Linux 3.12.39
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blobb9bf29490b1258ffd5877360f65b64e14b9dfbaa
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "iodev.h"
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
69 * Ordering of locks:
71 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
74 DEFINE_RAW_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
86 struct dentry *kvm_debugfs_dir;
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
102 static bool largepages_enabled = true;
104 bool kvm_is_mmio_pfn(pfn_t pfn)
106 if (pfn_valid(pfn))
107 return PageReserved(pfn_to_page(pfn));
109 return true;
113 * Switches to specified vcpu, until a matching vcpu_put()
115 int vcpu_load(struct kvm_vcpu *vcpu)
117 int cpu;
119 if (mutex_lock_killable(&vcpu->mutex))
120 return -EINTR;
121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122 /* The thread running this VCPU changed. */
123 struct pid *oldpid = vcpu->pid;
124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125 rcu_assign_pointer(vcpu->pid, newpid);
126 synchronize_rcu();
127 put_pid(oldpid);
129 cpu = get_cpu();
130 preempt_notifier_register(&vcpu->preempt_notifier);
131 kvm_arch_vcpu_load(vcpu, cpu);
132 put_cpu();
133 return 0;
136 void vcpu_put(struct kvm_vcpu *vcpu)
138 preempt_disable();
139 kvm_arch_vcpu_put(vcpu);
140 preempt_notifier_unregister(&vcpu->preempt_notifier);
141 preempt_enable();
142 mutex_unlock(&vcpu->mutex);
145 static void ack_flush(void *_completed)
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 int i, cpu, me;
152 cpumask_var_t cpus;
153 bool called = true;
154 struct kvm_vcpu *vcpu;
156 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 me = get_cpu();
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 kvm_make_request(req, vcpu);
161 cpu = vcpu->cpu;
163 /* Set ->requests bit before we read ->mode */
164 smp_mb();
166 if (cpus != NULL && cpu != -1 && cpu != me &&
167 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168 cpumask_set_cpu(cpu, cpus);
170 if (unlikely(cpus == NULL))
171 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172 else if (!cpumask_empty(cpus))
173 smp_call_function_many(cpus, ack_flush, NULL, 1);
174 else
175 called = false;
176 put_cpu();
177 free_cpumask_var(cpus);
178 return called;
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
183 long dirty_count = kvm->tlbs_dirty;
185 smp_mb();
186 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187 ++kvm->stat.remote_tlb_flush;
188 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 void kvm_reload_remote_mmus(struct kvm *kvm)
193 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
196 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
198 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
201 void kvm_make_scan_ioapic_request(struct kvm *kvm)
203 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
206 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
208 struct page *page;
209 int r;
211 mutex_init(&vcpu->mutex);
212 vcpu->cpu = -1;
213 vcpu->kvm = kvm;
214 vcpu->vcpu_id = id;
215 vcpu->pid = NULL;
216 init_waitqueue_head(&vcpu->wq);
217 kvm_async_pf_vcpu_init(vcpu);
219 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
220 if (!page) {
221 r = -ENOMEM;
222 goto fail;
224 vcpu->run = page_address(page);
226 kvm_vcpu_set_in_spin_loop(vcpu, false);
227 kvm_vcpu_set_dy_eligible(vcpu, false);
228 vcpu->preempted = false;
230 r = kvm_arch_vcpu_init(vcpu);
231 if (r < 0)
232 goto fail_free_run;
233 return 0;
235 fail_free_run:
236 free_page((unsigned long)vcpu->run);
237 fail:
238 return r;
240 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
242 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
244 put_pid(vcpu->pid);
245 kvm_arch_vcpu_uninit(vcpu);
246 free_page((unsigned long)vcpu->run);
248 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
250 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
251 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
253 return container_of(mn, struct kvm, mmu_notifier);
256 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
257 struct mm_struct *mm,
258 unsigned long address)
260 struct kvm *kvm = mmu_notifier_to_kvm(mn);
261 int need_tlb_flush, idx;
264 * When ->invalidate_page runs, the linux pte has been zapped
265 * already but the page is still allocated until
266 * ->invalidate_page returns. So if we increase the sequence
267 * here the kvm page fault will notice if the spte can't be
268 * established because the page is going to be freed. If
269 * instead the kvm page fault establishes the spte before
270 * ->invalidate_page runs, kvm_unmap_hva will release it
271 * before returning.
273 * The sequence increase only need to be seen at spin_unlock
274 * time, and not at spin_lock time.
276 * Increasing the sequence after the spin_unlock would be
277 * unsafe because the kvm page fault could then establish the
278 * pte after kvm_unmap_hva returned, without noticing the page
279 * is going to be freed.
281 idx = srcu_read_lock(&kvm->srcu);
282 spin_lock(&kvm->mmu_lock);
284 kvm->mmu_notifier_seq++;
285 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
286 /* we've to flush the tlb before the pages can be freed */
287 if (need_tlb_flush)
288 kvm_flush_remote_tlbs(kvm);
290 spin_unlock(&kvm->mmu_lock);
291 srcu_read_unlock(&kvm->srcu, idx);
294 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
295 struct mm_struct *mm,
296 unsigned long address,
297 pte_t pte)
299 struct kvm *kvm = mmu_notifier_to_kvm(mn);
300 int idx;
302 idx = srcu_read_lock(&kvm->srcu);
303 spin_lock(&kvm->mmu_lock);
304 kvm->mmu_notifier_seq++;
305 kvm_set_spte_hva(kvm, address, pte);
306 spin_unlock(&kvm->mmu_lock);
307 srcu_read_unlock(&kvm->srcu, idx);
310 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
311 struct mm_struct *mm,
312 unsigned long start,
313 unsigned long end)
315 struct kvm *kvm = mmu_notifier_to_kvm(mn);
316 int need_tlb_flush = 0, idx;
318 idx = srcu_read_lock(&kvm->srcu);
319 spin_lock(&kvm->mmu_lock);
321 * The count increase must become visible at unlock time as no
322 * spte can be established without taking the mmu_lock and
323 * count is also read inside the mmu_lock critical section.
325 kvm->mmu_notifier_count++;
326 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
327 need_tlb_flush |= kvm->tlbs_dirty;
328 /* we've to flush the tlb before the pages can be freed */
329 if (need_tlb_flush)
330 kvm_flush_remote_tlbs(kvm);
332 spin_unlock(&kvm->mmu_lock);
333 srcu_read_unlock(&kvm->srcu, idx);
336 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
337 struct mm_struct *mm,
338 unsigned long start,
339 unsigned long end)
341 struct kvm *kvm = mmu_notifier_to_kvm(mn);
343 spin_lock(&kvm->mmu_lock);
345 * This sequence increase will notify the kvm page fault that
346 * the page that is going to be mapped in the spte could have
347 * been freed.
349 kvm->mmu_notifier_seq++;
350 smp_wmb();
352 * The above sequence increase must be visible before the
353 * below count decrease, which is ensured by the smp_wmb above
354 * in conjunction with the smp_rmb in mmu_notifier_retry().
356 kvm->mmu_notifier_count--;
357 spin_unlock(&kvm->mmu_lock);
359 BUG_ON(kvm->mmu_notifier_count < 0);
362 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
363 struct mm_struct *mm,
364 unsigned long address)
366 struct kvm *kvm = mmu_notifier_to_kvm(mn);
367 int young, idx;
369 idx = srcu_read_lock(&kvm->srcu);
370 spin_lock(&kvm->mmu_lock);
372 young = kvm_age_hva(kvm, address);
373 if (young)
374 kvm_flush_remote_tlbs(kvm);
376 spin_unlock(&kvm->mmu_lock);
377 srcu_read_unlock(&kvm->srcu, idx);
379 return young;
382 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long address)
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
387 int young, idx;
389 idx = srcu_read_lock(&kvm->srcu);
390 spin_lock(&kvm->mmu_lock);
391 young = kvm_test_age_hva(kvm, address);
392 spin_unlock(&kvm->mmu_lock);
393 srcu_read_unlock(&kvm->srcu, idx);
395 return young;
398 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
399 struct mm_struct *mm)
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int idx;
404 idx = srcu_read_lock(&kvm->srcu);
405 kvm_arch_flush_shadow_all(kvm);
406 srcu_read_unlock(&kvm->srcu, idx);
409 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
410 .invalidate_page = kvm_mmu_notifier_invalidate_page,
411 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
412 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
413 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
414 .test_young = kvm_mmu_notifier_test_young,
415 .change_pte = kvm_mmu_notifier_change_pte,
416 .release = kvm_mmu_notifier_release,
419 static int kvm_init_mmu_notifier(struct kvm *kvm)
421 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
422 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
425 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 return 0;
432 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434 static void kvm_init_memslots_id(struct kvm *kvm)
436 int i;
437 struct kvm_memslots *slots = kvm->memslots;
439 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
440 slots->id_to_index[i] = slots->memslots[i].id = i;
443 static struct kvm *kvm_create_vm(unsigned long type)
445 int r, i;
446 struct kvm *kvm = kvm_arch_alloc_vm();
448 if (!kvm)
449 return ERR_PTR(-ENOMEM);
451 r = kvm_arch_init_vm(kvm, type);
452 if (r)
453 goto out_err_nodisable;
455 r = hardware_enable_all();
456 if (r)
457 goto out_err_nodisable;
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
464 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
466 r = -ENOMEM;
467 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
468 if (!kvm->memslots)
469 goto out_err_nosrcu;
470 kvm_init_memslots_id(kvm);
471 if (init_srcu_struct(&kvm->srcu))
472 goto out_err_nosrcu;
473 for (i = 0; i < KVM_NR_BUSES; i++) {
474 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
475 GFP_KERNEL);
476 if (!kvm->buses[i])
477 goto out_err;
480 spin_lock_init(&kvm->mmu_lock);
481 kvm->mm = current->mm;
482 atomic_inc(&kvm->mm->mm_count);
483 kvm_eventfd_init(kvm);
484 mutex_init(&kvm->lock);
485 mutex_init(&kvm->irq_lock);
486 mutex_init(&kvm->slots_lock);
487 atomic_set(&kvm->users_count, 1);
488 INIT_LIST_HEAD(&kvm->devices);
490 r = kvm_init_mmu_notifier(kvm);
491 if (r)
492 goto out_err;
494 raw_spin_lock(&kvm_lock);
495 list_add(&kvm->vm_list, &vm_list);
496 raw_spin_unlock(&kvm_lock);
498 return kvm;
500 out_err:
501 cleanup_srcu_struct(&kvm->srcu);
502 out_err_nosrcu:
503 hardware_disable_all();
504 out_err_nodisable:
505 for (i = 0; i < KVM_NR_BUSES; i++)
506 kfree(kvm->buses[i]);
507 kfree(kvm->memslots);
508 kvm_arch_free_vm(kvm);
509 return ERR_PTR(r);
513 * Avoid using vmalloc for a small buffer.
514 * Should not be used when the size is statically known.
516 void *kvm_kvzalloc(unsigned long size)
518 if (size > PAGE_SIZE)
519 return vzalloc(size);
520 else
521 return kzalloc(size, GFP_KERNEL);
524 void kvm_kvfree(const void *addr)
526 if (is_vmalloc_addr(addr))
527 vfree(addr);
528 else
529 kfree(addr);
532 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
534 if (!memslot->dirty_bitmap)
535 return;
537 kvm_kvfree(memslot->dirty_bitmap);
538 memslot->dirty_bitmap = NULL;
542 * Free any memory in @free but not in @dont.
544 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
545 struct kvm_memory_slot *dont)
547 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
548 kvm_destroy_dirty_bitmap(free);
550 kvm_arch_free_memslot(free, dont);
552 free->npages = 0;
555 void kvm_free_physmem(struct kvm *kvm)
557 struct kvm_memslots *slots = kvm->memslots;
558 struct kvm_memory_slot *memslot;
560 kvm_for_each_memslot(memslot, slots)
561 kvm_free_physmem_slot(memslot, NULL);
563 kfree(kvm->memslots);
566 static void kvm_destroy_devices(struct kvm *kvm)
568 struct list_head *node, *tmp;
570 list_for_each_safe(node, tmp, &kvm->devices) {
571 struct kvm_device *dev =
572 list_entry(node, struct kvm_device, vm_node);
574 list_del(node);
575 dev->ops->destroy(dev);
579 static void kvm_destroy_vm(struct kvm *kvm)
581 int i;
582 struct mm_struct *mm = kvm->mm;
584 kvm_arch_sync_events(kvm);
585 raw_spin_lock(&kvm_lock);
586 list_del(&kvm->vm_list);
587 raw_spin_unlock(&kvm_lock);
588 kvm_free_irq_routing(kvm);
589 for (i = 0; i < KVM_NR_BUSES; i++)
590 kvm_io_bus_destroy(kvm->buses[i]);
591 kvm_coalesced_mmio_free(kvm);
592 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
593 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
594 #else
595 kvm_arch_flush_shadow_all(kvm);
596 #endif
597 kvm_arch_destroy_vm(kvm);
598 kvm_destroy_devices(kvm);
599 kvm_free_physmem(kvm);
600 cleanup_srcu_struct(&kvm->srcu);
601 kvm_arch_free_vm(kvm);
602 hardware_disable_all();
603 mmdrop(mm);
606 void kvm_get_kvm(struct kvm *kvm)
608 atomic_inc(&kvm->users_count);
610 EXPORT_SYMBOL_GPL(kvm_get_kvm);
612 void kvm_put_kvm(struct kvm *kvm)
614 if (atomic_dec_and_test(&kvm->users_count))
615 kvm_destroy_vm(kvm);
617 EXPORT_SYMBOL_GPL(kvm_put_kvm);
620 static int kvm_vm_release(struct inode *inode, struct file *filp)
622 struct kvm *kvm = filp->private_data;
624 kvm_irqfd_release(kvm);
626 kvm_put_kvm(kvm);
627 return 0;
631 * Allocation size is twice as large as the actual dirty bitmap size.
632 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
636 #ifndef CONFIG_S390
637 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
639 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
640 if (!memslot->dirty_bitmap)
641 return -ENOMEM;
643 #endif /* !CONFIG_S390 */
644 return 0;
647 static int cmp_memslot(const void *slot1, const void *slot2)
649 struct kvm_memory_slot *s1, *s2;
651 s1 = (struct kvm_memory_slot *)slot1;
652 s2 = (struct kvm_memory_slot *)slot2;
654 if (s1->npages < s2->npages)
655 return 1;
656 if (s1->npages > s2->npages)
657 return -1;
659 return 0;
663 * Sort the memslots base on its size, so the larger slots
664 * will get better fit.
666 static void sort_memslots(struct kvm_memslots *slots)
668 int i;
670 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
671 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
673 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
674 slots->id_to_index[slots->memslots[i].id] = i;
677 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
679 if (new) {
680 int id = new->id;
681 struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 unsigned long npages = old->npages;
684 *old = *new;
685 if (new->npages != npages)
686 sort_memslots(slots);
690 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
692 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
694 #ifdef KVM_CAP_READONLY_MEM
695 valid_flags |= KVM_MEM_READONLY;
696 #endif
698 if (mem->flags & ~valid_flags)
699 return -EINVAL;
701 return 0;
704 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
705 struct kvm_memslots *slots, struct kvm_memory_slot *new)
707 struct kvm_memslots *old_memslots = kvm->memslots;
710 * Set the low bit in the generation, which disables SPTE caching
711 * until the end of synchronize_srcu_expedited.
713 WARN_ON(old_memslots->generation & 1);
714 slots->generation = old_memslots->generation + 1;
716 update_memslots(slots, new);
717 rcu_assign_pointer(kvm->memslots, slots);
718 synchronize_srcu_expedited(&kvm->srcu);
721 * Increment the new memslot generation a second time. This prevents
722 * vm exits that race with memslot updates from caching a memslot
723 * generation that will (potentially) be valid forever.
725 slots->generation++;
727 kvm_arch_memslots_updated(kvm);
729 return old_memslots;
733 * Allocate some memory and give it an address in the guest physical address
734 * space.
736 * Discontiguous memory is allowed, mostly for framebuffers.
738 * Must be called holding mmap_sem for write.
740 int __kvm_set_memory_region(struct kvm *kvm,
741 struct kvm_userspace_memory_region *mem)
743 int r;
744 gfn_t base_gfn;
745 unsigned long npages;
746 struct kvm_memory_slot *slot;
747 struct kvm_memory_slot old, new;
748 struct kvm_memslots *slots = NULL, *old_memslots;
749 enum kvm_mr_change change;
751 r = check_memory_region_flags(mem);
752 if (r)
753 goto out;
755 r = -EINVAL;
756 /* General sanity checks */
757 if (mem->memory_size & (PAGE_SIZE - 1))
758 goto out;
759 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
760 goto out;
761 /* We can read the guest memory with __xxx_user() later on. */
762 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
763 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
764 !access_ok(VERIFY_WRITE,
765 (void __user *)(unsigned long)mem->userspace_addr,
766 mem->memory_size)))
767 goto out;
768 if (mem->slot >= KVM_MEM_SLOTS_NUM)
769 goto out;
770 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
771 goto out;
773 slot = id_to_memslot(kvm->memslots, mem->slot);
774 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
775 npages = mem->memory_size >> PAGE_SHIFT;
777 r = -EINVAL;
778 if (npages > KVM_MEM_MAX_NR_PAGES)
779 goto out;
781 if (!npages)
782 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
784 new = old = *slot;
786 new.id = mem->slot;
787 new.base_gfn = base_gfn;
788 new.npages = npages;
789 new.flags = mem->flags;
791 r = -EINVAL;
792 if (npages) {
793 if (!old.npages)
794 change = KVM_MR_CREATE;
795 else { /* Modify an existing slot. */
796 if ((mem->userspace_addr != old.userspace_addr) ||
797 (npages != old.npages) ||
798 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
799 goto out;
801 if (base_gfn != old.base_gfn)
802 change = KVM_MR_MOVE;
803 else if (new.flags != old.flags)
804 change = KVM_MR_FLAGS_ONLY;
805 else { /* Nothing to change. */
806 r = 0;
807 goto out;
810 } else if (old.npages) {
811 change = KVM_MR_DELETE;
812 } else /* Modify a non-existent slot: disallowed. */
813 goto out;
815 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
816 /* Check for overlaps */
817 r = -EEXIST;
818 kvm_for_each_memslot(slot, kvm->memslots) {
819 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
820 (slot->id == mem->slot))
821 continue;
822 if (!((base_gfn + npages <= slot->base_gfn) ||
823 (base_gfn >= slot->base_gfn + slot->npages)))
824 goto out;
828 /* Free page dirty bitmap if unneeded */
829 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
830 new.dirty_bitmap = NULL;
832 r = -ENOMEM;
833 if (change == KVM_MR_CREATE) {
834 new.userspace_addr = mem->userspace_addr;
836 if (kvm_arch_create_memslot(&new, npages))
837 goto out_free;
840 /* Allocate page dirty bitmap if needed */
841 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
842 if (kvm_create_dirty_bitmap(&new) < 0)
843 goto out_free;
846 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
847 r = -ENOMEM;
848 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
849 GFP_KERNEL);
850 if (!slots)
851 goto out_free;
852 slot = id_to_memslot(slots, mem->slot);
853 slot->flags |= KVM_MEMSLOT_INVALID;
855 old_memslots = install_new_memslots(kvm, slots, NULL);
857 /* slot was deleted or moved, clear iommu mapping */
858 kvm_iommu_unmap_pages(kvm, &old);
859 /* From this point no new shadow pages pointing to a deleted,
860 * or moved, memslot will be created.
862 * validation of sp->gfn happens in:
863 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864 * - kvm_is_visible_gfn (mmu_check_roots)
866 kvm_arch_flush_shadow_memslot(kvm, slot);
867 slots = old_memslots;
870 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
871 if (r)
872 goto out_slots;
874 r = -ENOMEM;
876 * We can re-use the old_memslots from above, the only difference
877 * from the currently installed memslots is the invalid flag. This
878 * will get overwritten by update_memslots anyway.
880 if (!slots) {
881 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
882 GFP_KERNEL);
883 if (!slots)
884 goto out_free;
888 * IOMMU mapping: New slots need to be mapped. Old slots need to be
889 * un-mapped and re-mapped if their base changes. Since base change
890 * unmapping is handled above with slot deletion, mapping alone is
891 * needed here. Anything else the iommu might care about for existing
892 * slots (size changes, userspace addr changes and read-only flag
893 * changes) is disallowed above, so any other attribute changes getting
894 * here can be skipped.
896 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897 r = kvm_iommu_map_pages(kvm, &new);
898 if (r)
899 goto out_slots;
902 /* actual memory is freed via old in kvm_free_physmem_slot below */
903 if (change == KVM_MR_DELETE) {
904 new.dirty_bitmap = NULL;
905 memset(&new.arch, 0, sizeof(new.arch));
908 old_memslots = install_new_memslots(kvm, slots, &new);
910 kvm_arch_commit_memory_region(kvm, mem, &old, change);
912 kvm_free_physmem_slot(&old, &new);
913 kfree(old_memslots);
915 return 0;
917 out_slots:
918 kfree(slots);
919 out_free:
920 kvm_free_physmem_slot(&new, &old);
921 out:
922 return r;
924 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
926 int kvm_set_memory_region(struct kvm *kvm,
927 struct kvm_userspace_memory_region *mem)
929 int r;
931 mutex_lock(&kvm->slots_lock);
932 r = __kvm_set_memory_region(kvm, mem);
933 mutex_unlock(&kvm->slots_lock);
934 return r;
936 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
938 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
939 struct kvm_userspace_memory_region *mem)
941 if (mem->slot >= KVM_USER_MEM_SLOTS)
942 return -EINVAL;
943 return kvm_set_memory_region(kvm, mem);
946 int kvm_get_dirty_log(struct kvm *kvm,
947 struct kvm_dirty_log *log, int *is_dirty)
949 struct kvm_memory_slot *memslot;
950 int r, i;
951 unsigned long n;
952 unsigned long any = 0;
954 r = -EINVAL;
955 if (log->slot >= KVM_USER_MEM_SLOTS)
956 goto out;
958 memslot = id_to_memslot(kvm->memslots, log->slot);
959 r = -ENOENT;
960 if (!memslot->dirty_bitmap)
961 goto out;
963 n = kvm_dirty_bitmap_bytes(memslot);
965 for (i = 0; !any && i < n/sizeof(long); ++i)
966 any = memslot->dirty_bitmap[i];
968 r = -EFAULT;
969 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
970 goto out;
972 if (any)
973 *is_dirty = 1;
975 r = 0;
976 out:
977 return r;
980 bool kvm_largepages_enabled(void)
982 return largepages_enabled;
985 void kvm_disable_largepages(void)
987 largepages_enabled = false;
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
991 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
993 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
995 EXPORT_SYMBOL_GPL(gfn_to_memslot);
997 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
999 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1001 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1002 memslot->flags & KVM_MEMSLOT_INVALID)
1003 return 0;
1005 return 1;
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1009 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1011 struct vm_area_struct *vma;
1012 unsigned long addr, size;
1014 size = PAGE_SIZE;
1016 addr = gfn_to_hva(kvm, gfn);
1017 if (kvm_is_error_hva(addr))
1018 return PAGE_SIZE;
1020 down_read(&current->mm->mmap_sem);
1021 vma = find_vma(current->mm, addr);
1022 if (!vma)
1023 goto out;
1025 size = vma_kernel_pagesize(vma);
1027 out:
1028 up_read(&current->mm->mmap_sem);
1030 return size;
1033 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1035 return slot->flags & KVM_MEM_READONLY;
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1039 gfn_t *nr_pages, bool write)
1041 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1042 return KVM_HVA_ERR_BAD;
1044 if (memslot_is_readonly(slot) && write)
1045 return KVM_HVA_ERR_RO_BAD;
1047 if (nr_pages)
1048 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1050 return __gfn_to_hva_memslot(slot, gfn);
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1054 gfn_t *nr_pages)
1056 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1060 gfn_t gfn)
1062 return gfn_to_hva_many(slot, gfn, NULL);
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1066 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1068 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1070 EXPORT_SYMBOL_GPL(gfn_to_hva);
1073 * If writable is set to false, the hva returned by this function is only
1074 * allowed to be read.
1076 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1078 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1079 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1081 if (!kvm_is_error_hva(hva) && writable)
1082 *writable = !memslot_is_readonly(slot);
1084 return hva;
1087 static int kvm_read_hva(void *data, void __user *hva, int len)
1089 return __copy_from_user(data, hva, len);
1092 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1094 return __copy_from_user_inatomic(data, hva, len);
1097 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1098 unsigned long start, int write, struct page **page)
1100 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1102 if (write)
1103 flags |= FOLL_WRITE;
1105 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1108 static inline int check_user_page_hwpoison(unsigned long addr)
1110 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1112 rc = __get_user_pages(current, current->mm, addr, 1,
1113 flags, NULL, NULL, NULL);
1114 return rc == -EHWPOISON;
1118 * The atomic path to get the writable pfn which will be stored in @pfn,
1119 * true indicates success, otherwise false is returned.
1121 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1122 bool write_fault, bool *writable, pfn_t *pfn)
1124 struct page *page[1];
1125 int npages;
1127 if (!(async || atomic))
1128 return false;
1131 * Fast pin a writable pfn only if it is a write fault request
1132 * or the caller allows to map a writable pfn for a read fault
1133 * request.
1135 if (!(write_fault || writable))
1136 return false;
1138 npages = __get_user_pages_fast(addr, 1, 1, page);
1139 if (npages == 1) {
1140 *pfn = page_to_pfn(page[0]);
1142 if (writable)
1143 *writable = true;
1144 return true;
1147 return false;
1151 * The slow path to get the pfn of the specified host virtual address,
1152 * 1 indicates success, -errno is returned if error is detected.
1154 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1155 bool *writable, pfn_t *pfn)
1157 struct page *page[1];
1158 int npages = 0;
1160 might_sleep();
1162 if (writable)
1163 *writable = write_fault;
1165 if (async) {
1166 down_read(&current->mm->mmap_sem);
1167 npages = get_user_page_nowait(current, current->mm,
1168 addr, write_fault, page);
1169 up_read(&current->mm->mmap_sem);
1170 } else
1171 npages = get_user_pages_fast(addr, 1, write_fault,
1172 page);
1173 if (npages != 1)
1174 return npages;
1176 /* map read fault as writable if possible */
1177 if (unlikely(!write_fault) && writable) {
1178 struct page *wpage[1];
1180 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1181 if (npages == 1) {
1182 *writable = true;
1183 put_page(page[0]);
1184 page[0] = wpage[0];
1187 npages = 1;
1189 *pfn = page_to_pfn(page[0]);
1190 return npages;
1193 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1195 if (unlikely(!(vma->vm_flags & VM_READ)))
1196 return false;
1198 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1199 return false;
1201 return true;
1205 * Pin guest page in memory and return its pfn.
1206 * @addr: host virtual address which maps memory to the guest
1207 * @atomic: whether this function can sleep
1208 * @async: whether this function need to wait IO complete if the
1209 * host page is not in the memory
1210 * @write_fault: whether we should get a writable host page
1211 * @writable: whether it allows to map a writable host page for !@write_fault
1213 * The function will map a writable host page for these two cases:
1214 * 1): @write_fault = true
1215 * 2): @write_fault = false && @writable, @writable will tell the caller
1216 * whether the mapping is writable.
1218 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1219 bool write_fault, bool *writable)
1221 struct vm_area_struct *vma;
1222 pfn_t pfn = 0;
1223 int npages;
1225 /* we can do it either atomically or asynchronously, not both */
1226 BUG_ON(atomic && async);
1228 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1229 return pfn;
1231 if (atomic)
1232 return KVM_PFN_ERR_FAULT;
1234 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1235 if (npages == 1)
1236 return pfn;
1238 down_read(&current->mm->mmap_sem);
1239 if (npages == -EHWPOISON ||
1240 (!async && check_user_page_hwpoison(addr))) {
1241 pfn = KVM_PFN_ERR_HWPOISON;
1242 goto exit;
1245 vma = find_vma_intersection(current->mm, addr, addr + 1);
1247 if (vma == NULL)
1248 pfn = KVM_PFN_ERR_FAULT;
1249 else if ((vma->vm_flags & VM_PFNMAP)) {
1250 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1251 vma->vm_pgoff;
1252 BUG_ON(!kvm_is_mmio_pfn(pfn));
1253 } else {
1254 if (async && vma_is_valid(vma, write_fault))
1255 *async = true;
1256 pfn = KVM_PFN_ERR_FAULT;
1258 exit:
1259 up_read(&current->mm->mmap_sem);
1260 return pfn;
1263 static pfn_t
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1265 bool *async, bool write_fault, bool *writable)
1267 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1269 if (addr == KVM_HVA_ERR_RO_BAD)
1270 return KVM_PFN_ERR_RO_FAULT;
1272 if (kvm_is_error_hva(addr))
1273 return KVM_PFN_NOSLOT;
1275 /* Do not map writable pfn in the readonly memslot. */
1276 if (writable && memslot_is_readonly(slot)) {
1277 *writable = false;
1278 writable = NULL;
1281 return hva_to_pfn(addr, atomic, async, write_fault,
1282 writable);
1285 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1286 bool write_fault, bool *writable)
1288 struct kvm_memory_slot *slot;
1290 if (async)
1291 *async = false;
1293 slot = gfn_to_memslot(kvm, gfn);
1295 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1296 writable);
1299 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1301 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1305 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1306 bool write_fault, bool *writable)
1308 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1312 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1314 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1318 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1319 bool *writable)
1321 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1325 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1327 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1330 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1332 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1336 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1337 int nr_pages)
1339 unsigned long addr;
1340 gfn_t entry;
1342 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1343 if (kvm_is_error_hva(addr))
1344 return -1;
1346 if (entry < nr_pages)
1347 return 0;
1349 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1353 static struct page *kvm_pfn_to_page(pfn_t pfn)
1355 if (is_error_noslot_pfn(pfn))
1356 return KVM_ERR_PTR_BAD_PAGE;
1358 if (kvm_is_mmio_pfn(pfn)) {
1359 WARN_ON(1);
1360 return KVM_ERR_PTR_BAD_PAGE;
1363 return pfn_to_page(pfn);
1366 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1368 pfn_t pfn;
1370 pfn = gfn_to_pfn(kvm, gfn);
1372 return kvm_pfn_to_page(pfn);
1375 EXPORT_SYMBOL_GPL(gfn_to_page);
1377 void kvm_release_page_clean(struct page *page)
1379 WARN_ON(is_error_page(page));
1381 kvm_release_pfn_clean(page_to_pfn(page));
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1385 void kvm_release_pfn_clean(pfn_t pfn)
1387 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1388 put_page(pfn_to_page(pfn));
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1392 void kvm_release_page_dirty(struct page *page)
1394 WARN_ON(is_error_page(page));
1396 kvm_release_pfn_dirty(page_to_pfn(page));
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1400 void kvm_release_pfn_dirty(pfn_t pfn)
1402 kvm_set_pfn_dirty(pfn);
1403 kvm_release_pfn_clean(pfn);
1405 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1407 void kvm_set_page_dirty(struct page *page)
1409 kvm_set_pfn_dirty(page_to_pfn(page));
1411 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1413 void kvm_set_pfn_dirty(pfn_t pfn)
1415 if (!kvm_is_mmio_pfn(pfn)) {
1416 struct page *page = pfn_to_page(pfn);
1417 if (!PageReserved(page))
1418 SetPageDirty(page);
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1423 void kvm_set_pfn_accessed(pfn_t pfn)
1425 if (!kvm_is_mmio_pfn(pfn))
1426 mark_page_accessed(pfn_to_page(pfn));
1428 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1430 void kvm_get_pfn(pfn_t pfn)
1432 if (!kvm_is_mmio_pfn(pfn))
1433 get_page(pfn_to_page(pfn));
1435 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1437 static int next_segment(unsigned long len, int offset)
1439 if (len > PAGE_SIZE - offset)
1440 return PAGE_SIZE - offset;
1441 else
1442 return len;
1445 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1446 int len)
1448 int r;
1449 unsigned long addr;
1451 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1452 if (kvm_is_error_hva(addr))
1453 return -EFAULT;
1454 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1455 if (r)
1456 return -EFAULT;
1457 return 0;
1459 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1461 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1463 gfn_t gfn = gpa >> PAGE_SHIFT;
1464 int seg;
1465 int offset = offset_in_page(gpa);
1466 int ret;
1468 while ((seg = next_segment(len, offset)) != 0) {
1469 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1470 if (ret < 0)
1471 return ret;
1472 offset = 0;
1473 len -= seg;
1474 data += seg;
1475 ++gfn;
1477 return 0;
1479 EXPORT_SYMBOL_GPL(kvm_read_guest);
1481 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1482 unsigned long len)
1484 int r;
1485 unsigned long addr;
1486 gfn_t gfn = gpa >> PAGE_SHIFT;
1487 int offset = offset_in_page(gpa);
1489 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1490 if (kvm_is_error_hva(addr))
1491 return -EFAULT;
1492 pagefault_disable();
1493 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1494 pagefault_enable();
1495 if (r)
1496 return -EFAULT;
1497 return 0;
1499 EXPORT_SYMBOL(kvm_read_guest_atomic);
1501 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1502 int offset, int len)
1504 int r;
1505 unsigned long addr;
1507 addr = gfn_to_hva(kvm, gfn);
1508 if (kvm_is_error_hva(addr))
1509 return -EFAULT;
1510 r = __copy_to_user((void __user *)addr + offset, data, len);
1511 if (r)
1512 return -EFAULT;
1513 mark_page_dirty(kvm, gfn);
1514 return 0;
1516 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1518 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1519 unsigned long len)
1521 gfn_t gfn = gpa >> PAGE_SHIFT;
1522 int seg;
1523 int offset = offset_in_page(gpa);
1524 int ret;
1526 while ((seg = next_segment(len, offset)) != 0) {
1527 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1528 if (ret < 0)
1529 return ret;
1530 offset = 0;
1531 len -= seg;
1532 data += seg;
1533 ++gfn;
1535 return 0;
1538 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1539 gpa_t gpa, unsigned long len)
1541 struct kvm_memslots *slots = kvm_memslots(kvm);
1542 int offset = offset_in_page(gpa);
1543 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1544 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1545 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1546 gfn_t nr_pages_avail;
1548 ghc->gpa = gpa;
1549 ghc->generation = slots->generation;
1550 ghc->len = len;
1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1553 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1554 ghc->hva += offset;
1555 } else {
1557 * If the requested region crosses two memslots, we still
1558 * verify that the entire region is valid here.
1560 while (start_gfn <= end_gfn) {
1561 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1562 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1563 &nr_pages_avail);
1564 if (kvm_is_error_hva(ghc->hva))
1565 return -EFAULT;
1566 start_gfn += nr_pages_avail;
1568 /* Use the slow path for cross page reads and writes. */
1569 ghc->memslot = NULL;
1571 return 0;
1573 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1575 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1576 void *data, unsigned long len)
1578 struct kvm_memslots *slots = kvm_memslots(kvm);
1579 int r;
1581 BUG_ON(len > ghc->len);
1583 if (slots->generation != ghc->generation)
1584 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1586 if (unlikely(!ghc->memslot))
1587 return kvm_write_guest(kvm, ghc->gpa, data, len);
1589 if (kvm_is_error_hva(ghc->hva))
1590 return -EFAULT;
1592 r = __copy_to_user((void __user *)ghc->hva, data, len);
1593 if (r)
1594 return -EFAULT;
1595 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1597 return 0;
1599 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1601 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1602 void *data, unsigned long len)
1604 struct kvm_memslots *slots = kvm_memslots(kvm);
1605 int r;
1607 BUG_ON(len > ghc->len);
1609 if (slots->generation != ghc->generation)
1610 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1612 if (unlikely(!ghc->memslot))
1613 return kvm_read_guest(kvm, ghc->gpa, data, len);
1615 if (kvm_is_error_hva(ghc->hva))
1616 return -EFAULT;
1618 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1619 if (r)
1620 return -EFAULT;
1622 return 0;
1624 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1626 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1628 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1629 offset, len);
1631 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1633 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1635 gfn_t gfn = gpa >> PAGE_SHIFT;
1636 int seg;
1637 int offset = offset_in_page(gpa);
1638 int ret;
1640 while ((seg = next_segment(len, offset)) != 0) {
1641 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1642 if (ret < 0)
1643 return ret;
1644 offset = 0;
1645 len -= seg;
1646 ++gfn;
1648 return 0;
1650 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1652 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1653 gfn_t gfn)
1655 if (memslot && memslot->dirty_bitmap) {
1656 unsigned long rel_gfn = gfn - memslot->base_gfn;
1658 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1662 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1664 struct kvm_memory_slot *memslot;
1666 memslot = gfn_to_memslot(kvm, gfn);
1667 mark_page_dirty_in_slot(kvm, memslot, gfn);
1671 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1673 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1675 DEFINE_WAIT(wait);
1677 for (;;) {
1678 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1680 if (kvm_arch_vcpu_runnable(vcpu)) {
1681 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1682 break;
1684 if (kvm_cpu_has_pending_timer(vcpu))
1685 break;
1686 if (signal_pending(current))
1687 break;
1689 schedule();
1692 finish_wait(&vcpu->wq, &wait);
1695 #ifndef CONFIG_S390
1697 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1699 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1701 int me;
1702 int cpu = vcpu->cpu;
1703 wait_queue_head_t *wqp;
1705 wqp = kvm_arch_vcpu_wq(vcpu);
1706 if (waitqueue_active(wqp)) {
1707 wake_up_interruptible(wqp);
1708 ++vcpu->stat.halt_wakeup;
1711 me = get_cpu();
1712 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1713 if (kvm_arch_vcpu_should_kick(vcpu))
1714 smp_send_reschedule(cpu);
1715 put_cpu();
1717 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1718 #endif /* !CONFIG_S390 */
1720 void kvm_resched(struct kvm_vcpu *vcpu)
1722 if (!need_resched())
1723 return;
1724 cond_resched();
1726 EXPORT_SYMBOL_GPL(kvm_resched);
1728 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1730 struct pid *pid;
1731 struct task_struct *task = NULL;
1732 bool ret = false;
1734 rcu_read_lock();
1735 pid = rcu_dereference(target->pid);
1736 if (pid)
1737 task = get_pid_task(target->pid, PIDTYPE_PID);
1738 rcu_read_unlock();
1739 if (!task)
1740 return ret;
1741 if (task->flags & PF_VCPU) {
1742 put_task_struct(task);
1743 return ret;
1745 ret = yield_to(task, 1);
1746 put_task_struct(task);
1748 return ret;
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1752 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1754 * Helper that checks whether a VCPU is eligible for directed yield.
1755 * Most eligible candidate to yield is decided by following heuristics:
1757 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1758 * (preempted lock holder), indicated by @in_spin_loop.
1759 * Set at the beiginning and cleared at the end of interception/PLE handler.
1761 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1762 * chance last time (mostly it has become eligible now since we have probably
1763 * yielded to lockholder in last iteration. This is done by toggling
1764 * @dy_eligible each time a VCPU checked for eligibility.)
1766 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1767 * to preempted lock-holder could result in wrong VCPU selection and CPU
1768 * burning. Giving priority for a potential lock-holder increases lock
1769 * progress.
1771 * Since algorithm is based on heuristics, accessing another VCPU data without
1772 * locking does not harm. It may result in trying to yield to same VCPU, fail
1773 * and continue with next VCPU and so on.
1775 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1777 bool eligible;
1779 eligible = !vcpu->spin_loop.in_spin_loop ||
1780 (vcpu->spin_loop.in_spin_loop &&
1781 vcpu->spin_loop.dy_eligible);
1783 if (vcpu->spin_loop.in_spin_loop)
1784 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1786 return eligible;
1788 #endif
1790 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1792 struct kvm *kvm = me->kvm;
1793 struct kvm_vcpu *vcpu;
1794 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1795 int yielded = 0;
1796 int try = 3;
1797 int pass;
1798 int i;
1800 kvm_vcpu_set_in_spin_loop(me, true);
1802 * We boost the priority of a VCPU that is runnable but not
1803 * currently running, because it got preempted by something
1804 * else and called schedule in __vcpu_run. Hopefully that
1805 * VCPU is holding the lock that we need and will release it.
1806 * We approximate round-robin by starting at the last boosted VCPU.
1808 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1809 kvm_for_each_vcpu(i, vcpu, kvm) {
1810 if (!pass && i <= last_boosted_vcpu) {
1811 i = last_boosted_vcpu;
1812 continue;
1813 } else if (pass && i > last_boosted_vcpu)
1814 break;
1815 if (!ACCESS_ONCE(vcpu->preempted))
1816 continue;
1817 if (vcpu == me)
1818 continue;
1819 if (waitqueue_active(&vcpu->wq))
1820 continue;
1821 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1822 continue;
1824 yielded = kvm_vcpu_yield_to(vcpu);
1825 if (yielded > 0) {
1826 kvm->last_boosted_vcpu = i;
1827 break;
1828 } else if (yielded < 0) {
1829 try--;
1830 if (!try)
1831 break;
1835 kvm_vcpu_set_in_spin_loop(me, false);
1837 /* Ensure vcpu is not eligible during next spinloop */
1838 kvm_vcpu_set_dy_eligible(me, false);
1840 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1842 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1844 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1845 struct page *page;
1847 if (vmf->pgoff == 0)
1848 page = virt_to_page(vcpu->run);
1849 #ifdef CONFIG_X86
1850 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1851 page = virt_to_page(vcpu->arch.pio_data);
1852 #endif
1853 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1854 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1855 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1856 #endif
1857 else
1858 return kvm_arch_vcpu_fault(vcpu, vmf);
1859 get_page(page);
1860 vmf->page = page;
1861 return 0;
1864 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1865 .fault = kvm_vcpu_fault,
1868 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1870 vma->vm_ops = &kvm_vcpu_vm_ops;
1871 return 0;
1874 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1876 struct kvm_vcpu *vcpu = filp->private_data;
1878 kvm_put_kvm(vcpu->kvm);
1879 return 0;
1882 static struct file_operations kvm_vcpu_fops = {
1883 .release = kvm_vcpu_release,
1884 .unlocked_ioctl = kvm_vcpu_ioctl,
1885 #ifdef CONFIG_COMPAT
1886 .compat_ioctl = kvm_vcpu_compat_ioctl,
1887 #endif
1888 .mmap = kvm_vcpu_mmap,
1889 .llseek = noop_llseek,
1893 * Allocates an inode for the vcpu.
1895 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1897 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1901 * Creates some virtual cpus. Good luck creating more than one.
1903 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1905 int r;
1906 struct kvm_vcpu *vcpu, *v;
1908 if (id >= KVM_MAX_VCPUS)
1909 return -EINVAL;
1911 vcpu = kvm_arch_vcpu_create(kvm, id);
1912 if (IS_ERR(vcpu))
1913 return PTR_ERR(vcpu);
1915 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1917 r = kvm_arch_vcpu_setup(vcpu);
1918 if (r)
1919 goto vcpu_destroy;
1921 mutex_lock(&kvm->lock);
1922 if (!kvm_vcpu_compatible(vcpu)) {
1923 r = -EINVAL;
1924 goto unlock_vcpu_destroy;
1926 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1927 r = -EINVAL;
1928 goto unlock_vcpu_destroy;
1931 kvm_for_each_vcpu(r, v, kvm)
1932 if (v->vcpu_id == id) {
1933 r = -EEXIST;
1934 goto unlock_vcpu_destroy;
1937 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1939 /* Now it's all set up, let userspace reach it */
1940 kvm_get_kvm(kvm);
1941 r = create_vcpu_fd(vcpu);
1942 if (r < 0) {
1943 kvm_put_kvm(kvm);
1944 goto unlock_vcpu_destroy;
1947 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1948 smp_wmb();
1949 atomic_inc(&kvm->online_vcpus);
1951 mutex_unlock(&kvm->lock);
1952 kvm_arch_vcpu_postcreate(vcpu);
1953 return r;
1955 unlock_vcpu_destroy:
1956 mutex_unlock(&kvm->lock);
1957 vcpu_destroy:
1958 kvm_arch_vcpu_destroy(vcpu);
1959 return r;
1962 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1964 if (sigset) {
1965 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1966 vcpu->sigset_active = 1;
1967 vcpu->sigset = *sigset;
1968 } else
1969 vcpu->sigset_active = 0;
1970 return 0;
1973 static long kvm_vcpu_ioctl(struct file *filp,
1974 unsigned int ioctl, unsigned long arg)
1976 struct kvm_vcpu *vcpu = filp->private_data;
1977 void __user *argp = (void __user *)arg;
1978 int r;
1979 struct kvm_fpu *fpu = NULL;
1980 struct kvm_sregs *kvm_sregs = NULL;
1982 if (vcpu->kvm->mm != current->mm)
1983 return -EIO;
1985 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
1986 return -EINVAL;
1988 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1990 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1991 * so vcpu_load() would break it.
1993 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1994 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1995 #endif
1998 r = vcpu_load(vcpu);
1999 if (r)
2000 return r;
2001 switch (ioctl) {
2002 case KVM_RUN:
2003 r = -EINVAL;
2004 if (arg)
2005 goto out;
2006 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2007 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2008 break;
2009 case KVM_GET_REGS: {
2010 struct kvm_regs *kvm_regs;
2012 r = -ENOMEM;
2013 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2014 if (!kvm_regs)
2015 goto out;
2016 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2017 if (r)
2018 goto out_free1;
2019 r = -EFAULT;
2020 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2021 goto out_free1;
2022 r = 0;
2023 out_free1:
2024 kfree(kvm_regs);
2025 break;
2027 case KVM_SET_REGS: {
2028 struct kvm_regs *kvm_regs;
2030 r = -ENOMEM;
2031 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2032 if (IS_ERR(kvm_regs)) {
2033 r = PTR_ERR(kvm_regs);
2034 goto out;
2036 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2037 kfree(kvm_regs);
2038 break;
2040 case KVM_GET_SREGS: {
2041 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2042 r = -ENOMEM;
2043 if (!kvm_sregs)
2044 goto out;
2045 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2046 if (r)
2047 goto out;
2048 r = -EFAULT;
2049 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2050 goto out;
2051 r = 0;
2052 break;
2054 case KVM_SET_SREGS: {
2055 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2056 if (IS_ERR(kvm_sregs)) {
2057 r = PTR_ERR(kvm_sregs);
2058 kvm_sregs = NULL;
2059 goto out;
2061 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2062 break;
2064 case KVM_GET_MP_STATE: {
2065 struct kvm_mp_state mp_state;
2067 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2068 if (r)
2069 goto out;
2070 r = -EFAULT;
2071 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2072 goto out;
2073 r = 0;
2074 break;
2076 case KVM_SET_MP_STATE: {
2077 struct kvm_mp_state mp_state;
2079 r = -EFAULT;
2080 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2081 goto out;
2082 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2083 break;
2085 case KVM_TRANSLATE: {
2086 struct kvm_translation tr;
2088 r = -EFAULT;
2089 if (copy_from_user(&tr, argp, sizeof tr))
2090 goto out;
2091 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2092 if (r)
2093 goto out;
2094 r = -EFAULT;
2095 if (copy_to_user(argp, &tr, sizeof tr))
2096 goto out;
2097 r = 0;
2098 break;
2100 case KVM_SET_GUEST_DEBUG: {
2101 struct kvm_guest_debug dbg;
2103 r = -EFAULT;
2104 if (copy_from_user(&dbg, argp, sizeof dbg))
2105 goto out;
2106 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2107 break;
2109 case KVM_SET_SIGNAL_MASK: {
2110 struct kvm_signal_mask __user *sigmask_arg = argp;
2111 struct kvm_signal_mask kvm_sigmask;
2112 sigset_t sigset, *p;
2114 p = NULL;
2115 if (argp) {
2116 r = -EFAULT;
2117 if (copy_from_user(&kvm_sigmask, argp,
2118 sizeof kvm_sigmask))
2119 goto out;
2120 r = -EINVAL;
2121 if (kvm_sigmask.len != sizeof sigset)
2122 goto out;
2123 r = -EFAULT;
2124 if (copy_from_user(&sigset, sigmask_arg->sigset,
2125 sizeof sigset))
2126 goto out;
2127 p = &sigset;
2129 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2130 break;
2132 case KVM_GET_FPU: {
2133 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2134 r = -ENOMEM;
2135 if (!fpu)
2136 goto out;
2137 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2138 if (r)
2139 goto out;
2140 r = -EFAULT;
2141 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2142 goto out;
2143 r = 0;
2144 break;
2146 case KVM_SET_FPU: {
2147 fpu = memdup_user(argp, sizeof(*fpu));
2148 if (IS_ERR(fpu)) {
2149 r = PTR_ERR(fpu);
2150 fpu = NULL;
2151 goto out;
2153 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2154 break;
2156 default:
2157 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2159 out:
2160 vcpu_put(vcpu);
2161 kfree(fpu);
2162 kfree(kvm_sregs);
2163 return r;
2166 #ifdef CONFIG_COMPAT
2167 static long kvm_vcpu_compat_ioctl(struct file *filp,
2168 unsigned int ioctl, unsigned long arg)
2170 struct kvm_vcpu *vcpu = filp->private_data;
2171 void __user *argp = compat_ptr(arg);
2172 int r;
2174 if (vcpu->kvm->mm != current->mm)
2175 return -EIO;
2177 switch (ioctl) {
2178 case KVM_SET_SIGNAL_MASK: {
2179 struct kvm_signal_mask __user *sigmask_arg = argp;
2180 struct kvm_signal_mask kvm_sigmask;
2181 compat_sigset_t csigset;
2182 sigset_t sigset;
2184 if (argp) {
2185 r = -EFAULT;
2186 if (copy_from_user(&kvm_sigmask, argp,
2187 sizeof kvm_sigmask))
2188 goto out;
2189 r = -EINVAL;
2190 if (kvm_sigmask.len != sizeof csigset)
2191 goto out;
2192 r = -EFAULT;
2193 if (copy_from_user(&csigset, sigmask_arg->sigset,
2194 sizeof csigset))
2195 goto out;
2196 sigset_from_compat(&sigset, &csigset);
2197 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2198 } else
2199 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2200 break;
2202 default:
2203 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2206 out:
2207 return r;
2209 #endif
2211 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2212 int (*accessor)(struct kvm_device *dev,
2213 struct kvm_device_attr *attr),
2214 unsigned long arg)
2216 struct kvm_device_attr attr;
2218 if (!accessor)
2219 return -EPERM;
2221 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2222 return -EFAULT;
2224 return accessor(dev, &attr);
2227 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2228 unsigned long arg)
2230 struct kvm_device *dev = filp->private_data;
2232 switch (ioctl) {
2233 case KVM_SET_DEVICE_ATTR:
2234 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2235 case KVM_GET_DEVICE_ATTR:
2236 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2237 case KVM_HAS_DEVICE_ATTR:
2238 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2239 default:
2240 if (dev->ops->ioctl)
2241 return dev->ops->ioctl(dev, ioctl, arg);
2243 return -ENOTTY;
2247 static int kvm_device_release(struct inode *inode, struct file *filp)
2249 struct kvm_device *dev = filp->private_data;
2250 struct kvm *kvm = dev->kvm;
2252 kvm_put_kvm(kvm);
2253 return 0;
2256 static const struct file_operations kvm_device_fops = {
2257 .unlocked_ioctl = kvm_device_ioctl,
2258 #ifdef CONFIG_COMPAT
2259 .compat_ioctl = kvm_device_ioctl,
2260 #endif
2261 .release = kvm_device_release,
2264 struct kvm_device *kvm_device_from_filp(struct file *filp)
2266 if (filp->f_op != &kvm_device_fops)
2267 return NULL;
2269 return filp->private_data;
2272 static int kvm_ioctl_create_device(struct kvm *kvm,
2273 struct kvm_create_device *cd)
2275 struct kvm_device_ops *ops = NULL;
2276 struct kvm_device *dev;
2277 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2278 int ret;
2280 switch (cd->type) {
2281 #ifdef CONFIG_KVM_MPIC
2282 case KVM_DEV_TYPE_FSL_MPIC_20:
2283 case KVM_DEV_TYPE_FSL_MPIC_42:
2284 ops = &kvm_mpic_ops;
2285 break;
2286 #endif
2287 #ifdef CONFIG_KVM_XICS
2288 case KVM_DEV_TYPE_XICS:
2289 ops = &kvm_xics_ops;
2290 break;
2291 #endif
2292 default:
2293 return -ENODEV;
2296 if (test)
2297 return 0;
2299 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2300 if (!dev)
2301 return -ENOMEM;
2303 dev->ops = ops;
2304 dev->kvm = kvm;
2306 ret = ops->create(dev, cd->type);
2307 if (ret < 0) {
2308 kfree(dev);
2309 return ret;
2312 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2313 if (ret < 0) {
2314 ops->destroy(dev);
2315 return ret;
2318 list_add(&dev->vm_node, &kvm->devices);
2319 kvm_get_kvm(kvm);
2320 cd->fd = ret;
2321 return 0;
2324 static long kvm_vm_ioctl(struct file *filp,
2325 unsigned int ioctl, unsigned long arg)
2327 struct kvm *kvm = filp->private_data;
2328 void __user *argp = (void __user *)arg;
2329 int r;
2331 if (kvm->mm != current->mm)
2332 return -EIO;
2333 switch (ioctl) {
2334 case KVM_CREATE_VCPU:
2335 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2336 break;
2337 case KVM_SET_USER_MEMORY_REGION: {
2338 struct kvm_userspace_memory_region kvm_userspace_mem;
2340 r = -EFAULT;
2341 if (copy_from_user(&kvm_userspace_mem, argp,
2342 sizeof kvm_userspace_mem))
2343 goto out;
2345 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2346 break;
2348 case KVM_GET_DIRTY_LOG: {
2349 struct kvm_dirty_log log;
2351 r = -EFAULT;
2352 if (copy_from_user(&log, argp, sizeof log))
2353 goto out;
2354 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2355 break;
2357 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2358 case KVM_REGISTER_COALESCED_MMIO: {
2359 struct kvm_coalesced_mmio_zone zone;
2360 r = -EFAULT;
2361 if (copy_from_user(&zone, argp, sizeof zone))
2362 goto out;
2363 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2364 break;
2366 case KVM_UNREGISTER_COALESCED_MMIO: {
2367 struct kvm_coalesced_mmio_zone zone;
2368 r = -EFAULT;
2369 if (copy_from_user(&zone, argp, sizeof zone))
2370 goto out;
2371 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2372 break;
2374 #endif
2375 case KVM_IRQFD: {
2376 struct kvm_irqfd data;
2378 r = -EFAULT;
2379 if (copy_from_user(&data, argp, sizeof data))
2380 goto out;
2381 r = kvm_irqfd(kvm, &data);
2382 break;
2384 case KVM_IOEVENTFD: {
2385 struct kvm_ioeventfd data;
2387 r = -EFAULT;
2388 if (copy_from_user(&data, argp, sizeof data))
2389 goto out;
2390 r = kvm_ioeventfd(kvm, &data);
2391 break;
2393 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2394 case KVM_SET_BOOT_CPU_ID:
2395 r = 0;
2396 mutex_lock(&kvm->lock);
2397 if (atomic_read(&kvm->online_vcpus) != 0)
2398 r = -EBUSY;
2399 else
2400 kvm->bsp_vcpu_id = arg;
2401 mutex_unlock(&kvm->lock);
2402 break;
2403 #endif
2404 #ifdef CONFIG_HAVE_KVM_MSI
2405 case KVM_SIGNAL_MSI: {
2406 struct kvm_msi msi;
2408 r = -EFAULT;
2409 if (copy_from_user(&msi, argp, sizeof msi))
2410 goto out;
2411 r = kvm_send_userspace_msi(kvm, &msi);
2412 break;
2414 #endif
2415 #ifdef __KVM_HAVE_IRQ_LINE
2416 case KVM_IRQ_LINE_STATUS:
2417 case KVM_IRQ_LINE: {
2418 struct kvm_irq_level irq_event;
2420 r = -EFAULT;
2421 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2422 goto out;
2424 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2425 ioctl == KVM_IRQ_LINE_STATUS);
2426 if (r)
2427 goto out;
2429 r = -EFAULT;
2430 if (ioctl == KVM_IRQ_LINE_STATUS) {
2431 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2432 goto out;
2435 r = 0;
2436 break;
2438 #endif
2439 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2440 case KVM_SET_GSI_ROUTING: {
2441 struct kvm_irq_routing routing;
2442 struct kvm_irq_routing __user *urouting;
2443 struct kvm_irq_routing_entry *entries;
2445 r = -EFAULT;
2446 if (copy_from_user(&routing, argp, sizeof(routing)))
2447 goto out;
2448 r = -EINVAL;
2449 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2450 goto out;
2451 if (routing.flags)
2452 goto out;
2453 r = -ENOMEM;
2454 entries = vmalloc(routing.nr * sizeof(*entries));
2455 if (!entries)
2456 goto out;
2457 r = -EFAULT;
2458 urouting = argp;
2459 if (copy_from_user(entries, urouting->entries,
2460 routing.nr * sizeof(*entries)))
2461 goto out_free_irq_routing;
2462 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2463 routing.flags);
2464 out_free_irq_routing:
2465 vfree(entries);
2466 break;
2468 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2469 case KVM_CREATE_DEVICE: {
2470 struct kvm_create_device cd;
2472 r = -EFAULT;
2473 if (copy_from_user(&cd, argp, sizeof(cd)))
2474 goto out;
2476 r = kvm_ioctl_create_device(kvm, &cd);
2477 if (r)
2478 goto out;
2480 r = -EFAULT;
2481 if (copy_to_user(argp, &cd, sizeof(cd)))
2482 goto out;
2484 r = 0;
2485 break;
2487 default:
2488 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2489 if (r == -ENOTTY)
2490 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2492 out:
2493 return r;
2496 #ifdef CONFIG_COMPAT
2497 struct compat_kvm_dirty_log {
2498 __u32 slot;
2499 __u32 padding1;
2500 union {
2501 compat_uptr_t dirty_bitmap; /* one bit per page */
2502 __u64 padding2;
2506 static long kvm_vm_compat_ioctl(struct file *filp,
2507 unsigned int ioctl, unsigned long arg)
2509 struct kvm *kvm = filp->private_data;
2510 int r;
2512 if (kvm->mm != current->mm)
2513 return -EIO;
2514 switch (ioctl) {
2515 case KVM_GET_DIRTY_LOG: {
2516 struct compat_kvm_dirty_log compat_log;
2517 struct kvm_dirty_log log;
2519 r = -EFAULT;
2520 if (copy_from_user(&compat_log, (void __user *)arg,
2521 sizeof(compat_log)))
2522 goto out;
2523 log.slot = compat_log.slot;
2524 log.padding1 = compat_log.padding1;
2525 log.padding2 = compat_log.padding2;
2526 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2528 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2529 break;
2531 default:
2532 r = kvm_vm_ioctl(filp, ioctl, arg);
2535 out:
2536 return r;
2538 #endif
2540 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2542 struct page *page[1];
2543 unsigned long addr;
2544 int npages;
2545 gfn_t gfn = vmf->pgoff;
2546 struct kvm *kvm = vma->vm_file->private_data;
2548 addr = gfn_to_hva(kvm, gfn);
2549 if (kvm_is_error_hva(addr))
2550 return VM_FAULT_SIGBUS;
2552 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2553 NULL);
2554 if (unlikely(npages != 1))
2555 return VM_FAULT_SIGBUS;
2557 vmf->page = page[0];
2558 return 0;
2561 static const struct vm_operations_struct kvm_vm_vm_ops = {
2562 .fault = kvm_vm_fault,
2565 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2567 vma->vm_ops = &kvm_vm_vm_ops;
2568 return 0;
2571 static struct file_operations kvm_vm_fops = {
2572 .release = kvm_vm_release,
2573 .unlocked_ioctl = kvm_vm_ioctl,
2574 #ifdef CONFIG_COMPAT
2575 .compat_ioctl = kvm_vm_compat_ioctl,
2576 #endif
2577 .mmap = kvm_vm_mmap,
2578 .llseek = noop_llseek,
2581 static int kvm_dev_ioctl_create_vm(unsigned long type)
2583 int r;
2584 struct kvm *kvm;
2586 kvm = kvm_create_vm(type);
2587 if (IS_ERR(kvm))
2588 return PTR_ERR(kvm);
2589 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2590 r = kvm_coalesced_mmio_init(kvm);
2591 if (r < 0) {
2592 kvm_put_kvm(kvm);
2593 return r;
2595 #endif
2596 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2597 if (r < 0)
2598 kvm_put_kvm(kvm);
2600 return r;
2603 static long kvm_dev_ioctl_check_extension_generic(long arg)
2605 switch (arg) {
2606 case KVM_CAP_USER_MEMORY:
2607 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2608 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2609 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2610 case KVM_CAP_SET_BOOT_CPU_ID:
2611 #endif
2612 case KVM_CAP_INTERNAL_ERROR_DATA:
2613 #ifdef CONFIG_HAVE_KVM_MSI
2614 case KVM_CAP_SIGNAL_MSI:
2615 #endif
2616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2617 case KVM_CAP_IRQFD_RESAMPLE:
2618 #endif
2619 return 1;
2620 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2621 case KVM_CAP_IRQ_ROUTING:
2622 return KVM_MAX_IRQ_ROUTES;
2623 #endif
2624 default:
2625 break;
2627 return kvm_dev_ioctl_check_extension(arg);
2630 static long kvm_dev_ioctl(struct file *filp,
2631 unsigned int ioctl, unsigned long arg)
2633 long r = -EINVAL;
2635 switch (ioctl) {
2636 case KVM_GET_API_VERSION:
2637 r = -EINVAL;
2638 if (arg)
2639 goto out;
2640 r = KVM_API_VERSION;
2641 break;
2642 case KVM_CREATE_VM:
2643 r = kvm_dev_ioctl_create_vm(arg);
2644 break;
2645 case KVM_CHECK_EXTENSION:
2646 r = kvm_dev_ioctl_check_extension_generic(arg);
2647 break;
2648 case KVM_GET_VCPU_MMAP_SIZE:
2649 r = -EINVAL;
2650 if (arg)
2651 goto out;
2652 r = PAGE_SIZE; /* struct kvm_run */
2653 #ifdef CONFIG_X86
2654 r += PAGE_SIZE; /* pio data page */
2655 #endif
2656 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2657 r += PAGE_SIZE; /* coalesced mmio ring page */
2658 #endif
2659 break;
2660 case KVM_TRACE_ENABLE:
2661 case KVM_TRACE_PAUSE:
2662 case KVM_TRACE_DISABLE:
2663 r = -EOPNOTSUPP;
2664 break;
2665 default:
2666 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2668 out:
2669 return r;
2672 static struct file_operations kvm_chardev_ops = {
2673 .unlocked_ioctl = kvm_dev_ioctl,
2674 .compat_ioctl = kvm_dev_ioctl,
2675 .llseek = noop_llseek,
2678 static struct miscdevice kvm_dev = {
2679 KVM_MINOR,
2680 "kvm",
2681 &kvm_chardev_ops,
2684 static void hardware_enable_nolock(void *junk)
2686 int cpu = raw_smp_processor_id();
2687 int r;
2689 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2690 return;
2692 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2694 r = kvm_arch_hardware_enable(NULL);
2696 if (r) {
2697 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2698 atomic_inc(&hardware_enable_failed);
2699 printk(KERN_INFO "kvm: enabling virtualization on "
2700 "CPU%d failed\n", cpu);
2704 static void hardware_enable(void *junk)
2706 raw_spin_lock(&kvm_lock);
2707 hardware_enable_nolock(junk);
2708 raw_spin_unlock(&kvm_lock);
2711 static void hardware_disable_nolock(void *junk)
2713 int cpu = raw_smp_processor_id();
2715 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2716 return;
2717 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2718 kvm_arch_hardware_disable(NULL);
2721 static void hardware_disable(void *junk)
2723 raw_spin_lock(&kvm_lock);
2724 hardware_disable_nolock(junk);
2725 raw_spin_unlock(&kvm_lock);
2728 static void hardware_disable_all_nolock(void)
2730 BUG_ON(!kvm_usage_count);
2732 kvm_usage_count--;
2733 if (!kvm_usage_count)
2734 on_each_cpu(hardware_disable_nolock, NULL, 1);
2737 static void hardware_disable_all(void)
2739 raw_spin_lock(&kvm_lock);
2740 hardware_disable_all_nolock();
2741 raw_spin_unlock(&kvm_lock);
2744 static int hardware_enable_all(void)
2746 int r = 0;
2748 raw_spin_lock(&kvm_lock);
2750 kvm_usage_count++;
2751 if (kvm_usage_count == 1) {
2752 atomic_set(&hardware_enable_failed, 0);
2753 on_each_cpu(hardware_enable_nolock, NULL, 1);
2755 if (atomic_read(&hardware_enable_failed)) {
2756 hardware_disable_all_nolock();
2757 r = -EBUSY;
2761 raw_spin_unlock(&kvm_lock);
2763 return r;
2766 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2767 void *v)
2769 int cpu = (long)v;
2771 if (!kvm_usage_count)
2772 return NOTIFY_OK;
2774 val &= ~CPU_TASKS_FROZEN;
2775 switch (val) {
2776 case CPU_DYING:
2777 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2778 cpu);
2779 hardware_disable(NULL);
2780 break;
2781 case CPU_STARTING:
2782 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2783 cpu);
2784 hardware_enable(NULL);
2785 break;
2787 return NOTIFY_OK;
2790 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2791 void *v)
2794 * Some (well, at least mine) BIOSes hang on reboot if
2795 * in vmx root mode.
2797 * And Intel TXT required VMX off for all cpu when system shutdown.
2799 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2800 kvm_rebooting = true;
2801 on_each_cpu(hardware_disable_nolock, NULL, 1);
2802 return NOTIFY_OK;
2805 static struct notifier_block kvm_reboot_notifier = {
2806 .notifier_call = kvm_reboot,
2807 .priority = 0,
2810 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2812 int i;
2814 for (i = 0; i < bus->dev_count; i++) {
2815 struct kvm_io_device *pos = bus->range[i].dev;
2817 kvm_iodevice_destructor(pos);
2819 kfree(bus);
2822 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2823 const struct kvm_io_range *r2)
2825 if (r1->addr < r2->addr)
2826 return -1;
2827 if (r1->addr + r1->len > r2->addr + r2->len)
2828 return 1;
2829 return 0;
2832 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2834 return kvm_io_bus_cmp(p1, p2);
2837 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2838 gpa_t addr, int len)
2840 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2841 .addr = addr,
2842 .len = len,
2843 .dev = dev,
2846 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2847 kvm_io_bus_sort_cmp, NULL);
2849 return 0;
2852 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2853 gpa_t addr, int len)
2855 struct kvm_io_range *range, key;
2856 int off;
2858 key = (struct kvm_io_range) {
2859 .addr = addr,
2860 .len = len,
2863 range = bsearch(&key, bus->range, bus->dev_count,
2864 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2865 if (range == NULL)
2866 return -ENOENT;
2868 off = range - bus->range;
2870 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2871 off--;
2873 return off;
2876 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2877 struct kvm_io_range *range, const void *val)
2879 int idx;
2881 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2882 if (idx < 0)
2883 return -EOPNOTSUPP;
2885 while (idx < bus->dev_count &&
2886 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2887 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2888 range->len, val))
2889 return idx;
2890 idx++;
2893 return -EOPNOTSUPP;
2896 /* kvm_io_bus_write - called under kvm->slots_lock */
2897 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2898 int len, const void *val)
2900 struct kvm_io_bus *bus;
2901 struct kvm_io_range range;
2902 int r;
2904 range = (struct kvm_io_range) {
2905 .addr = addr,
2906 .len = len,
2909 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2910 r = __kvm_io_bus_write(bus, &range, val);
2911 return r < 0 ? r : 0;
2914 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2915 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2916 int len, const void *val, long cookie)
2918 struct kvm_io_bus *bus;
2919 struct kvm_io_range range;
2921 range = (struct kvm_io_range) {
2922 .addr = addr,
2923 .len = len,
2926 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2928 /* First try the device referenced by cookie. */
2929 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2930 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2931 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2932 val))
2933 return cookie;
2936 * cookie contained garbage; fall back to search and return the
2937 * correct cookie value.
2939 return __kvm_io_bus_write(bus, &range, val);
2942 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2943 void *val)
2945 int idx;
2947 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2948 if (idx < 0)
2949 return -EOPNOTSUPP;
2951 while (idx < bus->dev_count &&
2952 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2953 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2954 range->len, val))
2955 return idx;
2956 idx++;
2959 return -EOPNOTSUPP;
2962 /* kvm_io_bus_read - called under kvm->slots_lock */
2963 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964 int len, void *val)
2966 struct kvm_io_bus *bus;
2967 struct kvm_io_range range;
2968 int r;
2970 range = (struct kvm_io_range) {
2971 .addr = addr,
2972 .len = len,
2975 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2976 r = __kvm_io_bus_read(bus, &range, val);
2977 return r < 0 ? r : 0;
2980 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2981 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2982 int len, void *val, long cookie)
2984 struct kvm_io_bus *bus;
2985 struct kvm_io_range range;
2987 range = (struct kvm_io_range) {
2988 .addr = addr,
2989 .len = len,
2992 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2994 /* First try the device referenced by cookie. */
2995 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2996 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2997 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2998 val))
2999 return cookie;
3002 * cookie contained garbage; fall back to search and return the
3003 * correct cookie value.
3005 return __kvm_io_bus_read(bus, &range, val);
3008 /* Caller must hold slots_lock. */
3009 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3010 int len, struct kvm_io_device *dev)
3012 struct kvm_io_bus *new_bus, *bus;
3014 bus = kvm->buses[bus_idx];
3015 /* exclude ioeventfd which is limited by maximum fd */
3016 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3017 return -ENOSPC;
3019 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3020 sizeof(struct kvm_io_range)), GFP_KERNEL);
3021 if (!new_bus)
3022 return -ENOMEM;
3023 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3024 sizeof(struct kvm_io_range)));
3025 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3026 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3027 synchronize_srcu_expedited(&kvm->srcu);
3028 kfree(bus);
3030 return 0;
3033 /* Caller must hold slots_lock. */
3034 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3035 struct kvm_io_device *dev)
3037 int i, r;
3038 struct kvm_io_bus *new_bus, *bus;
3040 bus = kvm->buses[bus_idx];
3041 r = -ENOENT;
3042 for (i = 0; i < bus->dev_count; i++)
3043 if (bus->range[i].dev == dev) {
3044 r = 0;
3045 break;
3048 if (r)
3049 return r;
3051 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3052 sizeof(struct kvm_io_range)), GFP_KERNEL);
3053 if (!new_bus)
3054 return -ENOMEM;
3056 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3057 new_bus->dev_count--;
3058 memcpy(new_bus->range + i, bus->range + i + 1,
3059 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3061 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3062 synchronize_srcu_expedited(&kvm->srcu);
3063 kfree(bus);
3064 return r;
3067 static struct notifier_block kvm_cpu_notifier = {
3068 .notifier_call = kvm_cpu_hotplug,
3071 static int vm_stat_get(void *_offset, u64 *val)
3073 unsigned offset = (long)_offset;
3074 struct kvm *kvm;
3076 *val = 0;
3077 raw_spin_lock(&kvm_lock);
3078 list_for_each_entry(kvm, &vm_list, vm_list)
3079 *val += *(u32 *)((void *)kvm + offset);
3080 raw_spin_unlock(&kvm_lock);
3081 return 0;
3084 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3086 static int vcpu_stat_get(void *_offset, u64 *val)
3088 unsigned offset = (long)_offset;
3089 struct kvm *kvm;
3090 struct kvm_vcpu *vcpu;
3091 int i;
3093 *val = 0;
3094 raw_spin_lock(&kvm_lock);
3095 list_for_each_entry(kvm, &vm_list, vm_list)
3096 kvm_for_each_vcpu(i, vcpu, kvm)
3097 *val += *(u32 *)((void *)vcpu + offset);
3099 raw_spin_unlock(&kvm_lock);
3100 return 0;
3103 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3105 static const struct file_operations *stat_fops[] = {
3106 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3107 [KVM_STAT_VM] = &vm_stat_fops,
3110 static int kvm_init_debug(void)
3112 int r = -EEXIST;
3113 struct kvm_stats_debugfs_item *p;
3115 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3116 if (kvm_debugfs_dir == NULL)
3117 goto out;
3119 for (p = debugfs_entries; p->name; ++p) {
3120 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3121 (void *)(long)p->offset,
3122 stat_fops[p->kind]);
3123 if (p->dentry == NULL)
3124 goto out_dir;
3127 return 0;
3129 out_dir:
3130 debugfs_remove_recursive(kvm_debugfs_dir);
3131 out:
3132 return r;
3135 static void kvm_exit_debug(void)
3137 struct kvm_stats_debugfs_item *p;
3139 for (p = debugfs_entries; p->name; ++p)
3140 debugfs_remove(p->dentry);
3141 debugfs_remove(kvm_debugfs_dir);
3144 static int kvm_suspend(void)
3146 if (kvm_usage_count)
3147 hardware_disable_nolock(NULL);
3148 return 0;
3151 static void kvm_resume(void)
3153 if (kvm_usage_count) {
3154 WARN_ON(raw_spin_is_locked(&kvm_lock));
3155 hardware_enable_nolock(NULL);
3159 static struct syscore_ops kvm_syscore_ops = {
3160 .suspend = kvm_suspend,
3161 .resume = kvm_resume,
3164 static inline
3165 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3167 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3170 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3172 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3173 if (vcpu->preempted)
3174 vcpu->preempted = false;
3176 kvm_arch_vcpu_load(vcpu, cpu);
3179 static void kvm_sched_out(struct preempt_notifier *pn,
3180 struct task_struct *next)
3182 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3184 if (current->state == TASK_RUNNING)
3185 vcpu->preempted = true;
3186 kvm_arch_vcpu_put(vcpu);
3189 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3190 struct module *module)
3192 int r;
3193 int cpu;
3195 r = kvm_arch_init(opaque);
3196 if (r)
3197 goto out_fail;
3200 * kvm_arch_init makes sure there's at most one caller
3201 * for architectures that support multiple implementations,
3202 * like intel and amd on x86.
3203 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3204 * conflicts in case kvm is already setup for another implementation.
3206 r = kvm_irqfd_init();
3207 if (r)
3208 goto out_irqfd;
3210 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3211 r = -ENOMEM;
3212 goto out_free_0;
3215 r = kvm_arch_hardware_setup();
3216 if (r < 0)
3217 goto out_free_0a;
3219 for_each_online_cpu(cpu) {
3220 smp_call_function_single(cpu,
3221 kvm_arch_check_processor_compat,
3222 &r, 1);
3223 if (r < 0)
3224 goto out_free_1;
3227 r = register_cpu_notifier(&kvm_cpu_notifier);
3228 if (r)
3229 goto out_free_2;
3230 register_reboot_notifier(&kvm_reboot_notifier);
3232 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3233 if (!vcpu_align)
3234 vcpu_align = __alignof__(struct kvm_vcpu);
3235 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3236 0, NULL);
3237 if (!kvm_vcpu_cache) {
3238 r = -ENOMEM;
3239 goto out_free_3;
3242 r = kvm_async_pf_init();
3243 if (r)
3244 goto out_free;
3246 kvm_chardev_ops.owner = module;
3247 kvm_vm_fops.owner = module;
3248 kvm_vcpu_fops.owner = module;
3250 r = misc_register(&kvm_dev);
3251 if (r) {
3252 printk(KERN_ERR "kvm: misc device register failed\n");
3253 goto out_unreg;
3256 register_syscore_ops(&kvm_syscore_ops);
3258 kvm_preempt_ops.sched_in = kvm_sched_in;
3259 kvm_preempt_ops.sched_out = kvm_sched_out;
3261 r = kvm_init_debug();
3262 if (r) {
3263 printk(KERN_ERR "kvm: create debugfs files failed\n");
3264 goto out_undebugfs;
3267 return 0;
3269 out_undebugfs:
3270 unregister_syscore_ops(&kvm_syscore_ops);
3271 misc_deregister(&kvm_dev);
3272 out_unreg:
3273 kvm_async_pf_deinit();
3274 out_free:
3275 kmem_cache_destroy(kvm_vcpu_cache);
3276 out_free_3:
3277 unregister_reboot_notifier(&kvm_reboot_notifier);
3278 unregister_cpu_notifier(&kvm_cpu_notifier);
3279 out_free_2:
3280 out_free_1:
3281 kvm_arch_hardware_unsetup();
3282 out_free_0a:
3283 free_cpumask_var(cpus_hardware_enabled);
3284 out_free_0:
3285 kvm_irqfd_exit();
3286 out_irqfd:
3287 kvm_arch_exit();
3288 out_fail:
3289 return r;
3291 EXPORT_SYMBOL_GPL(kvm_init);
3293 void kvm_exit(void)
3295 kvm_exit_debug();
3296 misc_deregister(&kvm_dev);
3297 kmem_cache_destroy(kvm_vcpu_cache);
3298 kvm_async_pf_deinit();
3299 unregister_syscore_ops(&kvm_syscore_ops);
3300 unregister_reboot_notifier(&kvm_reboot_notifier);
3301 unregister_cpu_notifier(&kvm_cpu_notifier);
3302 on_each_cpu(hardware_disable_nolock, NULL, 1);
3303 kvm_arch_hardware_unsetup();
3304 kvm_arch_exit();
3305 kvm_irqfd_exit();
3306 free_cpumask_var(cpus_hardware_enabled);
3308 EXPORT_SYMBOL_GPL(kvm_exit);