4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 #include <linux/sched/sysctl.h>
35 #include <asm/uaccess.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mmu_context.h>
42 #define kenter(FMT, ...) \
43 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
44 #define kleave(FMT, ...) \
45 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
46 #define kdebug(FMT, ...) \
47 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
49 #define kenter(FMT, ...) \
50 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
51 #define kleave(FMT, ...) \
52 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
53 #define kdebug(FMT, ...) \
54 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 unsigned long max_mapnr
;
60 unsigned long highest_memmap_pfn
;
61 struct percpu_counter vm_committed_as
;
62 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
63 int sysctl_overcommit_ratio
= 50; /* default is 50% */
64 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
65 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
66 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
67 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
68 int heap_stack_gap
= 0;
70 atomic_long_t mmap_pages_allocated
;
73 * The global memory commitment made in the system can be a metric
74 * that can be used to drive ballooning decisions when Linux is hosted
75 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
76 * balancing memory across competing virtual machines that are hosted.
77 * Several metrics drive this policy engine including the guest reported
80 unsigned long vm_memory_committed(void)
82 return percpu_counter_read_positive(&vm_committed_as
);
85 EXPORT_SYMBOL_GPL(vm_memory_committed
);
87 EXPORT_SYMBOL(mem_map
);
89 /* list of mapped, potentially shareable regions */
90 static struct kmem_cache
*vm_region_jar
;
91 struct rb_root nommu_region_tree
= RB_ROOT
;
92 DECLARE_RWSEM(nommu_region_sem
);
94 const struct vm_operations_struct generic_file_vm_ops
= {
98 * Return the total memory allocated for this pointer, not
99 * just what the caller asked for.
101 * Doesn't have to be accurate, i.e. may have races.
103 unsigned int kobjsize(const void *objp
)
108 * If the object we have should not have ksize performed on it,
111 if (!objp
|| !virt_addr_valid(objp
))
114 page
= virt_to_head_page(objp
);
117 * If the allocator sets PageSlab, we know the pointer came from
124 * If it's not a compound page, see if we have a matching VMA
125 * region. This test is intentionally done in reverse order,
126 * so if there's no VMA, we still fall through and hand back
127 * PAGE_SIZE for 0-order pages.
129 if (!PageCompound(page
)) {
130 struct vm_area_struct
*vma
;
132 vma
= find_vma(current
->mm
, (unsigned long)objp
);
134 return vma
->vm_end
- vma
->vm_start
;
138 * The ksize() function is only guaranteed to work for pointers
139 * returned by kmalloc(). So handle arbitrary pointers here.
141 return PAGE_SIZE
<< compound_order(page
);
144 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
145 unsigned long start
, unsigned long nr_pages
,
146 unsigned int foll_flags
, struct page
**pages
,
147 struct vm_area_struct
**vmas
, int *nonblocking
)
149 struct vm_area_struct
*vma
;
150 unsigned long vm_flags
;
153 /* calculate required read or write permissions.
154 * If FOLL_FORCE is set, we only require the "MAY" flags.
156 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
157 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
158 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
159 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
161 for (i
= 0; i
< nr_pages
; i
++) {
162 vma
= find_vma(mm
, start
);
164 goto finish_or_fault
;
166 /* protect what we can, including chardevs */
167 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
168 !(vm_flags
& vma
->vm_flags
))
169 goto finish_or_fault
;
172 pages
[i
] = virt_to_page(start
);
174 page_cache_get(pages
[i
]);
178 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
184 return i
? : -EFAULT
;
188 * get a list of pages in an address range belonging to the specified process
189 * and indicate the VMA that covers each page
190 * - this is potentially dodgy as we may end incrementing the page count of a
191 * slab page or a secondary page from a compound page
192 * - don't permit access to VMAs that don't support it, such as I/O mappings
194 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
195 unsigned long start
, unsigned long nr_pages
,
196 int write
, int force
, struct page
**pages
,
197 struct vm_area_struct
**vmas
)
206 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
209 EXPORT_SYMBOL(get_user_pages
);
212 * follow_pfn - look up PFN at a user virtual address
213 * @vma: memory mapping
214 * @address: user virtual address
215 * @pfn: location to store found PFN
217 * Only IO mappings and raw PFN mappings are allowed.
219 * Returns zero and the pfn at @pfn on success, -ve otherwise.
221 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
224 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
227 *pfn
= address
>> PAGE_SHIFT
;
230 EXPORT_SYMBOL(follow_pfn
);
232 LIST_HEAD(vmap_area_list
);
234 void vfree(const void *addr
)
238 EXPORT_SYMBOL(vfree
);
240 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
243 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
244 * returns only a logical address.
246 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
248 EXPORT_SYMBOL(__vmalloc
);
250 void *vmalloc_user(unsigned long size
)
254 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
257 struct vm_area_struct
*vma
;
259 down_write(¤t
->mm
->mmap_sem
);
260 vma
= find_vma(current
->mm
, (unsigned long)ret
);
262 vma
->vm_flags
|= VM_USERMAP
;
263 up_write(¤t
->mm
->mmap_sem
);
268 EXPORT_SYMBOL(vmalloc_user
);
270 struct page
*vmalloc_to_page(const void *addr
)
272 return virt_to_page(addr
);
274 EXPORT_SYMBOL(vmalloc_to_page
);
276 unsigned long vmalloc_to_pfn(const void *addr
)
278 return page_to_pfn(virt_to_page(addr
));
280 EXPORT_SYMBOL(vmalloc_to_pfn
);
282 long vread(char *buf
, char *addr
, unsigned long count
)
284 /* Don't allow overflow */
285 if ((unsigned long) buf
+ count
< count
)
286 count
= -(unsigned long) buf
;
288 memcpy(buf
, addr
, count
);
292 long vwrite(char *buf
, char *addr
, unsigned long count
)
294 /* Don't allow overflow */
295 if ((unsigned long) addr
+ count
< count
)
296 count
= -(unsigned long) addr
;
298 memcpy(addr
, buf
, count
);
303 * vmalloc - allocate virtually continguos memory
305 * @size: allocation size
307 * Allocate enough pages to cover @size from the page level
308 * allocator and map them into continguos kernel virtual space.
310 * For tight control over page level allocator and protection flags
311 * use __vmalloc() instead.
313 void *vmalloc(unsigned long size
)
315 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
317 EXPORT_SYMBOL(vmalloc
);
320 * vzalloc - allocate virtually continguos memory with zero fill
322 * @size: allocation size
324 * Allocate enough pages to cover @size from the page level
325 * allocator and map them into continguos kernel virtual space.
326 * The memory allocated is set to zero.
328 * For tight control over page level allocator and protection flags
329 * use __vmalloc() instead.
331 void *vzalloc(unsigned long size
)
333 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
336 EXPORT_SYMBOL(vzalloc
);
339 * vmalloc_node - allocate memory on a specific node
340 * @size: allocation size
343 * Allocate enough pages to cover @size from the page level
344 * allocator and map them into contiguous kernel virtual space.
346 * For tight control over page level allocator and protection flags
347 * use __vmalloc() instead.
349 void *vmalloc_node(unsigned long size
, int node
)
351 return vmalloc(size
);
353 EXPORT_SYMBOL(vmalloc_node
);
356 * vzalloc_node - allocate memory on a specific node with zero fill
357 * @size: allocation size
360 * Allocate enough pages to cover @size from the page level
361 * allocator and map them into contiguous kernel virtual space.
362 * The memory allocated is set to zero.
364 * For tight control over page level allocator and protection flags
365 * use __vmalloc() instead.
367 void *vzalloc_node(unsigned long size
, int node
)
369 return vzalloc(size
);
371 EXPORT_SYMBOL(vzalloc_node
);
373 #ifndef PAGE_KERNEL_EXEC
374 # define PAGE_KERNEL_EXEC PAGE_KERNEL
378 * vmalloc_exec - allocate virtually contiguous, executable memory
379 * @size: allocation size
381 * Kernel-internal function to allocate enough pages to cover @size
382 * the page level allocator and map them into contiguous and
383 * executable kernel virtual space.
385 * For tight control over page level allocator and protection flags
386 * use __vmalloc() instead.
389 void *vmalloc_exec(unsigned long size
)
391 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
395 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
396 * @size: allocation size
398 * Allocate enough 32bit PA addressable pages to cover @size from the
399 * page level allocator and map them into continguos kernel virtual space.
401 void *vmalloc_32(unsigned long size
)
403 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
405 EXPORT_SYMBOL(vmalloc_32
);
408 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
409 * @size: allocation size
411 * The resulting memory area is 32bit addressable and zeroed so it can be
412 * mapped to userspace without leaking data.
414 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
415 * remap_vmalloc_range() are permissible.
417 void *vmalloc_32_user(unsigned long size
)
420 * We'll have to sort out the ZONE_DMA bits for 64-bit,
421 * but for now this can simply use vmalloc_user() directly.
423 return vmalloc_user(size
);
425 EXPORT_SYMBOL(vmalloc_32_user
);
427 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
434 void vunmap(const void *addr
)
438 EXPORT_SYMBOL(vunmap
);
440 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
445 EXPORT_SYMBOL(vm_map_ram
);
447 void vm_unmap_ram(const void *mem
, unsigned int count
)
451 EXPORT_SYMBOL(vm_unmap_ram
);
453 void vm_unmap_aliases(void)
456 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
459 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
462 void __attribute__((weak
)) vmalloc_sync_all(void)
467 * alloc_vm_area - allocate a range of kernel address space
468 * @size: size of the area
470 * Returns: NULL on failure, vm_struct on success
472 * This function reserves a range of kernel address space, and
473 * allocates pagetables to map that range. No actual mappings
474 * are created. If the kernel address space is not shared
475 * between processes, it syncs the pagetable across all
478 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
483 EXPORT_SYMBOL_GPL(alloc_vm_area
);
485 void free_vm_area(struct vm_struct
*area
)
489 EXPORT_SYMBOL_GPL(free_vm_area
);
491 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
496 EXPORT_SYMBOL(vm_insert_page
);
499 * sys_brk() for the most part doesn't need the global kernel
500 * lock, except when an application is doing something nasty
501 * like trying to un-brk an area that has already been mapped
502 * to a regular file. in this case, the unmapping will need
503 * to invoke file system routines that need the global lock.
505 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
507 struct mm_struct
*mm
= current
->mm
;
509 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
516 * Always allow shrinking brk
518 if (brk
<= mm
->brk
) {
524 * Ok, looks good - let it rip.
526 flush_icache_range(mm
->brk
, brk
);
527 return mm
->brk
= brk
;
531 * initialise the VMA and region record slabs
533 void __init
mmap_init(void)
537 ret
= percpu_counter_init(&vm_committed_as
, 0);
539 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
543 * validate the region tree
544 * - the caller must hold the region lock
546 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
547 static noinline
void validate_nommu_regions(void)
549 struct vm_region
*region
, *last
;
550 struct rb_node
*p
, *lastp
;
552 lastp
= rb_first(&nommu_region_tree
);
556 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
557 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
558 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
560 while ((p
= rb_next(lastp
))) {
561 region
= rb_entry(p
, struct vm_region
, vm_rb
);
562 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
564 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
565 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
566 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
572 static void validate_nommu_regions(void)
578 * add a region into the global tree
580 static void add_nommu_region(struct vm_region
*region
)
582 struct vm_region
*pregion
;
583 struct rb_node
**p
, *parent
;
585 validate_nommu_regions();
588 p
= &nommu_region_tree
.rb_node
;
591 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
592 if (region
->vm_start
< pregion
->vm_start
)
594 else if (region
->vm_start
> pregion
->vm_start
)
596 else if (pregion
== region
)
602 rb_link_node(®ion
->vm_rb
, parent
, p
);
603 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
605 validate_nommu_regions();
609 * delete a region from the global tree
611 static void delete_nommu_region(struct vm_region
*region
)
613 BUG_ON(!nommu_region_tree
.rb_node
);
615 validate_nommu_regions();
616 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
617 validate_nommu_regions();
621 * free a contiguous series of pages
623 static void free_page_series(unsigned long from
, unsigned long to
)
625 for (; from
< to
; from
+= PAGE_SIZE
) {
626 struct page
*page
= virt_to_page(from
);
628 kdebug("- free %lx", from
);
629 atomic_long_dec(&mmap_pages_allocated
);
630 if (page_count(page
) != 1)
631 kdebug("free page %p: refcount not one: %d",
632 page
, page_count(page
));
638 * release a reference to a region
639 * - the caller must hold the region semaphore for writing, which this releases
640 * - the region may not have been added to the tree yet, in which case vm_top
641 * will equal vm_start
643 static void __put_nommu_region(struct vm_region
*region
)
644 __releases(nommu_region_sem
)
646 kenter("%p{%d}", region
, region
->vm_usage
);
648 BUG_ON(!nommu_region_tree
.rb_node
);
650 if (--region
->vm_usage
== 0) {
651 if (region
->vm_top
> region
->vm_start
)
652 delete_nommu_region(region
);
653 up_write(&nommu_region_sem
);
656 fput(region
->vm_file
);
658 /* IO memory and memory shared directly out of the pagecache
659 * from ramfs/tmpfs mustn't be released here */
660 if (region
->vm_flags
& VM_MAPPED_COPY
) {
661 kdebug("free series");
662 free_page_series(region
->vm_start
, region
->vm_top
);
664 kmem_cache_free(vm_region_jar
, region
);
666 up_write(&nommu_region_sem
);
671 * release a reference to a region
673 static void put_nommu_region(struct vm_region
*region
)
675 down_write(&nommu_region_sem
);
676 __put_nommu_region(region
);
680 * update protection on a vma
682 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
685 struct mm_struct
*mm
= vma
->vm_mm
;
686 long start
= vma
->vm_start
& PAGE_MASK
;
687 while (start
< vma
->vm_end
) {
688 protect_page(mm
, start
, flags
);
691 update_protections(mm
);
696 * add a VMA into a process's mm_struct in the appropriate place in the list
697 * and tree and add to the address space's page tree also if not an anonymous
699 * - should be called with mm->mmap_sem held writelocked
701 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
703 struct vm_area_struct
*pvma
, *prev
;
704 struct address_space
*mapping
;
705 struct rb_node
**p
, *parent
, *rb_prev
;
709 BUG_ON(!vma
->vm_region
);
714 protect_vma(vma
, vma
->vm_flags
);
716 /* add the VMA to the mapping */
718 mapping
= vma
->vm_file
->f_mapping
;
720 mutex_lock(&mapping
->i_mmap_mutex
);
721 flush_dcache_mmap_lock(mapping
);
722 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
723 flush_dcache_mmap_unlock(mapping
);
724 mutex_unlock(&mapping
->i_mmap_mutex
);
727 /* add the VMA to the tree */
728 parent
= rb_prev
= NULL
;
729 p
= &mm
->mm_rb
.rb_node
;
732 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
734 /* sort by: start addr, end addr, VMA struct addr in that order
735 * (the latter is necessary as we may get identical VMAs) */
736 if (vma
->vm_start
< pvma
->vm_start
)
738 else if (vma
->vm_start
> pvma
->vm_start
) {
741 } else if (vma
->vm_end
< pvma
->vm_end
)
743 else if (vma
->vm_end
> pvma
->vm_end
) {
746 } else if (vma
< pvma
)
748 else if (vma
> pvma
) {
755 rb_link_node(&vma
->vm_rb
, parent
, p
);
756 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
758 /* add VMA to the VMA list also */
761 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
763 __vma_link_list(mm
, vma
, prev
, parent
);
767 * delete a VMA from its owning mm_struct and address space
769 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
772 struct address_space
*mapping
;
773 struct mm_struct
*mm
= vma
->vm_mm
;
774 struct task_struct
*curr
= current
;
781 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
782 /* if the vma is cached, invalidate the entire cache */
783 if (curr
->vmacache
[i
] == vma
) {
784 vmacache_invalidate(curr
->mm
);
789 /* remove the VMA from the mapping */
791 mapping
= vma
->vm_file
->f_mapping
;
793 mutex_lock(&mapping
->i_mmap_mutex
);
794 flush_dcache_mmap_lock(mapping
);
795 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
796 flush_dcache_mmap_unlock(mapping
);
797 mutex_unlock(&mapping
->i_mmap_mutex
);
800 /* remove from the MM's tree and list */
801 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
804 vma
->vm_prev
->vm_next
= vma
->vm_next
;
806 mm
->mmap
= vma
->vm_next
;
809 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
813 * destroy a VMA record
815 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
818 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
819 vma
->vm_ops
->close(vma
);
822 put_nommu_region(vma
->vm_region
);
823 kmem_cache_free(vm_area_cachep
, vma
);
827 * look up the first VMA in which addr resides, NULL if none
828 * - should be called with mm->mmap_sem at least held readlocked
830 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
832 struct vm_area_struct
*vma
;
834 /* check the cache first */
835 vma
= vmacache_find(mm
, addr
);
839 /* trawl the list (there may be multiple mappings in which addr
841 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
842 if (vma
->vm_start
> addr
)
844 if (vma
->vm_end
> addr
) {
845 vmacache_update(addr
, vma
);
852 EXPORT_SYMBOL(find_vma
);
856 * - we don't extend stack VMAs under NOMMU conditions
858 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
860 return find_vma(mm
, addr
);
864 * expand a stack to a given address
865 * - not supported under NOMMU conditions
867 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
873 * look up the first VMA exactly that exactly matches addr
874 * - should be called with mm->mmap_sem at least held readlocked
876 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
880 struct vm_area_struct
*vma
;
881 unsigned long end
= addr
+ len
;
883 /* check the cache first */
884 vma
= vmacache_find_exact(mm
, addr
, end
);
888 /* trawl the list (there may be multiple mappings in which addr
890 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
891 if (vma
->vm_start
< addr
)
893 if (vma
->vm_start
> addr
)
895 if (vma
->vm_end
== end
) {
896 vmacache_update(addr
, vma
);
905 * determine whether a mapping should be permitted and, if so, what sort of
906 * mapping we're capable of supporting
908 static int validate_mmap_request(struct file
*file
,
914 unsigned long *_capabilities
)
916 unsigned long capabilities
, rlen
;
919 /* do the simple checks first */
920 if (flags
& MAP_FIXED
) {
922 "%d: Can't do fixed-address/overlay mmap of RAM\n",
927 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
928 (flags
& MAP_TYPE
) != MAP_SHARED
)
934 /* Careful about overflows.. */
935 rlen
= PAGE_ALIGN(len
);
936 if (!rlen
|| rlen
> TASK_SIZE
)
939 /* offset overflow? */
940 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
944 /* validate file mapping requests */
945 struct address_space
*mapping
;
947 /* files must support mmap */
948 if (!file
->f_op
|| !file
->f_op
->mmap
)
951 /* work out if what we've got could possibly be shared
952 * - we support chardevs that provide their own "memory"
953 * - we support files/blockdevs that are memory backed
955 mapping
= file
->f_mapping
;
957 mapping
= file_inode(file
)->i_mapping
;
960 if (mapping
&& mapping
->backing_dev_info
)
961 capabilities
= mapping
->backing_dev_info
->capabilities
;
964 /* no explicit capabilities set, so assume some
966 switch (file_inode(file
)->i_mode
& S_IFMT
) {
969 capabilities
= BDI_CAP_MAP_COPY
;
984 /* eliminate any capabilities that we can't support on this
986 if (!file
->f_op
->get_unmapped_area
)
987 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
988 if (!file
->f_op
->read
)
989 capabilities
&= ~BDI_CAP_MAP_COPY
;
991 /* The file shall have been opened with read permission. */
992 if (!(file
->f_mode
& FMODE_READ
))
995 if (flags
& MAP_SHARED
) {
996 /* do checks for writing, appending and locking */
997 if ((prot
& PROT_WRITE
) &&
998 !(file
->f_mode
& FMODE_WRITE
))
1001 if (IS_APPEND(file_inode(file
)) &&
1002 (file
->f_mode
& FMODE_WRITE
))
1005 if (locks_verify_locked(file_inode(file
)))
1008 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1011 /* we mustn't privatise shared mappings */
1012 capabilities
&= ~BDI_CAP_MAP_COPY
;
1015 /* we're going to read the file into private memory we
1017 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1020 /* we don't permit a private writable mapping to be
1021 * shared with the backing device */
1022 if (prot
& PROT_WRITE
)
1023 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1026 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1027 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1028 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1029 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1031 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1032 if (flags
& MAP_SHARED
) {
1034 "MAP_SHARED not completely supported on !MMU\n");
1040 /* handle executable mappings and implied executable
1042 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1043 if (prot
& PROT_EXEC
)
1046 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1047 /* handle implication of PROT_EXEC by PROT_READ */
1048 if (current
->personality
& READ_IMPLIES_EXEC
) {
1049 if (capabilities
& BDI_CAP_EXEC_MAP
)
1053 else if ((prot
& PROT_READ
) &&
1054 (prot
& PROT_EXEC
) &&
1055 !(capabilities
& BDI_CAP_EXEC_MAP
)
1057 /* backing file is not executable, try to copy */
1058 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1062 /* anonymous mappings are always memory backed and can be
1065 capabilities
= BDI_CAP_MAP_COPY
;
1067 /* handle PROT_EXEC implication by PROT_READ */
1068 if ((prot
& PROT_READ
) &&
1069 (current
->personality
& READ_IMPLIES_EXEC
))
1073 /* allow the security API to have its say */
1074 ret
= security_mmap_addr(addr
);
1079 *_capabilities
= capabilities
;
1084 * we've determined that we can make the mapping, now translate what we
1085 * now know into VMA flags
1087 static unsigned long determine_vm_flags(struct file
*file
,
1089 unsigned long flags
,
1090 unsigned long capabilities
)
1092 unsigned long vm_flags
;
1094 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1095 /* vm_flags |= mm->def_flags; */
1097 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1098 /* attempt to share read-only copies of mapped file chunks */
1099 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1100 if (file
&& !(prot
& PROT_WRITE
))
1101 vm_flags
|= VM_MAYSHARE
;
1103 /* overlay a shareable mapping on the backing device or inode
1104 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1107 if (flags
& MAP_SHARED
)
1108 vm_flags
|= VM_SHARED
;
1111 /* refuse to let anyone share private mappings with this process if
1112 * it's being traced - otherwise breakpoints set in it may interfere
1113 * with another untraced process
1115 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1116 vm_flags
&= ~VM_MAYSHARE
;
1122 * set up a shared mapping on a file (the driver or filesystem provides and
1125 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1129 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1131 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1137 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1138 * opposed to tried but failed) so we can only give a suitable error as
1139 * it's not possible to make a private copy if MAP_SHARED was given */
1144 * set up a private mapping or an anonymous shared mapping
1146 static int do_mmap_private(struct vm_area_struct
*vma
,
1147 struct vm_region
*region
,
1149 unsigned long capabilities
)
1152 unsigned long total
, point
, n
;
1156 /* invoke the file's mapping function so that it can keep track of
1157 * shared mappings on devices or memory
1158 * - VM_MAYSHARE will be set if it may attempt to share
1160 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1161 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1163 /* shouldn't return success if we're not sharing */
1164 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1165 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1171 /* getting an ENOSYS error indicates that direct mmap isn't
1172 * possible (as opposed to tried but failed) so we'll try to
1173 * make a private copy of the data and map that instead */
1177 /* allocate some memory to hold the mapping
1178 * - note that this may not return a page-aligned address if the object
1179 * we're allocating is smaller than a page
1181 order
= get_order(len
);
1182 kdebug("alloc order %d for %lx", order
, len
);
1184 pages
= alloc_pages(GFP_KERNEL
, order
);
1189 atomic_long_add(total
, &mmap_pages_allocated
);
1191 point
= len
>> PAGE_SHIFT
;
1193 /* we allocated a power-of-2 sized page set, so we may want to trim off
1195 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1196 while (total
> point
) {
1197 order
= ilog2(total
- point
);
1199 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1200 atomic_long_sub(n
, &mmap_pages_allocated
);
1202 set_page_refcounted(pages
+ total
);
1203 __free_pages(pages
+ total
, order
);
1207 for (point
= 1; point
< total
; point
++)
1208 set_page_refcounted(&pages
[point
]);
1210 base
= page_address(pages
);
1211 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1212 region
->vm_start
= (unsigned long) base
;
1213 region
->vm_end
= region
->vm_start
+ len
;
1214 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1216 vma
->vm_start
= region
->vm_start
;
1217 vma
->vm_end
= region
->vm_start
+ len
;
1220 /* read the contents of a file into the copy */
1221 mm_segment_t old_fs
;
1224 fpos
= vma
->vm_pgoff
;
1225 fpos
<<= PAGE_SHIFT
;
1229 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1235 /* clear the last little bit */
1237 memset(base
+ ret
, 0, len
- ret
);
1244 free_page_series(region
->vm_start
, region
->vm_top
);
1245 region
->vm_start
= vma
->vm_start
= 0;
1246 region
->vm_end
= vma
->vm_end
= 0;
1251 printk("Allocation of length %lu from process %d (%s) failed\n",
1252 len
, current
->pid
, current
->comm
);
1258 * handle mapping creation for uClinux
1260 unsigned long do_mmap_pgoff(struct file
*file
,
1264 unsigned long flags
,
1265 unsigned long pgoff
,
1266 unsigned long *populate
)
1268 struct vm_area_struct
*vma
;
1269 struct vm_region
*region
;
1271 unsigned long capabilities
, vm_flags
, result
;
1274 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1278 /* decide whether we should attempt the mapping, and if so what sort of
1280 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1283 kleave(" = %d [val]", ret
);
1287 /* we ignore the address hint */
1289 len
= PAGE_ALIGN(len
);
1291 /* we've determined that we can make the mapping, now translate what we
1292 * now know into VMA flags */
1293 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1295 /* we're going to need to record the mapping */
1296 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1298 goto error_getting_region
;
1300 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1302 goto error_getting_vma
;
1304 region
->vm_usage
= 1;
1305 region
->vm_flags
= vm_flags
;
1306 region
->vm_pgoff
= pgoff
;
1308 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1309 vma
->vm_flags
= vm_flags
;
1310 vma
->vm_pgoff
= pgoff
;
1313 region
->vm_file
= get_file(file
);
1314 vma
->vm_file
= get_file(file
);
1317 down_write(&nommu_region_sem
);
1319 /* if we want to share, we need to check for regions created by other
1320 * mmap() calls that overlap with our proposed mapping
1321 * - we can only share with a superset match on most regular files
1322 * - shared mappings on character devices and memory backed files are
1323 * permitted to overlap inexactly as far as we are concerned for in
1324 * these cases, sharing is handled in the driver or filesystem rather
1327 if (vm_flags
& VM_MAYSHARE
) {
1328 struct vm_region
*pregion
;
1329 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1331 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1332 pgend
= pgoff
+ pglen
;
1334 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1335 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1337 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1340 /* search for overlapping mappings on the same file */
1341 if (file_inode(pregion
->vm_file
) !=
1345 if (pregion
->vm_pgoff
>= pgend
)
1348 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1349 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1350 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1351 if (pgoff
>= rpgend
)
1354 /* handle inexactly overlapping matches between
1356 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1357 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1358 /* new mapping is not a subset of the region */
1359 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1360 goto sharing_violation
;
1364 /* we've found a region we can share */
1365 pregion
->vm_usage
++;
1366 vma
->vm_region
= pregion
;
1367 start
= pregion
->vm_start
;
1368 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1369 vma
->vm_start
= start
;
1370 vma
->vm_end
= start
+ len
;
1372 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1373 kdebug("share copy");
1374 vma
->vm_flags
|= VM_MAPPED_COPY
;
1376 kdebug("share mmap");
1377 ret
= do_mmap_shared_file(vma
);
1379 vma
->vm_region
= NULL
;
1382 pregion
->vm_usage
--;
1384 goto error_just_free
;
1387 fput(region
->vm_file
);
1388 kmem_cache_free(vm_region_jar
, region
);
1394 /* obtain the address at which to make a shared mapping
1395 * - this is the hook for quasi-memory character devices to
1396 * tell us the location of a shared mapping
1398 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1399 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1401 if (IS_ERR_VALUE(addr
)) {
1404 goto error_just_free
;
1406 /* the driver refused to tell us where to site
1407 * the mapping so we'll have to attempt to copy
1410 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1411 goto error_just_free
;
1413 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1415 vma
->vm_start
= region
->vm_start
= addr
;
1416 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1421 vma
->vm_region
= region
;
1423 /* set up the mapping
1424 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1426 if (file
&& vma
->vm_flags
& VM_SHARED
)
1427 ret
= do_mmap_shared_file(vma
);
1429 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1431 goto error_just_free
;
1432 add_nommu_region(region
);
1434 /* clear anonymous mappings that don't ask for uninitialized data */
1435 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1436 memset((void *)region
->vm_start
, 0,
1437 region
->vm_end
- region
->vm_start
);
1439 /* okay... we have a mapping; now we have to register it */
1440 result
= vma
->vm_start
;
1442 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1445 add_vma_to_mm(current
->mm
, vma
);
1447 /* we flush the region from the icache only when the first executable
1448 * mapping of it is made */
1449 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1450 flush_icache_range(region
->vm_start
, region
->vm_end
);
1451 region
->vm_icache_flushed
= true;
1454 up_write(&nommu_region_sem
);
1456 kleave(" = %lx", result
);
1460 up_write(&nommu_region_sem
);
1462 if (region
->vm_file
)
1463 fput(region
->vm_file
);
1464 kmem_cache_free(vm_region_jar
, region
);
1467 kmem_cache_free(vm_area_cachep
, vma
);
1468 kleave(" = %d", ret
);
1472 up_write(&nommu_region_sem
);
1473 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1478 kmem_cache_free(vm_region_jar
, region
);
1479 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1480 " from process %d failed\n",
1485 error_getting_region
:
1486 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1487 " from process %d failed\n",
1493 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1494 unsigned long, prot
, unsigned long, flags
,
1495 unsigned long, fd
, unsigned long, pgoff
)
1497 struct file
*file
= NULL
;
1498 unsigned long retval
= -EBADF
;
1500 audit_mmap_fd(fd
, flags
);
1501 if (!(flags
& MAP_ANONYMOUS
)) {
1507 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1509 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1517 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1518 struct mmap_arg_struct
{
1522 unsigned long flags
;
1524 unsigned long offset
;
1527 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1529 struct mmap_arg_struct a
;
1531 if (copy_from_user(&a
, arg
, sizeof(a
)))
1533 if (a
.offset
& ~PAGE_MASK
)
1536 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1537 a
.offset
>> PAGE_SHIFT
);
1539 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1542 * split a vma into two pieces at address 'addr', a new vma is allocated either
1543 * for the first part or the tail.
1545 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1546 unsigned long addr
, int new_below
)
1548 struct vm_area_struct
*new;
1549 struct vm_region
*region
;
1550 unsigned long npages
;
1554 /* we're only permitted to split anonymous regions (these should have
1555 * only a single usage on the region) */
1559 if (mm
->map_count
>= sysctl_max_map_count
)
1562 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1566 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1568 kmem_cache_free(vm_region_jar
, region
);
1572 /* most fields are the same, copy all, and then fixup */
1574 *region
= *vma
->vm_region
;
1575 new->vm_region
= region
;
1577 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1580 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1582 region
->vm_start
= new->vm_start
= addr
;
1583 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1586 if (new->vm_ops
&& new->vm_ops
->open
)
1587 new->vm_ops
->open(new);
1589 delete_vma_from_mm(vma
);
1590 down_write(&nommu_region_sem
);
1591 delete_nommu_region(vma
->vm_region
);
1593 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1594 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1596 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1597 vma
->vm_region
->vm_top
= addr
;
1599 add_nommu_region(vma
->vm_region
);
1600 add_nommu_region(new->vm_region
);
1601 up_write(&nommu_region_sem
);
1602 add_vma_to_mm(mm
, vma
);
1603 add_vma_to_mm(mm
, new);
1608 * shrink a VMA by removing the specified chunk from either the beginning or
1611 static int shrink_vma(struct mm_struct
*mm
,
1612 struct vm_area_struct
*vma
,
1613 unsigned long from
, unsigned long to
)
1615 struct vm_region
*region
;
1619 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1621 delete_vma_from_mm(vma
);
1622 if (from
> vma
->vm_start
)
1626 add_vma_to_mm(mm
, vma
);
1628 /* cut the backing region down to size */
1629 region
= vma
->vm_region
;
1630 BUG_ON(region
->vm_usage
!= 1);
1632 down_write(&nommu_region_sem
);
1633 delete_nommu_region(region
);
1634 if (from
> region
->vm_start
) {
1635 to
= region
->vm_top
;
1636 region
->vm_top
= region
->vm_end
= from
;
1638 region
->vm_start
= to
;
1640 add_nommu_region(region
);
1641 up_write(&nommu_region_sem
);
1643 free_page_series(from
, to
);
1649 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1650 * VMA, though it need not cover the whole VMA
1652 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1654 struct vm_area_struct
*vma
;
1658 kenter(",%lx,%zx", start
, len
);
1660 len
= PAGE_ALIGN(len
);
1666 /* find the first potentially overlapping VMA */
1667 vma
= find_vma(mm
, start
);
1669 static int limit
= 0;
1672 "munmap of memory not mmapped by process %d"
1673 " (%s): 0x%lx-0x%lx\n",
1674 current
->pid
, current
->comm
,
1675 start
, start
+ len
- 1);
1681 /* we're allowed to split an anonymous VMA but not a file-backed one */
1684 if (start
> vma
->vm_start
) {
1685 kleave(" = -EINVAL [miss]");
1688 if (end
== vma
->vm_end
)
1689 goto erase_whole_vma
;
1692 kleave(" = -EINVAL [split file]");
1695 /* the chunk must be a subset of the VMA found */
1696 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1697 goto erase_whole_vma
;
1698 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1699 kleave(" = -EINVAL [superset]");
1702 if (start
& ~PAGE_MASK
) {
1703 kleave(" = -EINVAL [unaligned start]");
1706 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1707 kleave(" = -EINVAL [unaligned split]");
1710 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1711 ret
= split_vma(mm
, vma
, start
, 1);
1713 kleave(" = %d [split]", ret
);
1717 return shrink_vma(mm
, vma
, start
, end
);
1721 delete_vma_from_mm(vma
);
1722 delete_vma(mm
, vma
);
1726 EXPORT_SYMBOL(do_munmap
);
1728 int vm_munmap(unsigned long addr
, size_t len
)
1730 struct mm_struct
*mm
= current
->mm
;
1733 down_write(&mm
->mmap_sem
);
1734 ret
= do_munmap(mm
, addr
, len
);
1735 up_write(&mm
->mmap_sem
);
1738 EXPORT_SYMBOL(vm_munmap
);
1740 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1742 return vm_munmap(addr
, len
);
1746 * release all the mappings made in a process's VM space
1748 void exit_mmap(struct mm_struct
*mm
)
1750 struct vm_area_struct
*vma
;
1759 while ((vma
= mm
->mmap
)) {
1760 mm
->mmap
= vma
->vm_next
;
1761 delete_vma_from_mm(vma
);
1762 delete_vma(mm
, vma
);
1769 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1775 * expand (or shrink) an existing mapping, potentially moving it at the same
1776 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1778 * under NOMMU conditions, we only permit changing a mapping's size, and only
1779 * as long as it stays within the region allocated by do_mmap_private() and the
1780 * block is not shareable
1782 * MREMAP_FIXED is not supported under NOMMU conditions
1784 static unsigned long do_mremap(unsigned long addr
,
1785 unsigned long old_len
, unsigned long new_len
,
1786 unsigned long flags
, unsigned long new_addr
)
1788 struct vm_area_struct
*vma
;
1790 /* insanity checks first */
1791 old_len
= PAGE_ALIGN(old_len
);
1792 new_len
= PAGE_ALIGN(new_len
);
1793 if (old_len
== 0 || new_len
== 0)
1794 return (unsigned long) -EINVAL
;
1796 if (addr
& ~PAGE_MASK
)
1799 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1800 return (unsigned long) -EINVAL
;
1802 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1804 return (unsigned long) -EINVAL
;
1806 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1807 return (unsigned long) -EFAULT
;
1809 if (vma
->vm_flags
& VM_MAYSHARE
)
1810 return (unsigned long) -EPERM
;
1812 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1813 return (unsigned long) -ENOMEM
;
1815 /* all checks complete - do it */
1816 vma
->vm_end
= vma
->vm_start
+ new_len
;
1817 return vma
->vm_start
;
1820 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1821 unsigned long, new_len
, unsigned long, flags
,
1822 unsigned long, new_addr
)
1826 down_write(¤t
->mm
->mmap_sem
);
1827 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1828 up_write(¤t
->mm
->mmap_sem
);
1832 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1833 unsigned long address
, unsigned int flags
,
1834 unsigned int *page_mask
)
1840 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1841 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1843 if (addr
!= (pfn
<< PAGE_SHIFT
))
1846 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1849 EXPORT_SYMBOL(remap_pfn_range
);
1851 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1853 unsigned long pfn
= start
>> PAGE_SHIFT
;
1854 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1856 pfn
+= vma
->vm_pgoff
;
1857 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1859 EXPORT_SYMBOL(vm_iomap_memory
);
1861 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1862 unsigned long pgoff
)
1864 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1866 if (!(vma
->vm_flags
& VM_USERMAP
))
1869 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1870 vma
->vm_end
= vma
->vm_start
+ size
;
1874 EXPORT_SYMBOL(remap_vmalloc_range
);
1876 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1877 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1882 void unmap_mapping_range(struct address_space
*mapping
,
1883 loff_t
const holebegin
, loff_t
const holelen
,
1887 EXPORT_SYMBOL(unmap_mapping_range
);
1890 * Check that a process has enough memory to allocate a new virtual
1891 * mapping. 0 means there is enough memory for the allocation to
1892 * succeed and -ENOMEM implies there is not.
1894 * We currently support three overcommit policies, which are set via the
1895 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1897 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1898 * Additional code 2002 Jul 20 by Robert Love.
1900 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1902 * Note this is a helper function intended to be used by LSMs which
1903 * wish to use this logic.
1905 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1907 long free
, allowed
, reserve
;
1909 vm_acct_memory(pages
);
1912 * Sometimes we want to use more memory than we have
1914 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1917 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1918 free
= global_page_state(NR_FREE_PAGES
);
1919 free
+= global_page_state(NR_FILE_PAGES
);
1922 * shmem pages shouldn't be counted as free in this
1923 * case, they can't be purged, only swapped out, and
1924 * that won't affect the overall amount of available
1925 * memory in the system.
1927 free
-= global_page_state(NR_SHMEM
);
1929 free
+= get_nr_swap_pages();
1932 * Any slabs which are created with the
1933 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1934 * which are reclaimable, under pressure. The dentry
1935 * cache and most inode caches should fall into this
1937 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1940 * Leave reserved pages. The pages are not for anonymous pages.
1942 if (free
<= totalreserve_pages
)
1945 free
-= totalreserve_pages
;
1948 * Reserve some for root
1951 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1959 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1961 * Reserve some 3% for root
1964 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1965 allowed
+= total_swap_pages
;
1968 * Don't let a single process grow so big a user can't recover
1971 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1972 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
1975 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1979 vm_unacct_memory(pages
);
1984 int in_gate_area_no_mm(unsigned long addr
)
1989 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1994 EXPORT_SYMBOL(filemap_fault
);
1996 int generic_file_remap_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1997 unsigned long size
, pgoff_t pgoff
)
2002 EXPORT_SYMBOL(generic_file_remap_pages
);
2004 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
2005 unsigned long addr
, void *buf
, int len
, int write
)
2007 struct vm_area_struct
*vma
;
2009 down_read(&mm
->mmap_sem
);
2011 /* the access must start within one of the target process's mappings */
2012 vma
= find_vma(mm
, addr
);
2014 /* don't overrun this mapping */
2015 if (addr
+ len
>= vma
->vm_end
)
2016 len
= vma
->vm_end
- addr
;
2018 /* only read or write mappings where it is permitted */
2019 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2020 copy_to_user_page(vma
, NULL
, addr
,
2021 (void *) addr
, buf
, len
);
2022 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2023 copy_from_user_page(vma
, NULL
, addr
,
2024 buf
, (void *) addr
, len
);
2031 up_read(&mm
->mmap_sem
);
2037 * @access_remote_vm - access another process' address space
2038 * @mm: the mm_struct of the target address space
2039 * @addr: start address to access
2040 * @buf: source or destination buffer
2041 * @len: number of bytes to transfer
2042 * @write: whether the access is a write
2044 * The caller must hold a reference on @mm.
2046 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2047 void *buf
, int len
, int write
)
2049 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2053 * Access another process' address space.
2054 * - source/target buffer must be kernel space
2056 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2058 struct mm_struct
*mm
;
2060 if (addr
+ len
< addr
)
2063 mm
= get_task_mm(tsk
);
2067 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2074 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2075 * @inode: The inode to check
2076 * @size: The current filesize of the inode
2077 * @newsize: The proposed filesize of the inode
2079 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2080 * make sure that that any outstanding VMAs aren't broken and then shrink the
2081 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2082 * automatically grant mappings that are too large.
2084 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2087 struct vm_area_struct
*vma
;
2088 struct vm_region
*region
;
2090 size_t r_size
, r_top
;
2092 low
= newsize
>> PAGE_SHIFT
;
2093 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2095 down_write(&nommu_region_sem
);
2096 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2098 /* search for VMAs that fall within the dead zone */
2099 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2100 /* found one - only interested if it's shared out of the page
2102 if (vma
->vm_flags
& VM_SHARED
) {
2103 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2104 up_write(&nommu_region_sem
);
2105 return -ETXTBSY
; /* not quite true, but near enough */
2109 /* reduce any regions that overlap the dead zone - if in existence,
2110 * these will be pointed to by VMAs that don't overlap the dead zone
2112 * we don't check for any regions that start beyond the EOF as there
2115 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
,
2117 if (!(vma
->vm_flags
& VM_SHARED
))
2120 region
= vma
->vm_region
;
2121 r_size
= region
->vm_top
- region
->vm_start
;
2122 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2124 if (r_top
> newsize
) {
2125 region
->vm_top
-= r_top
- newsize
;
2126 if (region
->vm_end
> region
->vm_top
)
2127 region
->vm_end
= region
->vm_top
;
2131 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2132 up_write(&nommu_region_sem
);
2137 * Initialise sysctl_user_reserve_kbytes.
2139 * This is intended to prevent a user from starting a single memory hogging
2140 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2143 * The default value is min(3% of free memory, 128MB)
2144 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2146 static int __meminit
init_user_reserve(void)
2148 unsigned long free_kbytes
;
2150 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2152 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2155 module_init(init_user_reserve
)
2158 * Initialise sysctl_admin_reserve_kbytes.
2160 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2161 * to log in and kill a memory hogging process.
2163 * Systems with more than 256MB will reserve 8MB, enough to recover
2164 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2165 * only reserve 3% of free pages by default.
2167 static int __meminit
init_admin_reserve(void)
2169 unsigned long free_kbytes
;
2171 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2173 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2176 module_init(init_admin_reserve
)