Linux 3.12.39
[linux/fpc-iii.git] / mm / memory.c
blob38617f049b9f832b527b7d003e889fcd5be77a79
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM.
92 void * high_memory;
94 EXPORT_SYMBOL(high_memory);
97 * Randomize the address space (stacks, mmaps, brk, etc.).
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
105 #else
107 #endif
109 static int __init disable_randmaps(char *s)
111 randomize_va_space = 0;
112 return 1;
114 __setup("norandmaps", disable_randmaps);
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122 static int __init init_zero_pfn(void)
124 zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 return 0;
127 core_initcall(init_zero_pfn);
130 #if defined(SPLIT_RSS_COUNTING)
132 void sync_mm_rss(struct mm_struct *mm)
134 int i;
136 for (i = 0; i < NR_MM_COUNTERS; i++) {
137 if (current->rss_stat.count[i]) {
138 add_mm_counter(mm, i, current->rss_stat.count[i]);
139 current->rss_stat.count[i] = 0;
142 current->rss_stat.events = 0;
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147 struct task_struct *task = current;
149 if (likely(task->mm == mm))
150 task->rss_stat.count[member] += val;
151 else
152 add_mm_counter(mm, member, val);
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH (64)
159 static void check_sync_rss_stat(struct task_struct *task)
161 if (unlikely(task != current))
162 return;
163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 sync_mm_rss(task->mm);
166 #else /* SPLIT_RSS_COUNTING */
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171 static void check_sync_rss_stat(struct task_struct *task)
175 #endif /* SPLIT_RSS_COUNTING */
177 #ifdef HAVE_GENERIC_MMU_GATHER
179 static int tlb_next_batch(struct mmu_gather *tlb)
181 struct mmu_gather_batch *batch;
183 batch = tlb->active;
184 if (batch->next) {
185 tlb->active = batch->next;
186 return 1;
189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 return 0;
192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 if (!batch)
194 return 0;
196 tlb->batch_count++;
197 batch->next = NULL;
198 batch->nr = 0;
199 batch->max = MAX_GATHER_BATCH;
201 tlb->active->next = batch;
202 tlb->active = batch;
204 return 1;
207 /* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
214 tlb->mm = mm;
216 /* Is it from 0 to ~0? */
217 tlb->fullmm = !(start | (end+1));
218 tlb->need_flush_all = 0;
219 tlb->start = start;
220 tlb->end = end;
221 tlb->need_flush = 0;
222 tlb->local.next = NULL;
223 tlb->local.nr = 0;
224 tlb->local.max = ARRAY_SIZE(tlb->__pages);
225 tlb->active = &tlb->local;
226 tlb->batch_count = 0;
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 tlb->batch = NULL;
230 #endif
233 void tlb_flush_mmu(struct mmu_gather *tlb)
235 struct mmu_gather_batch *batch;
237 if (!tlb->need_flush)
238 return;
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
243 #endif
245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0;
249 tlb->active = &tlb->local;
252 /* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 struct mmu_gather_batch *batch, *next;
260 tlb_flush_mmu(tlb);
262 /* keep the page table cache within bounds */
263 check_pgt_cache();
265 for (batch = tlb->local.next; batch; batch = next) {
266 next = batch->next;
267 free_pages((unsigned long)batch, 0);
269 tlb->local.next = NULL;
272 /* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 struct mmu_gather_batch *batch;
282 VM_BUG_ON(!tlb->need_flush);
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
291 VM_BUG_ON(batch->nr > batch->max);
293 return batch->max - batch->nr;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
322 static void tlb_remove_table_rcu(struct rcu_head *head)
324 struct mmu_table_batch *batch;
325 int i;
327 batch = container_of(head, struct mmu_table_batch, rcu);
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
332 free_page((unsigned long)batch);
335 void tlb_table_flush(struct mmu_gather *tlb)
337 struct mmu_table_batch **batch = &tlb->batch;
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 struct mmu_table_batch **batch = &tlb->batch;
349 tlb->need_flush = 1;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
366 (*batch)->nr = 0;
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * Note: this doesn't free the actual pages themselves. That
377 * has been handled earlier when unmapping all the memory regions.
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 unsigned long addr)
382 pgtable_t token = pmd_pgtable(*pmd);
383 pmd_clear(pmd);
384 pte_free_tlb(tlb, token, addr);
385 tlb->mm->nr_ptes--;
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling)
392 pmd_t *pmd;
393 unsigned long next;
394 unsigned long start;
396 start = addr;
397 pmd = pmd_offset(pud, addr);
398 do {
399 next = pmd_addr_end(addr, end);
400 if (pmd_none_or_clear_bad(pmd))
401 continue;
402 free_pte_range(tlb, pmd, addr);
403 } while (pmd++, addr = next, addr != end);
405 start &= PUD_MASK;
406 if (start < floor)
407 return;
408 if (ceiling) {
409 ceiling &= PUD_MASK;
410 if (!ceiling)
411 return;
413 if (end - 1 > ceiling - 1)
414 return;
416 pmd = pmd_offset(pud, start);
417 pud_clear(pud);
418 pmd_free_tlb(tlb, pmd, start);
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 unsigned long addr, unsigned long end,
423 unsigned long floor, unsigned long ceiling)
425 pud_t *pud;
426 unsigned long next;
427 unsigned long start;
429 start = addr;
430 pud = pud_offset(pgd, addr);
431 do {
432 next = pud_addr_end(addr, end);
433 if (pud_none_or_clear_bad(pud))
434 continue;
435 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436 } while (pud++, addr = next, addr != end);
438 start &= PGDIR_MASK;
439 if (start < floor)
440 return;
441 if (ceiling) {
442 ceiling &= PGDIR_MASK;
443 if (!ceiling)
444 return;
446 if (end - 1 > ceiling - 1)
447 return;
449 pud = pud_offset(pgd, start);
450 pgd_clear(pgd);
451 pud_free_tlb(tlb, pud, start);
455 * This function frees user-level page tables of a process.
457 * Must be called with pagetable lock held.
459 void free_pgd_range(struct mmu_gather *tlb,
460 unsigned long addr, unsigned long end,
461 unsigned long floor, unsigned long ceiling)
463 pgd_t *pgd;
464 unsigned long next;
467 * The next few lines have given us lots of grief...
469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that.
473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical).
481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there.
486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that.
492 addr &= PMD_MASK;
493 if (addr < floor) {
494 addr += PMD_SIZE;
495 if (!addr)
496 return;
498 if (ceiling) {
499 ceiling &= PMD_MASK;
500 if (!ceiling)
501 return;
503 if (end - 1 > ceiling - 1)
504 end -= PMD_SIZE;
505 if (addr > end - 1)
506 return;
508 pgd = pgd_offset(tlb->mm, addr);
509 do {
510 next = pgd_addr_end(addr, end);
511 if (pgd_none_or_clear_bad(pgd))
512 continue;
513 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514 } while (pgd++, addr = next, addr != end);
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518 unsigned long floor, unsigned long ceiling)
520 while (vma) {
521 struct vm_area_struct *next = vma->vm_next;
522 unsigned long addr = vma->vm_start;
525 * Hide vma from rmap and truncate_pagecache before freeing
526 * pgtables
528 unlink_anon_vmas(vma);
529 unlink_file_vma(vma);
531 if (is_vm_hugetlb_page(vma)) {
532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533 floor, next? next->vm_start: ceiling);
534 } else {
536 * Optimization: gather nearby vmas into one call down
538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539 && !is_vm_hugetlb_page(next)) {
540 vma = next;
541 next = vma->vm_next;
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
545 free_pgd_range(tlb, addr, vma->vm_end,
546 floor, next? next->vm_start: ceiling);
548 vma = next;
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553 pmd_t *pmd, unsigned long address)
555 pgtable_t new = pte_alloc_one(mm, address);
556 int wait_split_huge_page;
557 if (!new)
558 return -ENOMEM;
561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables.
565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code.
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
575 spin_lock(&mm->page_table_lock);
576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
578 mm->nr_ptes++;
579 pmd_populate(mm, pmd, new);
580 new = NULL;
581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1;
583 spin_unlock(&mm->page_table_lock);
584 if (new)
585 pte_free(mm, new);
586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd);
588 return 0;
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new)
595 return -ENOMEM;
597 smp_wmb(); /* See comment in __pte_alloc */
599 spin_lock(&init_mm.page_table_lock);
600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
601 pmd_populate_kernel(&init_mm, pmd, new);
602 new = NULL;
603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd));
605 spin_unlock(&init_mm.page_table_lock);
606 if (new)
607 pte_free_kernel(&init_mm, new);
608 return 0;
611 static inline void init_rss_vec(int *rss)
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
618 int i;
620 if (current->mm == mm)
621 sync_mm_rss(mm);
622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]);
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
632 * The calling function must still handle the error.
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page)
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping;
641 pgoff_t index;
642 static unsigned long resume;
643 static unsigned long nr_shown;
644 static unsigned long nr_unshown;
647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second.
650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) {
652 nr_unshown++;
653 return;
655 if (nr_unshown) {
656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n",
658 nr_unshown);
659 nr_unshown = 0;
661 nr_shown = 0;
663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ;
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr);
669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
673 if (page)
674 dump_page(page);
675 printk(KERN_ALERT
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
681 if (vma->vm_ops)
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault);
684 if (vma->vm_file && vma->vm_file->f_op)
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap);
687 dump_stack();
688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
691 static inline bool is_cow_mapping(vm_flags_t flags)
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 * And for normal mappings this is false.
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
746 unsigned long pfn = pte_pfn(pte);
748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
753 if (!is_zero_pfn(pfn))
754 print_bad_pte(vma, addr, pte, NULL);
755 return NULL;
758 /* !HAVE_PTE_SPECIAL case follows: */
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
775 if (is_zero_pfn(pfn))
776 return NULL;
777 check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist.
787 out:
788 return pfn_to_page(pfn);
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 unsigned long addr, int *rss)
802 unsigned long vm_flags = vma->vm_flags;
803 pte_t pte = *src_pte;
804 struct page *page;
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) {
809 swp_entry_t entry = pte_to_swp_entry(pte);
811 if (likely(!non_swap_entry(entry))) {
812 if (swap_duplicate(entry) < 0)
813 return entry.val;
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm->mmlist))) {
817 spin_lock(&mmlist_lock);
818 if (list_empty(&dst_mm->mmlist))
819 list_add(&dst_mm->mmlist,
820 &src_mm->mmlist);
821 spin_unlock(&mmlist_lock);
823 rss[MM_SWAPENTS]++;
824 } else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++;
829 else
830 rss[MM_FILEPAGES]++;
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
835 * COW mappings require pages in both
836 * parent and child to be set to read.
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte);
846 goto out_set_pte;
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
853 if (is_cow_mapping(vm_flags)) {
854 ptep_set_wrprotect(src_mm, addr, src_pte);
855 pte = pte_wrprotect(pte);
859 * If it's a shared mapping, mark it clean in
860 * the child
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
869 page_dup_rmap(page);
870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++;
872 else
873 rss[MM_FILEPAGES]++;
876 out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte);
878 return 0;
881 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
885 pte_t *orig_src_pte, *orig_dst_pte;
886 pte_t *src_pte, *dst_pte;
887 spinlock_t *src_ptl, *dst_ptl;
888 int progress = 0;
889 int rss[NR_MM_COUNTERS];
890 swp_entry_t entry = (swp_entry_t){0};
892 again:
893 init_rss_vec(rss);
895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896 if (!dst_pte)
897 return -ENOMEM;
898 src_pte = pte_offset_map(src_pmd, addr);
899 src_ptl = pte_lockptr(src_mm, src_pmd);
900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte;
903 arch_enter_lazy_mmu_mode();
905 do {
907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU.
910 if (progress >= 32) {
911 progress = 0;
912 if (need_resched() ||
913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914 break;
916 if (pte_none(*src_pte)) {
917 progress++;
918 continue;
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss);
922 if (entry.val)
923 break;
924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927 arch_leave_lazy_mmu_mode();
928 spin_unlock(src_ptl);
929 pte_unmap(orig_src_pte);
930 add_mm_rss_vec(dst_mm, rss);
931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
932 cond_resched();
934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM;
937 progress = 0;
939 if (addr != end)
940 goto again;
941 return 0;
944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next;
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd)
953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr);
955 do {
956 next = pmd_addr_end(addr, end);
957 if (pmd_trans_huge(*src_pmd)) {
958 int err;
959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM)
963 return -ENOMEM;
964 if (!err)
965 continue;
966 /* fall through */
968 if (pmd_none_or_clear_bad(src_pmd))
969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next))
972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0;
977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pud_t *src_pud, *dst_pud;
982 unsigned long next;
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud)
986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr);
988 do {
989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud))
991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0;
999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma)
1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next;
1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end;
1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow;
1009 int ret;
1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting.
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) {
1019 if (!vma->anon_vma)
1020 return 0;
1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine
1031 ret = track_pfn_copy(vma);
1032 if (ret)
1033 return ret;
1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true.
1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr;
1044 mmun_end = end;
1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end);
1049 ret = 0;
1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr);
1052 do {
1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue;
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) {
1058 ret = -ENOMEM;
1059 break;
1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065 return ret;
1068 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069 struct vm_area_struct *vma, pmd_t *pmd,
1070 unsigned long addr, unsigned long end,
1071 struct zap_details *details)
1073 struct mm_struct *mm = tlb->mm;
1074 int force_flush = 0;
1075 int rss[NR_MM_COUNTERS];
1076 spinlock_t *ptl;
1077 pte_t *start_pte;
1078 pte_t *pte;
1080 again:
1081 init_rss_vec(rss);
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
1084 arch_enter_lazy_mmu_mode();
1085 do {
1086 pte_t ptent = *pte;
1087 if (pte_none(ptent)) {
1088 continue;
1091 if (pte_present(ptent)) {
1092 struct page *page;
1094 page = vm_normal_page(vma, addr, ptent);
1095 if (unlikely(details) && page) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear.
1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index ||
1110 page->index > details->last_index))
1111 continue;
1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
1114 tlb->fullmm);
1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page))
1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma,
1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent))
1123 pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile);
1126 if (PageAnon(page))
1127 rss[MM_ANONPAGES]--;
1128 else {
1129 if (pte_dirty(ptent))
1130 set_page_dirty(page);
1131 if (pte_young(ptent) &&
1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
1133 mark_page_accessed(page);
1134 rss[MM_FILEPAGES]--;
1136 page_remove_rmap(page);
1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page);
1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush)
1141 break;
1142 continue;
1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries.
1148 if (unlikely(details))
1149 continue;
1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL);
1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--;
1158 else if (is_migration_entry(entry)) {
1159 struct page *page;
1161 page = migration_entry_to_page(entry);
1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--;
1165 else
1166 rss[MM_FILEPAGES]--;
1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL);
1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172 } while (pte++, addr += PAGE_SIZE, addr != end);
1174 add_mm_rss_vec(mm, rss);
1175 arch_leave_lazy_mmu_mode();
1176 pte_unmap_unlock(start_pte, ptl);
1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it.
1183 if (force_flush) {
1184 unsigned long old_end;
1186 force_flush = 0;
1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining
1191 * TLB range.
1193 old_end = tlb->end;
1194 tlb->end = addr;
1196 tlb_flush_mmu(tlb);
1198 tlb->start = addr;
1199 tlb->end = old_end;
1201 if (addr != end)
1202 goto again;
1205 return addr;
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 struct vm_area_struct *vma, pud_t *pud,
1210 unsigned long addr, unsigned long end,
1211 struct zap_details *details)
1213 pmd_t *pmd;
1214 unsigned long next;
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
1219 if (pmd_trans_huge(*pmd)) {
1220 if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1229 #endif
1230 split_huge_page_pmd(vma, addr, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 goto next;
1233 /* fall through */
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
1249 return addr;
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, pgd_t *pgd,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1257 pud_t *pud;
1258 unsigned long next;
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
1263 if (pud_none_or_clear_bad(pud))
1264 continue;
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
1268 return addr;
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1276 pgd_t *pgd;
1277 unsigned long next;
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1282 BUG_ON(addr >= end);
1283 mem_cgroup_uncharge_start();
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma);
1293 mem_cgroup_uncharge_end();
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
1299 unsigned long end_addr,
1300 struct zap_details *details)
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 untrack_pfn(vma, 0, 0);
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of do_mmap_pgoff. When
1324 * hugetlbfs ->mmap method fails,
1325 * do_mmap_pgoff() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1347 * Unmap all pages in the vma list.
1349 * Only addresses between `start' and `end' will be unmapped.
1351 * The VMA list must be sorted in ascending virtual address order.
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1358 void unmap_vmas(struct mmu_gather *tlb,
1359 struct vm_area_struct *vma, unsigned long start_addr,
1360 unsigned long end_addr)
1362 struct mm_struct *mm = vma->vm_mm;
1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
1377 * Caller must protect the VMA list
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long size, struct zap_details *details)
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb;
1384 unsigned long end = start + size;
1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, start, end);
1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 unmap_single_vma(&tlb, vma, start, end, details);
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1403 * The range must fit into one VMA.
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size, struct zap_details *details)
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = address + size;
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, address, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, address, end);
1416 unmap_single_vma(&tlb, vma, address, end, details);
1417 mmu_notifier_invalidate_range_end(mm, address, end);
1418 tlb_finish_mmu(&tlb, address, end);
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429 * The entire address range must be fully contained within the vma.
1431 * Returns 0 if successful.
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
1439 zap_page_range_single(vma, address, size, NULL);
1440 return 0;
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1445 * follow_page_mask - look up a page descriptor from a user-virtual address
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
1449 * @page_mask: on output, *page_mask is set according to the size of the page
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1457 struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask)
1461 pgd_t *pgd;
1462 pud_t *pud;
1463 pmd_t *pmd;
1464 pte_t *ptep, pte;
1465 spinlock_t *ptl;
1466 struct page *page;
1467 struct mm_struct *mm = vma->vm_mm;
1469 *page_mask = 0;
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1477 page = NULL;
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table;
1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud))
1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 page = follow_huge_pud(mm, address, pud, flags);
1487 if (page)
1488 goto out;
1489 goto no_page_table;
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1494 pmd = pmd_offset(pud, address);
1495 if (pmd_none(*pmd))
1496 goto no_page_table;
1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 page = follow_huge_pmd(mm, address, pmd, flags);
1499 if (page)
1500 goto out;
1501 goto no_page_table;
1503 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1504 goto no_page_table;
1505 if (pmd_trans_huge(*pmd)) {
1506 if (flags & FOLL_SPLIT) {
1507 split_huge_page_pmd(vma, address, pmd);
1508 goto split_fallthrough;
1510 spin_lock(&mm->page_table_lock);
1511 if (likely(pmd_trans_huge(*pmd))) {
1512 if (unlikely(pmd_trans_splitting(*pmd))) {
1513 spin_unlock(&mm->page_table_lock);
1514 wait_split_huge_page(vma->anon_vma, pmd);
1515 } else {
1516 page = follow_trans_huge_pmd(vma, address,
1517 pmd, flags);
1518 spin_unlock(&mm->page_table_lock);
1519 *page_mask = HPAGE_PMD_NR - 1;
1520 goto out;
1522 } else
1523 spin_unlock(&mm->page_table_lock);
1524 /* fall through */
1526 split_fallthrough:
1527 if (unlikely(pmd_bad(*pmd)))
1528 goto no_page_table;
1530 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1532 pte = *ptep;
1533 if (!pte_present(pte)) {
1534 swp_entry_t entry;
1536 * KSM's break_ksm() relies upon recognizing a ksm page
1537 * even while it is being migrated, so for that case we
1538 * need migration_entry_wait().
1540 if (likely(!(flags & FOLL_MIGRATION)))
1541 goto no_page;
1542 if (pte_none(pte) || pte_file(pte))
1543 goto no_page;
1544 entry = pte_to_swp_entry(pte);
1545 if (!is_migration_entry(entry))
1546 goto no_page;
1547 pte_unmap_unlock(ptep, ptl);
1548 migration_entry_wait(mm, pmd, address);
1549 goto split_fallthrough;
1551 if ((flags & FOLL_NUMA) && pte_numa(pte))
1552 goto no_page;
1553 if ((flags & FOLL_WRITE) && !pte_write(pte))
1554 goto unlock;
1556 page = vm_normal_page(vma, address, pte);
1557 if (unlikely(!page)) {
1558 if ((flags & FOLL_DUMP) ||
1559 !is_zero_pfn(pte_pfn(pte)))
1560 goto bad_page;
1561 page = pte_page(pte);
1564 if (flags & FOLL_GET)
1565 get_page_foll(page);
1566 if (flags & FOLL_TOUCH) {
1567 if ((flags & FOLL_WRITE) &&
1568 !pte_dirty(pte) && !PageDirty(page))
1569 set_page_dirty(page);
1571 * pte_mkyoung() would be more correct here, but atomic care
1572 * is needed to avoid losing the dirty bit: it is easier to use
1573 * mark_page_accessed().
1575 mark_page_accessed(page);
1577 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1579 * The preliminary mapping check is mainly to avoid the
1580 * pointless overhead of lock_page on the ZERO_PAGE
1581 * which might bounce very badly if there is contention.
1583 * If the page is already locked, we don't need to
1584 * handle it now - vmscan will handle it later if and
1585 * when it attempts to reclaim the page.
1587 if (page->mapping && trylock_page(page)) {
1588 lru_add_drain(); /* push cached pages to LRU */
1590 * Because we lock page here, and migration is
1591 * blocked by the pte's page reference, and we
1592 * know the page is still mapped, we don't even
1593 * need to check for file-cache page truncation.
1595 mlock_vma_page(page);
1596 unlock_page(page);
1599 unlock:
1600 pte_unmap_unlock(ptep, ptl);
1601 out:
1602 return page;
1604 bad_page:
1605 pte_unmap_unlock(ptep, ptl);
1606 return ERR_PTR(-EFAULT);
1608 no_page:
1609 pte_unmap_unlock(ptep, ptl);
1610 if (!pte_none(pte))
1611 return page;
1613 no_page_table:
1615 * When core dumping an enormous anonymous area that nobody
1616 * has touched so far, we don't want to allocate unnecessary pages or
1617 * page tables. Return error instead of NULL to skip handle_mm_fault,
1618 * then get_dump_page() will return NULL to leave a hole in the dump.
1619 * But we can only make this optimization where a hole would surely
1620 * be zero-filled if handle_mm_fault() actually did handle it.
1622 if ((flags & FOLL_DUMP) &&
1623 (!vma->vm_ops || !vma->vm_ops->fault))
1624 return ERR_PTR(-EFAULT);
1625 return page;
1628 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1630 return stack_guard_page_start(vma, addr) ||
1631 stack_guard_page_end(vma, addr+PAGE_SIZE);
1635 * __get_user_pages() - pin user pages in memory
1636 * @tsk: task_struct of target task
1637 * @mm: mm_struct of target mm
1638 * @start: starting user address
1639 * @nr_pages: number of pages from start to pin
1640 * @gup_flags: flags modifying pin behaviour
1641 * @pages: array that receives pointers to the pages pinned.
1642 * Should be at least nr_pages long. Or NULL, if caller
1643 * only intends to ensure the pages are faulted in.
1644 * @vmas: array of pointers to vmas corresponding to each page.
1645 * Or NULL if the caller does not require them.
1646 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1648 * Returns number of pages pinned. This may be fewer than the number
1649 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1650 * were pinned, returns -errno. Each page returned must be released
1651 * with a put_page() call when it is finished with. vmas will only
1652 * remain valid while mmap_sem is held.
1654 * Must be called with mmap_sem held for read or write.
1656 * __get_user_pages walks a process's page tables and takes a reference to
1657 * each struct page that each user address corresponds to at a given
1658 * instant. That is, it takes the page that would be accessed if a user
1659 * thread accesses the given user virtual address at that instant.
1661 * This does not guarantee that the page exists in the user mappings when
1662 * __get_user_pages returns, and there may even be a completely different
1663 * page there in some cases (eg. if mmapped pagecache has been invalidated
1664 * and subsequently re faulted). However it does guarantee that the page
1665 * won't be freed completely. And mostly callers simply care that the page
1666 * contains data that was valid *at some point in time*. Typically, an IO
1667 * or similar operation cannot guarantee anything stronger anyway because
1668 * locks can't be held over the syscall boundary.
1670 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1671 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1672 * appropriate) must be called after the page is finished with, and
1673 * before put_page is called.
1675 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1676 * or mmap_sem contention, and if waiting is needed to pin all pages,
1677 * *@nonblocking will be set to 0.
1679 * In most cases, get_user_pages or get_user_pages_fast should be used
1680 * instead of __get_user_pages. __get_user_pages should be used only if
1681 * you need some special @gup_flags.
1683 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1684 unsigned long start, unsigned long nr_pages,
1685 unsigned int gup_flags, struct page **pages,
1686 struct vm_area_struct **vmas, int *nonblocking)
1688 long i;
1689 unsigned long vm_flags;
1690 unsigned int page_mask;
1692 if (!nr_pages)
1693 return 0;
1695 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1698 * Require read or write permissions.
1699 * If FOLL_FORCE is set, we only require the "MAY" flags.
1701 vm_flags = (gup_flags & FOLL_WRITE) ?
1702 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1703 vm_flags &= (gup_flags & FOLL_FORCE) ?
1704 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1707 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1708 * would be called on PROT_NONE ranges. We must never invoke
1709 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1710 * page faults would unprotect the PROT_NONE ranges if
1711 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1712 * bitflag. So to avoid that, don't set FOLL_NUMA if
1713 * FOLL_FORCE is set.
1715 if (!(gup_flags & FOLL_FORCE))
1716 gup_flags |= FOLL_NUMA;
1718 i = 0;
1720 do {
1721 struct vm_area_struct *vma;
1723 vma = find_extend_vma(mm, start);
1724 if (!vma && in_gate_area(mm, start)) {
1725 unsigned long pg = start & PAGE_MASK;
1726 pgd_t *pgd;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729 pte_t *pte;
1731 /* user gate pages are read-only */
1732 if (gup_flags & FOLL_WRITE)
1733 return i ? : -EFAULT;
1734 if (pg > TASK_SIZE)
1735 pgd = pgd_offset_k(pg);
1736 else
1737 pgd = pgd_offset_gate(mm, pg);
1738 BUG_ON(pgd_none(*pgd));
1739 pud = pud_offset(pgd, pg);
1740 BUG_ON(pud_none(*pud));
1741 pmd = pmd_offset(pud, pg);
1742 if (pmd_none(*pmd))
1743 return i ? : -EFAULT;
1744 VM_BUG_ON(pmd_trans_huge(*pmd));
1745 pte = pte_offset_map(pmd, pg);
1746 if (pte_none(*pte)) {
1747 pte_unmap(pte);
1748 return i ? : -EFAULT;
1750 vma = get_gate_vma(mm);
1751 if (pages) {
1752 struct page *page;
1754 page = vm_normal_page(vma, start, *pte);
1755 if (!page) {
1756 if (!(gup_flags & FOLL_DUMP) &&
1757 is_zero_pfn(pte_pfn(*pte)))
1758 page = pte_page(*pte);
1759 else {
1760 pte_unmap(pte);
1761 return i ? : -EFAULT;
1764 pages[i] = page;
1765 get_page(page);
1767 pte_unmap(pte);
1768 page_mask = 0;
1769 goto next_page;
1772 if (!vma ||
1773 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1774 !(vm_flags & vma->vm_flags))
1775 return i ? : -EFAULT;
1777 if (is_vm_hugetlb_page(vma)) {
1778 i = follow_hugetlb_page(mm, vma, pages, vmas,
1779 &start, &nr_pages, i, gup_flags);
1780 continue;
1783 do {
1784 struct page *page;
1785 unsigned int foll_flags = gup_flags;
1786 unsigned int page_increm;
1789 * If we have a pending SIGKILL, don't keep faulting
1790 * pages and potentially allocating memory.
1792 if (unlikely(fatal_signal_pending(current)))
1793 return i ? i : -ERESTARTSYS;
1795 cond_resched();
1796 while (!(page = follow_page_mask(vma, start,
1797 foll_flags, &page_mask))) {
1798 int ret;
1799 unsigned int fault_flags = 0;
1801 /* For mlock, just skip the stack guard page. */
1802 if (foll_flags & FOLL_MLOCK) {
1803 if (stack_guard_page(vma, start))
1804 goto next_page;
1806 if (foll_flags & FOLL_WRITE)
1807 fault_flags |= FAULT_FLAG_WRITE;
1808 if (nonblocking)
1809 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1810 if (foll_flags & FOLL_NOWAIT)
1811 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1813 ret = handle_mm_fault(mm, vma, start,
1814 fault_flags);
1816 if (ret & VM_FAULT_ERROR) {
1817 if (ret & VM_FAULT_OOM)
1818 return i ? i : -ENOMEM;
1819 if (ret & (VM_FAULT_HWPOISON |
1820 VM_FAULT_HWPOISON_LARGE)) {
1821 if (i)
1822 return i;
1823 else if (gup_flags & FOLL_HWPOISON)
1824 return -EHWPOISON;
1825 else
1826 return -EFAULT;
1828 if (ret & (VM_FAULT_SIGBUS |
1829 VM_FAULT_SIGSEGV))
1830 return i ? i : -EFAULT;
1831 BUG();
1834 if (tsk) {
1835 if (ret & VM_FAULT_MAJOR)
1836 tsk->maj_flt++;
1837 else
1838 tsk->min_flt++;
1841 if (ret & VM_FAULT_RETRY) {
1842 if (nonblocking)
1843 *nonblocking = 0;
1844 return i;
1848 * The VM_FAULT_WRITE bit tells us that
1849 * do_wp_page has broken COW when necessary,
1850 * even if maybe_mkwrite decided not to set
1851 * pte_write. We can thus safely do subsequent
1852 * page lookups as if they were reads. But only
1853 * do so when looping for pte_write is futile:
1854 * in some cases userspace may also be wanting
1855 * to write to the gotten user page, which a
1856 * read fault here might prevent (a readonly
1857 * page might get reCOWed by userspace write).
1859 if ((ret & VM_FAULT_WRITE) &&
1860 !(vma->vm_flags & VM_WRITE))
1861 foll_flags &= ~FOLL_WRITE;
1863 cond_resched();
1865 if (IS_ERR(page))
1866 return i ? i : PTR_ERR(page);
1867 if (pages) {
1868 pages[i] = page;
1870 flush_anon_page(vma, page, start);
1871 flush_dcache_page(page);
1872 page_mask = 0;
1874 next_page:
1875 if (vmas) {
1876 vmas[i] = vma;
1877 page_mask = 0;
1879 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1880 if (page_increm > nr_pages)
1881 page_increm = nr_pages;
1882 i += page_increm;
1883 start += page_increm * PAGE_SIZE;
1884 nr_pages -= page_increm;
1885 } while (nr_pages && start < vma->vm_end);
1886 } while (nr_pages);
1887 return i;
1889 EXPORT_SYMBOL(__get_user_pages);
1892 * fixup_user_fault() - manually resolve a user page fault
1893 * @tsk: the task_struct to use for page fault accounting, or
1894 * NULL if faults are not to be recorded.
1895 * @mm: mm_struct of target mm
1896 * @address: user address
1897 * @fault_flags:flags to pass down to handle_mm_fault()
1899 * This is meant to be called in the specific scenario where for locking reasons
1900 * we try to access user memory in atomic context (within a pagefault_disable()
1901 * section), this returns -EFAULT, and we want to resolve the user fault before
1902 * trying again.
1904 * Typically this is meant to be used by the futex code.
1906 * The main difference with get_user_pages() is that this function will
1907 * unconditionally call handle_mm_fault() which will in turn perform all the
1908 * necessary SW fixup of the dirty and young bits in the PTE, while
1909 * handle_mm_fault() only guarantees to update these in the struct page.
1911 * This is important for some architectures where those bits also gate the
1912 * access permission to the page because they are maintained in software. On
1913 * such architectures, gup() will not be enough to make a subsequent access
1914 * succeed.
1916 * This should be called with the mm_sem held for read.
1918 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1919 unsigned long address, unsigned int fault_flags)
1921 struct vm_area_struct *vma;
1922 vm_flags_t vm_flags;
1923 int ret;
1925 vma = find_extend_vma(mm, address);
1926 if (!vma || address < vma->vm_start)
1927 return -EFAULT;
1929 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1930 if (!(vm_flags & vma->vm_flags))
1931 return -EFAULT;
1933 ret = handle_mm_fault(mm, vma, address, fault_flags);
1934 if (ret & VM_FAULT_ERROR) {
1935 if (ret & VM_FAULT_OOM)
1936 return -ENOMEM;
1937 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1938 return -EHWPOISON;
1939 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
1940 return -EFAULT;
1941 BUG();
1943 if (tsk) {
1944 if (ret & VM_FAULT_MAJOR)
1945 tsk->maj_flt++;
1946 else
1947 tsk->min_flt++;
1949 return 0;
1953 * get_user_pages() - pin user pages in memory
1954 * @tsk: the task_struct to use for page fault accounting, or
1955 * NULL if faults are not to be recorded.
1956 * @mm: mm_struct of target mm
1957 * @start: starting user address
1958 * @nr_pages: number of pages from start to pin
1959 * @write: whether pages will be written to by the caller
1960 * @force: whether to force write access even if user mapping is
1961 * readonly. This will result in the page being COWed even
1962 * in MAP_SHARED mappings. You do not want this.
1963 * @pages: array that receives pointers to the pages pinned.
1964 * Should be at least nr_pages long. Or NULL, if caller
1965 * only intends to ensure the pages are faulted in.
1966 * @vmas: array of pointers to vmas corresponding to each page.
1967 * Or NULL if the caller does not require them.
1969 * Returns number of pages pinned. This may be fewer than the number
1970 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1971 * were pinned, returns -errno. Each page returned must be released
1972 * with a put_page() call when it is finished with. vmas will only
1973 * remain valid while mmap_sem is held.
1975 * Must be called with mmap_sem held for read or write.
1977 * get_user_pages walks a process's page tables and takes a reference to
1978 * each struct page that each user address corresponds to at a given
1979 * instant. That is, it takes the page that would be accessed if a user
1980 * thread accesses the given user virtual address at that instant.
1982 * This does not guarantee that the page exists in the user mappings when
1983 * get_user_pages returns, and there may even be a completely different
1984 * page there in some cases (eg. if mmapped pagecache has been invalidated
1985 * and subsequently re faulted). However it does guarantee that the page
1986 * won't be freed completely. And mostly callers simply care that the page
1987 * contains data that was valid *at some point in time*. Typically, an IO
1988 * or similar operation cannot guarantee anything stronger anyway because
1989 * locks can't be held over the syscall boundary.
1991 * If write=0, the page must not be written to. If the page is written to,
1992 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1993 * after the page is finished with, and before put_page is called.
1995 * get_user_pages is typically used for fewer-copy IO operations, to get a
1996 * handle on the memory by some means other than accesses via the user virtual
1997 * addresses. The pages may be submitted for DMA to devices or accessed via
1998 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1999 * use the correct cache flushing APIs.
2001 * See also get_user_pages_fast, for performance critical applications.
2003 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2004 unsigned long start, unsigned long nr_pages, int write,
2005 int force, struct page **pages, struct vm_area_struct **vmas)
2007 int flags = FOLL_TOUCH;
2009 if (pages)
2010 flags |= FOLL_GET;
2011 if (write)
2012 flags |= FOLL_WRITE;
2013 if (force)
2014 flags |= FOLL_FORCE;
2016 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2017 NULL);
2019 EXPORT_SYMBOL(get_user_pages);
2022 * get_dump_page() - pin user page in memory while writing it to core dump
2023 * @addr: user address
2025 * Returns struct page pointer of user page pinned for dump,
2026 * to be freed afterwards by page_cache_release() or put_page().
2028 * Returns NULL on any kind of failure - a hole must then be inserted into
2029 * the corefile, to preserve alignment with its headers; and also returns
2030 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2031 * allowing a hole to be left in the corefile to save diskspace.
2033 * Called without mmap_sem, but after all other threads have been killed.
2035 #ifdef CONFIG_ELF_CORE
2036 struct page *get_dump_page(unsigned long addr)
2038 struct vm_area_struct *vma;
2039 struct page *page;
2041 if (__get_user_pages(current, current->mm, addr, 1,
2042 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2043 NULL) < 1)
2044 return NULL;
2045 flush_cache_page(vma, addr, page_to_pfn(page));
2046 return page;
2048 #endif /* CONFIG_ELF_CORE */
2050 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2051 spinlock_t **ptl)
2053 pgd_t * pgd = pgd_offset(mm, addr);
2054 pud_t * pud = pud_alloc(mm, pgd, addr);
2055 if (pud) {
2056 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2057 if (pmd) {
2058 VM_BUG_ON(pmd_trans_huge(*pmd));
2059 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2062 return NULL;
2066 * This is the old fallback for page remapping.
2068 * For historical reasons, it only allows reserved pages. Only
2069 * old drivers should use this, and they needed to mark their
2070 * pages reserved for the old functions anyway.
2072 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2073 struct page *page, pgprot_t prot)
2075 struct mm_struct *mm = vma->vm_mm;
2076 int retval;
2077 pte_t *pte;
2078 spinlock_t *ptl;
2080 retval = -EINVAL;
2081 if (PageAnon(page))
2082 goto out;
2083 retval = -ENOMEM;
2084 flush_dcache_page(page);
2085 pte = get_locked_pte(mm, addr, &ptl);
2086 if (!pte)
2087 goto out;
2088 retval = -EBUSY;
2089 if (!pte_none(*pte))
2090 goto out_unlock;
2092 /* Ok, finally just insert the thing.. */
2093 get_page(page);
2094 inc_mm_counter_fast(mm, MM_FILEPAGES);
2095 page_add_file_rmap(page);
2096 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2098 retval = 0;
2099 pte_unmap_unlock(pte, ptl);
2100 return retval;
2101 out_unlock:
2102 pte_unmap_unlock(pte, ptl);
2103 out:
2104 return retval;
2108 * vm_insert_page - insert single page into user vma
2109 * @vma: user vma to map to
2110 * @addr: target user address of this page
2111 * @page: source kernel page
2113 * This allows drivers to insert individual pages they've allocated
2114 * into a user vma.
2116 * The page has to be a nice clean _individual_ kernel allocation.
2117 * If you allocate a compound page, you need to have marked it as
2118 * such (__GFP_COMP), or manually just split the page up yourself
2119 * (see split_page()).
2121 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2122 * took an arbitrary page protection parameter. This doesn't allow
2123 * that. Your vma protection will have to be set up correctly, which
2124 * means that if you want a shared writable mapping, you'd better
2125 * ask for a shared writable mapping!
2127 * The page does not need to be reserved.
2129 * Usually this function is called from f_op->mmap() handler
2130 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2131 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2132 * function from other places, for example from page-fault handler.
2134 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2135 struct page *page)
2137 if (addr < vma->vm_start || addr >= vma->vm_end)
2138 return -EFAULT;
2139 if (!page_count(page))
2140 return -EINVAL;
2141 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2142 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2143 BUG_ON(vma->vm_flags & VM_PFNMAP);
2144 vma->vm_flags |= VM_MIXEDMAP;
2146 return insert_page(vma, addr, page, vma->vm_page_prot);
2148 EXPORT_SYMBOL(vm_insert_page);
2150 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2151 unsigned long pfn, pgprot_t prot)
2153 struct mm_struct *mm = vma->vm_mm;
2154 int retval;
2155 pte_t *pte, entry;
2156 spinlock_t *ptl;
2158 retval = -ENOMEM;
2159 pte = get_locked_pte(mm, addr, &ptl);
2160 if (!pte)
2161 goto out;
2162 retval = -EBUSY;
2163 if (!pte_none(*pte))
2164 goto out_unlock;
2166 /* Ok, finally just insert the thing.. */
2167 entry = pte_mkspecial(pfn_pte(pfn, prot));
2168 set_pte_at(mm, addr, pte, entry);
2169 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2171 retval = 0;
2172 out_unlock:
2173 pte_unmap_unlock(pte, ptl);
2174 out:
2175 return retval;
2179 * vm_insert_pfn - insert single pfn into user vma
2180 * @vma: user vma to map to
2181 * @addr: target user address of this page
2182 * @pfn: source kernel pfn
2184 * Similar to vm_insert_page, this allows drivers to insert individual pages
2185 * they've allocated into a user vma. Same comments apply.
2187 * This function should only be called from a vm_ops->fault handler, and
2188 * in that case the handler should return NULL.
2190 * vma cannot be a COW mapping.
2192 * As this is called only for pages that do not currently exist, we
2193 * do not need to flush old virtual caches or the TLB.
2195 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2196 unsigned long pfn)
2198 int ret;
2199 pgprot_t pgprot = vma->vm_page_prot;
2201 * Technically, architectures with pte_special can avoid all these
2202 * restrictions (same for remap_pfn_range). However we would like
2203 * consistency in testing and feature parity among all, so we should
2204 * try to keep these invariants in place for everybody.
2206 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2207 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2208 (VM_PFNMAP|VM_MIXEDMAP));
2209 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2210 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2212 if (addr < vma->vm_start || addr >= vma->vm_end)
2213 return -EFAULT;
2214 if (track_pfn_insert(vma, &pgprot, pfn))
2215 return -EINVAL;
2217 ret = insert_pfn(vma, addr, pfn, pgprot);
2219 return ret;
2221 EXPORT_SYMBOL(vm_insert_pfn);
2223 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2224 unsigned long pfn)
2226 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2228 if (addr < vma->vm_start || addr >= vma->vm_end)
2229 return -EFAULT;
2232 * If we don't have pte special, then we have to use the pfn_valid()
2233 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2234 * refcount the page if pfn_valid is true (hence insert_page rather
2235 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2236 * without pte special, it would there be refcounted as a normal page.
2238 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2239 struct page *page;
2241 page = pfn_to_page(pfn);
2242 return insert_page(vma, addr, page, vma->vm_page_prot);
2244 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2246 EXPORT_SYMBOL(vm_insert_mixed);
2249 * maps a range of physical memory into the requested pages. the old
2250 * mappings are removed. any references to nonexistent pages results
2251 * in null mappings (currently treated as "copy-on-access")
2253 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2254 unsigned long addr, unsigned long end,
2255 unsigned long pfn, pgprot_t prot)
2257 pte_t *pte;
2258 spinlock_t *ptl;
2260 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2261 if (!pte)
2262 return -ENOMEM;
2263 arch_enter_lazy_mmu_mode();
2264 do {
2265 BUG_ON(!pte_none(*pte));
2266 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2267 pfn++;
2268 } while (pte++, addr += PAGE_SIZE, addr != end);
2269 arch_leave_lazy_mmu_mode();
2270 pte_unmap_unlock(pte - 1, ptl);
2271 return 0;
2274 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2275 unsigned long addr, unsigned long end,
2276 unsigned long pfn, pgprot_t prot)
2278 pmd_t *pmd;
2279 unsigned long next;
2281 pfn -= addr >> PAGE_SHIFT;
2282 pmd = pmd_alloc(mm, pud, addr);
2283 if (!pmd)
2284 return -ENOMEM;
2285 VM_BUG_ON(pmd_trans_huge(*pmd));
2286 do {
2287 next = pmd_addr_end(addr, end);
2288 if (remap_pte_range(mm, pmd, addr, next,
2289 pfn + (addr >> PAGE_SHIFT), prot))
2290 return -ENOMEM;
2291 } while (pmd++, addr = next, addr != end);
2292 return 0;
2295 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2296 unsigned long addr, unsigned long end,
2297 unsigned long pfn, pgprot_t prot)
2299 pud_t *pud;
2300 unsigned long next;
2302 pfn -= addr >> PAGE_SHIFT;
2303 pud = pud_alloc(mm, pgd, addr);
2304 if (!pud)
2305 return -ENOMEM;
2306 do {
2307 next = pud_addr_end(addr, end);
2308 if (remap_pmd_range(mm, pud, addr, next,
2309 pfn + (addr >> PAGE_SHIFT), prot))
2310 return -ENOMEM;
2311 } while (pud++, addr = next, addr != end);
2312 return 0;
2316 * remap_pfn_range - remap kernel memory to userspace
2317 * @vma: user vma to map to
2318 * @addr: target user address to start at
2319 * @pfn: physical address of kernel memory
2320 * @size: size of map area
2321 * @prot: page protection flags for this mapping
2323 * Note: this is only safe if the mm semaphore is held when called.
2325 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2326 unsigned long pfn, unsigned long size, pgprot_t prot)
2328 pgd_t *pgd;
2329 unsigned long next;
2330 unsigned long end = addr + PAGE_ALIGN(size);
2331 struct mm_struct *mm = vma->vm_mm;
2332 int err;
2335 * Physically remapped pages are special. Tell the
2336 * rest of the world about it:
2337 * VM_IO tells people not to look at these pages
2338 * (accesses can have side effects).
2339 * VM_PFNMAP tells the core MM that the base pages are just
2340 * raw PFN mappings, and do not have a "struct page" associated
2341 * with them.
2342 * VM_DONTEXPAND
2343 * Disable vma merging and expanding with mremap().
2344 * VM_DONTDUMP
2345 * Omit vma from core dump, even when VM_IO turned off.
2347 * There's a horrible special case to handle copy-on-write
2348 * behaviour that some programs depend on. We mark the "original"
2349 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2350 * See vm_normal_page() for details.
2352 if (is_cow_mapping(vma->vm_flags)) {
2353 if (addr != vma->vm_start || end != vma->vm_end)
2354 return -EINVAL;
2355 vma->vm_pgoff = pfn;
2358 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2359 if (err)
2360 return -EINVAL;
2362 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2364 BUG_ON(addr >= end);
2365 pfn -= addr >> PAGE_SHIFT;
2366 pgd = pgd_offset(mm, addr);
2367 flush_cache_range(vma, addr, end);
2368 do {
2369 next = pgd_addr_end(addr, end);
2370 err = remap_pud_range(mm, pgd, addr, next,
2371 pfn + (addr >> PAGE_SHIFT), prot);
2372 if (err)
2373 break;
2374 } while (pgd++, addr = next, addr != end);
2376 if (err)
2377 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2379 return err;
2381 EXPORT_SYMBOL(remap_pfn_range);
2384 * vm_iomap_memory - remap memory to userspace
2385 * @vma: user vma to map to
2386 * @start: start of area
2387 * @len: size of area
2389 * This is a simplified io_remap_pfn_range() for common driver use. The
2390 * driver just needs to give us the physical memory range to be mapped,
2391 * we'll figure out the rest from the vma information.
2393 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2394 * whatever write-combining details or similar.
2396 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2398 unsigned long vm_len, pfn, pages;
2400 /* Check that the physical memory area passed in looks valid */
2401 if (start + len < start)
2402 return -EINVAL;
2404 * You *really* shouldn't map things that aren't page-aligned,
2405 * but we've historically allowed it because IO memory might
2406 * just have smaller alignment.
2408 len += start & ~PAGE_MASK;
2409 pfn = start >> PAGE_SHIFT;
2410 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2411 if (pfn + pages < pfn)
2412 return -EINVAL;
2414 /* We start the mapping 'vm_pgoff' pages into the area */
2415 if (vma->vm_pgoff > pages)
2416 return -EINVAL;
2417 pfn += vma->vm_pgoff;
2418 pages -= vma->vm_pgoff;
2420 /* Can we fit all of the mapping? */
2421 vm_len = vma->vm_end - vma->vm_start;
2422 if (vm_len >> PAGE_SHIFT > pages)
2423 return -EINVAL;
2425 /* Ok, let it rip */
2426 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2428 EXPORT_SYMBOL(vm_iomap_memory);
2430 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2431 unsigned long addr, unsigned long end,
2432 pte_fn_t fn, void *data)
2434 pte_t *pte;
2435 int err;
2436 pgtable_t token;
2437 spinlock_t *uninitialized_var(ptl);
2439 pte = (mm == &init_mm) ?
2440 pte_alloc_kernel(pmd, addr) :
2441 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2442 if (!pte)
2443 return -ENOMEM;
2445 BUG_ON(pmd_huge(*pmd));
2447 arch_enter_lazy_mmu_mode();
2449 token = pmd_pgtable(*pmd);
2451 do {
2452 err = fn(pte++, token, addr, data);
2453 if (err)
2454 break;
2455 } while (addr += PAGE_SIZE, addr != end);
2457 arch_leave_lazy_mmu_mode();
2459 if (mm != &init_mm)
2460 pte_unmap_unlock(pte-1, ptl);
2461 return err;
2464 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2465 unsigned long addr, unsigned long end,
2466 pte_fn_t fn, void *data)
2468 pmd_t *pmd;
2469 unsigned long next;
2470 int err;
2472 BUG_ON(pud_huge(*pud));
2474 pmd = pmd_alloc(mm, pud, addr);
2475 if (!pmd)
2476 return -ENOMEM;
2477 do {
2478 next = pmd_addr_end(addr, end);
2479 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2480 if (err)
2481 break;
2482 } while (pmd++, addr = next, addr != end);
2483 return err;
2486 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2487 unsigned long addr, unsigned long end,
2488 pte_fn_t fn, void *data)
2490 pud_t *pud;
2491 unsigned long next;
2492 int err;
2494 pud = pud_alloc(mm, pgd, addr);
2495 if (!pud)
2496 return -ENOMEM;
2497 do {
2498 next = pud_addr_end(addr, end);
2499 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2500 if (err)
2501 break;
2502 } while (pud++, addr = next, addr != end);
2503 return err;
2507 * Scan a region of virtual memory, filling in page tables as necessary
2508 * and calling a provided function on each leaf page table.
2510 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2511 unsigned long size, pte_fn_t fn, void *data)
2513 pgd_t *pgd;
2514 unsigned long next;
2515 unsigned long end = addr + size;
2516 int err;
2518 BUG_ON(addr >= end);
2519 pgd = pgd_offset(mm, addr);
2520 do {
2521 next = pgd_addr_end(addr, end);
2522 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2523 if (err)
2524 break;
2525 } while (pgd++, addr = next, addr != end);
2527 return err;
2529 EXPORT_SYMBOL_GPL(apply_to_page_range);
2532 * handle_pte_fault chooses page fault handler according to an entry
2533 * which was read non-atomically. Before making any commitment, on
2534 * those architectures or configurations (e.g. i386 with PAE) which
2535 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2536 * must check under lock before unmapping the pte and proceeding
2537 * (but do_wp_page is only called after already making such a check;
2538 * and do_anonymous_page can safely check later on).
2540 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2541 pte_t *page_table, pte_t orig_pte)
2543 int same = 1;
2544 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2545 if (sizeof(pte_t) > sizeof(unsigned long)) {
2546 spinlock_t *ptl = pte_lockptr(mm, pmd);
2547 spin_lock(ptl);
2548 same = pte_same(*page_table, orig_pte);
2549 spin_unlock(ptl);
2551 #endif
2552 pte_unmap(page_table);
2553 return same;
2556 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2559 * If the source page was a PFN mapping, we don't have
2560 * a "struct page" for it. We do a best-effort copy by
2561 * just copying from the original user address. If that
2562 * fails, we just zero-fill it. Live with it.
2564 if (unlikely(!src)) {
2565 void *kaddr = kmap_atomic(dst);
2566 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2569 * This really shouldn't fail, because the page is there
2570 * in the page tables. But it might just be unreadable,
2571 * in which case we just give up and fill the result with
2572 * zeroes.
2574 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2575 clear_page(kaddr);
2576 kunmap_atomic(kaddr);
2577 flush_dcache_page(dst);
2578 } else
2579 copy_user_highpage(dst, src, va, vma);
2583 * This routine handles present pages, when users try to write
2584 * to a shared page. It is done by copying the page to a new address
2585 * and decrementing the shared-page counter for the old page.
2587 * Note that this routine assumes that the protection checks have been
2588 * done by the caller (the low-level page fault routine in most cases).
2589 * Thus we can safely just mark it writable once we've done any necessary
2590 * COW.
2592 * We also mark the page dirty at this point even though the page will
2593 * change only once the write actually happens. This avoids a few races,
2594 * and potentially makes it more efficient.
2596 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2597 * but allow concurrent faults), with pte both mapped and locked.
2598 * We return with mmap_sem still held, but pte unmapped and unlocked.
2600 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2601 unsigned long address, pte_t *page_table, pmd_t *pmd,
2602 spinlock_t *ptl, pte_t orig_pte)
2603 __releases(ptl)
2605 struct page *old_page, *new_page = NULL;
2606 pte_t entry;
2607 int ret = 0;
2608 int page_mkwrite = 0;
2609 struct page *dirty_page = NULL;
2610 unsigned long mmun_start = 0; /* For mmu_notifiers */
2611 unsigned long mmun_end = 0; /* For mmu_notifiers */
2613 old_page = vm_normal_page(vma, address, orig_pte);
2614 if (!old_page) {
2616 * VM_MIXEDMAP !pfn_valid() case
2618 * We should not cow pages in a shared writeable mapping.
2619 * Just mark the pages writable as we can't do any dirty
2620 * accounting on raw pfn maps.
2622 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2623 (VM_WRITE|VM_SHARED))
2624 goto reuse;
2625 goto gotten;
2629 * Take out anonymous pages first, anonymous shared vmas are
2630 * not dirty accountable.
2632 if (PageAnon(old_page) && !PageKsm(old_page)) {
2633 if (!trylock_page(old_page)) {
2634 page_cache_get(old_page);
2635 pte_unmap_unlock(page_table, ptl);
2636 lock_page(old_page);
2637 page_table = pte_offset_map_lock(mm, pmd, address,
2638 &ptl);
2639 if (!pte_same(*page_table, orig_pte)) {
2640 unlock_page(old_page);
2641 goto unlock;
2643 page_cache_release(old_page);
2645 if (reuse_swap_page(old_page)) {
2647 * The page is all ours. Move it to our anon_vma so
2648 * the rmap code will not search our parent or siblings.
2649 * Protected against the rmap code by the page lock.
2651 page_move_anon_rmap(old_page, vma, address);
2652 unlock_page(old_page);
2653 goto reuse;
2655 unlock_page(old_page);
2656 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2657 (VM_WRITE|VM_SHARED))) {
2659 * Only catch write-faults on shared writable pages,
2660 * read-only shared pages can get COWed by
2661 * get_user_pages(.write=1, .force=1).
2663 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664 struct vm_fault vmf;
2665 int tmp;
2667 vmf.virtual_address = (void __user *)(address &
2668 PAGE_MASK);
2669 vmf.pgoff = old_page->index;
2670 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2671 vmf.page = old_page;
2674 * Notify the address space that the page is about to
2675 * become writable so that it can prohibit this or wait
2676 * for the page to get into an appropriate state.
2678 * We do this without the lock held, so that it can
2679 * sleep if it needs to.
2681 page_cache_get(old_page);
2682 pte_unmap_unlock(page_table, ptl);
2684 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2685 if (unlikely(tmp &
2686 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2687 ret = tmp;
2688 goto unwritable_page;
2690 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2691 lock_page(old_page);
2692 if (!old_page->mapping) {
2693 ret = 0; /* retry the fault */
2694 unlock_page(old_page);
2695 goto unwritable_page;
2697 } else
2698 VM_BUG_ON(!PageLocked(old_page));
2701 * Since we dropped the lock we need to revalidate
2702 * the PTE as someone else may have changed it. If
2703 * they did, we just return, as we can count on the
2704 * MMU to tell us if they didn't also make it writable.
2706 page_table = pte_offset_map_lock(mm, pmd, address,
2707 &ptl);
2708 if (!pte_same(*page_table, orig_pte)) {
2709 unlock_page(old_page);
2710 goto unlock;
2713 page_mkwrite = 1;
2715 dirty_page = old_page;
2716 get_page(dirty_page);
2718 reuse:
2719 flush_cache_page(vma, address, pte_pfn(orig_pte));
2720 entry = pte_mkyoung(orig_pte);
2721 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2722 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2723 update_mmu_cache(vma, address, page_table);
2724 pte_unmap_unlock(page_table, ptl);
2725 ret |= VM_FAULT_WRITE;
2727 if (!dirty_page)
2728 return ret;
2731 * Yes, Virginia, this is actually required to prevent a race
2732 * with clear_page_dirty_for_io() from clearing the page dirty
2733 * bit after it clear all dirty ptes, but before a racing
2734 * do_wp_page installs a dirty pte.
2736 * __do_fault is protected similarly.
2738 if (!page_mkwrite) {
2739 wait_on_page_locked(dirty_page);
2740 set_page_dirty_balance(dirty_page, page_mkwrite);
2741 /* file_update_time outside page_lock */
2742 if (vma->vm_file)
2743 file_update_time(vma->vm_file);
2745 put_page(dirty_page);
2746 if (page_mkwrite) {
2747 struct address_space *mapping = dirty_page->mapping;
2749 set_page_dirty(dirty_page);
2750 unlock_page(dirty_page);
2751 page_cache_release(dirty_page);
2752 if (mapping) {
2754 * Some device drivers do not set page.mapping
2755 * but still dirty their pages
2757 balance_dirty_pages_ratelimited(mapping);
2761 return ret;
2765 * Ok, we need to copy. Oh, well..
2767 page_cache_get(old_page);
2768 gotten:
2769 pte_unmap_unlock(page_table, ptl);
2771 if (unlikely(anon_vma_prepare(vma)))
2772 goto oom;
2774 if (is_zero_pfn(pte_pfn(orig_pte))) {
2775 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2776 if (!new_page)
2777 goto oom;
2778 } else {
2779 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2780 if (!new_page)
2781 goto oom;
2782 cow_user_page(new_page, old_page, address, vma);
2784 __SetPageUptodate(new_page);
2786 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2787 goto oom_free_new;
2789 mmun_start = address & PAGE_MASK;
2790 mmun_end = mmun_start + PAGE_SIZE;
2791 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2794 * Re-check the pte - we dropped the lock
2796 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2797 if (likely(pte_same(*page_table, orig_pte))) {
2798 if (old_page) {
2799 if (!PageAnon(old_page)) {
2800 dec_mm_counter_fast(mm, MM_FILEPAGES);
2801 inc_mm_counter_fast(mm, MM_ANONPAGES);
2803 } else
2804 inc_mm_counter_fast(mm, MM_ANONPAGES);
2805 flush_cache_page(vma, address, pte_pfn(orig_pte));
2806 entry = mk_pte(new_page, vma->vm_page_prot);
2807 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2809 * Clear the pte entry and flush it first, before updating the
2810 * pte with the new entry. This will avoid a race condition
2811 * seen in the presence of one thread doing SMC and another
2812 * thread doing COW.
2814 ptep_clear_flush(vma, address, page_table);
2815 page_add_new_anon_rmap(new_page, vma, address);
2817 * We call the notify macro here because, when using secondary
2818 * mmu page tables (such as kvm shadow page tables), we want the
2819 * new page to be mapped directly into the secondary page table.
2821 set_pte_at_notify(mm, address, page_table, entry);
2822 update_mmu_cache(vma, address, page_table);
2823 if (old_page) {
2825 * Only after switching the pte to the new page may
2826 * we remove the mapcount here. Otherwise another
2827 * process may come and find the rmap count decremented
2828 * before the pte is switched to the new page, and
2829 * "reuse" the old page writing into it while our pte
2830 * here still points into it and can be read by other
2831 * threads.
2833 * The critical issue is to order this
2834 * page_remove_rmap with the ptp_clear_flush above.
2835 * Those stores are ordered by (if nothing else,)
2836 * the barrier present in the atomic_add_negative
2837 * in page_remove_rmap.
2839 * Then the TLB flush in ptep_clear_flush ensures that
2840 * no process can access the old page before the
2841 * decremented mapcount is visible. And the old page
2842 * cannot be reused until after the decremented
2843 * mapcount is visible. So transitively, TLBs to
2844 * old page will be flushed before it can be reused.
2846 page_remove_rmap(old_page);
2849 /* Free the old page.. */
2850 new_page = old_page;
2851 ret |= VM_FAULT_WRITE;
2852 } else
2853 mem_cgroup_uncharge_page(new_page);
2855 if (new_page)
2856 page_cache_release(new_page);
2857 unlock:
2858 pte_unmap_unlock(page_table, ptl);
2859 if (mmun_end > mmun_start)
2860 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2861 if (old_page) {
2863 * Don't let another task, with possibly unlocked vma,
2864 * keep the mlocked page.
2866 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2867 lock_page(old_page); /* LRU manipulation */
2868 munlock_vma_page(old_page);
2869 unlock_page(old_page);
2871 page_cache_release(old_page);
2873 return ret;
2874 oom_free_new:
2875 page_cache_release(new_page);
2876 oom:
2877 if (old_page)
2878 page_cache_release(old_page);
2879 return VM_FAULT_OOM;
2881 unwritable_page:
2882 page_cache_release(old_page);
2883 return ret;
2886 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2887 unsigned long start_addr, unsigned long end_addr,
2888 struct zap_details *details)
2890 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2893 static inline void unmap_mapping_range_tree(struct rb_root *root,
2894 struct zap_details *details)
2896 struct vm_area_struct *vma;
2897 pgoff_t vba, vea, zba, zea;
2899 vma_interval_tree_foreach(vma, root,
2900 details->first_index, details->last_index) {
2902 vba = vma->vm_pgoff;
2903 vea = vba + vma_pages(vma) - 1;
2904 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2905 zba = details->first_index;
2906 if (zba < vba)
2907 zba = vba;
2908 zea = details->last_index;
2909 if (zea > vea)
2910 zea = vea;
2912 unmap_mapping_range_vma(vma,
2913 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2914 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2915 details);
2919 static inline void unmap_mapping_range_list(struct list_head *head,
2920 struct zap_details *details)
2922 struct vm_area_struct *vma;
2925 * In nonlinear VMAs there is no correspondence between virtual address
2926 * offset and file offset. So we must perform an exhaustive search
2927 * across *all* the pages in each nonlinear VMA, not just the pages
2928 * whose virtual address lies outside the file truncation point.
2930 list_for_each_entry(vma, head, shared.nonlinear) {
2931 details->nonlinear_vma = vma;
2932 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2937 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2938 * @mapping: the address space containing mmaps to be unmapped.
2939 * @holebegin: byte in first page to unmap, relative to the start of
2940 * the underlying file. This will be rounded down to a PAGE_SIZE
2941 * boundary. Note that this is different from truncate_pagecache(), which
2942 * must keep the partial page. In contrast, we must get rid of
2943 * partial pages.
2944 * @holelen: size of prospective hole in bytes. This will be rounded
2945 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2946 * end of the file.
2947 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2948 * but 0 when invalidating pagecache, don't throw away private data.
2950 void unmap_mapping_range(struct address_space *mapping,
2951 loff_t const holebegin, loff_t const holelen, int even_cows)
2953 struct zap_details details;
2954 pgoff_t hba = holebegin >> PAGE_SHIFT;
2955 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2957 /* Check for overflow. */
2958 if (sizeof(holelen) > sizeof(hlen)) {
2959 long long holeend =
2960 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2961 if (holeend & ~(long long)ULONG_MAX)
2962 hlen = ULONG_MAX - hba + 1;
2965 details.check_mapping = even_cows? NULL: mapping;
2966 details.nonlinear_vma = NULL;
2967 details.first_index = hba;
2968 details.last_index = hba + hlen - 1;
2969 if (details.last_index < details.first_index)
2970 details.last_index = ULONG_MAX;
2973 mutex_lock(&mapping->i_mmap_mutex);
2974 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2975 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2976 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2977 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2978 mutex_unlock(&mapping->i_mmap_mutex);
2980 EXPORT_SYMBOL(unmap_mapping_range);
2983 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2984 * but allow concurrent faults), and pte mapped but not yet locked.
2985 * We return with mmap_sem still held, but pte unmapped and unlocked.
2987 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2988 unsigned long address, pte_t *page_table, pmd_t *pmd,
2989 unsigned int flags, pte_t orig_pte)
2991 spinlock_t *ptl;
2992 struct page *page, *swapcache;
2993 swp_entry_t entry;
2994 pte_t pte;
2995 int locked;
2996 struct mem_cgroup *ptr;
2997 int exclusive = 0;
2998 int ret = 0;
3000 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3001 goto out;
3003 entry = pte_to_swp_entry(orig_pte);
3004 if (unlikely(non_swap_entry(entry))) {
3005 if (is_migration_entry(entry)) {
3006 migration_entry_wait(mm, pmd, address);
3007 } else if (is_hwpoison_entry(entry)) {
3008 ret = VM_FAULT_HWPOISON;
3009 } else {
3010 print_bad_pte(vma, address, orig_pte, NULL);
3011 ret = VM_FAULT_SIGBUS;
3013 goto out;
3015 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3016 page = lookup_swap_cache(entry);
3017 if (!page) {
3018 page = swapin_readahead(entry,
3019 GFP_HIGHUSER_MOVABLE, vma, address);
3020 if (!page) {
3022 * Back out if somebody else faulted in this pte
3023 * while we released the pte lock.
3025 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3026 if (likely(pte_same(*page_table, orig_pte)))
3027 ret = VM_FAULT_OOM;
3028 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3029 goto unlock;
3032 /* Had to read the page from swap area: Major fault */
3033 ret = VM_FAULT_MAJOR;
3034 count_vm_event(PGMAJFAULT);
3035 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3036 } else if (PageHWPoison(page)) {
3038 * hwpoisoned dirty swapcache pages are kept for killing
3039 * owner processes (which may be unknown at hwpoison time)
3041 ret = VM_FAULT_HWPOISON;
3042 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3043 swapcache = page;
3044 goto out_release;
3047 swapcache = page;
3048 locked = lock_page_or_retry(page, mm, flags);
3050 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3051 if (!locked) {
3052 ret |= VM_FAULT_RETRY;
3053 goto out_release;
3057 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3058 * release the swapcache from under us. The page pin, and pte_same
3059 * test below, are not enough to exclude that. Even if it is still
3060 * swapcache, we need to check that the page's swap has not changed.
3062 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3063 goto out_page;
3065 page = ksm_might_need_to_copy(page, vma, address);
3066 if (unlikely(!page)) {
3067 ret = VM_FAULT_OOM;
3068 page = swapcache;
3069 goto out_page;
3072 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3073 ret = VM_FAULT_OOM;
3074 goto out_page;
3078 * Back out if somebody else already faulted in this pte.
3080 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3081 if (unlikely(!pte_same(*page_table, orig_pte)))
3082 goto out_nomap;
3084 if (unlikely(!PageUptodate(page))) {
3085 ret = VM_FAULT_SIGBUS;
3086 goto out_nomap;
3090 * The page isn't present yet, go ahead with the fault.
3092 * Be careful about the sequence of operations here.
3093 * To get its accounting right, reuse_swap_page() must be called
3094 * while the page is counted on swap but not yet in mapcount i.e.
3095 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3096 * must be called after the swap_free(), or it will never succeed.
3097 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3098 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3099 * in page->private. In this case, a record in swap_cgroup is silently
3100 * discarded at swap_free().
3103 inc_mm_counter_fast(mm, MM_ANONPAGES);
3104 dec_mm_counter_fast(mm, MM_SWAPENTS);
3105 pte = mk_pte(page, vma->vm_page_prot);
3106 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3107 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3108 flags &= ~FAULT_FLAG_WRITE;
3109 ret |= VM_FAULT_WRITE;
3110 exclusive = 1;
3112 flush_icache_page(vma, page);
3113 if (pte_swp_soft_dirty(orig_pte))
3114 pte = pte_mksoft_dirty(pte);
3115 set_pte_at(mm, address, page_table, pte);
3116 if (page == swapcache)
3117 do_page_add_anon_rmap(page, vma, address, exclusive);
3118 else /* ksm created a completely new copy */
3119 page_add_new_anon_rmap(page, vma, address);
3120 /* It's better to call commit-charge after rmap is established */
3121 mem_cgroup_commit_charge_swapin(page, ptr);
3123 swap_free(entry);
3124 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3125 try_to_free_swap(page);
3126 unlock_page(page);
3127 if (page != swapcache) {
3129 * Hold the lock to avoid the swap entry to be reused
3130 * until we take the PT lock for the pte_same() check
3131 * (to avoid false positives from pte_same). For
3132 * further safety release the lock after the swap_free
3133 * so that the swap count won't change under a
3134 * parallel locked swapcache.
3136 unlock_page(swapcache);
3137 page_cache_release(swapcache);
3140 if (flags & FAULT_FLAG_WRITE) {
3141 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3142 if (ret & VM_FAULT_ERROR)
3143 ret &= VM_FAULT_ERROR;
3144 goto out;
3147 /* No need to invalidate - it was non-present before */
3148 update_mmu_cache(vma, address, page_table);
3149 unlock:
3150 pte_unmap_unlock(page_table, ptl);
3151 out:
3152 return ret;
3153 out_nomap:
3154 mem_cgroup_cancel_charge_swapin(ptr);
3155 pte_unmap_unlock(page_table, ptl);
3156 out_page:
3157 unlock_page(page);
3158 out_release:
3159 page_cache_release(page);
3160 if (page != swapcache) {
3161 unlock_page(swapcache);
3162 page_cache_release(swapcache);
3164 return ret;
3168 * This is like a special single-page "expand_{down|up}wards()",
3169 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3170 * doesn't hit another vma.
3172 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3174 address &= PAGE_MASK;
3175 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3176 struct vm_area_struct *prev = vma->vm_prev;
3179 * Is there a mapping abutting this one below?
3181 * That's only ok if it's the same stack mapping
3182 * that has gotten split..
3184 if (prev && prev->vm_end == address)
3185 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3187 return expand_downwards(vma, address - PAGE_SIZE);
3189 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3190 struct vm_area_struct *next = vma->vm_next;
3192 /* As VM_GROWSDOWN but s/below/above/ */
3193 if (next && next->vm_start == address + PAGE_SIZE)
3194 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3196 return expand_upwards(vma, address + PAGE_SIZE);
3198 return 0;
3202 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3203 * but allow concurrent faults), and pte mapped but not yet locked.
3204 * We return with mmap_sem still held, but pte unmapped and unlocked.
3206 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3207 unsigned long address, pte_t *page_table, pmd_t *pmd,
3208 unsigned int flags)
3210 struct page *page;
3211 spinlock_t *ptl;
3212 pte_t entry;
3214 pte_unmap(page_table);
3216 /* Check if we need to add a guard page to the stack */
3217 if (check_stack_guard_page(vma, address) < 0)
3218 return VM_FAULT_SIGSEGV;
3220 /* Use the zero-page for reads */
3221 if (!(flags & FAULT_FLAG_WRITE)) {
3222 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3223 vma->vm_page_prot));
3224 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3225 if (!pte_none(*page_table))
3226 goto unlock;
3227 goto setpte;
3230 /* Allocate our own private page. */
3231 if (unlikely(anon_vma_prepare(vma)))
3232 goto oom;
3233 page = alloc_zeroed_user_highpage_movable(vma, address);
3234 if (!page)
3235 goto oom;
3237 * The memory barrier inside __SetPageUptodate makes sure that
3238 * preceeding stores to the page contents become visible before
3239 * the set_pte_at() write.
3241 __SetPageUptodate(page);
3243 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3244 goto oom_free_page;
3246 entry = mk_pte(page, vma->vm_page_prot);
3247 if (vma->vm_flags & VM_WRITE)
3248 entry = pte_mkwrite(pte_mkdirty(entry));
3250 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3251 if (!pte_none(*page_table))
3252 goto release;
3254 inc_mm_counter_fast(mm, MM_ANONPAGES);
3255 page_add_new_anon_rmap(page, vma, address);
3256 setpte:
3257 set_pte_at(mm, address, page_table, entry);
3259 /* No need to invalidate - it was non-present before */
3260 update_mmu_cache(vma, address, page_table);
3261 unlock:
3262 pte_unmap_unlock(page_table, ptl);
3263 return 0;
3264 release:
3265 mem_cgroup_uncharge_page(page);
3266 page_cache_release(page);
3267 goto unlock;
3268 oom_free_page:
3269 page_cache_release(page);
3270 oom:
3271 return VM_FAULT_OOM;
3275 * __do_fault() tries to create a new page mapping. It aggressively
3276 * tries to share with existing pages, but makes a separate copy if
3277 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3278 * the next page fault.
3280 * As this is called only for pages that do not currently exist, we
3281 * do not need to flush old virtual caches or the TLB.
3283 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3284 * but allow concurrent faults), and pte neither mapped nor locked.
3285 * We return with mmap_sem still held, but pte unmapped and unlocked.
3287 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3288 unsigned long address, pmd_t *pmd,
3289 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3291 pte_t *page_table;
3292 spinlock_t *ptl;
3293 struct page *page;
3294 struct page *cow_page;
3295 pte_t entry;
3296 int anon = 0;
3297 struct page *dirty_page = NULL;
3298 struct vm_fault vmf;
3299 int ret;
3300 int page_mkwrite = 0;
3303 * If we do COW later, allocate page befor taking lock_page()
3304 * on the file cache page. This will reduce lock holding time.
3306 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3308 if (unlikely(anon_vma_prepare(vma)))
3309 return VM_FAULT_OOM;
3311 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3312 if (!cow_page)
3313 return VM_FAULT_OOM;
3315 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3316 page_cache_release(cow_page);
3317 return VM_FAULT_OOM;
3319 } else
3320 cow_page = NULL;
3322 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3323 vmf.pgoff = pgoff;
3324 vmf.flags = flags;
3325 vmf.page = NULL;
3327 ret = vma->vm_ops->fault(vma, &vmf);
3328 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3329 VM_FAULT_RETRY)))
3330 goto uncharge_out;
3332 if (unlikely(PageHWPoison(vmf.page))) {
3333 if (ret & VM_FAULT_LOCKED)
3334 unlock_page(vmf.page);
3335 ret = VM_FAULT_HWPOISON;
3336 goto uncharge_out;
3340 * For consistency in subsequent calls, make the faulted page always
3341 * locked.
3343 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3344 lock_page(vmf.page);
3345 else
3346 VM_BUG_ON(!PageLocked(vmf.page));
3349 * Should we do an early C-O-W break?
3351 page = vmf.page;
3352 if (flags & FAULT_FLAG_WRITE) {
3353 if (!(vma->vm_flags & VM_SHARED)) {
3354 page = cow_page;
3355 anon = 1;
3356 copy_user_highpage(page, vmf.page, address, vma);
3357 __SetPageUptodate(page);
3358 } else {
3360 * If the page will be shareable, see if the backing
3361 * address space wants to know that the page is about
3362 * to become writable
3364 if (vma->vm_ops->page_mkwrite) {
3365 int tmp;
3367 unlock_page(page);
3368 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3369 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3370 if (unlikely(tmp &
3371 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3372 ret = tmp;
3373 goto unwritable_page;
3375 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3376 lock_page(page);
3377 if (!page->mapping) {
3378 ret = 0; /* retry the fault */
3379 unlock_page(page);
3380 goto unwritable_page;
3382 } else
3383 VM_BUG_ON(!PageLocked(page));
3384 page_mkwrite = 1;
3390 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3393 * This silly early PAGE_DIRTY setting removes a race
3394 * due to the bad i386 page protection. But it's valid
3395 * for other architectures too.
3397 * Note that if FAULT_FLAG_WRITE is set, we either now have
3398 * an exclusive copy of the page, or this is a shared mapping,
3399 * so we can make it writable and dirty to avoid having to
3400 * handle that later.
3402 /* Only go through if we didn't race with anybody else... */
3403 if (likely(pte_same(*page_table, orig_pte))) {
3404 flush_icache_page(vma, page);
3405 entry = mk_pte(page, vma->vm_page_prot);
3406 if (flags & FAULT_FLAG_WRITE)
3407 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3408 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3409 pte_mksoft_dirty(entry);
3410 if (anon) {
3411 inc_mm_counter_fast(mm, MM_ANONPAGES);
3412 page_add_new_anon_rmap(page, vma, address);
3413 } else {
3414 inc_mm_counter_fast(mm, MM_FILEPAGES);
3415 page_add_file_rmap(page);
3416 if (flags & FAULT_FLAG_WRITE) {
3417 dirty_page = page;
3418 get_page(dirty_page);
3421 set_pte_at(mm, address, page_table, entry);
3423 /* no need to invalidate: a not-present page won't be cached */
3424 update_mmu_cache(vma, address, page_table);
3425 } else {
3426 if (cow_page)
3427 mem_cgroup_uncharge_page(cow_page);
3428 if (anon)
3429 page_cache_release(page);
3430 else
3431 anon = 1; /* no anon but release faulted_page */
3434 pte_unmap_unlock(page_table, ptl);
3436 if (dirty_page) {
3437 struct address_space *mapping = page->mapping;
3438 int dirtied = 0;
3440 if (set_page_dirty(dirty_page))
3441 dirtied = 1;
3442 unlock_page(dirty_page);
3443 put_page(dirty_page);
3444 if ((dirtied || page_mkwrite) && mapping) {
3446 * Some device drivers do not set page.mapping but still
3447 * dirty their pages
3449 balance_dirty_pages_ratelimited(mapping);
3452 /* file_update_time outside page_lock */
3453 if (vma->vm_file && !page_mkwrite)
3454 file_update_time(vma->vm_file);
3455 } else {
3456 unlock_page(vmf.page);
3457 if (anon)
3458 page_cache_release(vmf.page);
3461 return ret;
3463 unwritable_page:
3464 page_cache_release(page);
3465 return ret;
3466 uncharge_out:
3467 /* fs's fault handler get error */
3468 if (cow_page) {
3469 mem_cgroup_uncharge_page(cow_page);
3470 page_cache_release(cow_page);
3472 return ret;
3475 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3476 unsigned long address, pte_t *page_table, pmd_t *pmd,
3477 unsigned int flags, pte_t orig_pte)
3479 pgoff_t pgoff = (((address & PAGE_MASK)
3480 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3482 pte_unmap(page_table);
3483 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3487 * Fault of a previously existing named mapping. Repopulate the pte
3488 * from the encoded file_pte if possible. This enables swappable
3489 * nonlinear vmas.
3491 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3492 * but allow concurrent faults), and pte mapped but not yet locked.
3493 * We return with mmap_sem still held, but pte unmapped and unlocked.
3495 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3496 unsigned long address, pte_t *page_table, pmd_t *pmd,
3497 unsigned int flags, pte_t orig_pte)
3499 pgoff_t pgoff;
3501 flags |= FAULT_FLAG_NONLINEAR;
3503 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3504 return 0;
3506 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3508 * Page table corrupted: show pte and kill process.
3510 print_bad_pte(vma, address, orig_pte, NULL);
3511 return VM_FAULT_SIGBUS;
3514 pgoff = pte_to_pgoff(orig_pte);
3515 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3518 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3519 unsigned long addr, int page_nid)
3521 get_page(page);
3523 count_vm_numa_event(NUMA_HINT_FAULTS);
3524 if (page_nid == numa_node_id())
3525 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3527 return mpol_misplaced(page, vma, addr);
3530 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3531 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3533 struct page *page = NULL;
3534 spinlock_t *ptl;
3535 int page_nid = -1;
3536 int target_nid;
3537 bool migrated = false;
3540 * The "pte" at this point cannot be used safely without
3541 * validation through pte_unmap_same(). It's of NUMA type but
3542 * the pfn may be screwed if the read is non atomic.
3544 * ptep_modify_prot_start is not called as this is clearing
3545 * the _PAGE_NUMA bit and it is not really expected that there
3546 * would be concurrent hardware modifications to the PTE.
3548 ptl = pte_lockptr(mm, pmd);
3549 spin_lock(ptl);
3550 if (unlikely(!pte_same(*ptep, pte))) {
3551 pte_unmap_unlock(ptep, ptl);
3552 goto out;
3555 pte = pte_mknonnuma(pte);
3556 set_pte_at(mm, addr, ptep, pte);
3557 update_mmu_cache(vma, addr, ptep);
3559 page = vm_normal_page(vma, addr, pte);
3560 if (!page) {
3561 pte_unmap_unlock(ptep, ptl);
3562 return 0;
3565 page_nid = page_to_nid(page);
3566 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3567 pte_unmap_unlock(ptep, ptl);
3568 if (target_nid == -1) {
3569 put_page(page);
3570 goto out;
3573 /* Migrate to the requested node */
3574 migrated = migrate_misplaced_page(page, target_nid);
3575 if (migrated)
3576 page_nid = target_nid;
3578 out:
3579 if (page_nid != -1)
3580 task_numa_fault(page_nid, 1, migrated);
3581 return 0;
3584 /* NUMA hinting page fault entry point for regular pmds */
3585 #ifdef CONFIG_NUMA_BALANCING
3586 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3587 unsigned long addr, pmd_t *pmdp)
3589 pmd_t pmd;
3590 pte_t *pte, *orig_pte;
3591 unsigned long _addr = addr & PMD_MASK;
3592 unsigned long offset;
3593 spinlock_t *ptl;
3594 bool numa = false;
3596 spin_lock(&mm->page_table_lock);
3597 pmd = *pmdp;
3598 if (pmd_numa(pmd)) {
3599 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3600 numa = true;
3602 spin_unlock(&mm->page_table_lock);
3604 if (!numa)
3605 return 0;
3607 /* we're in a page fault so some vma must be in the range */
3608 BUG_ON(!vma);
3609 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3610 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3611 VM_BUG_ON(offset >= PMD_SIZE);
3612 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3613 pte += offset >> PAGE_SHIFT;
3614 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3615 pte_t pteval = *pte;
3616 struct page *page;
3617 int page_nid = -1;
3618 int target_nid;
3619 bool migrated = false;
3621 if (!pte_present(pteval))
3622 continue;
3623 if (!pte_numa(pteval))
3624 continue;
3625 if (addr >= vma->vm_end) {
3626 vma = find_vma(mm, addr);
3627 /* there's a pte present so there must be a vma */
3628 BUG_ON(!vma);
3629 BUG_ON(addr < vma->vm_start);
3631 if (pte_numa(pteval)) {
3632 pteval = pte_mknonnuma(pteval);
3633 set_pte_at(mm, addr, pte, pteval);
3635 page = vm_normal_page(vma, addr, pteval);
3636 if (unlikely(!page))
3637 continue;
3638 /* only check non-shared pages */
3639 if (unlikely(page_mapcount(page) != 1))
3640 continue;
3642 page_nid = page_to_nid(page);
3643 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3644 pte_unmap_unlock(pte, ptl);
3645 if (target_nid != -1) {
3646 migrated = migrate_misplaced_page(page, target_nid);
3647 if (migrated)
3648 page_nid = target_nid;
3649 } else {
3650 put_page(page);
3653 if (page_nid != -1)
3654 task_numa_fault(page_nid, 1, migrated);
3656 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3658 pte_unmap_unlock(orig_pte, ptl);
3660 return 0;
3662 #else
3663 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3664 unsigned long addr, pmd_t *pmdp)
3666 BUG();
3667 return 0;
3669 #endif /* CONFIG_NUMA_BALANCING */
3672 * These routines also need to handle stuff like marking pages dirty
3673 * and/or accessed for architectures that don't do it in hardware (most
3674 * RISC architectures). The early dirtying is also good on the i386.
3676 * There is also a hook called "update_mmu_cache()" that architectures
3677 * with external mmu caches can use to update those (ie the Sparc or
3678 * PowerPC hashed page tables that act as extended TLBs).
3680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3681 * but allow concurrent faults), and pte mapped but not yet locked.
3682 * We return with mmap_sem still held, but pte unmapped and unlocked.
3684 static int handle_pte_fault(struct mm_struct *mm,
3685 struct vm_area_struct *vma, unsigned long address,
3686 pte_t *pte, pmd_t *pmd, unsigned int flags)
3688 pte_t entry;
3689 spinlock_t *ptl;
3691 entry = ACCESS_ONCE(*pte);
3692 if (!pte_present(entry)) {
3693 if (pte_none(entry)) {
3694 if (vma->vm_ops) {
3695 if (likely(vma->vm_ops->fault))
3696 return do_linear_fault(mm, vma, address,
3697 pte, pmd, flags, entry);
3699 return do_anonymous_page(mm, vma, address,
3700 pte, pmd, flags);
3702 if (pte_file(entry))
3703 return do_nonlinear_fault(mm, vma, address,
3704 pte, pmd, flags, entry);
3705 return do_swap_page(mm, vma, address,
3706 pte, pmd, flags, entry);
3709 if (pte_numa(entry))
3710 return do_numa_page(mm, vma, address, entry, pte, pmd);
3712 ptl = pte_lockptr(mm, pmd);
3713 spin_lock(ptl);
3714 if (unlikely(!pte_same(*pte, entry)))
3715 goto unlock;
3716 if (flags & FAULT_FLAG_WRITE) {
3717 if (!pte_write(entry))
3718 return do_wp_page(mm, vma, address,
3719 pte, pmd, ptl, entry);
3720 entry = pte_mkdirty(entry);
3722 entry = pte_mkyoung(entry);
3723 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3724 update_mmu_cache(vma, address, pte);
3725 } else {
3727 * This is needed only for protection faults but the arch code
3728 * is not yet telling us if this is a protection fault or not.
3729 * This still avoids useless tlb flushes for .text page faults
3730 * with threads.
3732 if (flags & FAULT_FLAG_WRITE)
3733 flush_tlb_fix_spurious_fault(vma, address);
3735 unlock:
3736 pte_unmap_unlock(pte, ptl);
3737 return 0;
3741 * By the time we get here, we already hold the mm semaphore
3743 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3744 unsigned long address, unsigned int flags)
3746 pgd_t *pgd;
3747 pud_t *pud;
3748 pmd_t *pmd;
3749 pte_t *pte;
3751 if (unlikely(is_vm_hugetlb_page(vma)))
3752 return hugetlb_fault(mm, vma, address, flags);
3754 pgd = pgd_offset(mm, address);
3755 pud = pud_alloc(mm, pgd, address);
3756 if (!pud)
3757 return VM_FAULT_OOM;
3758 pmd = pmd_alloc(mm, pud, address);
3759 if (!pmd)
3760 return VM_FAULT_OOM;
3761 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3762 int ret = VM_FAULT_FALLBACK;
3763 if (!vma->vm_ops)
3764 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3765 pmd, flags);
3766 if (!(ret & VM_FAULT_FALLBACK))
3767 return ret;
3768 } else {
3769 pmd_t orig_pmd = *pmd;
3770 int ret;
3772 barrier();
3773 if (pmd_trans_huge(orig_pmd)) {
3774 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3777 * If the pmd is splitting, return and retry the
3778 * the fault. Alternative: wait until the split
3779 * is done, and goto retry.
3781 if (pmd_trans_splitting(orig_pmd))
3782 return 0;
3784 if (pmd_numa(orig_pmd))
3785 return do_huge_pmd_numa_page(mm, vma, address,
3786 orig_pmd, pmd);
3788 if (dirty && !pmd_write(orig_pmd)) {
3789 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3790 orig_pmd);
3791 if (!(ret & VM_FAULT_FALLBACK))
3792 return ret;
3793 } else {
3794 huge_pmd_set_accessed(mm, vma, address, pmd,
3795 orig_pmd, dirty);
3796 return 0;
3801 if (pmd_numa(*pmd))
3802 return do_pmd_numa_page(mm, vma, address, pmd);
3805 * Use __pte_alloc instead of pte_alloc_map, because we can't
3806 * run pte_offset_map on the pmd, if an huge pmd could
3807 * materialize from under us from a different thread.
3809 if (unlikely(pmd_none(*pmd)) &&
3810 unlikely(__pte_alloc(mm, vma, pmd, address)))
3811 return VM_FAULT_OOM;
3812 /* if an huge pmd materialized from under us just retry later */
3813 if (unlikely(pmd_trans_huge(*pmd)))
3814 return 0;
3816 * A regular pmd is established and it can't morph into a huge pmd
3817 * from under us anymore at this point because we hold the mmap_sem
3818 * read mode and khugepaged takes it in write mode. So now it's
3819 * safe to run pte_offset_map().
3821 pte = pte_offset_map(pmd, address);
3823 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3826 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3827 unsigned long address, unsigned int flags)
3829 int ret;
3831 __set_current_state(TASK_RUNNING);
3833 count_vm_event(PGFAULT);
3834 mem_cgroup_count_vm_event(mm, PGFAULT);
3836 /* do counter updates before entering really critical section. */
3837 check_sync_rss_stat(current);
3840 * Enable the memcg OOM handling for faults triggered in user
3841 * space. Kernel faults are handled more gracefully.
3843 if (flags & FAULT_FLAG_USER)
3844 mem_cgroup_oom_enable();
3846 ret = __handle_mm_fault(mm, vma, address, flags);
3848 if (flags & FAULT_FLAG_USER) {
3849 mem_cgroup_oom_disable();
3851 * The task may have entered a memcg OOM situation but
3852 * if the allocation error was handled gracefully (no
3853 * VM_FAULT_OOM), there is no need to kill anything.
3854 * Just clean up the OOM state peacefully.
3856 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3857 mem_cgroup_oom_synchronize(false);
3860 return ret;
3863 #ifndef __PAGETABLE_PUD_FOLDED
3865 * Allocate page upper directory.
3866 * We've already handled the fast-path in-line.
3868 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3870 pud_t *new = pud_alloc_one(mm, address);
3871 if (!new)
3872 return -ENOMEM;
3874 smp_wmb(); /* See comment in __pte_alloc */
3876 spin_lock(&mm->page_table_lock);
3877 if (pgd_present(*pgd)) /* Another has populated it */
3878 pud_free(mm, new);
3879 else
3880 pgd_populate(mm, pgd, new);
3881 spin_unlock(&mm->page_table_lock);
3882 return 0;
3884 #endif /* __PAGETABLE_PUD_FOLDED */
3886 #ifndef __PAGETABLE_PMD_FOLDED
3888 * Allocate page middle directory.
3889 * We've already handled the fast-path in-line.
3891 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3893 pmd_t *new = pmd_alloc_one(mm, address);
3894 if (!new)
3895 return -ENOMEM;
3897 smp_wmb(); /* See comment in __pte_alloc */
3899 spin_lock(&mm->page_table_lock);
3900 #ifndef __ARCH_HAS_4LEVEL_HACK
3901 if (pud_present(*pud)) /* Another has populated it */
3902 pmd_free(mm, new);
3903 else
3904 pud_populate(mm, pud, new);
3905 #else
3906 if (pgd_present(*pud)) /* Another has populated it */
3907 pmd_free(mm, new);
3908 else
3909 pgd_populate(mm, pud, new);
3910 #endif /* __ARCH_HAS_4LEVEL_HACK */
3911 spin_unlock(&mm->page_table_lock);
3912 return 0;
3914 #endif /* __PAGETABLE_PMD_FOLDED */
3916 #if !defined(__HAVE_ARCH_GATE_AREA)
3918 #if defined(AT_SYSINFO_EHDR)
3919 static struct vm_area_struct gate_vma;
3921 static int __init gate_vma_init(void)
3923 gate_vma.vm_mm = NULL;
3924 gate_vma.vm_start = FIXADDR_USER_START;
3925 gate_vma.vm_end = FIXADDR_USER_END;
3926 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3927 gate_vma.vm_page_prot = __P101;
3929 return 0;
3931 __initcall(gate_vma_init);
3932 #endif
3934 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3936 #ifdef AT_SYSINFO_EHDR
3937 return &gate_vma;
3938 #else
3939 return NULL;
3940 #endif
3943 int in_gate_area_no_mm(unsigned long addr)
3945 #ifdef AT_SYSINFO_EHDR
3946 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3947 return 1;
3948 #endif
3949 return 0;
3952 #endif /* __HAVE_ARCH_GATE_AREA */
3954 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3955 pte_t **ptepp, spinlock_t **ptlp)
3957 pgd_t *pgd;
3958 pud_t *pud;
3959 pmd_t *pmd;
3960 pte_t *ptep;
3962 pgd = pgd_offset(mm, address);
3963 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3964 goto out;
3966 pud = pud_offset(pgd, address);
3967 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3968 goto out;
3970 pmd = pmd_offset(pud, address);
3971 VM_BUG_ON(pmd_trans_huge(*pmd));
3972 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3973 goto out;
3975 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3976 if (pmd_huge(*pmd))
3977 goto out;
3979 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3980 if (!ptep)
3981 goto out;
3982 if (!pte_present(*ptep))
3983 goto unlock;
3984 *ptepp = ptep;
3985 return 0;
3986 unlock:
3987 pte_unmap_unlock(ptep, *ptlp);
3988 out:
3989 return -EINVAL;
3992 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3993 pte_t **ptepp, spinlock_t **ptlp)
3995 int res;
3997 /* (void) is needed to make gcc happy */
3998 (void) __cond_lock(*ptlp,
3999 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4000 return res;
4004 * follow_pfn - look up PFN at a user virtual address
4005 * @vma: memory mapping
4006 * @address: user virtual address
4007 * @pfn: location to store found PFN
4009 * Only IO mappings and raw PFN mappings are allowed.
4011 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4013 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4014 unsigned long *pfn)
4016 int ret = -EINVAL;
4017 spinlock_t *ptl;
4018 pte_t *ptep;
4020 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4021 return ret;
4023 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4024 if (ret)
4025 return ret;
4026 *pfn = pte_pfn(*ptep);
4027 pte_unmap_unlock(ptep, ptl);
4028 return 0;
4030 EXPORT_SYMBOL(follow_pfn);
4032 #ifdef CONFIG_HAVE_IOREMAP_PROT
4033 int follow_phys(struct vm_area_struct *vma,
4034 unsigned long address, unsigned int flags,
4035 unsigned long *prot, resource_size_t *phys)
4037 int ret = -EINVAL;
4038 pte_t *ptep, pte;
4039 spinlock_t *ptl;
4041 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4042 goto out;
4044 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4045 goto out;
4046 pte = *ptep;
4048 if ((flags & FOLL_WRITE) && !pte_write(pte))
4049 goto unlock;
4051 *prot = pgprot_val(pte_pgprot(pte));
4052 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4054 ret = 0;
4055 unlock:
4056 pte_unmap_unlock(ptep, ptl);
4057 out:
4058 return ret;
4061 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4062 void *buf, int len, int write)
4064 resource_size_t phys_addr;
4065 unsigned long prot = 0;
4066 void __iomem *maddr;
4067 int offset = addr & (PAGE_SIZE-1);
4069 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4070 return -EINVAL;
4072 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4073 if (write)
4074 memcpy_toio(maddr + offset, buf, len);
4075 else
4076 memcpy_fromio(buf, maddr + offset, len);
4077 iounmap(maddr);
4079 return len;
4081 EXPORT_SYMBOL_GPL(generic_access_phys);
4082 #endif
4085 * Access another process' address space as given in mm. If non-NULL, use the
4086 * given task for page fault accounting.
4088 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4089 unsigned long addr, void *buf, int len, int write)
4091 struct vm_area_struct *vma;
4092 void *old_buf = buf;
4094 down_read(&mm->mmap_sem);
4095 /* ignore errors, just check how much was successfully transferred */
4096 while (len) {
4097 int bytes, ret, offset;
4098 void *maddr;
4099 struct page *page = NULL;
4101 ret = get_user_pages(tsk, mm, addr, 1,
4102 write, 1, &page, &vma);
4103 if (ret <= 0) {
4105 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4106 * we can access using slightly different code.
4108 #ifdef CONFIG_HAVE_IOREMAP_PROT
4109 vma = find_vma(mm, addr);
4110 if (!vma || vma->vm_start > addr)
4111 break;
4112 if (vma->vm_ops && vma->vm_ops->access)
4113 ret = vma->vm_ops->access(vma, addr, buf,
4114 len, write);
4115 if (ret <= 0)
4116 #endif
4117 break;
4118 bytes = ret;
4119 } else {
4120 bytes = len;
4121 offset = addr & (PAGE_SIZE-1);
4122 if (bytes > PAGE_SIZE-offset)
4123 bytes = PAGE_SIZE-offset;
4125 maddr = kmap(page);
4126 if (write) {
4127 copy_to_user_page(vma, page, addr,
4128 maddr + offset, buf, bytes);
4129 set_page_dirty_lock(page);
4130 } else {
4131 copy_from_user_page(vma, page, addr,
4132 buf, maddr + offset, bytes);
4134 kunmap(page);
4135 page_cache_release(page);
4137 len -= bytes;
4138 buf += bytes;
4139 addr += bytes;
4141 up_read(&mm->mmap_sem);
4143 return buf - old_buf;
4147 * access_remote_vm - access another process' address space
4148 * @mm: the mm_struct of the target address space
4149 * @addr: start address to access
4150 * @buf: source or destination buffer
4151 * @len: number of bytes to transfer
4152 * @write: whether the access is a write
4154 * The caller must hold a reference on @mm.
4156 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4157 void *buf, int len, int write)
4159 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4163 * Access another process' address space.
4164 * Source/target buffer must be kernel space,
4165 * Do not walk the page table directly, use get_user_pages
4167 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4168 void *buf, int len, int write)
4170 struct mm_struct *mm;
4171 int ret;
4173 mm = get_task_mm(tsk);
4174 if (!mm)
4175 return 0;
4177 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4178 mmput(mm);
4180 return ret;
4184 * Print the name of a VMA.
4186 void print_vma_addr(char *prefix, unsigned long ip)
4188 struct mm_struct *mm = current->mm;
4189 struct vm_area_struct *vma;
4192 * Do not print if we are in atomic
4193 * contexts (in exception stacks, etc.):
4195 if (preempt_count())
4196 return;
4198 down_read(&mm->mmap_sem);
4199 vma = find_vma(mm, ip);
4200 if (vma && vma->vm_file) {
4201 struct file *f = vma->vm_file;
4202 char *buf = (char *)__get_free_page(GFP_KERNEL);
4203 if (buf) {
4204 char *p;
4206 p = d_path(&f->f_path, buf, PAGE_SIZE);
4207 if (IS_ERR(p))
4208 p = "?";
4209 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4210 vma->vm_start,
4211 vma->vm_end - vma->vm_start);
4212 free_page((unsigned long)buf);
4215 up_read(&mm->mmap_sem);
4218 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4219 void might_fault(void)
4222 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4223 * holding the mmap_sem, this is safe because kernel memory doesn't
4224 * get paged out, therefore we'll never actually fault, and the
4225 * below annotations will generate false positives.
4227 if (segment_eq(get_fs(), KERNEL_DS))
4228 return;
4231 * it would be nicer only to annotate paths which are not under
4232 * pagefault_disable, however that requires a larger audit and
4233 * providing helpers like get_user_atomic.
4235 if (in_atomic())
4236 return;
4238 __might_sleep(__FILE__, __LINE__, 0);
4240 if (current->mm)
4241 might_lock_read(&current->mm->mmap_sem);
4243 EXPORT_SYMBOL(might_fault);
4244 #endif
4246 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4247 static void clear_gigantic_page(struct page *page,
4248 unsigned long addr,
4249 unsigned int pages_per_huge_page)
4251 int i;
4252 struct page *p = page;
4254 might_sleep();
4255 for (i = 0; i < pages_per_huge_page;
4256 i++, p = mem_map_next(p, page, i)) {
4257 cond_resched();
4258 clear_user_highpage(p, addr + i * PAGE_SIZE);
4261 void clear_huge_page(struct page *page,
4262 unsigned long addr, unsigned int pages_per_huge_page)
4264 int i;
4266 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4267 clear_gigantic_page(page, addr, pages_per_huge_page);
4268 return;
4271 might_sleep();
4272 for (i = 0; i < pages_per_huge_page; i++) {
4273 cond_resched();
4274 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4278 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4279 unsigned long addr,
4280 struct vm_area_struct *vma,
4281 unsigned int pages_per_huge_page)
4283 int i;
4284 struct page *dst_base = dst;
4285 struct page *src_base = src;
4287 for (i = 0; i < pages_per_huge_page; ) {
4288 cond_resched();
4289 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4291 i++;
4292 dst = mem_map_next(dst, dst_base, i);
4293 src = mem_map_next(src, src_base, i);
4297 void copy_user_huge_page(struct page *dst, struct page *src,
4298 unsigned long addr, struct vm_area_struct *vma,
4299 unsigned int pages_per_huge_page)
4301 int i;
4303 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4304 copy_user_gigantic_page(dst, src, addr, vma,
4305 pages_per_huge_page);
4306 return;
4309 might_sleep();
4310 for (i = 0; i < pages_per_huge_page; i++) {
4311 cond_resched();
4312 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4315 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */