2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
28 #include <linux/irqchip/arm-gic.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
35 * How the whole thing works (courtesy of Christoffer Dall):
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
71 #define VGIC_ADDR_UNDEF (-1)
72 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74 /* Physical address of vgic virtual cpu interface */
75 static phys_addr_t vgic_vcpu_base
;
77 /* Virtual control interface base address */
78 static void __iomem
*vgic_vctrl_base
;
80 static struct device_node
*vgic_node
;
82 #define ACCESS_READ_VALUE (1 << 0)
83 #define ACCESS_READ_RAZ (0 << 0)
84 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85 #define ACCESS_WRITE_IGNORED (0 << 1)
86 #define ACCESS_WRITE_SETBIT (1 << 1)
87 #define ACCESS_WRITE_CLEARBIT (2 << 1)
88 #define ACCESS_WRITE_VALUE (3 << 1)
89 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
91 static void vgic_retire_disabled_irqs(struct kvm_vcpu
*vcpu
);
92 static void vgic_update_state(struct kvm
*kvm
);
93 static void vgic_kick_vcpus(struct kvm
*kvm
);
94 static void vgic_dispatch_sgi(struct kvm_vcpu
*vcpu
, u32 reg
);
95 static u32 vgic_nr_lr
;
97 static unsigned int vgic_maint_irq
;
99 static u32
*vgic_bitmap_get_reg(struct vgic_bitmap
*x
,
100 int cpuid
, u32 offset
)
104 return x
->percpu
[cpuid
].reg
;
106 return x
->shared
.reg
+ offset
- 1;
109 static int vgic_bitmap_get_irq_val(struct vgic_bitmap
*x
,
112 if (irq
< VGIC_NR_PRIVATE_IRQS
)
113 return test_bit(irq
, x
->percpu
[cpuid
].reg_ul
);
115 return test_bit(irq
- VGIC_NR_PRIVATE_IRQS
, x
->shared
.reg_ul
);
118 static void vgic_bitmap_set_irq_val(struct vgic_bitmap
*x
, int cpuid
,
123 if (irq
< VGIC_NR_PRIVATE_IRQS
) {
124 reg
= x
->percpu
[cpuid
].reg_ul
;
126 reg
= x
->shared
.reg_ul
;
127 irq
-= VGIC_NR_PRIVATE_IRQS
;
136 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap
*x
, int cpuid
)
138 if (unlikely(cpuid
>= VGIC_MAX_CPUS
))
140 return x
->percpu
[cpuid
].reg_ul
;
143 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap
*x
)
145 return x
->shared
.reg_ul
;
148 static u32
*vgic_bytemap_get_reg(struct vgic_bytemap
*x
, int cpuid
, u32 offset
)
151 BUG_ON(offset
> (VGIC_NR_IRQS
/ 4));
153 return x
->percpu
[cpuid
] + offset
;
155 return x
->shared
+ offset
- 8;
158 #define VGIC_CFG_LEVEL 0
159 #define VGIC_CFG_EDGE 1
161 static bool vgic_irq_is_edge(struct kvm_vcpu
*vcpu
, int irq
)
163 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
166 irq_val
= vgic_bitmap_get_irq_val(&dist
->irq_cfg
, vcpu
->vcpu_id
, irq
);
167 return irq_val
== VGIC_CFG_EDGE
;
170 static int vgic_irq_is_enabled(struct kvm_vcpu
*vcpu
, int irq
)
172 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
174 return vgic_bitmap_get_irq_val(&dist
->irq_enabled
, vcpu
->vcpu_id
, irq
);
177 static int vgic_irq_is_active(struct kvm_vcpu
*vcpu
, int irq
)
179 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
181 return vgic_bitmap_get_irq_val(&dist
->irq_active
, vcpu
->vcpu_id
, irq
);
184 static void vgic_irq_set_active(struct kvm_vcpu
*vcpu
, int irq
)
186 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
188 vgic_bitmap_set_irq_val(&dist
->irq_active
, vcpu
->vcpu_id
, irq
, 1);
191 static void vgic_irq_clear_active(struct kvm_vcpu
*vcpu
, int irq
)
193 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
195 vgic_bitmap_set_irq_val(&dist
->irq_active
, vcpu
->vcpu_id
, irq
, 0);
198 static int vgic_dist_irq_is_pending(struct kvm_vcpu
*vcpu
, int irq
)
200 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
202 return vgic_bitmap_get_irq_val(&dist
->irq_state
, vcpu
->vcpu_id
, irq
);
205 static void vgic_dist_irq_set(struct kvm_vcpu
*vcpu
, int irq
)
207 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
209 vgic_bitmap_set_irq_val(&dist
->irq_state
, vcpu
->vcpu_id
, irq
, 1);
212 static void vgic_dist_irq_clear(struct kvm_vcpu
*vcpu
, int irq
)
214 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
216 vgic_bitmap_set_irq_val(&dist
->irq_state
, vcpu
->vcpu_id
, irq
, 0);
219 static void vgic_cpu_irq_set(struct kvm_vcpu
*vcpu
, int irq
)
221 if (irq
< VGIC_NR_PRIVATE_IRQS
)
222 set_bit(irq
, vcpu
->arch
.vgic_cpu
.pending_percpu
);
224 set_bit(irq
- VGIC_NR_PRIVATE_IRQS
,
225 vcpu
->arch
.vgic_cpu
.pending_shared
);
228 static void vgic_cpu_irq_clear(struct kvm_vcpu
*vcpu
, int irq
)
230 if (irq
< VGIC_NR_PRIVATE_IRQS
)
231 clear_bit(irq
, vcpu
->arch
.vgic_cpu
.pending_percpu
);
233 clear_bit(irq
- VGIC_NR_PRIVATE_IRQS
,
234 vcpu
->arch
.vgic_cpu
.pending_shared
);
237 static u32
mmio_data_read(struct kvm_exit_mmio
*mmio
, u32 mask
)
239 return *((u32
*)mmio
->data
) & mask
;
242 static void mmio_data_write(struct kvm_exit_mmio
*mmio
, u32 mask
, u32 value
)
244 *((u32
*)mmio
->data
) = value
& mask
;
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
258 static void vgic_reg_access(struct kvm_exit_mmio
*mmio
, u32
*reg
,
259 phys_addr_t offset
, int mode
)
261 int word_offset
= (offset
& 3) * 8;
262 u32 mask
= (1UL << (mmio
->len
* 8)) - 1;
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
273 BUG_ON(mode
!= (ACCESS_READ_RAZ
| ACCESS_WRITE_IGNORED
));
277 if (mmio
->is_write
) {
278 u32 data
= mmio_data_read(mmio
, mask
) << word_offset
;
279 switch (ACCESS_WRITE_MASK(mode
)) {
280 case ACCESS_WRITE_IGNORED
:
283 case ACCESS_WRITE_SETBIT
:
287 case ACCESS_WRITE_CLEARBIT
:
291 case ACCESS_WRITE_VALUE
:
292 regval
= (regval
& ~(mask
<< word_offset
)) | data
;
297 switch (ACCESS_READ_MASK(mode
)) {
298 case ACCESS_READ_RAZ
:
302 case ACCESS_READ_VALUE
:
303 mmio_data_write(mmio
, mask
, regval
>> word_offset
);
308 static bool handle_mmio_misc(struct kvm_vcpu
*vcpu
,
309 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
312 u32 word_offset
= offset
& 3;
314 switch (offset
& ~3) {
316 reg
= vcpu
->kvm
->arch
.vgic
.enabled
;
317 vgic_reg_access(mmio
, ®
, word_offset
,
318 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
319 if (mmio
->is_write
) {
320 vcpu
->kvm
->arch
.vgic
.enabled
= reg
& 1;
321 vgic_update_state(vcpu
->kvm
);
327 reg
= (atomic_read(&vcpu
->kvm
->online_vcpus
) - 1) << 5;
328 reg
|= (VGIC_NR_IRQS
>> 5) - 1;
329 vgic_reg_access(mmio
, ®
, word_offset
,
330 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
335 vgic_reg_access(mmio
, ®
, word_offset
,
336 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
343 static bool handle_mmio_raz_wi(struct kvm_vcpu
*vcpu
,
344 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
346 vgic_reg_access(mmio
, NULL
, offset
,
347 ACCESS_READ_RAZ
| ACCESS_WRITE_IGNORED
);
351 static bool handle_mmio_set_enable_reg(struct kvm_vcpu
*vcpu
,
352 struct kvm_exit_mmio
*mmio
,
355 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_enabled
,
356 vcpu
->vcpu_id
, offset
);
357 vgic_reg_access(mmio
, reg
, offset
,
358 ACCESS_READ_VALUE
| ACCESS_WRITE_SETBIT
);
359 if (mmio
->is_write
) {
360 vgic_update_state(vcpu
->kvm
);
367 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu
*vcpu
,
368 struct kvm_exit_mmio
*mmio
,
371 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_enabled
,
372 vcpu
->vcpu_id
, offset
);
373 vgic_reg_access(mmio
, reg
, offset
,
374 ACCESS_READ_VALUE
| ACCESS_WRITE_CLEARBIT
);
375 if (mmio
->is_write
) {
376 if (offset
< 4) /* Force SGI enabled */
378 vgic_retire_disabled_irqs(vcpu
);
379 vgic_update_state(vcpu
->kvm
);
386 static bool handle_mmio_set_pending_reg(struct kvm_vcpu
*vcpu
,
387 struct kvm_exit_mmio
*mmio
,
390 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_state
,
391 vcpu
->vcpu_id
, offset
);
392 vgic_reg_access(mmio
, reg
, offset
,
393 ACCESS_READ_VALUE
| ACCESS_WRITE_SETBIT
);
394 if (mmio
->is_write
) {
395 vgic_update_state(vcpu
->kvm
);
402 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu
*vcpu
,
403 struct kvm_exit_mmio
*mmio
,
406 u32
*reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_state
,
407 vcpu
->vcpu_id
, offset
);
408 vgic_reg_access(mmio
, reg
, offset
,
409 ACCESS_READ_VALUE
| ACCESS_WRITE_CLEARBIT
);
410 if (mmio
->is_write
) {
411 vgic_update_state(vcpu
->kvm
);
418 static bool handle_mmio_priority_reg(struct kvm_vcpu
*vcpu
,
419 struct kvm_exit_mmio
*mmio
,
422 u32
*reg
= vgic_bytemap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_priority
,
423 vcpu
->vcpu_id
, offset
);
424 vgic_reg_access(mmio
, reg
, offset
,
425 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
429 #define GICD_ITARGETSR_SIZE 32
430 #define GICD_CPUTARGETS_BITS 8
431 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432 static u32
vgic_get_target_reg(struct kvm
*kvm
, int irq
)
434 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
438 irq
-= VGIC_NR_PRIVATE_IRQS
;
440 for (i
= 0; i
< GICD_IRQS_PER_ITARGETSR
; i
++)
441 val
|= 1 << (dist
->irq_spi_cpu
[irq
+ i
] + i
* 8);
446 static void vgic_set_target_reg(struct kvm
*kvm
, u32 val
, int irq
)
448 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
449 struct kvm_vcpu
*vcpu
;
454 irq
-= VGIC_NR_PRIVATE_IRQS
;
457 * Pick the LSB in each byte. This ensures we target exactly
458 * one vcpu per IRQ. If the byte is null, assume we target
461 for (i
= 0; i
< GICD_IRQS_PER_ITARGETSR
; i
++) {
462 int shift
= i
* GICD_CPUTARGETS_BITS
;
463 target
= ffs((val
>> shift
) & 0xffU
);
464 target
= target
? (target
- 1) : 0;
465 dist
->irq_spi_cpu
[irq
+ i
] = target
;
466 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
467 bmap
= vgic_bitmap_get_shared_map(&dist
->irq_spi_target
[c
]);
469 set_bit(irq
+ i
, bmap
);
471 clear_bit(irq
+ i
, bmap
);
476 static bool handle_mmio_target_reg(struct kvm_vcpu
*vcpu
,
477 struct kvm_exit_mmio
*mmio
,
482 /* We treat the banked interrupts targets as read-only */
484 u32 roreg
= 1 << vcpu
->vcpu_id
;
486 roreg
|= roreg
<< 16;
488 vgic_reg_access(mmio
, &roreg
, offset
,
489 ACCESS_READ_VALUE
| ACCESS_WRITE_IGNORED
);
493 reg
= vgic_get_target_reg(vcpu
->kvm
, offset
& ~3U);
494 vgic_reg_access(mmio
, ®
, offset
,
495 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
496 if (mmio
->is_write
) {
497 vgic_set_target_reg(vcpu
->kvm
, reg
, offset
& ~3U);
498 vgic_update_state(vcpu
->kvm
);
505 static u32
vgic_cfg_expand(u16 val
)
511 * Turn a 16bit value like abcd...mnop into a 32bit word
512 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
514 for (i
= 0; i
< 16; i
++)
515 res
|= ((val
>> i
) & VGIC_CFG_EDGE
) << (2 * i
+ 1);
520 static u16
vgic_cfg_compress(u32 val
)
526 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527 * abcd...mnop which is what we really care about.
529 for (i
= 0; i
< 16; i
++)
530 res
|= ((val
>> (i
* 2 + 1)) & VGIC_CFG_EDGE
) << i
;
536 * The distributor uses 2 bits per IRQ for the CFG register, but the
537 * LSB is always 0. As such, we only keep the upper bit, and use the
538 * two above functions to compress/expand the bits
540 static bool handle_mmio_cfg_reg(struct kvm_vcpu
*vcpu
,
541 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
547 reg
= vgic_bitmap_get_reg(&vcpu
->kvm
->arch
.vgic
.irq_cfg
,
548 vcpu
->vcpu_id
, offset
);
555 val
= vgic_cfg_expand(val
);
556 vgic_reg_access(mmio
, &val
, offset
,
557 ACCESS_READ_VALUE
| ACCESS_WRITE_VALUE
);
558 if (mmio
->is_write
) {
560 *reg
= ~0U; /* Force PPIs/SGIs to 1 */
564 val
= vgic_cfg_compress(val
);
569 *reg
&= 0xffff << 16;
577 static bool handle_mmio_sgi_reg(struct kvm_vcpu
*vcpu
,
578 struct kvm_exit_mmio
*mmio
, phys_addr_t offset
)
581 vgic_reg_access(mmio
, ®
, offset
,
582 ACCESS_READ_RAZ
| ACCESS_WRITE_VALUE
);
583 if (mmio
->is_write
) {
584 vgic_dispatch_sgi(vcpu
, reg
);
585 vgic_update_state(vcpu
->kvm
);
593 * I would have liked to use the kvm_bus_io_*() API instead, but it
594 * cannot cope with banked registers (only the VM pointer is passed
595 * around, and we need the vcpu). One of these days, someone please
601 bool (*handle_mmio
)(struct kvm_vcpu
*vcpu
, struct kvm_exit_mmio
*mmio
,
605 static const struct mmio_range vgic_ranges
[] = {
607 .base
= GIC_DIST_CTRL
,
609 .handle_mmio
= handle_mmio_misc
,
612 .base
= GIC_DIST_IGROUP
,
613 .len
= VGIC_NR_IRQS
/ 8,
614 .handle_mmio
= handle_mmio_raz_wi
,
617 .base
= GIC_DIST_ENABLE_SET
,
618 .len
= VGIC_NR_IRQS
/ 8,
619 .handle_mmio
= handle_mmio_set_enable_reg
,
622 .base
= GIC_DIST_ENABLE_CLEAR
,
623 .len
= VGIC_NR_IRQS
/ 8,
624 .handle_mmio
= handle_mmio_clear_enable_reg
,
627 .base
= GIC_DIST_PENDING_SET
,
628 .len
= VGIC_NR_IRQS
/ 8,
629 .handle_mmio
= handle_mmio_set_pending_reg
,
632 .base
= GIC_DIST_PENDING_CLEAR
,
633 .len
= VGIC_NR_IRQS
/ 8,
634 .handle_mmio
= handle_mmio_clear_pending_reg
,
637 .base
= GIC_DIST_ACTIVE_SET
,
638 .len
= VGIC_NR_IRQS
/ 8,
639 .handle_mmio
= handle_mmio_raz_wi
,
642 .base
= GIC_DIST_ACTIVE_CLEAR
,
643 .len
= VGIC_NR_IRQS
/ 8,
644 .handle_mmio
= handle_mmio_raz_wi
,
647 .base
= GIC_DIST_PRI
,
649 .handle_mmio
= handle_mmio_priority_reg
,
652 .base
= GIC_DIST_TARGET
,
654 .handle_mmio
= handle_mmio_target_reg
,
657 .base
= GIC_DIST_CONFIG
,
658 .len
= VGIC_NR_IRQS
/ 4,
659 .handle_mmio
= handle_mmio_cfg_reg
,
662 .base
= GIC_DIST_SOFTINT
,
664 .handle_mmio
= handle_mmio_sgi_reg
,
670 struct mmio_range
*find_matching_range(const struct mmio_range
*ranges
,
671 struct kvm_exit_mmio
*mmio
,
674 const struct mmio_range
*r
= ranges
;
675 phys_addr_t addr
= mmio
->phys_addr
- base
;
678 if (addr
>= r
->base
&&
679 (addr
+ mmio
->len
) <= (r
->base
+ r
->len
))
688 * vgic_handle_mmio - handle an in-kernel MMIO access
689 * @vcpu: pointer to the vcpu performing the access
690 * @run: pointer to the kvm_run structure
691 * @mmio: pointer to the data describing the access
693 * returns true if the MMIO access has been performed in kernel space,
694 * and false if it needs to be emulated in user space.
696 bool vgic_handle_mmio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
,
697 struct kvm_exit_mmio
*mmio
)
699 const struct mmio_range
*range
;
700 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
701 unsigned long base
= dist
->vgic_dist_base
;
703 unsigned long offset
;
705 if (!irqchip_in_kernel(vcpu
->kvm
) ||
706 mmio
->phys_addr
< base
||
707 (mmio
->phys_addr
+ mmio
->len
) > (base
+ KVM_VGIC_V2_DIST_SIZE
))
710 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
712 kvm_inject_dabt(vcpu
, mmio
->phys_addr
);
716 range
= find_matching_range(vgic_ranges
, mmio
, base
);
717 if (unlikely(!range
|| !range
->handle_mmio
)) {
718 pr_warn("Unhandled access %d %08llx %d\n",
719 mmio
->is_write
, mmio
->phys_addr
, mmio
->len
);
723 spin_lock(&vcpu
->kvm
->arch
.vgic
.lock
);
724 offset
= mmio
->phys_addr
- range
->base
- base
;
725 updated_state
= range
->handle_mmio(vcpu
, mmio
, offset
);
726 spin_unlock(&vcpu
->kvm
->arch
.vgic
.lock
);
727 kvm_prepare_mmio(run
, mmio
);
728 kvm_handle_mmio_return(vcpu
, run
);
731 vgic_kick_vcpus(vcpu
->kvm
);
736 static void vgic_dispatch_sgi(struct kvm_vcpu
*vcpu
, u32 reg
)
738 struct kvm
*kvm
= vcpu
->kvm
;
739 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
740 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
742 int sgi
, mode
, c
, vcpu_id
;
744 vcpu_id
= vcpu
->vcpu_id
;
747 target_cpus
= (reg
>> 16) & 0xff;
748 mode
= (reg
>> 24) & 3;
757 target_cpus
= ((1 << nrcpus
) - 1) & ~(1 << vcpu_id
) & 0xff;
761 target_cpus
= 1 << vcpu_id
;
765 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
766 if (target_cpus
& 1) {
767 /* Flag the SGI as pending */
768 vgic_dist_irq_set(vcpu
, sgi
);
769 dist
->irq_sgi_sources
[c
][sgi
] |= 1 << vcpu_id
;
770 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi
, vcpu_id
, c
);
777 static int compute_pending_for_cpu(struct kvm_vcpu
*vcpu
)
779 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
780 unsigned long *pending
, *enabled
, *pend_percpu
, *pend_shared
;
781 unsigned long pending_private
, pending_shared
;
784 vcpu_id
= vcpu
->vcpu_id
;
785 pend_percpu
= vcpu
->arch
.vgic_cpu
.pending_percpu
;
786 pend_shared
= vcpu
->arch
.vgic_cpu
.pending_shared
;
788 pending
= vgic_bitmap_get_cpu_map(&dist
->irq_state
, vcpu_id
);
789 enabled
= vgic_bitmap_get_cpu_map(&dist
->irq_enabled
, vcpu_id
);
790 bitmap_and(pend_percpu
, pending
, enabled
, VGIC_NR_PRIVATE_IRQS
);
792 pending
= vgic_bitmap_get_shared_map(&dist
->irq_state
);
793 enabled
= vgic_bitmap_get_shared_map(&dist
->irq_enabled
);
794 bitmap_and(pend_shared
, pending
, enabled
, VGIC_NR_SHARED_IRQS
);
795 bitmap_and(pend_shared
, pend_shared
,
796 vgic_bitmap_get_shared_map(&dist
->irq_spi_target
[vcpu_id
]),
797 VGIC_NR_SHARED_IRQS
);
799 pending_private
= find_first_bit(pend_percpu
, VGIC_NR_PRIVATE_IRQS
);
800 pending_shared
= find_first_bit(pend_shared
, VGIC_NR_SHARED_IRQS
);
801 return (pending_private
< VGIC_NR_PRIVATE_IRQS
||
802 pending_shared
< VGIC_NR_SHARED_IRQS
);
806 * Update the interrupt state and determine which CPUs have pending
807 * interrupts. Must be called with distributor lock held.
809 static void vgic_update_state(struct kvm
*kvm
)
811 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
812 struct kvm_vcpu
*vcpu
;
815 if (!dist
->enabled
) {
816 set_bit(0, &dist
->irq_pending_on_cpu
);
820 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
821 if (compute_pending_for_cpu(vcpu
)) {
822 pr_debug("CPU%d has pending interrupts\n", c
);
823 set_bit(c
, &dist
->irq_pending_on_cpu
);
828 #define LR_CPUID(lr) \
829 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
830 #define MK_LR_PEND(src, irq) \
831 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
834 * An interrupt may have been disabled after being made pending on the
835 * CPU interface (the classic case is a timer running while we're
836 * rebooting the guest - the interrupt would kick as soon as the CPU
837 * interface gets enabled, with deadly consequences).
839 * The solution is to examine already active LRs, and check the
840 * interrupt is still enabled. If not, just retire it.
842 static void vgic_retire_disabled_irqs(struct kvm_vcpu
*vcpu
)
844 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
847 for_each_set_bit(lr
, vgic_cpu
->lr_used
, vgic_cpu
->nr_lr
) {
848 int irq
= vgic_cpu
->vgic_lr
[lr
] & GICH_LR_VIRTUALID
;
850 if (!vgic_irq_is_enabled(vcpu
, irq
)) {
851 vgic_cpu
->vgic_irq_lr_map
[irq
] = LR_EMPTY
;
852 clear_bit(lr
, vgic_cpu
->lr_used
);
853 vgic_cpu
->vgic_lr
[lr
] &= ~GICH_LR_STATE
;
854 if (vgic_irq_is_active(vcpu
, irq
))
855 vgic_irq_clear_active(vcpu
, irq
);
861 * Queue an interrupt to a CPU virtual interface. Return true on success,
862 * or false if it wasn't possible to queue it.
864 static bool vgic_queue_irq(struct kvm_vcpu
*vcpu
, u8 sgi_source_id
, int irq
)
866 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
869 /* Sanitize the input... */
870 BUG_ON(sgi_source_id
& ~7);
871 BUG_ON(sgi_source_id
&& irq
>= VGIC_NR_SGIS
);
872 BUG_ON(irq
>= VGIC_NR_IRQS
);
874 kvm_debug("Queue IRQ%d\n", irq
);
876 lr
= vgic_cpu
->vgic_irq_lr_map
[irq
];
878 /* Do we have an active interrupt for the same CPUID? */
879 if (lr
!= LR_EMPTY
&&
880 (LR_CPUID(vgic_cpu
->vgic_lr
[lr
]) == sgi_source_id
)) {
881 kvm_debug("LR%d piggyback for IRQ%d %x\n",
882 lr
, irq
, vgic_cpu
->vgic_lr
[lr
]);
883 BUG_ON(!test_bit(lr
, vgic_cpu
->lr_used
));
884 vgic_cpu
->vgic_lr
[lr
] |= GICH_LR_PENDING_BIT
;
888 /* Try to use another LR for this interrupt */
889 lr
= find_first_zero_bit((unsigned long *)vgic_cpu
->lr_used
,
891 if (lr
>= vgic_cpu
->nr_lr
)
894 kvm_debug("LR%d allocated for IRQ%d %x\n", lr
, irq
, sgi_source_id
);
895 vgic_cpu
->vgic_lr
[lr
] = MK_LR_PEND(sgi_source_id
, irq
);
896 vgic_cpu
->vgic_irq_lr_map
[irq
] = lr
;
897 set_bit(lr
, vgic_cpu
->lr_used
);
899 if (!vgic_irq_is_edge(vcpu
, irq
))
900 vgic_cpu
->vgic_lr
[lr
] |= GICH_LR_EOI
;
905 static bool vgic_queue_sgi(struct kvm_vcpu
*vcpu
, int irq
)
907 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
908 unsigned long sources
;
909 int vcpu_id
= vcpu
->vcpu_id
;
912 sources
= dist
->irq_sgi_sources
[vcpu_id
][irq
];
914 for_each_set_bit(c
, &sources
, VGIC_MAX_CPUS
) {
915 if (vgic_queue_irq(vcpu
, c
, irq
))
916 clear_bit(c
, &sources
);
919 dist
->irq_sgi_sources
[vcpu_id
][irq
] = sources
;
922 * If the sources bitmap has been cleared it means that we
923 * could queue all the SGIs onto link registers (see the
924 * clear_bit above), and therefore we are done with them in
925 * our emulated gic and can get rid of them.
928 vgic_dist_irq_clear(vcpu
, irq
);
929 vgic_cpu_irq_clear(vcpu
, irq
);
936 static bool vgic_queue_hwirq(struct kvm_vcpu
*vcpu
, int irq
)
938 if (vgic_irq_is_active(vcpu
, irq
))
939 return true; /* level interrupt, already queued */
941 if (vgic_queue_irq(vcpu
, 0, irq
)) {
942 if (vgic_irq_is_edge(vcpu
, irq
)) {
943 vgic_dist_irq_clear(vcpu
, irq
);
944 vgic_cpu_irq_clear(vcpu
, irq
);
946 vgic_irq_set_active(vcpu
, irq
);
956 * Fill the list registers with pending interrupts before running the
959 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu
*vcpu
)
961 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
962 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
966 vcpu_id
= vcpu
->vcpu_id
;
969 * We may not have any pending interrupt, or the interrupts
970 * may have been serviced from another vcpu. In all cases,
973 if (!kvm_vgic_vcpu_pending_irq(vcpu
)) {
974 pr_debug("CPU%d has no pending interrupt\n", vcpu_id
);
979 for_each_set_bit(i
, vgic_cpu
->pending_percpu
, VGIC_NR_SGIS
) {
980 if (!vgic_queue_sgi(vcpu
, i
))
985 for_each_set_bit_from(i
, vgic_cpu
->pending_percpu
, VGIC_NR_PRIVATE_IRQS
) {
986 if (!vgic_queue_hwirq(vcpu
, i
))
991 for_each_set_bit(i
, vgic_cpu
->pending_shared
, VGIC_NR_SHARED_IRQS
) {
992 if (!vgic_queue_hwirq(vcpu
, i
+ VGIC_NR_PRIVATE_IRQS
))
998 vgic_cpu
->vgic_hcr
|= GICH_HCR_UIE
;
1000 vgic_cpu
->vgic_hcr
&= ~GICH_HCR_UIE
;
1002 * We're about to run this VCPU, and we've consumed
1003 * everything the distributor had in store for
1004 * us. Claim we don't have anything pending. We'll
1005 * adjust that if needed while exiting.
1007 clear_bit(vcpu_id
, &dist
->irq_pending_on_cpu
);
1011 static bool vgic_process_maintenance(struct kvm_vcpu
*vcpu
)
1013 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1014 bool level_pending
= false;
1016 kvm_debug("MISR = %08x\n", vgic_cpu
->vgic_misr
);
1018 if (vgic_cpu
->vgic_misr
& GICH_MISR_EOI
) {
1020 * Some level interrupts have been EOIed. Clear their
1025 for_each_set_bit(lr
, (unsigned long *)vgic_cpu
->vgic_eisr
,
1027 irq
= vgic_cpu
->vgic_lr
[lr
] & GICH_LR_VIRTUALID
;
1029 vgic_irq_clear_active(vcpu
, irq
);
1030 vgic_cpu
->vgic_lr
[lr
] &= ~GICH_LR_EOI
;
1032 /* Any additional pending interrupt? */
1033 if (vgic_dist_irq_is_pending(vcpu
, irq
)) {
1034 vgic_cpu_irq_set(vcpu
, irq
);
1035 level_pending
= true;
1037 vgic_cpu_irq_clear(vcpu
, irq
);
1041 * Despite being EOIed, the LR may not have
1042 * been marked as empty.
1044 set_bit(lr
, (unsigned long *)vgic_cpu
->vgic_elrsr
);
1045 vgic_cpu
->vgic_lr
[lr
] &= ~GICH_LR_ACTIVE_BIT
;
1049 if (vgic_cpu
->vgic_misr
& GICH_MISR_U
)
1050 vgic_cpu
->vgic_hcr
&= ~GICH_HCR_UIE
;
1052 return level_pending
;
1056 * Sync back the VGIC state after a guest run. The distributor lock is
1057 * needed so we don't get preempted in the middle of the state processing.
1059 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu
*vcpu
)
1061 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1062 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1066 level_pending
= vgic_process_maintenance(vcpu
);
1068 /* Clear mappings for empty LRs */
1069 for_each_set_bit(lr
, (unsigned long *)vgic_cpu
->vgic_elrsr
,
1073 if (!test_and_clear_bit(lr
, vgic_cpu
->lr_used
))
1076 irq
= vgic_cpu
->vgic_lr
[lr
] & GICH_LR_VIRTUALID
;
1078 BUG_ON(irq
>= VGIC_NR_IRQS
);
1079 vgic_cpu
->vgic_irq_lr_map
[irq
] = LR_EMPTY
;
1082 /* Check if we still have something up our sleeve... */
1083 pending
= find_first_zero_bit((unsigned long *)vgic_cpu
->vgic_elrsr
,
1085 if (level_pending
|| pending
< vgic_cpu
->nr_lr
)
1086 set_bit(vcpu
->vcpu_id
, &dist
->irq_pending_on_cpu
);
1089 void kvm_vgic_flush_hwstate(struct kvm_vcpu
*vcpu
)
1091 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1093 if (!irqchip_in_kernel(vcpu
->kvm
))
1096 spin_lock(&dist
->lock
);
1097 __kvm_vgic_flush_hwstate(vcpu
);
1098 spin_unlock(&dist
->lock
);
1101 void kvm_vgic_sync_hwstate(struct kvm_vcpu
*vcpu
)
1103 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1105 if (!irqchip_in_kernel(vcpu
->kvm
))
1108 spin_lock(&dist
->lock
);
1109 __kvm_vgic_sync_hwstate(vcpu
);
1110 spin_unlock(&dist
->lock
);
1113 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu
*vcpu
)
1115 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1117 if (!irqchip_in_kernel(vcpu
->kvm
))
1120 return test_bit(vcpu
->vcpu_id
, &dist
->irq_pending_on_cpu
);
1123 static void vgic_kick_vcpus(struct kvm
*kvm
)
1125 struct kvm_vcpu
*vcpu
;
1129 * We've injected an interrupt, time to find out who deserves
1132 kvm_for_each_vcpu(c
, vcpu
, kvm
) {
1133 if (kvm_vgic_vcpu_pending_irq(vcpu
))
1134 kvm_vcpu_kick(vcpu
);
1138 static int vgic_validate_injection(struct kvm_vcpu
*vcpu
, int irq
, int level
)
1140 int is_edge
= vgic_irq_is_edge(vcpu
, irq
);
1141 int state
= vgic_dist_irq_is_pending(vcpu
, irq
);
1144 * Only inject an interrupt if:
1145 * - edge triggered and we have a rising edge
1146 * - level triggered and we change level
1149 return level
> state
;
1151 return level
!= state
;
1154 static bool vgic_update_irq_state(struct kvm
*kvm
, int cpuid
,
1155 unsigned int irq_num
, bool level
)
1157 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
1158 struct kvm_vcpu
*vcpu
;
1159 int is_edge
, is_level
;
1163 spin_lock(&dist
->lock
);
1165 vcpu
= kvm_get_vcpu(kvm
, cpuid
);
1166 is_edge
= vgic_irq_is_edge(vcpu
, irq_num
);
1167 is_level
= !is_edge
;
1169 if (!vgic_validate_injection(vcpu
, irq_num
, level
)) {
1174 if (irq_num
>= VGIC_NR_PRIVATE_IRQS
) {
1175 cpuid
= dist
->irq_spi_cpu
[irq_num
- VGIC_NR_PRIVATE_IRQS
];
1176 vcpu
= kvm_get_vcpu(kvm
, cpuid
);
1179 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num
, level
, cpuid
);
1182 vgic_dist_irq_set(vcpu
, irq_num
);
1184 vgic_dist_irq_clear(vcpu
, irq_num
);
1186 enabled
= vgic_irq_is_enabled(vcpu
, irq_num
);
1193 if (is_level
&& vgic_irq_is_active(vcpu
, irq_num
)) {
1195 * Level interrupt in progress, will be picked up
1203 vgic_cpu_irq_set(vcpu
, irq_num
);
1204 set_bit(cpuid
, &dist
->irq_pending_on_cpu
);
1208 spin_unlock(&dist
->lock
);
1214 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1215 * @kvm: The VM structure pointer
1216 * @cpuid: The CPU for PPIs
1217 * @irq_num: The IRQ number that is assigned to the device
1218 * @level: Edge-triggered: true: to trigger the interrupt
1219 * false: to ignore the call
1220 * Level-sensitive true: activates an interrupt
1221 * false: deactivates an interrupt
1223 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1224 * level-sensitive interrupts. You can think of the level parameter as 1
1225 * being HIGH and 0 being LOW and all devices being active-HIGH.
1227 int kvm_vgic_inject_irq(struct kvm
*kvm
, int cpuid
, unsigned int irq_num
,
1230 if (vgic_update_irq_state(kvm
, cpuid
, irq_num
, level
))
1231 vgic_kick_vcpus(kvm
);
1236 static irqreturn_t
vgic_maintenance_handler(int irq
, void *data
)
1239 * We cannot rely on the vgic maintenance interrupt to be
1240 * delivered synchronously. This means we can only use it to
1241 * exit the VM, and we perform the handling of EOIed
1242 * interrupts on the exit path (see vgic_process_maintenance).
1247 int kvm_vgic_vcpu_init(struct kvm_vcpu
*vcpu
)
1249 struct vgic_cpu
*vgic_cpu
= &vcpu
->arch
.vgic_cpu
;
1250 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
1253 if (!irqchip_in_kernel(vcpu
->kvm
))
1256 if (vcpu
->vcpu_id
>= VGIC_MAX_CPUS
)
1259 for (i
= 0; i
< VGIC_NR_IRQS
; i
++) {
1260 if (i
< VGIC_NR_PPIS
)
1261 vgic_bitmap_set_irq_val(&dist
->irq_enabled
,
1262 vcpu
->vcpu_id
, i
, 1);
1263 if (i
< VGIC_NR_PRIVATE_IRQS
)
1264 vgic_bitmap_set_irq_val(&dist
->irq_cfg
,
1265 vcpu
->vcpu_id
, i
, VGIC_CFG_EDGE
);
1267 vgic_cpu
->vgic_irq_lr_map
[i
] = LR_EMPTY
;
1271 * By forcing VMCR to zero, the GIC will restore the binary
1272 * points to their reset values. Anything else resets to zero
1275 vgic_cpu
->vgic_vmcr
= 0;
1277 vgic_cpu
->nr_lr
= vgic_nr_lr
;
1278 vgic_cpu
->vgic_hcr
= GICH_HCR_EN
; /* Get the show on the road... */
1283 static void vgic_init_maintenance_interrupt(void *info
)
1285 enable_percpu_irq(vgic_maint_irq
, 0);
1288 static int vgic_cpu_notify(struct notifier_block
*self
,
1289 unsigned long action
, void *cpu
)
1293 case CPU_STARTING_FROZEN
:
1294 vgic_init_maintenance_interrupt(NULL
);
1297 case CPU_DYING_FROZEN
:
1298 disable_percpu_irq(vgic_maint_irq
);
1305 static struct notifier_block vgic_cpu_nb
= {
1306 .notifier_call
= vgic_cpu_notify
,
1309 int kvm_vgic_hyp_init(void)
1312 struct resource vctrl_res
;
1313 struct resource vcpu_res
;
1315 vgic_node
= of_find_compatible_node(NULL
, NULL
, "arm,cortex-a15-gic");
1317 kvm_err("error: no compatible vgic node in DT\n");
1321 vgic_maint_irq
= irq_of_parse_and_map(vgic_node
, 0);
1322 if (!vgic_maint_irq
) {
1323 kvm_err("error getting vgic maintenance irq from DT\n");
1328 ret
= request_percpu_irq(vgic_maint_irq
, vgic_maintenance_handler
,
1329 "vgic", kvm_get_running_vcpus());
1331 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq
);
1335 ret
= register_cpu_notifier(&vgic_cpu_nb
);
1337 kvm_err("Cannot register vgic CPU notifier\n");
1341 ret
= of_address_to_resource(vgic_node
, 2, &vctrl_res
);
1343 kvm_err("Cannot obtain VCTRL resource\n");
1347 vgic_vctrl_base
= of_iomap(vgic_node
, 2);
1348 if (!vgic_vctrl_base
) {
1349 kvm_err("Cannot ioremap VCTRL\n");
1354 vgic_nr_lr
= readl_relaxed(vgic_vctrl_base
+ GICH_VTR
);
1355 vgic_nr_lr
= (vgic_nr_lr
& 0x3f) + 1;
1357 ret
= create_hyp_io_mappings(vgic_vctrl_base
,
1358 vgic_vctrl_base
+ resource_size(&vctrl_res
),
1361 kvm_err("Cannot map VCTRL into hyp\n");
1365 kvm_info("%s@%llx IRQ%d\n", vgic_node
->name
,
1366 vctrl_res
.start
, vgic_maint_irq
);
1367 on_each_cpu(vgic_init_maintenance_interrupt
, NULL
, 1);
1369 if (of_address_to_resource(vgic_node
, 3, &vcpu_res
)) {
1370 kvm_err("Cannot obtain VCPU resource\n");
1374 vgic_vcpu_base
= vcpu_res
.start
;
1379 iounmap(vgic_vctrl_base
);
1381 free_percpu_irq(vgic_maint_irq
, kvm_get_running_vcpus());
1383 of_node_put(vgic_node
);
1387 int kvm_vgic_init(struct kvm
*kvm
)
1391 mutex_lock(&kvm
->lock
);
1393 if (vgic_initialized(kvm
))
1396 if (IS_VGIC_ADDR_UNDEF(kvm
->arch
.vgic
.vgic_dist_base
) ||
1397 IS_VGIC_ADDR_UNDEF(kvm
->arch
.vgic
.vgic_cpu_base
)) {
1398 kvm_err("Need to set vgic cpu and dist addresses first\n");
1403 ret
= kvm_phys_addr_ioremap(kvm
, kvm
->arch
.vgic
.vgic_cpu_base
,
1404 vgic_vcpu_base
, KVM_VGIC_V2_CPU_SIZE
);
1406 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1410 for (i
= VGIC_NR_PRIVATE_IRQS
; i
< VGIC_NR_IRQS
; i
+= 4)
1411 vgic_set_target_reg(kvm
, 0, i
);
1413 kvm_timer_init(kvm
);
1414 kvm
->arch
.vgic
.ready
= true;
1416 mutex_unlock(&kvm
->lock
);
1420 int kvm_vgic_create(struct kvm
*kvm
)
1424 mutex_lock(&kvm
->lock
);
1426 if (atomic_read(&kvm
->online_vcpus
) || kvm
->arch
.vgic
.vctrl_base
) {
1431 spin_lock_init(&kvm
->arch
.vgic
.lock
);
1432 kvm
->arch
.vgic
.vctrl_base
= vgic_vctrl_base
;
1433 kvm
->arch
.vgic
.vgic_dist_base
= VGIC_ADDR_UNDEF
;
1434 kvm
->arch
.vgic
.vgic_cpu_base
= VGIC_ADDR_UNDEF
;
1437 mutex_unlock(&kvm
->lock
);
1441 static bool vgic_ioaddr_overlap(struct kvm
*kvm
)
1443 phys_addr_t dist
= kvm
->arch
.vgic
.vgic_dist_base
;
1444 phys_addr_t cpu
= kvm
->arch
.vgic
.vgic_cpu_base
;
1446 if (IS_VGIC_ADDR_UNDEF(dist
) || IS_VGIC_ADDR_UNDEF(cpu
))
1448 if ((dist
<= cpu
&& dist
+ KVM_VGIC_V2_DIST_SIZE
> cpu
) ||
1449 (cpu
<= dist
&& cpu
+ KVM_VGIC_V2_CPU_SIZE
> dist
))
1454 static int vgic_ioaddr_assign(struct kvm
*kvm
, phys_addr_t
*ioaddr
,
1455 phys_addr_t addr
, phys_addr_t size
)
1459 if (!IS_VGIC_ADDR_UNDEF(*ioaddr
))
1461 if (addr
+ size
< addr
)
1464 ret
= vgic_ioaddr_overlap(kvm
);
1471 int kvm_vgic_set_addr(struct kvm
*kvm
, unsigned long type
, u64 addr
)
1474 struct vgic_dist
*vgic
= &kvm
->arch
.vgic
;
1476 if (addr
& ~KVM_PHYS_MASK
)
1479 if (addr
& (SZ_4K
- 1))
1482 mutex_lock(&kvm
->lock
);
1484 case KVM_VGIC_V2_ADDR_TYPE_DIST
:
1485 r
= vgic_ioaddr_assign(kvm
, &vgic
->vgic_dist_base
,
1486 addr
, KVM_VGIC_V2_DIST_SIZE
);
1488 case KVM_VGIC_V2_ADDR_TYPE_CPU
:
1489 r
= vgic_ioaddr_assign(kvm
, &vgic
->vgic_cpu_base
,
1490 addr
, KVM_VGIC_V2_CPU_SIZE
);
1496 mutex_unlock(&kvm
->lock
);