2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/generic_acl.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
88 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
89 pgoff_t start
; /* start of range currently being fallocated */
90 pgoff_t next
; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
95 /* Flag allocation requirements to shmem_getpage */
97 SGP_READ
, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE
, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
105 static unsigned long shmem_default_max_blocks(void)
107 return totalram_pages
/ 2;
110 static unsigned long shmem_default_max_inodes(void)
112 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
116 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
117 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
118 struct shmem_inode_info
*info
, pgoff_t index
);
119 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
122 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
123 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
125 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
126 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
129 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
131 return sb
->s_fs_info
;
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
140 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
142 return (flags
& VM_NORESERVE
) ?
143 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
146 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
148 if (!(flags
& VM_NORESERVE
))
149 vm_unacct_memory(VM_ACCT(size
));
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
158 static inline int shmem_acct_block(unsigned long flags
)
160 return (flags
& VM_NORESERVE
) ?
161 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
164 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
166 if (flags
& VM_NORESERVE
)
167 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
170 static const struct super_operations shmem_ops
;
171 static const struct address_space_operations shmem_aops
;
172 static const struct file_operations shmem_file_operations
;
173 static const struct inode_operations shmem_inode_operations
;
174 static const struct inode_operations shmem_dir_inode_operations
;
175 static const struct inode_operations shmem_special_inode_operations
;
176 static const struct vm_operations_struct shmem_vm_ops
;
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
179 .ra_pages
= 0, /* No readahead */
180 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
183 static LIST_HEAD(shmem_swaplist
);
184 static DEFINE_MUTEX(shmem_swaplist_mutex
);
186 static int shmem_reserve_inode(struct super_block
*sb
)
188 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
189 if (sbinfo
->max_inodes
) {
190 spin_lock(&sbinfo
->stat_lock
);
191 if (!sbinfo
->free_inodes
) {
192 spin_unlock(&sbinfo
->stat_lock
);
195 sbinfo
->free_inodes
--;
196 spin_unlock(&sbinfo
->stat_lock
);
201 static void shmem_free_inode(struct super_block
*sb
)
203 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
204 if (sbinfo
->max_inodes
) {
205 spin_lock(&sbinfo
->stat_lock
);
206 sbinfo
->free_inodes
++;
207 spin_unlock(&sbinfo
->stat_lock
);
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
221 * It has to be called with the spinlock held.
223 static void shmem_recalc_inode(struct inode
*inode
)
225 struct shmem_inode_info
*info
= SHMEM_I(inode
);
228 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
231 if (sbinfo
->max_blocks
)
232 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
233 info
->alloced
-= freed
;
234 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
235 shmem_unacct_blocks(info
->flags
, freed
);
240 * Replace item expected in radix tree by a new item, while holding tree lock.
242 static int shmem_radix_tree_replace(struct address_space
*mapping
,
243 pgoff_t index
, void *expected
, void *replacement
)
248 VM_BUG_ON(!expected
);
249 VM_BUG_ON(!replacement
);
250 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
253 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
254 if (item
!= expected
)
256 radix_tree_replace_slot(pslot
, replacement
);
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
267 static bool shmem_confirm_swap(struct address_space
*mapping
,
268 pgoff_t index
, swp_entry_t swap
)
273 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
275 return item
== swp_to_radix_entry(swap
);
279 * Like add_to_page_cache_locked, but error if expected item has gone.
281 static int shmem_add_to_page_cache(struct page
*page
,
282 struct address_space
*mapping
,
283 pgoff_t index
, gfp_t gfp
, void *expected
)
287 VM_BUG_ON(!PageLocked(page
));
288 VM_BUG_ON(!PageSwapBacked(page
));
290 page_cache_get(page
);
291 page
->mapping
= mapping
;
294 spin_lock_irq(&mapping
->tree_lock
);
296 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
298 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
302 __inc_zone_page_state(page
, NR_FILE_PAGES
);
303 __inc_zone_page_state(page
, NR_SHMEM
);
304 spin_unlock_irq(&mapping
->tree_lock
);
306 page
->mapping
= NULL
;
307 spin_unlock_irq(&mapping
->tree_lock
);
308 page_cache_release(page
);
314 * Like delete_from_page_cache, but substitutes swap for page.
316 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
318 struct address_space
*mapping
= page
->mapping
;
321 spin_lock_irq(&mapping
->tree_lock
);
322 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
323 page
->mapping
= NULL
;
325 __dec_zone_page_state(page
, NR_FILE_PAGES
);
326 __dec_zone_page_state(page
, NR_SHMEM
);
327 spin_unlock_irq(&mapping
->tree_lock
);
328 page_cache_release(page
);
333 * Remove swap entry from radix tree, free the swap and its page cache.
335 static int shmem_free_swap(struct address_space
*mapping
,
336 pgoff_t index
, void *radswap
)
340 spin_lock_irq(&mapping
->tree_lock
);
341 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
342 spin_unlock_irq(&mapping
->tree_lock
);
345 free_swap_and_cache(radix_to_swp_entry(radswap
));
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
352 void shmem_unlock_mapping(struct address_space
*mapping
)
355 pgoff_t indices
[PAGEVEC_SIZE
];
358 pagevec_init(&pvec
, 0);
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
362 while (!mapping_unevictable(mapping
)) {
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
367 pvec
.nr
= find_get_entries(mapping
, index
,
368 PAGEVEC_SIZE
, pvec
.pages
, indices
);
371 index
= indices
[pvec
.nr
- 1] + 1;
372 pagevec_remove_exceptionals(&pvec
);
373 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
374 pagevec_release(&pvec
);
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
383 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
386 struct address_space
*mapping
= inode
->i_mapping
;
387 struct shmem_inode_info
*info
= SHMEM_I(inode
);
388 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
389 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
390 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
391 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
393 pgoff_t indices
[PAGEVEC_SIZE
];
394 long nr_swaps_freed
= 0;
399 end
= -1; /* unsigned, so actually very big */
401 pagevec_init(&pvec
, 0);
403 while (index
< end
) {
404 pvec
.nr
= find_get_entries(mapping
, index
,
405 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
406 pvec
.pages
, indices
);
409 mem_cgroup_uncharge_start();
410 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
411 struct page
*page
= pvec
.pages
[i
];
417 if (radix_tree_exceptional_entry(page
)) {
420 nr_swaps_freed
+= !shmem_free_swap(mapping
,
425 if (!trylock_page(page
))
427 if (!unfalloc
|| !PageUptodate(page
)) {
428 if (page
->mapping
== mapping
) {
429 VM_BUG_ON(PageWriteback(page
));
430 truncate_inode_page(mapping
, page
);
435 pagevec_remove_exceptionals(&pvec
);
436 pagevec_release(&pvec
);
437 mem_cgroup_uncharge_end();
443 struct page
*page
= NULL
;
444 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
446 unsigned int top
= PAGE_CACHE_SIZE
;
451 zero_user_segment(page
, partial_start
, top
);
452 set_page_dirty(page
);
454 page_cache_release(page
);
458 struct page
*page
= NULL
;
459 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
461 zero_user_segment(page
, 0, partial_end
);
462 set_page_dirty(page
);
464 page_cache_release(page
);
471 while (index
< end
) {
474 pvec
.nr
= find_get_entries(mapping
, index
,
475 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
476 pvec
.pages
, indices
);
478 /* If all gone or hole-punch or unfalloc, we're done */
479 if (index
== start
|| end
!= -1)
481 /* But if truncating, restart to make sure all gone */
485 mem_cgroup_uncharge_start();
486 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
487 struct page
*page
= pvec
.pages
[i
];
493 if (radix_tree_exceptional_entry(page
)) {
496 if (shmem_free_swap(mapping
, index
, page
)) {
497 /* Swap was replaced by page: retry */
506 if (!unfalloc
|| !PageUptodate(page
)) {
507 if (page
->mapping
== mapping
) {
508 VM_BUG_ON(PageWriteback(page
));
509 truncate_inode_page(mapping
, page
);
511 /* Page was replaced by swap: retry */
519 pagevec_remove_exceptionals(&pvec
);
520 pagevec_release(&pvec
);
521 mem_cgroup_uncharge_end();
525 spin_lock(&info
->lock
);
526 info
->swapped
-= nr_swaps_freed
;
527 shmem_recalc_inode(inode
);
528 spin_unlock(&info
->lock
);
531 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
533 shmem_undo_range(inode
, lstart
, lend
, false);
534 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
536 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
538 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
540 struct inode
*inode
= dentry
->d_inode
;
543 error
= inode_change_ok(inode
, attr
);
547 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
548 loff_t oldsize
= inode
->i_size
;
549 loff_t newsize
= attr
->ia_size
;
551 if (newsize
!= oldsize
) {
552 i_size_write(inode
, newsize
);
553 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
555 if (newsize
< oldsize
) {
556 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
557 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
558 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
559 /* unmap again to remove racily COWed private pages */
560 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
564 setattr_copy(inode
, attr
);
565 #ifdef CONFIG_TMPFS_POSIX_ACL
566 if (attr
->ia_valid
& ATTR_MODE
)
567 error
= generic_acl_chmod(inode
);
572 static void shmem_evict_inode(struct inode
*inode
)
574 struct shmem_inode_info
*info
= SHMEM_I(inode
);
576 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
577 shmem_unacct_size(info
->flags
, inode
->i_size
);
579 shmem_truncate_range(inode
, 0, (loff_t
)-1);
580 if (!list_empty(&info
->swaplist
)) {
581 mutex_lock(&shmem_swaplist_mutex
);
582 list_del_init(&info
->swaplist
);
583 mutex_unlock(&shmem_swaplist_mutex
);
586 kfree(info
->symlink
);
588 simple_xattrs_free(&info
->xattrs
);
589 WARN_ON(inode
->i_blocks
);
590 shmem_free_inode(inode
->i_sb
);
595 * If swap found in inode, free it and move page from swapcache to filecache.
597 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
598 swp_entry_t swap
, struct page
**pagep
)
600 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
606 radswap
= swp_to_radix_entry(swap
);
607 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
612 * Move _head_ to start search for next from here.
613 * But be careful: shmem_evict_inode checks list_empty without taking
614 * mutex, and there's an instant in list_move_tail when info->swaplist
615 * would appear empty, if it were the only one on shmem_swaplist.
617 if (shmem_swaplist
.next
!= &info
->swaplist
)
618 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
620 gfp
= mapping_gfp_mask(mapping
);
621 if (shmem_should_replace_page(*pagep
, gfp
)) {
622 mutex_unlock(&shmem_swaplist_mutex
);
623 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
624 mutex_lock(&shmem_swaplist_mutex
);
626 * We needed to drop mutex to make that restrictive page
627 * allocation, but the inode might have been freed while we
628 * dropped it: although a racing shmem_evict_inode() cannot
629 * complete without emptying the radix_tree, our page lock
630 * on this swapcache page is not enough to prevent that -
631 * free_swap_and_cache() of our swap entry will only
632 * trylock_page(), removing swap from radix_tree whatever.
634 * We must not proceed to shmem_add_to_page_cache() if the
635 * inode has been freed, but of course we cannot rely on
636 * inode or mapping or info to check that. However, we can
637 * safely check if our swap entry is still in use (and here
638 * it can't have got reused for another page): if it's still
639 * in use, then the inode cannot have been freed yet, and we
640 * can safely proceed (if it's no longer in use, that tells
641 * nothing about the inode, but we don't need to unuse swap).
643 if (!page_swapcount(*pagep
))
648 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
649 * but also to hold up shmem_evict_inode(): so inode cannot be freed
650 * beneath us (pagelock doesn't help until the page is in pagecache).
653 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
654 GFP_NOWAIT
, radswap
);
655 if (error
!= -ENOMEM
) {
657 * Truncation and eviction use free_swap_and_cache(), which
658 * only does trylock page: if we raced, best clean up here.
660 delete_from_swap_cache(*pagep
);
661 set_page_dirty(*pagep
);
663 spin_lock(&info
->lock
);
665 spin_unlock(&info
->lock
);
668 error
= 1; /* not an error, but entry was found */
674 * Search through swapped inodes to find and replace swap by page.
676 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
678 struct list_head
*this, *next
;
679 struct shmem_inode_info
*info
;
684 * There's a faint possibility that swap page was replaced before
685 * caller locked it: caller will come back later with the right page.
687 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
691 * Charge page using GFP_KERNEL while we can wait, before taking
692 * the shmem_swaplist_mutex which might hold up shmem_writepage().
693 * Charged back to the user (not to caller) when swap account is used.
695 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
698 /* No radix_tree_preload: swap entry keeps a place for page in tree */
700 mutex_lock(&shmem_swaplist_mutex
);
701 list_for_each_safe(this, next
, &shmem_swaplist
) {
702 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
704 found
= shmem_unuse_inode(info
, swap
, &page
);
706 list_del_init(&info
->swaplist
);
711 mutex_unlock(&shmem_swaplist_mutex
);
717 page_cache_release(page
);
722 * Move the page from the page cache to the swap cache.
724 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
726 struct shmem_inode_info
*info
;
727 struct address_space
*mapping
;
732 BUG_ON(!PageLocked(page
));
733 mapping
= page
->mapping
;
735 inode
= mapping
->host
;
736 info
= SHMEM_I(inode
);
737 if (info
->flags
& VM_LOCKED
)
739 if (!total_swap_pages
)
743 * shmem_backing_dev_info's capabilities prevent regular writeback or
744 * sync from ever calling shmem_writepage; but a stacking filesystem
745 * might use ->writepage of its underlying filesystem, in which case
746 * tmpfs should write out to swap only in response to memory pressure,
747 * and not for the writeback threads or sync.
749 if (!wbc
->for_reclaim
) {
750 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
755 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
756 * value into swapfile.c, the only way we can correctly account for a
757 * fallocated page arriving here is now to initialize it and write it.
759 * That's okay for a page already fallocated earlier, but if we have
760 * not yet completed the fallocation, then (a) we want to keep track
761 * of this page in case we have to undo it, and (b) it may not be a
762 * good idea to continue anyway, once we're pushing into swap. So
763 * reactivate the page, and let shmem_fallocate() quit when too many.
765 if (!PageUptodate(page
)) {
766 if (inode
->i_private
) {
767 struct shmem_falloc
*shmem_falloc
;
768 spin_lock(&inode
->i_lock
);
769 shmem_falloc
= inode
->i_private
;
771 !shmem_falloc
->waitq
&&
772 index
>= shmem_falloc
->start
&&
773 index
< shmem_falloc
->next
)
774 shmem_falloc
->nr_unswapped
++;
777 spin_unlock(&inode
->i_lock
);
781 clear_highpage(page
);
782 flush_dcache_page(page
);
783 SetPageUptodate(page
);
786 swap
= get_swap_page();
791 * Add inode to shmem_unuse()'s list of swapped-out inodes,
792 * if it's not already there. Do it now before the page is
793 * moved to swap cache, when its pagelock no longer protects
794 * the inode from eviction. But don't unlock the mutex until
795 * we've incremented swapped, because shmem_unuse_inode() will
796 * prune a !swapped inode from the swaplist under this mutex.
798 mutex_lock(&shmem_swaplist_mutex
);
799 if (list_empty(&info
->swaplist
))
800 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
802 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
803 swap_shmem_alloc(swap
);
804 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
806 spin_lock(&info
->lock
);
808 shmem_recalc_inode(inode
);
809 spin_unlock(&info
->lock
);
811 mutex_unlock(&shmem_swaplist_mutex
);
812 BUG_ON(page_mapped(page
));
813 swap_writepage(page
, wbc
);
817 mutex_unlock(&shmem_swaplist_mutex
);
818 swapcache_free(swap
, NULL
);
820 set_page_dirty(page
);
821 if (wbc
->for_reclaim
)
822 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
829 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
833 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
834 return; /* show nothing */
836 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
838 seq_printf(seq
, ",mpol=%s", buffer
);
841 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
843 struct mempolicy
*mpol
= NULL
;
845 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
848 spin_unlock(&sbinfo
->stat_lock
);
852 #endif /* CONFIG_TMPFS */
854 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
855 struct shmem_inode_info
*info
, pgoff_t index
)
857 struct vm_area_struct pvma
;
860 /* Create a pseudo vma that just contains the policy */
862 /* Bias interleave by inode number to distribute better across nodes */
863 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
865 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
867 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
869 /* Drop reference taken by mpol_shared_policy_lookup() */
870 mpol_cond_put(pvma
.vm_policy
);
875 static struct page
*shmem_alloc_page(gfp_t gfp
,
876 struct shmem_inode_info
*info
, pgoff_t index
)
878 struct vm_area_struct pvma
;
881 /* Create a pseudo vma that just contains the policy */
883 /* Bias interleave by inode number to distribute better across nodes */
884 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
886 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
888 page
= alloc_page_vma(gfp
, &pvma
, 0);
890 /* Drop reference taken by mpol_shared_policy_lookup() */
891 mpol_cond_put(pvma
.vm_policy
);
895 #else /* !CONFIG_NUMA */
897 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
900 #endif /* CONFIG_TMPFS */
902 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
903 struct shmem_inode_info
*info
, pgoff_t index
)
905 return swapin_readahead(swap
, gfp
, NULL
, 0);
908 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
909 struct shmem_inode_info
*info
, pgoff_t index
)
911 return alloc_page(gfp
);
913 #endif /* CONFIG_NUMA */
915 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
916 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
923 * When a page is moved from swapcache to shmem filecache (either by the
924 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
925 * shmem_unuse_inode()), it may have been read in earlier from swap, in
926 * ignorance of the mapping it belongs to. If that mapping has special
927 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
928 * we may need to copy to a suitable page before moving to filecache.
930 * In a future release, this may well be extended to respect cpuset and
931 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
932 * but for now it is a simple matter of zone.
934 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
936 return page_zonenum(page
) > gfp_zone(gfp
);
939 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
940 struct shmem_inode_info
*info
, pgoff_t index
)
942 struct page
*oldpage
, *newpage
;
943 struct address_space
*swap_mapping
;
948 swap_index
= page_private(oldpage
);
949 swap_mapping
= page_mapping(oldpage
);
952 * We have arrived here because our zones are constrained, so don't
953 * limit chance of success by further cpuset and node constraints.
955 gfp
&= ~GFP_CONSTRAINT_MASK
;
956 newpage
= shmem_alloc_page(gfp
, info
, index
);
960 page_cache_get(newpage
);
961 copy_highpage(newpage
, oldpage
);
962 flush_dcache_page(newpage
);
964 __set_page_locked(newpage
);
965 SetPageUptodate(newpage
);
966 SetPageSwapBacked(newpage
);
967 set_page_private(newpage
, swap_index
);
968 SetPageSwapCache(newpage
);
971 * Our caller will very soon move newpage out of swapcache, but it's
972 * a nice clean interface for us to replace oldpage by newpage there.
974 spin_lock_irq(&swap_mapping
->tree_lock
);
975 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
978 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
979 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
981 spin_unlock_irq(&swap_mapping
->tree_lock
);
983 if (unlikely(error
)) {
985 * Is this possible? I think not, now that our callers check
986 * both PageSwapCache and page_private after getting page lock;
987 * but be defensive. Reverse old to newpage for clear and free.
991 mem_cgroup_replace_page_cache(oldpage
, newpage
);
992 lru_cache_add_anon(newpage
);
996 ClearPageSwapCache(oldpage
);
997 set_page_private(oldpage
, 0);
999 unlock_page(oldpage
);
1000 page_cache_release(oldpage
);
1001 page_cache_release(oldpage
);
1006 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1008 * If we allocate a new one we do not mark it dirty. That's up to the
1009 * vm. If we swap it in we mark it dirty since we also free the swap
1010 * entry since a page cannot live in both the swap and page cache
1012 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1013 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1015 struct address_space
*mapping
= inode
->i_mapping
;
1016 struct shmem_inode_info
*info
;
1017 struct shmem_sb_info
*sbinfo
;
1024 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1028 page
= find_lock_entry(mapping
, index
);
1029 if (radix_tree_exceptional_entry(page
)) {
1030 swap
= radix_to_swp_entry(page
);
1034 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1035 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1040 if (page
&& sgp
== SGP_WRITE
)
1041 mark_page_accessed(page
);
1043 /* fallocated page? */
1044 if (page
&& !PageUptodate(page
)) {
1045 if (sgp
!= SGP_READ
)
1048 page_cache_release(page
);
1051 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1057 * Fast cache lookup did not find it:
1058 * bring it back from swap or allocate.
1060 info
= SHMEM_I(inode
);
1061 sbinfo
= SHMEM_SB(inode
->i_sb
);
1064 /* Look it up and read it in.. */
1065 page
= lookup_swap_cache(swap
);
1067 /* here we actually do the io */
1069 *fault_type
|= VM_FAULT_MAJOR
;
1070 page
= shmem_swapin(swap
, gfp
, info
, index
);
1077 /* We have to do this with page locked to prevent races */
1079 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1080 !shmem_confirm_swap(mapping
, index
, swap
)) {
1081 error
= -EEXIST
; /* try again */
1084 if (!PageUptodate(page
)) {
1088 wait_on_page_writeback(page
);
1090 if (shmem_should_replace_page(page
, gfp
)) {
1091 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1096 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1097 gfp
& GFP_RECLAIM_MASK
);
1099 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1100 gfp
, swp_to_radix_entry(swap
));
1102 * We already confirmed swap under page lock, and make
1103 * no memory allocation here, so usually no possibility
1104 * of error; but free_swap_and_cache() only trylocks a
1105 * page, so it is just possible that the entry has been
1106 * truncated or holepunched since swap was confirmed.
1107 * shmem_undo_range() will have done some of the
1108 * unaccounting, now delete_from_swap_cache() will do
1109 * the rest (including mem_cgroup_uncharge_swapcache).
1110 * Reset swap.val? No, leave it so "failed" goes back to
1111 * "repeat": reading a hole and writing should succeed.
1114 delete_from_swap_cache(page
);
1119 spin_lock(&info
->lock
);
1121 shmem_recalc_inode(inode
);
1122 spin_unlock(&info
->lock
);
1124 if (sgp
== SGP_WRITE
)
1125 mark_page_accessed(page
);
1127 delete_from_swap_cache(page
);
1128 set_page_dirty(page
);
1132 if (shmem_acct_block(info
->flags
)) {
1136 if (sbinfo
->max_blocks
) {
1137 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1138 sbinfo
->max_blocks
) >= 0) {
1142 percpu_counter_inc(&sbinfo
->used_blocks
);
1145 page
= shmem_alloc_page(gfp
, info
, index
);
1151 __SetPageSwapBacked(page
);
1152 __set_page_locked(page
);
1153 if (sgp
== SGP_WRITE
)
1154 init_page_accessed(page
);
1156 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1157 gfp
& GFP_RECLAIM_MASK
);
1160 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1162 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1164 radix_tree_preload_end();
1167 mem_cgroup_uncharge_cache_page(page
);
1170 lru_cache_add_anon(page
);
1172 spin_lock(&info
->lock
);
1174 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1175 shmem_recalc_inode(inode
);
1176 spin_unlock(&info
->lock
);
1180 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1182 if (sgp
== SGP_FALLOC
)
1186 * Let SGP_WRITE caller clear ends if write does not fill page;
1187 * but SGP_FALLOC on a page fallocated earlier must initialize
1188 * it now, lest undo on failure cancel our earlier guarantee.
1190 if (sgp
!= SGP_WRITE
) {
1191 clear_highpage(page
);
1192 flush_dcache_page(page
);
1193 SetPageUptodate(page
);
1195 if (sgp
== SGP_DIRTY
)
1196 set_page_dirty(page
);
1199 /* Perhaps the file has been truncated since we checked */
1200 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1201 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1215 info
= SHMEM_I(inode
);
1216 ClearPageDirty(page
);
1217 delete_from_page_cache(page
);
1218 spin_lock(&info
->lock
);
1220 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1221 spin_unlock(&info
->lock
);
1223 sbinfo
= SHMEM_SB(inode
->i_sb
);
1224 if (sbinfo
->max_blocks
)
1225 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1227 shmem_unacct_blocks(info
->flags
, 1);
1229 if (swap
.val
&& error
!= -EINVAL
&&
1230 !shmem_confirm_swap(mapping
, index
, swap
))
1235 page_cache_release(page
);
1237 if (error
== -ENOSPC
&& !once
++) {
1238 info
= SHMEM_I(inode
);
1239 spin_lock(&info
->lock
);
1240 shmem_recalc_inode(inode
);
1241 spin_unlock(&info
->lock
);
1244 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1249 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1251 struct inode
*inode
= file_inode(vma
->vm_file
);
1253 int ret
= VM_FAULT_LOCKED
;
1256 * Trinity finds that probing a hole which tmpfs is punching can
1257 * prevent the hole-punch from ever completing: which in turn
1258 * locks writers out with its hold on i_mutex. So refrain from
1259 * faulting pages into the hole while it's being punched. Although
1260 * shmem_undo_range() does remove the additions, it may be unable to
1261 * keep up, as each new page needs its own unmap_mapping_range() call,
1262 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1264 * It does not matter if we sometimes reach this check just before the
1265 * hole-punch begins, so that one fault then races with the punch:
1266 * we just need to make racing faults a rare case.
1268 * The implementation below would be much simpler if we just used a
1269 * standard mutex or completion: but we cannot take i_mutex in fault,
1270 * and bloating every shmem inode for this unlikely case would be sad.
1272 if (unlikely(inode
->i_private
)) {
1273 struct shmem_falloc
*shmem_falloc
;
1275 spin_lock(&inode
->i_lock
);
1276 shmem_falloc
= inode
->i_private
;
1278 shmem_falloc
->waitq
&&
1279 vmf
->pgoff
>= shmem_falloc
->start
&&
1280 vmf
->pgoff
< shmem_falloc
->next
) {
1281 wait_queue_head_t
*shmem_falloc_waitq
;
1282 DEFINE_WAIT(shmem_fault_wait
);
1284 ret
= VM_FAULT_NOPAGE
;
1285 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1286 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1287 /* It's polite to up mmap_sem if we can */
1288 up_read(&vma
->vm_mm
->mmap_sem
);
1289 ret
= VM_FAULT_RETRY
;
1292 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1293 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1294 TASK_UNINTERRUPTIBLE
);
1295 spin_unlock(&inode
->i_lock
);
1299 * shmem_falloc_waitq points into the shmem_fallocate()
1300 * stack of the hole-punching task: shmem_falloc_waitq
1301 * is usually invalid by the time we reach here, but
1302 * finish_wait() does not dereference it in that case;
1303 * though i_lock needed lest racing with wake_up_all().
1305 spin_lock(&inode
->i_lock
);
1306 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1307 spin_unlock(&inode
->i_lock
);
1310 spin_unlock(&inode
->i_lock
);
1313 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1315 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1317 if (ret
& VM_FAULT_MAJOR
) {
1318 count_vm_event(PGMAJFAULT
);
1319 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1325 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1327 struct inode
*inode
= file_inode(vma
->vm_file
);
1328 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1331 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1334 struct inode
*inode
= file_inode(vma
->vm_file
);
1337 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1338 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1342 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1344 struct inode
*inode
= file_inode(file
);
1345 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1346 int retval
= -ENOMEM
;
1348 spin_lock(&info
->lock
);
1349 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1350 if (!user_shm_lock(inode
->i_size
, user
))
1352 info
->flags
|= VM_LOCKED
;
1353 mapping_set_unevictable(file
->f_mapping
);
1355 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1356 user_shm_unlock(inode
->i_size
, user
);
1357 info
->flags
&= ~VM_LOCKED
;
1358 mapping_clear_unevictable(file
->f_mapping
);
1363 spin_unlock(&info
->lock
);
1367 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1369 file_accessed(file
);
1370 vma
->vm_ops
= &shmem_vm_ops
;
1374 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1375 umode_t mode
, dev_t dev
, unsigned long flags
)
1377 struct inode
*inode
;
1378 struct shmem_inode_info
*info
;
1379 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1381 if (shmem_reserve_inode(sb
))
1384 inode
= new_inode(sb
);
1386 inode
->i_ino
= get_next_ino();
1387 inode_init_owner(inode
, dir
, mode
);
1388 inode
->i_blocks
= 0;
1389 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1390 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1391 inode
->i_generation
= get_seconds();
1392 info
= SHMEM_I(inode
);
1393 memset(info
, 0, (char *)inode
- (char *)info
);
1394 spin_lock_init(&info
->lock
);
1395 info
->flags
= flags
& VM_NORESERVE
;
1396 INIT_LIST_HEAD(&info
->swaplist
);
1397 simple_xattrs_init(&info
->xattrs
);
1398 cache_no_acl(inode
);
1400 switch (mode
& S_IFMT
) {
1402 inode
->i_op
= &shmem_special_inode_operations
;
1403 init_special_inode(inode
, mode
, dev
);
1406 inode
->i_mapping
->a_ops
= &shmem_aops
;
1407 inode
->i_op
= &shmem_inode_operations
;
1408 inode
->i_fop
= &shmem_file_operations
;
1409 mpol_shared_policy_init(&info
->policy
,
1410 shmem_get_sbmpol(sbinfo
));
1414 /* Some things misbehave if size == 0 on a directory */
1415 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1416 inode
->i_op
= &shmem_dir_inode_operations
;
1417 inode
->i_fop
= &simple_dir_operations
;
1421 * Must not load anything in the rbtree,
1422 * mpol_free_shared_policy will not be called.
1424 mpol_shared_policy_init(&info
->policy
, NULL
);
1428 shmem_free_inode(sb
);
1432 bool shmem_mapping(struct address_space
*mapping
)
1434 return mapping
->backing_dev_info
== &shmem_backing_dev_info
;
1438 static const struct inode_operations shmem_symlink_inode_operations
;
1439 static const struct inode_operations shmem_short_symlink_operations
;
1441 #ifdef CONFIG_TMPFS_XATTR
1442 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1444 #define shmem_initxattrs NULL
1448 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1449 loff_t pos
, unsigned len
, unsigned flags
,
1450 struct page
**pagep
, void **fsdata
)
1452 struct inode
*inode
= mapping
->host
;
1453 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1454 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1458 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1459 loff_t pos
, unsigned len
, unsigned copied
,
1460 struct page
*page
, void *fsdata
)
1462 struct inode
*inode
= mapping
->host
;
1464 if (pos
+ copied
> inode
->i_size
)
1465 i_size_write(inode
, pos
+ copied
);
1467 if (!PageUptodate(page
)) {
1468 if (copied
< PAGE_CACHE_SIZE
) {
1469 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1470 zero_user_segments(page
, 0, from
,
1471 from
+ copied
, PAGE_CACHE_SIZE
);
1473 SetPageUptodate(page
);
1475 set_page_dirty(page
);
1477 page_cache_release(page
);
1482 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1484 struct inode
*inode
= file_inode(filp
);
1485 struct address_space
*mapping
= inode
->i_mapping
;
1487 unsigned long offset
;
1488 enum sgp_type sgp
= SGP_READ
;
1491 * Might this read be for a stacking filesystem? Then when reading
1492 * holes of a sparse file, we actually need to allocate those pages,
1493 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1495 if (segment_eq(get_fs(), KERNEL_DS
))
1498 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1499 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1502 struct page
*page
= NULL
;
1504 unsigned long nr
, ret
;
1505 loff_t i_size
= i_size_read(inode
);
1507 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1508 if (index
> end_index
)
1510 if (index
== end_index
) {
1511 nr
= i_size
& ~PAGE_CACHE_MASK
;
1516 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1518 if (desc
->error
== -EINVAL
)
1526 * We must evaluate after, since reads (unlike writes)
1527 * are called without i_mutex protection against truncate
1529 nr
= PAGE_CACHE_SIZE
;
1530 i_size
= i_size_read(inode
);
1531 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1532 if (index
== end_index
) {
1533 nr
= i_size
& ~PAGE_CACHE_MASK
;
1536 page_cache_release(page
);
1544 * If users can be writing to this page using arbitrary
1545 * virtual addresses, take care about potential aliasing
1546 * before reading the page on the kernel side.
1548 if (mapping_writably_mapped(mapping
))
1549 flush_dcache_page(page
);
1551 * Mark the page accessed if we read the beginning.
1554 mark_page_accessed(page
);
1556 page
= ZERO_PAGE(0);
1557 page_cache_get(page
);
1561 * Ok, we have the page, and it's up-to-date, so
1562 * now we can copy it to user space...
1564 * The actor routine returns how many bytes were actually used..
1565 * NOTE! This may not be the same as how much of a user buffer
1566 * we filled up (we may be padding etc), so we can only update
1567 * "pos" here (the actor routine has to update the user buffer
1568 * pointers and the remaining count).
1570 ret
= actor(desc
, page
, offset
, nr
);
1572 index
+= offset
>> PAGE_CACHE_SHIFT
;
1573 offset
&= ~PAGE_CACHE_MASK
;
1575 page_cache_release(page
);
1576 if (ret
!= nr
|| !desc
->count
)
1582 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1583 file_accessed(filp
);
1586 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1587 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1589 struct file
*filp
= iocb
->ki_filp
;
1593 loff_t
*ppos
= &iocb
->ki_pos
;
1595 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1599 for (seg
= 0; seg
< nr_segs
; seg
++) {
1600 read_descriptor_t desc
;
1603 desc
.arg
.buf
= iov
[seg
].iov_base
;
1604 desc
.count
= iov
[seg
].iov_len
;
1605 if (desc
.count
== 0)
1608 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1609 retval
+= desc
.written
;
1611 retval
= retval
?: desc
.error
;
1620 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1621 struct pipe_inode_info
*pipe
, size_t len
,
1624 struct address_space
*mapping
= in
->f_mapping
;
1625 struct inode
*inode
= mapping
->host
;
1626 unsigned int loff
, nr_pages
, req_pages
;
1627 struct page
*pages
[PIPE_DEF_BUFFERS
];
1628 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1630 pgoff_t index
, end_index
;
1633 struct splice_pipe_desc spd
= {
1636 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1638 .ops
= &page_cache_pipe_buf_ops
,
1639 .spd_release
= spd_release_page
,
1642 isize
= i_size_read(inode
);
1643 if (unlikely(*ppos
>= isize
))
1646 left
= isize
- *ppos
;
1647 if (unlikely(left
< len
))
1650 if (splice_grow_spd(pipe
, &spd
))
1653 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1654 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1655 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1656 nr_pages
= min(req_pages
, pipe
->buffers
);
1658 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1659 nr_pages
, spd
.pages
);
1660 index
+= spd
.nr_pages
;
1663 while (spd
.nr_pages
< nr_pages
) {
1664 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1668 spd
.pages
[spd
.nr_pages
++] = page
;
1672 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1673 nr_pages
= spd
.nr_pages
;
1676 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1677 unsigned int this_len
;
1682 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1683 page
= spd
.pages
[page_nr
];
1685 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1686 error
= shmem_getpage(inode
, index
, &page
,
1691 page_cache_release(spd
.pages
[page_nr
]);
1692 spd
.pages
[page_nr
] = page
;
1695 isize
= i_size_read(inode
);
1696 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1697 if (unlikely(!isize
|| index
> end_index
))
1700 if (end_index
== index
) {
1703 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1707 this_len
= min(this_len
, plen
- loff
);
1711 spd
.partial
[page_nr
].offset
= loff
;
1712 spd
.partial
[page_nr
].len
= this_len
;
1719 while (page_nr
< nr_pages
)
1720 page_cache_release(spd
.pages
[page_nr
++]);
1723 error
= splice_to_pipe(pipe
, &spd
);
1725 splice_shrink_spd(&spd
);
1735 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1737 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1738 pgoff_t index
, pgoff_t end
, int whence
)
1741 struct pagevec pvec
;
1742 pgoff_t indices
[PAGEVEC_SIZE
];
1746 pagevec_init(&pvec
, 0);
1747 pvec
.nr
= 1; /* start small: we may be there already */
1749 pvec
.nr
= find_get_entries(mapping
, index
,
1750 pvec
.nr
, pvec
.pages
, indices
);
1752 if (whence
== SEEK_DATA
)
1756 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1757 if (index
< indices
[i
]) {
1758 if (whence
== SEEK_HOLE
) {
1764 page
= pvec
.pages
[i
];
1765 if (page
&& !radix_tree_exceptional_entry(page
)) {
1766 if (!PageUptodate(page
))
1770 (page
&& whence
== SEEK_DATA
) ||
1771 (!page
&& whence
== SEEK_HOLE
)) {
1776 pagevec_remove_exceptionals(&pvec
);
1777 pagevec_release(&pvec
);
1778 pvec
.nr
= PAGEVEC_SIZE
;
1784 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1786 struct address_space
*mapping
= file
->f_mapping
;
1787 struct inode
*inode
= mapping
->host
;
1791 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1792 return generic_file_llseek_size(file
, offset
, whence
,
1793 MAX_LFS_FILESIZE
, i_size_read(inode
));
1794 mutex_lock(&inode
->i_mutex
);
1795 /* We're holding i_mutex so we can access i_size directly */
1799 else if (offset
>= inode
->i_size
)
1802 start
= offset
>> PAGE_CACHE_SHIFT
;
1803 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1804 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1805 new_offset
<<= PAGE_CACHE_SHIFT
;
1806 if (new_offset
> offset
) {
1807 if (new_offset
< inode
->i_size
)
1808 offset
= new_offset
;
1809 else if (whence
== SEEK_DATA
)
1812 offset
= inode
->i_size
;
1817 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1818 mutex_unlock(&inode
->i_mutex
);
1822 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1825 struct inode
*inode
= file_inode(file
);
1826 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1827 struct shmem_falloc shmem_falloc
;
1828 pgoff_t start
, index
, end
;
1831 mutex_lock(&inode
->i_mutex
);
1833 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1834 struct address_space
*mapping
= file
->f_mapping
;
1835 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1836 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1837 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
1839 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
1840 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
1841 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
1842 spin_lock(&inode
->i_lock
);
1843 inode
->i_private
= &shmem_falloc
;
1844 spin_unlock(&inode
->i_lock
);
1846 if ((u64
)unmap_end
> (u64
)unmap_start
)
1847 unmap_mapping_range(mapping
, unmap_start
,
1848 1 + unmap_end
- unmap_start
, 0);
1849 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1850 /* No need to unmap again: hole-punching leaves COWed pages */
1852 spin_lock(&inode
->i_lock
);
1853 inode
->i_private
= NULL
;
1854 wake_up_all(&shmem_falloc_waitq
);
1855 spin_unlock(&inode
->i_lock
);
1860 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1861 error
= inode_newsize_ok(inode
, offset
+ len
);
1865 start
= offset
>> PAGE_CACHE_SHIFT
;
1866 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1867 /* Try to avoid a swapstorm if len is impossible to satisfy */
1868 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1873 shmem_falloc
.waitq
= NULL
;
1874 shmem_falloc
.start
= start
;
1875 shmem_falloc
.next
= start
;
1876 shmem_falloc
.nr_falloced
= 0;
1877 shmem_falloc
.nr_unswapped
= 0;
1878 spin_lock(&inode
->i_lock
);
1879 inode
->i_private
= &shmem_falloc
;
1880 spin_unlock(&inode
->i_lock
);
1882 for (index
= start
; index
< end
; index
++) {
1886 * Good, the fallocate(2) manpage permits EINTR: we may have
1887 * been interrupted because we are using up too much memory.
1889 if (signal_pending(current
))
1891 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1894 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1897 /* Remove the !PageUptodate pages we added */
1898 shmem_undo_range(inode
,
1899 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1900 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1905 * Inform shmem_writepage() how far we have reached.
1906 * No need for lock or barrier: we have the page lock.
1908 shmem_falloc
.next
++;
1909 if (!PageUptodate(page
))
1910 shmem_falloc
.nr_falloced
++;
1913 * If !PageUptodate, leave it that way so that freeable pages
1914 * can be recognized if we need to rollback on error later.
1915 * But set_page_dirty so that memory pressure will swap rather
1916 * than free the pages we are allocating (and SGP_CACHE pages
1917 * might still be clean: we now need to mark those dirty too).
1919 set_page_dirty(page
);
1921 page_cache_release(page
);
1925 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1926 i_size_write(inode
, offset
+ len
);
1927 inode
->i_ctime
= CURRENT_TIME
;
1929 spin_lock(&inode
->i_lock
);
1930 inode
->i_private
= NULL
;
1931 spin_unlock(&inode
->i_lock
);
1933 mutex_unlock(&inode
->i_mutex
);
1937 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1939 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1941 buf
->f_type
= TMPFS_MAGIC
;
1942 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1943 buf
->f_namelen
= NAME_MAX
;
1944 if (sbinfo
->max_blocks
) {
1945 buf
->f_blocks
= sbinfo
->max_blocks
;
1947 buf
->f_bfree
= sbinfo
->max_blocks
-
1948 percpu_counter_sum(&sbinfo
->used_blocks
);
1950 if (sbinfo
->max_inodes
) {
1951 buf
->f_files
= sbinfo
->max_inodes
;
1952 buf
->f_ffree
= sbinfo
->free_inodes
;
1954 /* else leave those fields 0 like simple_statfs */
1959 * File creation. Allocate an inode, and we're done..
1962 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1964 struct inode
*inode
;
1965 int error
= -ENOSPC
;
1967 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1969 #ifdef CONFIG_TMPFS_POSIX_ACL
1970 error
= generic_acl_init(inode
, dir
);
1976 error
= security_inode_init_security(inode
, dir
,
1978 shmem_initxattrs
, NULL
);
1980 if (error
!= -EOPNOTSUPP
) {
1987 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1988 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1989 d_instantiate(dentry
, inode
);
1990 dget(dentry
); /* Extra count - pin the dentry in core */
1996 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1998 struct inode
*inode
;
1999 int error
= -ENOSPC
;
2001 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2003 error
= security_inode_init_security(inode
, dir
,
2005 shmem_initxattrs
, NULL
);
2007 if (error
!= -EOPNOTSUPP
) {
2012 #ifdef CONFIG_TMPFS_POSIX_ACL
2013 error
= generic_acl_init(inode
, dir
);
2021 d_tmpfile(dentry
, inode
);
2026 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2030 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2036 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2039 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2045 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2047 struct inode
*inode
= old_dentry
->d_inode
;
2051 * No ordinary (disk based) filesystem counts links as inodes;
2052 * but each new link needs a new dentry, pinning lowmem, and
2053 * tmpfs dentries cannot be pruned until they are unlinked.
2055 ret
= shmem_reserve_inode(inode
->i_sb
);
2059 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2060 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2062 ihold(inode
); /* New dentry reference */
2063 dget(dentry
); /* Extra pinning count for the created dentry */
2064 d_instantiate(dentry
, inode
);
2069 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2071 struct inode
*inode
= dentry
->d_inode
;
2073 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2074 shmem_free_inode(inode
->i_sb
);
2076 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2077 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2079 dput(dentry
); /* Undo the count from "create" - this does all the work */
2083 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2085 if (!simple_empty(dentry
))
2088 drop_nlink(dentry
->d_inode
);
2090 return shmem_unlink(dir
, dentry
);
2094 * The VFS layer already does all the dentry stuff for rename,
2095 * we just have to decrement the usage count for the target if
2096 * it exists so that the VFS layer correctly free's it when it
2099 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2101 struct inode
*inode
= old_dentry
->d_inode
;
2102 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2104 if (!simple_empty(new_dentry
))
2107 if (new_dentry
->d_inode
) {
2108 (void) shmem_unlink(new_dir
, new_dentry
);
2109 if (they_are_dirs
) {
2110 drop_nlink(new_dentry
->d_inode
);
2111 drop_nlink(old_dir
);
2113 } else if (they_are_dirs
) {
2114 drop_nlink(old_dir
);
2118 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2119 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2120 old_dir
->i_ctime
= old_dir
->i_mtime
=
2121 new_dir
->i_ctime
= new_dir
->i_mtime
=
2122 inode
->i_ctime
= CURRENT_TIME
;
2126 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2130 struct inode
*inode
;
2133 struct shmem_inode_info
*info
;
2135 len
= strlen(symname
) + 1;
2136 if (len
> PAGE_CACHE_SIZE
)
2137 return -ENAMETOOLONG
;
2139 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2143 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2144 shmem_initxattrs
, NULL
);
2146 if (error
!= -EOPNOTSUPP
) {
2153 info
= SHMEM_I(inode
);
2154 inode
->i_size
= len
-1;
2155 if (len
<= SHORT_SYMLINK_LEN
) {
2156 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2157 if (!info
->symlink
) {
2161 inode
->i_op
= &shmem_short_symlink_operations
;
2163 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2168 inode
->i_mapping
->a_ops
= &shmem_aops
;
2169 inode
->i_op
= &shmem_symlink_inode_operations
;
2170 kaddr
= kmap_atomic(page
);
2171 memcpy(kaddr
, symname
, len
);
2172 kunmap_atomic(kaddr
);
2173 SetPageUptodate(page
);
2174 set_page_dirty(page
);
2176 page_cache_release(page
);
2178 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2179 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2180 d_instantiate(dentry
, inode
);
2185 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2187 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2191 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2193 struct page
*page
= NULL
;
2194 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2195 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2201 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2203 if (!IS_ERR(nd_get_link(nd
))) {
2204 struct page
*page
= cookie
;
2206 mark_page_accessed(page
);
2207 page_cache_release(page
);
2211 #ifdef CONFIG_TMPFS_XATTR
2213 * Superblocks without xattr inode operations may get some security.* xattr
2214 * support from the LSM "for free". As soon as we have any other xattrs
2215 * like ACLs, we also need to implement the security.* handlers at
2216 * filesystem level, though.
2220 * Callback for security_inode_init_security() for acquiring xattrs.
2222 static int shmem_initxattrs(struct inode
*inode
,
2223 const struct xattr
*xattr_array
,
2226 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2227 const struct xattr
*xattr
;
2228 struct simple_xattr
*new_xattr
;
2231 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2232 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2236 len
= strlen(xattr
->name
) + 1;
2237 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2239 if (!new_xattr
->name
) {
2244 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2245 XATTR_SECURITY_PREFIX_LEN
);
2246 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2249 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2255 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2256 #ifdef CONFIG_TMPFS_POSIX_ACL
2257 &generic_acl_access_handler
,
2258 &generic_acl_default_handler
,
2263 static int shmem_xattr_validate(const char *name
)
2265 struct { const char *prefix
; size_t len
; } arr
[] = {
2266 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2267 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2271 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2272 size_t preflen
= arr
[i
].len
;
2273 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2282 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2283 void *buffer
, size_t size
)
2285 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2289 * If this is a request for a synthetic attribute in the system.*
2290 * namespace use the generic infrastructure to resolve a handler
2291 * for it via sb->s_xattr.
2293 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2294 return generic_getxattr(dentry
, name
, buffer
, size
);
2296 err
= shmem_xattr_validate(name
);
2300 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2303 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2304 const void *value
, size_t size
, int flags
)
2306 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2310 * If this is a request for a synthetic attribute in the system.*
2311 * namespace use the generic infrastructure to resolve a handler
2312 * for it via sb->s_xattr.
2314 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2315 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2317 err
= shmem_xattr_validate(name
);
2321 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2324 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2326 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2330 * If this is a request for a synthetic attribute in the system.*
2331 * namespace use the generic infrastructure to resolve a handler
2332 * for it via sb->s_xattr.
2334 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2335 return generic_removexattr(dentry
, name
);
2337 err
= shmem_xattr_validate(name
);
2341 return simple_xattr_remove(&info
->xattrs
, name
);
2344 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2346 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2347 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2349 #endif /* CONFIG_TMPFS_XATTR */
2351 static const struct inode_operations shmem_short_symlink_operations
= {
2352 .readlink
= generic_readlink
,
2353 .follow_link
= shmem_follow_short_symlink
,
2354 #ifdef CONFIG_TMPFS_XATTR
2355 .setxattr
= shmem_setxattr
,
2356 .getxattr
= shmem_getxattr
,
2357 .listxattr
= shmem_listxattr
,
2358 .removexattr
= shmem_removexattr
,
2362 static const struct inode_operations shmem_symlink_inode_operations
= {
2363 .readlink
= generic_readlink
,
2364 .follow_link
= shmem_follow_link
,
2365 .put_link
= shmem_put_link
,
2366 #ifdef CONFIG_TMPFS_XATTR
2367 .setxattr
= shmem_setxattr
,
2368 .getxattr
= shmem_getxattr
,
2369 .listxattr
= shmem_listxattr
,
2370 .removexattr
= shmem_removexattr
,
2374 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2376 return ERR_PTR(-ESTALE
);
2379 static int shmem_match(struct inode
*ino
, void *vfh
)
2383 inum
= (inum
<< 32) | fh
[1];
2384 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2387 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2388 struct fid
*fid
, int fh_len
, int fh_type
)
2390 struct inode
*inode
;
2391 struct dentry
*dentry
= NULL
;
2398 inum
= (inum
<< 32) | fid
->raw
[1];
2400 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2401 shmem_match
, fid
->raw
);
2403 dentry
= d_find_alias(inode
);
2410 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2411 struct inode
*parent
)
2415 return FILEID_INVALID
;
2418 if (inode_unhashed(inode
)) {
2419 /* Unfortunately insert_inode_hash is not idempotent,
2420 * so as we hash inodes here rather than at creation
2421 * time, we need a lock to ensure we only try
2424 static DEFINE_SPINLOCK(lock
);
2426 if (inode_unhashed(inode
))
2427 __insert_inode_hash(inode
,
2428 inode
->i_ino
+ inode
->i_generation
);
2432 fh
[0] = inode
->i_generation
;
2433 fh
[1] = inode
->i_ino
;
2434 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2440 static const struct export_operations shmem_export_ops
= {
2441 .get_parent
= shmem_get_parent
,
2442 .encode_fh
= shmem_encode_fh
,
2443 .fh_to_dentry
= shmem_fh_to_dentry
,
2446 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2449 char *this_char
, *value
, *rest
;
2450 struct mempolicy
*mpol
= NULL
;
2454 while (options
!= NULL
) {
2455 this_char
= options
;
2458 * NUL-terminate this option: unfortunately,
2459 * mount options form a comma-separated list,
2460 * but mpol's nodelist may also contain commas.
2462 options
= strchr(options
, ',');
2463 if (options
== NULL
)
2466 if (!isdigit(*options
)) {
2473 if ((value
= strchr(this_char
,'=')) != NULL
) {
2477 "tmpfs: No value for mount option '%s'\n",
2482 if (!strcmp(this_char
,"size")) {
2483 unsigned long long size
;
2484 size
= memparse(value
,&rest
);
2486 size
<<= PAGE_SHIFT
;
2487 size
*= totalram_pages
;
2493 sbinfo
->max_blocks
=
2494 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2495 } else if (!strcmp(this_char
,"nr_blocks")) {
2496 sbinfo
->max_blocks
= memparse(value
, &rest
);
2499 } else if (!strcmp(this_char
,"nr_inodes")) {
2500 sbinfo
->max_inodes
= memparse(value
, &rest
);
2503 } else if (!strcmp(this_char
,"mode")) {
2506 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2509 } else if (!strcmp(this_char
,"uid")) {
2512 uid
= simple_strtoul(value
, &rest
, 0);
2515 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2516 if (!uid_valid(sbinfo
->uid
))
2518 } else if (!strcmp(this_char
,"gid")) {
2521 gid
= simple_strtoul(value
, &rest
, 0);
2524 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2525 if (!gid_valid(sbinfo
->gid
))
2527 } else if (!strcmp(this_char
,"mpol")) {
2530 if (mpol_parse_str(value
, &mpol
))
2533 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2538 sbinfo
->mpol
= mpol
;
2542 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2550 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2552 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2553 struct shmem_sb_info config
= *sbinfo
;
2554 unsigned long inodes
;
2555 int error
= -EINVAL
;
2558 if (shmem_parse_options(data
, &config
, true))
2561 spin_lock(&sbinfo
->stat_lock
);
2562 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2563 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2565 if (config
.max_inodes
< inodes
)
2568 * Those tests disallow limited->unlimited while any are in use;
2569 * but we must separately disallow unlimited->limited, because
2570 * in that case we have no record of how much is already in use.
2572 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2574 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2578 sbinfo
->max_blocks
= config
.max_blocks
;
2579 sbinfo
->max_inodes
= config
.max_inodes
;
2580 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2583 * Preserve previous mempolicy unless mpol remount option was specified.
2586 mpol_put(sbinfo
->mpol
);
2587 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2590 spin_unlock(&sbinfo
->stat_lock
);
2594 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2596 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2598 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2599 seq_printf(seq
, ",size=%luk",
2600 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2601 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2602 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2603 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2604 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2605 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2606 seq_printf(seq
, ",uid=%u",
2607 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2608 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2609 seq_printf(seq
, ",gid=%u",
2610 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2611 shmem_show_mpol(seq
, sbinfo
->mpol
);
2614 #endif /* CONFIG_TMPFS */
2616 static void shmem_put_super(struct super_block
*sb
)
2618 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2620 percpu_counter_destroy(&sbinfo
->used_blocks
);
2621 mpol_put(sbinfo
->mpol
);
2623 sb
->s_fs_info
= NULL
;
2626 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2628 struct inode
*inode
;
2629 struct shmem_sb_info
*sbinfo
;
2632 /* Round up to L1_CACHE_BYTES to resist false sharing */
2633 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2634 L1_CACHE_BYTES
), GFP_KERNEL
);
2638 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2639 sbinfo
->uid
= current_fsuid();
2640 sbinfo
->gid
= current_fsgid();
2641 sb
->s_fs_info
= sbinfo
;
2645 * Per default we only allow half of the physical ram per
2646 * tmpfs instance, limiting inodes to one per page of lowmem;
2647 * but the internal instance is left unlimited.
2649 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
2650 sbinfo
->max_blocks
= shmem_default_max_blocks();
2651 sbinfo
->max_inodes
= shmem_default_max_inodes();
2652 if (shmem_parse_options(data
, sbinfo
, false)) {
2657 sb
->s_flags
|= MS_NOUSER
;
2659 sb
->s_export_op
= &shmem_export_ops
;
2660 sb
->s_flags
|= MS_NOSEC
;
2662 sb
->s_flags
|= MS_NOUSER
;
2665 spin_lock_init(&sbinfo
->stat_lock
);
2666 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2668 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2670 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2671 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2672 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2673 sb
->s_magic
= TMPFS_MAGIC
;
2674 sb
->s_op
= &shmem_ops
;
2675 sb
->s_time_gran
= 1;
2676 #ifdef CONFIG_TMPFS_XATTR
2677 sb
->s_xattr
= shmem_xattr_handlers
;
2679 #ifdef CONFIG_TMPFS_POSIX_ACL
2680 sb
->s_flags
|= MS_POSIXACL
;
2683 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2686 inode
->i_uid
= sbinfo
->uid
;
2687 inode
->i_gid
= sbinfo
->gid
;
2688 sb
->s_root
= d_make_root(inode
);
2694 shmem_put_super(sb
);
2698 static struct kmem_cache
*shmem_inode_cachep
;
2700 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2702 struct shmem_inode_info
*info
;
2703 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2706 return &info
->vfs_inode
;
2709 static void shmem_destroy_callback(struct rcu_head
*head
)
2711 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2712 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2715 static void shmem_destroy_inode(struct inode
*inode
)
2717 if (S_ISREG(inode
->i_mode
))
2718 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2719 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2722 static void shmem_init_inode(void *foo
)
2724 struct shmem_inode_info
*info
= foo
;
2725 inode_init_once(&info
->vfs_inode
);
2728 static int shmem_init_inodecache(void)
2730 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2731 sizeof(struct shmem_inode_info
),
2732 0, SLAB_PANIC
, shmem_init_inode
);
2736 static void shmem_destroy_inodecache(void)
2738 kmem_cache_destroy(shmem_inode_cachep
);
2741 static const struct address_space_operations shmem_aops
= {
2742 .writepage
= shmem_writepage
,
2743 .set_page_dirty
= __set_page_dirty_no_writeback
,
2745 .write_begin
= shmem_write_begin
,
2746 .write_end
= shmem_write_end
,
2748 .migratepage
= migrate_page
,
2749 .error_remove_page
= generic_error_remove_page
,
2752 static const struct file_operations shmem_file_operations
= {
2755 .llseek
= shmem_file_llseek
,
2756 .read
= do_sync_read
,
2757 .write
= do_sync_write
,
2758 .aio_read
= shmem_file_aio_read
,
2759 .aio_write
= generic_file_aio_write
,
2760 .fsync
= noop_fsync
,
2761 .splice_read
= shmem_file_splice_read
,
2762 .splice_write
= generic_file_splice_write
,
2763 .fallocate
= shmem_fallocate
,
2767 static const struct inode_operations shmem_inode_operations
= {
2768 .setattr
= shmem_setattr
,
2769 #ifdef CONFIG_TMPFS_XATTR
2770 .setxattr
= shmem_setxattr
,
2771 .getxattr
= shmem_getxattr
,
2772 .listxattr
= shmem_listxattr
,
2773 .removexattr
= shmem_removexattr
,
2777 static const struct inode_operations shmem_dir_inode_operations
= {
2779 .create
= shmem_create
,
2780 .lookup
= simple_lookup
,
2782 .unlink
= shmem_unlink
,
2783 .symlink
= shmem_symlink
,
2784 .mkdir
= shmem_mkdir
,
2785 .rmdir
= shmem_rmdir
,
2786 .mknod
= shmem_mknod
,
2787 .rename
= shmem_rename
,
2788 .tmpfile
= shmem_tmpfile
,
2790 #ifdef CONFIG_TMPFS_XATTR
2791 .setxattr
= shmem_setxattr
,
2792 .getxattr
= shmem_getxattr
,
2793 .listxattr
= shmem_listxattr
,
2794 .removexattr
= shmem_removexattr
,
2796 #ifdef CONFIG_TMPFS_POSIX_ACL
2797 .setattr
= shmem_setattr
,
2801 static const struct inode_operations shmem_special_inode_operations
= {
2802 #ifdef CONFIG_TMPFS_XATTR
2803 .setxattr
= shmem_setxattr
,
2804 .getxattr
= shmem_getxattr
,
2805 .listxattr
= shmem_listxattr
,
2806 .removexattr
= shmem_removexattr
,
2808 #ifdef CONFIG_TMPFS_POSIX_ACL
2809 .setattr
= shmem_setattr
,
2813 static const struct super_operations shmem_ops
= {
2814 .alloc_inode
= shmem_alloc_inode
,
2815 .destroy_inode
= shmem_destroy_inode
,
2817 .statfs
= shmem_statfs
,
2818 .remount_fs
= shmem_remount_fs
,
2819 .show_options
= shmem_show_options
,
2821 .evict_inode
= shmem_evict_inode
,
2822 .drop_inode
= generic_delete_inode
,
2823 .put_super
= shmem_put_super
,
2826 static const struct vm_operations_struct shmem_vm_ops
= {
2827 .fault
= shmem_fault
,
2829 .set_policy
= shmem_set_policy
,
2830 .get_policy
= shmem_get_policy
,
2832 .remap_pages
= generic_file_remap_pages
,
2835 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2836 int flags
, const char *dev_name
, void *data
)
2838 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2841 static struct file_system_type shmem_fs_type
= {
2842 .owner
= THIS_MODULE
,
2844 .mount
= shmem_mount
,
2845 .kill_sb
= kill_litter_super
,
2846 .fs_flags
= FS_USERNS_MOUNT
,
2849 int __init
shmem_init(void)
2853 /* If rootfs called this, don't re-init */
2854 if (shmem_inode_cachep
)
2857 error
= bdi_init(&shmem_backing_dev_info
);
2861 error
= shmem_init_inodecache();
2865 error
= register_filesystem(&shmem_fs_type
);
2867 printk(KERN_ERR
"Could not register tmpfs\n");
2871 shm_mnt
= kern_mount(&shmem_fs_type
);
2872 if (IS_ERR(shm_mnt
)) {
2873 error
= PTR_ERR(shm_mnt
);
2874 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2880 unregister_filesystem(&shmem_fs_type
);
2882 shmem_destroy_inodecache();
2884 bdi_destroy(&shmem_backing_dev_info
);
2886 shm_mnt
= ERR_PTR(error
);
2890 #else /* !CONFIG_SHMEM */
2893 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2895 * This is intended for small system where the benefits of the full
2896 * shmem code (swap-backed and resource-limited) are outweighed by
2897 * their complexity. On systems without swap this code should be
2898 * effectively equivalent, but much lighter weight.
2901 static struct file_system_type shmem_fs_type
= {
2903 .mount
= ramfs_mount
,
2904 .kill_sb
= kill_litter_super
,
2905 .fs_flags
= FS_USERNS_MOUNT
,
2908 int __init
shmem_init(void)
2910 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2912 shm_mnt
= kern_mount(&shmem_fs_type
);
2913 BUG_ON(IS_ERR(shm_mnt
));
2918 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2923 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2928 void shmem_unlock_mapping(struct address_space
*mapping
)
2932 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2934 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2936 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2938 #define shmem_vm_ops generic_file_vm_ops
2939 #define shmem_file_operations ramfs_file_operations
2940 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2941 #define shmem_acct_size(flags, size) 0
2942 #define shmem_unacct_size(flags, size) do {} while (0)
2944 #endif /* CONFIG_SHMEM */
2948 static struct dentry_operations anon_ops
= {
2949 .d_dname
= simple_dname
2953 * shmem_file_setup - get an unlinked file living in tmpfs
2954 * @name: name for dentry (to be seen in /proc/<pid>/maps
2955 * @size: size to be set for the file
2956 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2958 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2961 struct inode
*inode
;
2963 struct super_block
*sb
;
2966 if (IS_ERR(shm_mnt
))
2967 return ERR_CAST(shm_mnt
);
2969 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2970 return ERR_PTR(-EINVAL
);
2972 if (shmem_acct_size(flags
, size
))
2973 return ERR_PTR(-ENOMEM
);
2975 res
= ERR_PTR(-ENOMEM
);
2977 this.len
= strlen(name
);
2978 this.hash
= 0; /* will go */
2979 sb
= shm_mnt
->mnt_sb
;
2980 path
.dentry
= d_alloc_pseudo(sb
, &this);
2983 d_set_d_op(path
.dentry
, &anon_ops
);
2984 path
.mnt
= mntget(shm_mnt
);
2986 res
= ERR_PTR(-ENOSPC
);
2987 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2991 d_instantiate(path
.dentry
, inode
);
2992 inode
->i_size
= size
;
2993 clear_nlink(inode
); /* It is unlinked */
2994 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
2998 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2999 &shmem_file_operations
);
3008 shmem_unacct_size(flags
, size
);
3011 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3014 * shmem_zero_setup - setup a shared anonymous mapping
3015 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3017 int shmem_zero_setup(struct vm_area_struct
*vma
)
3020 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3022 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3024 return PTR_ERR(file
);
3028 vma
->vm_file
= file
;
3029 vma
->vm_ops
= &shmem_vm_ops
;
3034 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3035 * @mapping: the page's address_space
3036 * @index: the page index
3037 * @gfp: the page allocator flags to use if allocating
3039 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3040 * with any new page allocations done using the specified allocation flags.
3041 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3042 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3043 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3045 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3046 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3048 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3049 pgoff_t index
, gfp_t gfp
)
3052 struct inode
*inode
= mapping
->host
;
3056 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3057 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3059 page
= ERR_PTR(error
);
3065 * The tiny !SHMEM case uses ramfs without swap
3067 return read_cache_page_gfp(mapping
, index
, gfp
);
3070 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);