4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
41 /* How many pages do we try to swap or page in/out together? */
44 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
45 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
46 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
52 static void __page_cache_release(struct page
*page
)
55 struct zone
*zone
= page_zone(page
);
56 struct lruvec
*lruvec
;
59 spin_lock_irqsave(&zone
->lru_lock
, flags
);
60 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
61 VM_BUG_ON(!PageLRU(page
));
63 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
64 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
68 static void __put_single_page(struct page
*page
)
70 __page_cache_release(page
);
71 free_hot_cold_page(page
, false);
74 static void __put_compound_page(struct page
*page
)
76 compound_page_dtor
*dtor
;
78 __page_cache_release(page
);
79 dtor
= get_compound_page_dtor(page
);
83 static void put_compound_page(struct page
*page
)
85 if (unlikely(PageTail(page
))) {
86 /* __split_huge_page_refcount can run under us */
87 struct page
*page_head
= compound_head(page
);
89 if (likely(page
!= page_head
&&
90 get_page_unless_zero(page_head
))) {
94 * THP can not break up slab pages so avoid taking
95 * compound_lock(). Slab performs non-atomic bit ops
96 * on page->flags for better performance. In particular
97 * slab_unlock() in slub used to be a hot path. It is
98 * still hot on arches that do not support
99 * this_cpu_cmpxchg_double().
101 if (PageSlab(page_head
) || PageHeadHuge(page_head
)) {
102 if (likely(PageTail(page
))) {
104 * __split_huge_page_refcount
107 VM_BUG_ON(!PageHead(page_head
));
108 atomic_dec(&page
->_mapcount
);
109 if (put_page_testzero(page_head
))
111 if (put_page_testzero(page_head
))
112 __put_compound_page(page_head
);
116 * __split_huge_page_refcount
117 * run before us, "page" was a
118 * THP tail. The split
119 * page_head has been freed
120 * and reallocated as slab or
121 * hugetlbfs page of smaller
122 * order (only possible if
123 * reallocated as slab on
129 * page_head wasn't a dangling pointer but it
130 * may not be a head page anymore by the time
131 * we obtain the lock. That is ok as long as it
132 * can't be freed from under us.
134 flags
= compound_lock_irqsave(page_head
);
135 if (unlikely(!PageTail(page
))) {
136 /* __split_huge_page_refcount run before us */
137 compound_unlock_irqrestore(page_head
, flags
);
139 if (put_page_testzero(page_head
)) {
141 * The head page may have been
142 * freed and reallocated as a
143 * compound page of smaller
144 * order and then freed again.
145 * All we know is that it
146 * cannot have become: a THP
147 * page, a compound page of
148 * higher order, a tail page.
149 * That is because we still
150 * hold the refcount of the
152 * page_head was the THP head
155 if (PageHead(page_head
))
156 __put_compound_page(page_head
);
158 __put_single_page(page_head
);
161 if (put_page_testzero(page
))
162 __put_single_page(page
);
165 VM_BUG_ON(page_head
!= page
->first_page
);
167 * We can release the refcount taken by
168 * get_page_unless_zero() now that
169 * __split_huge_page_refcount() is blocked on
172 if (put_page_testzero(page_head
))
174 /* __split_huge_page_refcount will wait now */
175 VM_BUG_ON(page_mapcount(page
) <= 0);
176 atomic_dec(&page
->_mapcount
);
177 VM_BUG_ON(atomic_read(&page_head
->_count
) <= 0);
178 VM_BUG_ON(atomic_read(&page
->_count
) != 0);
179 compound_unlock_irqrestore(page_head
, flags
);
181 if (put_page_testzero(page_head
)) {
182 if (PageHead(page_head
))
183 __put_compound_page(page_head
);
185 __put_single_page(page_head
);
188 /* page_head is a dangling pointer */
189 VM_BUG_ON(PageTail(page
));
192 } else if (put_page_testzero(page
)) {
194 __put_compound_page(page
);
196 __put_single_page(page
);
200 void put_page(struct page
*page
)
202 if (unlikely(PageCompound(page
)))
203 put_compound_page(page
);
204 else if (put_page_testzero(page
))
205 __put_single_page(page
);
207 EXPORT_SYMBOL(put_page
);
210 * This function is exported but must not be called by anything other
211 * than get_page(). It implements the slow path of get_page().
213 bool __get_page_tail(struct page
*page
)
216 * This takes care of get_page() if run on a tail page
217 * returned by one of the get_user_pages/follow_page variants.
218 * get_user_pages/follow_page itself doesn't need the compound
219 * lock because it runs __get_page_tail_foll() under the
220 * proper PT lock that already serializes against
225 struct page
*page_head
= compound_head(page
);
227 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
228 /* Ref to put_compound_page() comment. */
229 if (PageSlab(page_head
) || PageHeadHuge(page_head
)) {
230 if (likely(PageTail(page
))) {
232 * This is a hugetlbfs page or a slab
233 * page. __split_huge_page_refcount
236 VM_BUG_ON(!PageHead(page_head
));
237 __get_page_tail_foll(page
, false);
241 * __split_huge_page_refcount run
242 * before us, "page" was a THP
243 * tail. The split page_head has been
244 * freed and reallocated as slab or
245 * hugetlbfs page of smaller order
246 * (only possible if reallocated as
255 * page_head wasn't a dangling pointer but it
256 * may not be a head page anymore by the time
257 * we obtain the lock. That is ok as long as it
258 * can't be freed from under us.
260 flags
= compound_lock_irqsave(page_head
);
261 /* here __split_huge_page_refcount won't run anymore */
262 if (likely(PageTail(page
))) {
263 __get_page_tail_foll(page
, false);
266 compound_unlock_irqrestore(page_head
, flags
);
272 EXPORT_SYMBOL(__get_page_tail
);
275 * put_pages_list() - release a list of pages
276 * @pages: list of pages threaded on page->lru
278 * Release a list of pages which are strung together on page.lru. Currently
279 * used by read_cache_pages() and related error recovery code.
281 void put_pages_list(struct list_head
*pages
)
283 while (!list_empty(pages
)) {
286 victim
= list_entry(pages
->prev
, struct page
, lru
);
287 list_del(&victim
->lru
);
288 page_cache_release(victim
);
291 EXPORT_SYMBOL(put_pages_list
);
294 * get_kernel_pages() - pin kernel pages in memory
295 * @kiov: An array of struct kvec structures
296 * @nr_segs: number of segments to pin
297 * @write: pinning for read/write, currently ignored
298 * @pages: array that receives pointers to the pages pinned.
299 * Should be at least nr_segs long.
301 * Returns number of pages pinned. This may be fewer than the number
302 * requested. If nr_pages is 0 or negative, returns 0. If no pages
303 * were pinned, returns -errno. Each page returned must be released
304 * with a put_page() call when it is finished with.
306 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
311 for (seg
= 0; seg
< nr_segs
; seg
++) {
312 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
315 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
316 page_cache_get(pages
[seg
]);
321 EXPORT_SYMBOL_GPL(get_kernel_pages
);
324 * get_kernel_page() - pin a kernel page in memory
325 * @start: starting kernel address
326 * @write: pinning for read/write, currently ignored
327 * @pages: array that receives pointer to the page pinned.
328 * Must be at least nr_segs long.
330 * Returns 1 if page is pinned. If the page was not pinned, returns
331 * -errno. The page returned must be released with a put_page() call
332 * when it is finished with.
334 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
336 const struct kvec kiov
= {
337 .iov_base
= (void *)start
,
341 return get_kernel_pages(&kiov
, 1, write
, pages
);
343 EXPORT_SYMBOL_GPL(get_kernel_page
);
345 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
346 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
350 struct zone
*zone
= NULL
;
351 struct lruvec
*lruvec
;
352 unsigned long flags
= 0;
354 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
355 struct page
*page
= pvec
->pages
[i
];
356 struct zone
*pagezone
= page_zone(page
);
358 if (pagezone
!= zone
) {
360 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
362 spin_lock_irqsave(&zone
->lru_lock
, flags
);
365 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
366 (*move_fn
)(page
, lruvec
, arg
);
369 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
370 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
371 pagevec_reinit(pvec
);
374 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
379 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
380 enum lru_list lru
= page_lru_base_type(page
);
381 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
387 * pagevec_move_tail() must be called with IRQ disabled.
388 * Otherwise this may cause nasty races.
390 static void pagevec_move_tail(struct pagevec
*pvec
)
394 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
395 __count_vm_events(PGROTATED
, pgmoved
);
399 * Writeback is about to end against a page which has been marked for immediate
400 * reclaim. If it still appears to be reclaimable, move it to the tail of the
403 void rotate_reclaimable_page(struct page
*page
)
405 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
406 !PageUnevictable(page
) && PageLRU(page
)) {
407 struct pagevec
*pvec
;
410 page_cache_get(page
);
411 local_irq_save(flags
);
412 pvec
= &__get_cpu_var(lru_rotate_pvecs
);
413 if (!pagevec_add(pvec
, page
))
414 pagevec_move_tail(pvec
);
415 local_irq_restore(flags
);
419 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
420 int file
, int rotated
)
422 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
424 reclaim_stat
->recent_scanned
[file
]++;
426 reclaim_stat
->recent_rotated
[file
]++;
429 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
432 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
433 int file
= page_is_file_cache(page
);
434 int lru
= page_lru_base_type(page
);
436 del_page_from_lru_list(page
, lruvec
, lru
);
439 add_page_to_lru_list(page
, lruvec
, lru
);
440 trace_mm_lru_activate(page
);
442 __count_vm_event(PGACTIVATE
);
443 update_page_reclaim_stat(lruvec
, file
, 1);
448 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
450 static void activate_page_drain(int cpu
)
452 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
454 if (pagevec_count(pvec
))
455 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
458 static bool need_activate_page_drain(int cpu
)
460 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
463 void activate_page(struct page
*page
)
465 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
466 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
468 page_cache_get(page
);
469 if (!pagevec_add(pvec
, page
))
470 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
471 put_cpu_var(activate_page_pvecs
);
476 static inline void activate_page_drain(int cpu
)
480 static bool need_activate_page_drain(int cpu
)
485 void activate_page(struct page
*page
)
487 struct zone
*zone
= page_zone(page
);
489 spin_lock_irq(&zone
->lru_lock
);
490 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
491 spin_unlock_irq(&zone
->lru_lock
);
495 static void __lru_cache_activate_page(struct page
*page
)
497 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
501 * Search backwards on the optimistic assumption that the page being
502 * activated has just been added to this pagevec. Note that only
503 * the local pagevec is examined as a !PageLRU page could be in the
504 * process of being released, reclaimed, migrated or on a remote
505 * pagevec that is currently being drained. Furthermore, marking
506 * a remote pagevec's page PageActive potentially hits a race where
507 * a page is marked PageActive just after it is added to the inactive
508 * list causing accounting errors and BUG_ON checks to trigger.
510 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
511 struct page
*pagevec_page
= pvec
->pages
[i
];
513 if (pagevec_page
== page
) {
519 put_cpu_var(lru_add_pvec
);
523 * Mark a page as having seen activity.
525 * inactive,unreferenced -> inactive,referenced
526 * inactive,referenced -> active,unreferenced
527 * active,unreferenced -> active,referenced
529 void mark_page_accessed(struct page
*page
)
531 if (!PageActive(page
) && !PageUnevictable(page
) &&
532 PageReferenced(page
)) {
535 * If the page is on the LRU, queue it for activation via
536 * activate_page_pvecs. Otherwise, assume the page is on a
537 * pagevec, mark it active and it'll be moved to the active
538 * LRU on the next drain.
543 __lru_cache_activate_page(page
);
544 ClearPageReferenced(page
);
545 } else if (!PageReferenced(page
)) {
546 SetPageReferenced(page
);
549 EXPORT_SYMBOL(mark_page_accessed
);
552 * Used to mark_page_accessed(page) that is not visible yet and when it is
553 * still safe to use non-atomic ops
555 void init_page_accessed(struct page
*page
)
557 if (!PageReferenced(page
))
558 __SetPageReferenced(page
);
560 EXPORT_SYMBOL(init_page_accessed
);
562 static void __lru_cache_add(struct page
*page
)
564 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
566 page_cache_get(page
);
567 if (!pagevec_space(pvec
))
568 __pagevec_lru_add(pvec
);
569 pagevec_add(pvec
, page
);
570 put_cpu_var(lru_add_pvec
);
574 * lru_cache_add: add a page to the page lists
575 * @page: the page to add
577 void lru_cache_add_anon(struct page
*page
)
579 if (PageActive(page
))
580 ClearPageActive(page
);
581 __lru_cache_add(page
);
584 void lru_cache_add_file(struct page
*page
)
586 if (PageActive(page
))
587 ClearPageActive(page
);
588 __lru_cache_add(page
);
590 EXPORT_SYMBOL(lru_cache_add_file
);
593 * lru_cache_add - add a page to a page list
594 * @page: the page to be added to the LRU.
596 * Queue the page for addition to the LRU via pagevec. The decision on whether
597 * to add the page to the [in]active [file|anon] list is deferred until the
598 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
599 * have the page added to the active list using mark_page_accessed().
601 void lru_cache_add(struct page
*page
)
603 VM_BUG_ON(PageActive(page
) && PageUnevictable(page
));
604 VM_BUG_ON(PageLRU(page
));
605 __lru_cache_add(page
);
609 * add_page_to_unevictable_list - add a page to the unevictable list
610 * @page: the page to be added to the unevictable list
612 * Add page directly to its zone's unevictable list. To avoid races with
613 * tasks that might be making the page evictable, through eg. munlock,
614 * munmap or exit, while it's not on the lru, we want to add the page
615 * while it's locked or otherwise "invisible" to other tasks. This is
616 * difficult to do when using the pagevec cache, so bypass that.
618 void add_page_to_unevictable_list(struct page
*page
)
620 struct zone
*zone
= page_zone(page
);
621 struct lruvec
*lruvec
;
623 spin_lock_irq(&zone
->lru_lock
);
624 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
625 ClearPageActive(page
);
626 SetPageUnevictable(page
);
628 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
629 spin_unlock_irq(&zone
->lru_lock
);
633 * If the page can not be invalidated, it is moved to the
634 * inactive list to speed up its reclaim. It is moved to the
635 * head of the list, rather than the tail, to give the flusher
636 * threads some time to write it out, as this is much more
637 * effective than the single-page writeout from reclaim.
639 * If the page isn't page_mapped and dirty/writeback, the page
640 * could reclaim asap using PG_reclaim.
642 * 1. active, mapped page -> none
643 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
644 * 3. inactive, mapped page -> none
645 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
646 * 5. inactive, clean -> inactive, tail
649 * In 4, why it moves inactive's head, the VM expects the page would
650 * be write it out by flusher threads as this is much more effective
651 * than the single-page writeout from reclaim.
653 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
662 if (PageUnevictable(page
))
665 /* Some processes are using the page */
666 if (page_mapped(page
))
669 active
= PageActive(page
);
670 file
= page_is_file_cache(page
);
671 lru
= page_lru_base_type(page
);
673 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
674 ClearPageActive(page
);
675 ClearPageReferenced(page
);
676 add_page_to_lru_list(page
, lruvec
, lru
);
678 if (PageWriteback(page
) || PageDirty(page
)) {
680 * PG_reclaim could be raced with end_page_writeback
681 * It can make readahead confusing. But race window
682 * is _really_ small and it's non-critical problem.
684 SetPageReclaim(page
);
687 * The page's writeback ends up during pagevec
688 * We moves tha page into tail of inactive.
690 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
691 __count_vm_event(PGROTATED
);
695 __count_vm_event(PGDEACTIVATE
);
696 update_page_reclaim_stat(lruvec
, file
, 0);
700 * Drain pages out of the cpu's pagevecs.
701 * Either "cpu" is the current CPU, and preemption has already been
702 * disabled; or "cpu" is being hot-unplugged, and is already dead.
704 void lru_add_drain_cpu(int cpu
)
706 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
708 if (pagevec_count(pvec
))
709 __pagevec_lru_add(pvec
);
711 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
712 if (pagevec_count(pvec
)) {
715 /* No harm done if a racing interrupt already did this */
716 local_irq_save(flags
);
717 pagevec_move_tail(pvec
);
718 local_irq_restore(flags
);
721 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
722 if (pagevec_count(pvec
))
723 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
725 activate_page_drain(cpu
);
729 * deactivate_page - forcefully deactivate a page
730 * @page: page to deactivate
732 * This function hints the VM that @page is a good reclaim candidate,
733 * for example if its invalidation fails due to the page being dirty
734 * or under writeback.
736 void deactivate_page(struct page
*page
)
739 * In a workload with many unevictable page such as mprotect, unevictable
740 * page deactivation for accelerating reclaim is pointless.
742 if (PageUnevictable(page
))
745 if (likely(get_page_unless_zero(page
))) {
746 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
748 if (!pagevec_add(pvec
, page
))
749 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
750 put_cpu_var(lru_deactivate_pvecs
);
754 void lru_add_drain(void)
756 lru_add_drain_cpu(get_cpu());
760 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
765 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
767 void lru_add_drain_all(void)
769 static DEFINE_MUTEX(lock
);
770 static struct cpumask has_work
;
775 cpumask_clear(&has_work
);
777 for_each_online_cpu(cpu
) {
778 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
780 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
781 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
782 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
783 need_activate_page_drain(cpu
)) {
784 INIT_WORK(work
, lru_add_drain_per_cpu
);
785 schedule_work_on(cpu
, work
);
786 cpumask_set_cpu(cpu
, &has_work
);
790 for_each_cpu(cpu
, &has_work
)
791 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
798 * Batched page_cache_release(). Decrement the reference count on all the
799 * passed pages. If it fell to zero then remove the page from the LRU and
802 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
803 * for the remainder of the operation.
805 * The locking in this function is against shrink_inactive_list(): we recheck
806 * the page count inside the lock to see whether shrink_inactive_list()
807 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
810 void release_pages(struct page
**pages
, int nr
, bool cold
)
813 LIST_HEAD(pages_to_free
);
814 struct zone
*zone
= NULL
;
815 struct lruvec
*lruvec
;
816 unsigned long uninitialized_var(flags
);
818 for (i
= 0; i
< nr
; i
++) {
819 struct page
*page
= pages
[i
];
821 if (unlikely(PageCompound(page
))) {
823 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
826 put_compound_page(page
);
830 if (!put_page_testzero(page
))
834 struct zone
*pagezone
= page_zone(page
);
836 if (pagezone
!= zone
) {
838 spin_unlock_irqrestore(&zone
->lru_lock
,
841 spin_lock_irqsave(&zone
->lru_lock
, flags
);
844 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
845 VM_BUG_ON(!PageLRU(page
));
846 __ClearPageLRU(page
);
847 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
850 /* Clear Active bit in case of parallel mark_page_accessed */
851 __ClearPageActive(page
);
853 list_add(&page
->lru
, &pages_to_free
);
856 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
858 free_hot_cold_page_list(&pages_to_free
, cold
);
860 EXPORT_SYMBOL(release_pages
);
863 * The pages which we're about to release may be in the deferred lru-addition
864 * queues. That would prevent them from really being freed right now. That's
865 * OK from a correctness point of view but is inefficient - those pages may be
866 * cache-warm and we want to give them back to the page allocator ASAP.
868 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
869 * and __pagevec_lru_add_active() call release_pages() directly to avoid
872 void __pagevec_release(struct pagevec
*pvec
)
875 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
876 pagevec_reinit(pvec
);
878 EXPORT_SYMBOL(__pagevec_release
);
880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
881 /* used by __split_huge_page_refcount() */
882 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
883 struct lruvec
*lruvec
, struct list_head
*list
)
887 VM_BUG_ON(!PageHead(page
));
888 VM_BUG_ON(PageCompound(page_tail
));
889 VM_BUG_ON(PageLRU(page_tail
));
890 VM_BUG_ON(NR_CPUS
!= 1 &&
891 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
894 SetPageLRU(page_tail
);
896 if (likely(PageLRU(page
)))
897 list_add_tail(&page_tail
->lru
, &page
->lru
);
899 /* page reclaim is reclaiming a huge page */
901 list_add_tail(&page_tail
->lru
, list
);
903 struct list_head
*list_head
;
905 * Head page has not yet been counted, as an hpage,
906 * so we must account for each subpage individually.
908 * Use the standard add function to put page_tail on the list,
909 * but then correct its position so they all end up in order.
911 add_page_to_lru_list(page_tail
, lruvec
, page_lru(page_tail
));
912 list_head
= page_tail
->lru
.prev
;
913 list_move_tail(&page_tail
->lru
, list_head
);
916 if (!PageUnevictable(page
))
917 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
919 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
921 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
924 int file
= page_is_file_cache(page
);
925 int active
= PageActive(page
);
926 enum lru_list lru
= page_lru(page
);
928 VM_BUG_ON(PageLRU(page
));
931 add_page_to_lru_list(page
, lruvec
, lru
);
932 update_page_reclaim_stat(lruvec
, file
, active
);
933 trace_mm_lru_insertion(page
, lru
);
937 * Add the passed pages to the LRU, then drop the caller's refcount
938 * on them. Reinitialises the caller's pagevec.
940 void __pagevec_lru_add(struct pagevec
*pvec
)
942 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
944 EXPORT_SYMBOL(__pagevec_lru_add
);
947 * pagevec_lookup_entries - gang pagecache lookup
948 * @pvec: Where the resulting entries are placed
949 * @mapping: The address_space to search
950 * @start: The starting entry index
951 * @nr_entries: The maximum number of entries
952 * @indices: The cache indices corresponding to the entries in @pvec
954 * pagevec_lookup_entries() will search for and return a group of up
955 * to @nr_entries pages and shadow entries in the mapping. All
956 * entries are placed in @pvec. pagevec_lookup_entries() takes a
957 * reference against actual pages in @pvec.
959 * The search returns a group of mapping-contiguous entries with
960 * ascending indexes. There may be holes in the indices due to
961 * not-present entries.
963 * pagevec_lookup_entries() returns the number of entries which were
966 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
967 struct address_space
*mapping
,
968 pgoff_t start
, unsigned nr_pages
,
971 pvec
->nr
= find_get_entries(mapping
, start
, nr_pages
,
972 pvec
->pages
, indices
);
973 return pagevec_count(pvec
);
977 * pagevec_remove_exceptionals - pagevec exceptionals pruning
978 * @pvec: The pagevec to prune
980 * pagevec_lookup_entries() fills both pages and exceptional radix
981 * tree entries into the pagevec. This function prunes all
982 * exceptionals from @pvec without leaving holes, so that it can be
983 * passed on to page-only pagevec operations.
985 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
989 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
990 struct page
*page
= pvec
->pages
[i
];
991 if (!radix_tree_exceptional_entry(page
))
992 pvec
->pages
[j
++] = page
;
998 * pagevec_lookup - gang pagecache lookup
999 * @pvec: Where the resulting pages are placed
1000 * @mapping: The address_space to search
1001 * @start: The starting page index
1002 * @nr_pages: The maximum number of pages
1004 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1005 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1006 * reference against the pages in @pvec.
1008 * The search returns a group of mapping-contiguous pages with ascending
1009 * indexes. There may be holes in the indices due to not-present pages.
1011 * pagevec_lookup() returns the number of pages which were found.
1013 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
1014 pgoff_t start
, unsigned nr_pages
)
1016 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
1017 return pagevec_count(pvec
);
1019 EXPORT_SYMBOL(pagevec_lookup
);
1021 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
1022 pgoff_t
*index
, int tag
, unsigned nr_pages
)
1024 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
1025 nr_pages
, pvec
->pages
);
1026 return pagevec_count(pvec
);
1028 EXPORT_SYMBOL(pagevec_lookup_tag
);
1031 * Perform any setup for the swap system
1033 void __init
swap_setup(void)
1035 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
1039 bdi_init(swapper_spaces
[0].backing_dev_info
);
1040 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
1041 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
1042 INIT_LIST_HEAD(&swapper_spaces
[i
].i_mmap_nonlinear
);
1046 /* Use a smaller cluster for small-memory machines */
1052 * Right now other parts of the system means that we
1053 * _really_ don't want to cluster much more