7049 * on for the root memcg is enough.
7051 if (cgroup_sane_behavior(root_css->cgroup))
7052 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7055 struct cgroup_subsys mem_cgroup_subsys = {
7056 .name = "memory",
7057 .subsys_id = mem_cgroup_subsys_id,
7058 .css_alloc = mem_cgroup_css_alloc,
7059 .css_online = mem_cgroup_css_online,
7060 .css_offline = mem_cgroup_css_offline,
7061 .css_free = mem_cgroup_css_free,
7062 .can_attach = mem_cgroup_can_attach,
7063 .cancel_attach = mem_cgroup_cancel_attach,
7064 .attach = mem_cgroup_move_task,
7065 .bind = mem_cgroup_bind,
7066 .base_cftypes = mem_cgroup_files,
7067 .early_init = 0,
7068 .use_id = 1,
7071 #ifdef CONFIG_MEMCG_SWAP
7072 static int __init enable_swap_account(char *s)
7074 if (!strcmp(s, "1"))
7075 really_do_swap_account = 1;
7076 else if (!strcmp(s, "0"))
7077 really_do_swap_account = 0;
7078 return 1;
7080 __setup("swapaccount=", enable_swap_account);
7082 static void __init memsw_file_init(void)
7084 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7087 static void __init enable_swap_cgroup(void)
7089 if (!mem_cgroup_disabled() && really_do_swap_account) {
7090 do_swap_account = 1;
7091 memsw_file_init();
7095 #else
7096 static void __init enable_swap_cgroup(void)
7099 #endif
7102 * subsys_initcall() for memory controller.
7104 * Some parts like hotcpu_notifier() have to be initialized from this context
7105 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7106 * everything that doesn't depend on a specific mem_cgroup structure should
7107 * be initialized from here.
7109 static int __init mem_cgroup_init(void)
7111 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7112 enable_swap_cgroup();
7113 mem_cgroup_soft_limit_tree_init();
7114 memcg_stock_init();
7115 return 0;
7117 subsys_initcall(mem_cgroup_init);