2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
71 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
74 DEFINE_RAW_SPINLOCK(kvm_lock
);
77 static cpumask_var_t cpus_hardware_enabled
;
78 static int kvm_usage_count
= 0;
79 static atomic_t hardware_enable_failed
;
81 struct kmem_cache
*kvm_vcpu_cache
;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
84 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
86 struct dentry
*kvm_debugfs_dir
;
88 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
91 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
100 EXPORT_SYMBOL_GPL(kvm_rebooting
);
102 static bool largepages_enabled
= true;
104 bool kvm_is_mmio_pfn(pfn_t pfn
)
107 return PageReserved(pfn_to_page(pfn
));
113 * Switches to specified vcpu, until a matching vcpu_put()
115 int vcpu_load(struct kvm_vcpu
*vcpu
)
119 if (mutex_lock_killable(&vcpu
->mutex
))
121 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
122 /* The thread running this VCPU changed. */
123 struct pid
*oldpid
= vcpu
->pid
;
124 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
125 rcu_assign_pointer(vcpu
->pid
, newpid
);
130 preempt_notifier_register(&vcpu
->preempt_notifier
);
131 kvm_arch_vcpu_load(vcpu
, cpu
);
136 void vcpu_put(struct kvm_vcpu
*vcpu
)
139 kvm_arch_vcpu_put(vcpu
);
140 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
142 mutex_unlock(&vcpu
->mutex
);
145 static void ack_flush(void *_completed
)
149 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
154 struct kvm_vcpu
*vcpu
;
156 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
159 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
160 kvm_make_request(req
, vcpu
);
163 /* Set ->requests bit before we read ->mode */
166 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
167 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
168 cpumask_set_cpu(cpu
, cpus
);
170 if (unlikely(cpus
== NULL
))
171 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
172 else if (!cpumask_empty(cpus
))
173 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
177 free_cpumask_var(cpus
);
181 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
183 long dirty_count
= kvm
->tlbs_dirty
;
186 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
187 ++kvm
->stat
.remote_tlb_flush
;
188 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
191 void kvm_reload_remote_mmus(struct kvm
*kvm
)
193 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
196 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
198 make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
201 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
203 make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
206 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
211 mutex_init(&vcpu
->mutex
);
216 init_waitqueue_head(&vcpu
->wq
);
217 kvm_async_pf_vcpu_init(vcpu
);
219 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
224 vcpu
->run
= page_address(page
);
226 kvm_vcpu_set_in_spin_loop(vcpu
, false);
227 kvm_vcpu_set_dy_eligible(vcpu
, false);
228 vcpu
->preempted
= false;
230 r
= kvm_arch_vcpu_init(vcpu
);
236 free_page((unsigned long)vcpu
->run
);
240 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
242 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
245 kvm_arch_vcpu_uninit(vcpu
);
246 free_page((unsigned long)vcpu
->run
);
248 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
250 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
251 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
253 return container_of(mn
, struct kvm
, mmu_notifier
);
256 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
257 struct mm_struct
*mm
,
258 unsigned long address
)
260 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
261 int need_tlb_flush
, idx
;
264 * When ->invalidate_page runs, the linux pte has been zapped
265 * already but the page is still allocated until
266 * ->invalidate_page returns. So if we increase the sequence
267 * here the kvm page fault will notice if the spte can't be
268 * established because the page is going to be freed. If
269 * instead the kvm page fault establishes the spte before
270 * ->invalidate_page runs, kvm_unmap_hva will release it
273 * The sequence increase only need to be seen at spin_unlock
274 * time, and not at spin_lock time.
276 * Increasing the sequence after the spin_unlock would be
277 * unsafe because the kvm page fault could then establish the
278 * pte after kvm_unmap_hva returned, without noticing the page
279 * is going to be freed.
281 idx
= srcu_read_lock(&kvm
->srcu
);
282 spin_lock(&kvm
->mmu_lock
);
284 kvm
->mmu_notifier_seq
++;
285 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
286 /* we've to flush the tlb before the pages can be freed */
288 kvm_flush_remote_tlbs(kvm
);
290 spin_unlock(&kvm
->mmu_lock
);
291 srcu_read_unlock(&kvm
->srcu
, idx
);
294 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
295 struct mm_struct
*mm
,
296 unsigned long address
,
299 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
302 idx
= srcu_read_lock(&kvm
->srcu
);
303 spin_lock(&kvm
->mmu_lock
);
304 kvm
->mmu_notifier_seq
++;
305 kvm_set_spte_hva(kvm
, address
, pte
);
306 spin_unlock(&kvm
->mmu_lock
);
307 srcu_read_unlock(&kvm
->srcu
, idx
);
310 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
311 struct mm_struct
*mm
,
315 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
316 int need_tlb_flush
= 0, idx
;
318 idx
= srcu_read_lock(&kvm
->srcu
);
319 spin_lock(&kvm
->mmu_lock
);
321 * The count increase must become visible at unlock time as no
322 * spte can be established without taking the mmu_lock and
323 * count is also read inside the mmu_lock critical section.
325 kvm
->mmu_notifier_count
++;
326 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
327 need_tlb_flush
|= kvm
->tlbs_dirty
;
328 /* we've to flush the tlb before the pages can be freed */
330 kvm_flush_remote_tlbs(kvm
);
332 spin_unlock(&kvm
->mmu_lock
);
333 srcu_read_unlock(&kvm
->srcu
, idx
);
336 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
337 struct mm_struct
*mm
,
341 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
343 spin_lock(&kvm
->mmu_lock
);
345 * This sequence increase will notify the kvm page fault that
346 * the page that is going to be mapped in the spte could have
349 kvm
->mmu_notifier_seq
++;
352 * The above sequence increase must be visible before the
353 * below count decrease, which is ensured by the smp_wmb above
354 * in conjunction with the smp_rmb in mmu_notifier_retry().
356 kvm
->mmu_notifier_count
--;
357 spin_unlock(&kvm
->mmu_lock
);
359 BUG_ON(kvm
->mmu_notifier_count
< 0);
362 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
363 struct mm_struct
*mm
,
364 unsigned long address
)
366 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
369 idx
= srcu_read_lock(&kvm
->srcu
);
370 spin_lock(&kvm
->mmu_lock
);
372 young
= kvm_age_hva(kvm
, address
);
374 kvm_flush_remote_tlbs(kvm
);
376 spin_unlock(&kvm
->mmu_lock
);
377 srcu_read_unlock(&kvm
->srcu
, idx
);
382 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
383 struct mm_struct
*mm
,
384 unsigned long address
)
386 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
389 idx
= srcu_read_lock(&kvm
->srcu
);
390 spin_lock(&kvm
->mmu_lock
);
391 young
= kvm_test_age_hva(kvm
, address
);
392 spin_unlock(&kvm
->mmu_lock
);
393 srcu_read_unlock(&kvm
->srcu
, idx
);
398 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
399 struct mm_struct
*mm
)
401 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
404 idx
= srcu_read_lock(&kvm
->srcu
);
405 kvm_arch_flush_shadow_all(kvm
);
406 srcu_read_unlock(&kvm
->srcu
, idx
);
409 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
410 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
411 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
412 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
413 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
414 .test_young
= kvm_mmu_notifier_test_young
,
415 .change_pte
= kvm_mmu_notifier_change_pte
,
416 .release
= kvm_mmu_notifier_release
,
419 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
421 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
422 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
425 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
432 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434 static void kvm_init_memslots_id(struct kvm
*kvm
)
437 struct kvm_memslots
*slots
= kvm
->memslots
;
439 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
440 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
443 static struct kvm
*kvm_create_vm(unsigned long type
)
446 struct kvm
*kvm
= kvm_arch_alloc_vm();
449 return ERR_PTR(-ENOMEM
);
451 r
= kvm_arch_init_vm(kvm
, type
);
453 goto out_err_nodisable
;
455 r
= hardware_enable_all();
457 goto out_err_nodisable
;
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
461 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
464 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
467 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
470 kvm_init_memslots_id(kvm
);
471 if (init_srcu_struct(&kvm
->srcu
))
473 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
474 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
480 spin_lock_init(&kvm
->mmu_lock
);
481 kvm
->mm
= current
->mm
;
482 atomic_inc(&kvm
->mm
->mm_count
);
483 kvm_eventfd_init(kvm
);
484 mutex_init(&kvm
->lock
);
485 mutex_init(&kvm
->irq_lock
);
486 mutex_init(&kvm
->slots_lock
);
487 atomic_set(&kvm
->users_count
, 1);
488 INIT_LIST_HEAD(&kvm
->devices
);
490 r
= kvm_init_mmu_notifier(kvm
);
494 raw_spin_lock(&kvm_lock
);
495 list_add(&kvm
->vm_list
, &vm_list
);
496 raw_spin_unlock(&kvm_lock
);
501 cleanup_srcu_struct(&kvm
->srcu
);
503 hardware_disable_all();
505 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
506 kfree(kvm
->buses
[i
]);
507 kfree(kvm
->memslots
);
508 kvm_arch_free_vm(kvm
);
513 * Avoid using vmalloc for a small buffer.
514 * Should not be used when the size is statically known.
516 void *kvm_kvzalloc(unsigned long size
)
518 if (size
> PAGE_SIZE
)
519 return vzalloc(size
);
521 return kzalloc(size
, GFP_KERNEL
);
524 void kvm_kvfree(const void *addr
)
526 if (is_vmalloc_addr(addr
))
532 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
534 if (!memslot
->dirty_bitmap
)
537 kvm_kvfree(memslot
->dirty_bitmap
);
538 memslot
->dirty_bitmap
= NULL
;
542 * Free any memory in @free but not in @dont.
544 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
545 struct kvm_memory_slot
*dont
)
547 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
548 kvm_destroy_dirty_bitmap(free
);
550 kvm_arch_free_memslot(free
, dont
);
555 void kvm_free_physmem(struct kvm
*kvm
)
557 struct kvm_memslots
*slots
= kvm
->memslots
;
558 struct kvm_memory_slot
*memslot
;
560 kvm_for_each_memslot(memslot
, slots
)
561 kvm_free_physmem_slot(memslot
, NULL
);
563 kfree(kvm
->memslots
);
566 static void kvm_destroy_devices(struct kvm
*kvm
)
568 struct list_head
*node
, *tmp
;
570 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
571 struct kvm_device
*dev
=
572 list_entry(node
, struct kvm_device
, vm_node
);
575 dev
->ops
->destroy(dev
);
579 static void kvm_destroy_vm(struct kvm
*kvm
)
582 struct mm_struct
*mm
= kvm
->mm
;
584 kvm_arch_sync_events(kvm
);
585 raw_spin_lock(&kvm_lock
);
586 list_del(&kvm
->vm_list
);
587 raw_spin_unlock(&kvm_lock
);
588 kvm_free_irq_routing(kvm
);
589 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
590 kvm_io_bus_destroy(kvm
->buses
[i
]);
591 kvm_coalesced_mmio_free(kvm
);
592 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
593 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
595 kvm_arch_flush_shadow_all(kvm
);
597 kvm_arch_destroy_vm(kvm
);
598 kvm_destroy_devices(kvm
);
599 kvm_free_physmem(kvm
);
600 cleanup_srcu_struct(&kvm
->srcu
);
601 kvm_arch_free_vm(kvm
);
602 hardware_disable_all();
606 void kvm_get_kvm(struct kvm
*kvm
)
608 atomic_inc(&kvm
->users_count
);
610 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
612 void kvm_put_kvm(struct kvm
*kvm
)
614 if (atomic_dec_and_test(&kvm
->users_count
))
617 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
620 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
622 struct kvm
*kvm
= filp
->private_data
;
624 kvm_irqfd_release(kvm
);
631 * Allocation size is twice as large as the actual dirty bitmap size.
632 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
637 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
639 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
640 if (!memslot
->dirty_bitmap
)
643 #endif /* !CONFIG_S390 */
647 static int cmp_memslot(const void *slot1
, const void *slot2
)
649 struct kvm_memory_slot
*s1
, *s2
;
651 s1
= (struct kvm_memory_slot
*)slot1
;
652 s2
= (struct kvm_memory_slot
*)slot2
;
654 if (s1
->npages
< s2
->npages
)
656 if (s1
->npages
> s2
->npages
)
663 * Sort the memslots base on its size, so the larger slots
664 * will get better fit.
666 static void sort_memslots(struct kvm_memslots
*slots
)
670 sort(slots
->memslots
, KVM_MEM_SLOTS_NUM
,
671 sizeof(struct kvm_memory_slot
), cmp_memslot
, NULL
);
673 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
674 slots
->id_to_index
[slots
->memslots
[i
].id
] = i
;
677 void update_memslots(struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
681 struct kvm_memory_slot
*old
= id_to_memslot(slots
, id
);
682 unsigned long npages
= old
->npages
;
685 if (new->npages
!= npages
)
686 sort_memslots(slots
);
690 static int check_memory_region_flags(struct kvm_userspace_memory_region
*mem
)
692 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
694 #ifdef KVM_CAP_READONLY_MEM
695 valid_flags
|= KVM_MEM_READONLY
;
698 if (mem
->flags
& ~valid_flags
)
704 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
705 struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
707 struct kvm_memslots
*old_memslots
= kvm
->memslots
;
710 * Set the low bit in the generation, which disables SPTE caching
711 * until the end of synchronize_srcu_expedited.
713 WARN_ON(old_memslots
->generation
& 1);
714 slots
->generation
= old_memslots
->generation
+ 1;
716 update_memslots(slots
, new);
717 rcu_assign_pointer(kvm
->memslots
, slots
);
718 synchronize_srcu_expedited(&kvm
->srcu
);
721 * Increment the new memslot generation a second time. This prevents
722 * vm exits that race with memslot updates from caching a memslot
723 * generation that will (potentially) be valid forever.
727 kvm_arch_memslots_updated(kvm
);
733 * Allocate some memory and give it an address in the guest physical address
736 * Discontiguous memory is allowed, mostly for framebuffers.
738 * Must be called holding mmap_sem for write.
740 int __kvm_set_memory_region(struct kvm
*kvm
,
741 struct kvm_userspace_memory_region
*mem
)
745 unsigned long npages
;
746 struct kvm_memory_slot
*slot
;
747 struct kvm_memory_slot old
, new;
748 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
749 enum kvm_mr_change change
;
751 r
= check_memory_region_flags(mem
);
756 /* General sanity checks */
757 if (mem
->memory_size
& (PAGE_SIZE
- 1))
759 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
761 /* We can read the guest memory with __xxx_user() later on. */
762 if ((mem
->slot
< KVM_USER_MEM_SLOTS
) &&
763 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
764 !access_ok(VERIFY_WRITE
,
765 (void __user
*)(unsigned long)mem
->userspace_addr
,
768 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
770 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
773 slot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
774 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
775 npages
= mem
->memory_size
>> PAGE_SHIFT
;
778 if (npages
> KVM_MEM_MAX_NR_PAGES
)
782 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
787 new.base_gfn
= base_gfn
;
789 new.flags
= mem
->flags
;
794 change
= KVM_MR_CREATE
;
795 else { /* Modify an existing slot. */
796 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
797 (npages
!= old
.npages
) ||
798 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
801 if (base_gfn
!= old
.base_gfn
)
802 change
= KVM_MR_MOVE
;
803 else if (new.flags
!= old
.flags
)
804 change
= KVM_MR_FLAGS_ONLY
;
805 else { /* Nothing to change. */
810 } else if (old
.npages
) {
811 change
= KVM_MR_DELETE
;
812 } else /* Modify a non-existent slot: disallowed. */
815 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
816 /* Check for overlaps */
818 kvm_for_each_memslot(slot
, kvm
->memslots
) {
819 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
820 (slot
->id
== mem
->slot
))
822 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
823 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
828 /* Free page dirty bitmap if unneeded */
829 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
830 new.dirty_bitmap
= NULL
;
833 if (change
== KVM_MR_CREATE
) {
834 new.userspace_addr
= mem
->userspace_addr
;
836 if (kvm_arch_create_memslot(&new, npages
))
840 /* Allocate page dirty bitmap if needed */
841 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
842 if (kvm_create_dirty_bitmap(&new) < 0)
846 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
848 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
852 slot
= id_to_memslot(slots
, mem
->slot
);
853 slot
->flags
|= KVM_MEMSLOT_INVALID
;
855 old_memslots
= install_new_memslots(kvm
, slots
, NULL
);
857 /* slot was deleted or moved, clear iommu mapping */
858 kvm_iommu_unmap_pages(kvm
, &old
);
859 /* From this point no new shadow pages pointing to a deleted,
860 * or moved, memslot will be created.
862 * validation of sp->gfn happens in:
863 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864 * - kvm_is_visible_gfn (mmu_check_roots)
866 kvm_arch_flush_shadow_memslot(kvm
, slot
);
867 slots
= old_memslots
;
870 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
876 * We can re-use the old_memslots from above, the only difference
877 * from the currently installed memslots is the invalid flag. This
878 * will get overwritten by update_memslots anyway.
881 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
888 * IOMMU mapping: New slots need to be mapped. Old slots need to be
889 * un-mapped and re-mapped if their base changes. Since base change
890 * unmapping is handled above with slot deletion, mapping alone is
891 * needed here. Anything else the iommu might care about for existing
892 * slots (size changes, userspace addr changes and read-only flag
893 * changes) is disallowed above, so any other attribute changes getting
894 * here can be skipped.
896 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
897 r
= kvm_iommu_map_pages(kvm
, &new);
902 /* actual memory is freed via old in kvm_free_physmem_slot below */
903 if (change
== KVM_MR_DELETE
) {
904 new.dirty_bitmap
= NULL
;
905 memset(&new.arch
, 0, sizeof(new.arch
));
908 old_memslots
= install_new_memslots(kvm
, slots
, &new);
910 kvm_arch_commit_memory_region(kvm
, mem
, &old
, change
);
912 kvm_free_physmem_slot(&old
, &new);
920 kvm_free_physmem_slot(&new, &old
);
924 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
926 int kvm_set_memory_region(struct kvm
*kvm
,
927 struct kvm_userspace_memory_region
*mem
)
931 mutex_lock(&kvm
->slots_lock
);
932 r
= __kvm_set_memory_region(kvm
, mem
);
933 mutex_unlock(&kvm
->slots_lock
);
936 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
938 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
939 struct kvm_userspace_memory_region
*mem
)
941 if (mem
->slot
>= KVM_USER_MEM_SLOTS
)
943 return kvm_set_memory_region(kvm
, mem
);
946 int kvm_get_dirty_log(struct kvm
*kvm
,
947 struct kvm_dirty_log
*log
, int *is_dirty
)
949 struct kvm_memory_slot
*memslot
;
952 unsigned long any
= 0;
955 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
958 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
960 if (!memslot
->dirty_bitmap
)
963 n
= kvm_dirty_bitmap_bytes(memslot
);
965 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
966 any
= memslot
->dirty_bitmap
[i
];
969 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
980 bool kvm_largepages_enabled(void)
982 return largepages_enabled
;
985 void kvm_disable_largepages(void)
987 largepages_enabled
= false;
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
991 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
993 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
995 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
997 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
999 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1001 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1002 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1009 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1011 struct vm_area_struct
*vma
;
1012 unsigned long addr
, size
;
1016 addr
= gfn_to_hva(kvm
, gfn
);
1017 if (kvm_is_error_hva(addr
))
1020 down_read(¤t
->mm
->mmap_sem
);
1021 vma
= find_vma(current
->mm
, addr
);
1025 size
= vma_kernel_pagesize(vma
);
1028 up_read(¤t
->mm
->mmap_sem
);
1033 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1035 return slot
->flags
& KVM_MEM_READONLY
;
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1039 gfn_t
*nr_pages
, bool write
)
1041 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1042 return KVM_HVA_ERR_BAD
;
1044 if (memslot_is_readonly(slot
) && write
)
1045 return KVM_HVA_ERR_RO_BAD
;
1048 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1050 return __gfn_to_hva_memslot(slot
, gfn
);
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1056 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1062 return gfn_to_hva_many(slot
, gfn
, NULL
);
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1066 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1068 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1070 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1073 * If writable is set to false, the hva returned by this function is only
1074 * allowed to be read.
1076 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1078 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1079 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1081 if (!kvm_is_error_hva(hva
) && writable
)
1082 *writable
= !memslot_is_readonly(slot
);
1087 static int kvm_read_hva(void *data
, void __user
*hva
, int len
)
1089 return __copy_from_user(data
, hva
, len
);
1092 static int kvm_read_hva_atomic(void *data
, void __user
*hva
, int len
)
1094 return __copy_from_user_inatomic(data
, hva
, len
);
1097 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1098 unsigned long start
, int write
, struct page
**page
)
1100 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1103 flags
|= FOLL_WRITE
;
1105 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1108 static inline int check_user_page_hwpoison(unsigned long addr
)
1110 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1112 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1113 flags
, NULL
, NULL
, NULL
);
1114 return rc
== -EHWPOISON
;
1118 * The atomic path to get the writable pfn which will be stored in @pfn,
1119 * true indicates success, otherwise false is returned.
1121 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1122 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1124 struct page
*page
[1];
1127 if (!(async
|| atomic
))
1131 * Fast pin a writable pfn only if it is a write fault request
1132 * or the caller allows to map a writable pfn for a read fault
1135 if (!(write_fault
|| writable
))
1138 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1140 *pfn
= page_to_pfn(page
[0]);
1151 * The slow path to get the pfn of the specified host virtual address,
1152 * 1 indicates success, -errno is returned if error is detected.
1154 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1155 bool *writable
, pfn_t
*pfn
)
1157 struct page
*page
[1];
1163 *writable
= write_fault
;
1166 down_read(¤t
->mm
->mmap_sem
);
1167 npages
= get_user_page_nowait(current
, current
->mm
,
1168 addr
, write_fault
, page
);
1169 up_read(¤t
->mm
->mmap_sem
);
1171 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1176 /* map read fault as writable if possible */
1177 if (unlikely(!write_fault
) && writable
) {
1178 struct page
*wpage
[1];
1180 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1189 *pfn
= page_to_pfn(page
[0]);
1193 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1195 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1198 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1205 * Pin guest page in memory and return its pfn.
1206 * @addr: host virtual address which maps memory to the guest
1207 * @atomic: whether this function can sleep
1208 * @async: whether this function need to wait IO complete if the
1209 * host page is not in the memory
1210 * @write_fault: whether we should get a writable host page
1211 * @writable: whether it allows to map a writable host page for !@write_fault
1213 * The function will map a writable host page for these two cases:
1214 * 1): @write_fault = true
1215 * 2): @write_fault = false && @writable, @writable will tell the caller
1216 * whether the mapping is writable.
1218 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1219 bool write_fault
, bool *writable
)
1221 struct vm_area_struct
*vma
;
1225 /* we can do it either atomically or asynchronously, not both */
1226 BUG_ON(atomic
&& async
);
1228 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1232 return KVM_PFN_ERR_FAULT
;
1234 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1238 down_read(¤t
->mm
->mmap_sem
);
1239 if (npages
== -EHWPOISON
||
1240 (!async
&& check_user_page_hwpoison(addr
))) {
1241 pfn
= KVM_PFN_ERR_HWPOISON
;
1245 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1248 pfn
= KVM_PFN_ERR_FAULT
;
1249 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1250 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1252 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1254 if (async
&& vma_is_valid(vma
, write_fault
))
1256 pfn
= KVM_PFN_ERR_FAULT
;
1259 up_read(¤t
->mm
->mmap_sem
);
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1265 bool *async
, bool write_fault
, bool *writable
)
1267 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1269 if (addr
== KVM_HVA_ERR_RO_BAD
)
1270 return KVM_PFN_ERR_RO_FAULT
;
1272 if (kvm_is_error_hva(addr
))
1273 return KVM_PFN_NOSLOT
;
1275 /* Do not map writable pfn in the readonly memslot. */
1276 if (writable
&& memslot_is_readonly(slot
)) {
1281 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1285 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1286 bool write_fault
, bool *writable
)
1288 struct kvm_memory_slot
*slot
;
1293 slot
= gfn_to_memslot(kvm
, gfn
);
1295 return __gfn_to_pfn_memslot(slot
, gfn
, atomic
, async
, write_fault
,
1299 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1301 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1305 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1306 bool write_fault
, bool *writable
)
1308 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1312 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1314 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1318 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1321 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1325 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1327 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1330 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1332 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1336 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1342 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1343 if (kvm_is_error_hva(addr
))
1346 if (entry
< nr_pages
)
1349 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1353 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1355 if (is_error_noslot_pfn(pfn
))
1356 return KVM_ERR_PTR_BAD_PAGE
;
1358 if (kvm_is_mmio_pfn(pfn
)) {
1360 return KVM_ERR_PTR_BAD_PAGE
;
1363 return pfn_to_page(pfn
);
1366 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1370 pfn
= gfn_to_pfn(kvm
, gfn
);
1372 return kvm_pfn_to_page(pfn
);
1375 EXPORT_SYMBOL_GPL(gfn_to_page
);
1377 void kvm_release_page_clean(struct page
*page
)
1379 WARN_ON(is_error_page(page
));
1381 kvm_release_pfn_clean(page_to_pfn(page
));
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1385 void kvm_release_pfn_clean(pfn_t pfn
)
1387 if (!is_error_noslot_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
))
1388 put_page(pfn_to_page(pfn
));
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1392 void kvm_release_page_dirty(struct page
*page
)
1394 WARN_ON(is_error_page(page
));
1396 kvm_release_pfn_dirty(page_to_pfn(page
));
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1400 void kvm_release_pfn_dirty(pfn_t pfn
)
1402 kvm_set_pfn_dirty(pfn
);
1403 kvm_release_pfn_clean(pfn
);
1405 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1407 void kvm_set_page_dirty(struct page
*page
)
1409 kvm_set_pfn_dirty(page_to_pfn(page
));
1411 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1413 void kvm_set_pfn_dirty(pfn_t pfn
)
1415 if (!kvm_is_mmio_pfn(pfn
)) {
1416 struct page
*page
= pfn_to_page(pfn
);
1417 if (!PageReserved(page
))
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1423 void kvm_set_pfn_accessed(pfn_t pfn
)
1425 if (!kvm_is_mmio_pfn(pfn
))
1426 mark_page_accessed(pfn_to_page(pfn
));
1428 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1430 void kvm_get_pfn(pfn_t pfn
)
1432 if (!kvm_is_mmio_pfn(pfn
))
1433 get_page(pfn_to_page(pfn
));
1435 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1437 static int next_segment(unsigned long len
, int offset
)
1439 if (len
> PAGE_SIZE
- offset
)
1440 return PAGE_SIZE
- offset
;
1445 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1451 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1452 if (kvm_is_error_hva(addr
))
1454 r
= kvm_read_hva(data
, (void __user
*)addr
+ offset
, len
);
1459 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1461 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1463 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1465 int offset
= offset_in_page(gpa
);
1468 while ((seg
= next_segment(len
, offset
)) != 0) {
1469 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1479 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1481 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1486 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1487 int offset
= offset_in_page(gpa
);
1489 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1490 if (kvm_is_error_hva(addr
))
1492 pagefault_disable();
1493 r
= kvm_read_hva_atomic(data
, (void __user
*)addr
+ offset
, len
);
1499 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1501 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1502 int offset
, int len
)
1507 addr
= gfn_to_hva(kvm
, gfn
);
1508 if (kvm_is_error_hva(addr
))
1510 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1513 mark_page_dirty(kvm
, gfn
);
1516 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1518 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1521 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1523 int offset
= offset_in_page(gpa
);
1526 while ((seg
= next_segment(len
, offset
)) != 0) {
1527 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1538 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1539 gpa_t gpa
, unsigned long len
)
1541 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1542 int offset
= offset_in_page(gpa
);
1543 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1544 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1545 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1546 gfn_t nr_pages_avail
;
1549 ghc
->generation
= slots
->generation
;
1551 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1552 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, &nr_pages_avail
);
1553 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_avail
>= nr_pages_needed
) {
1557 * If the requested region crosses two memslots, we still
1558 * verify that the entire region is valid here.
1560 while (start_gfn
<= end_gfn
) {
1561 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1562 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1564 if (kvm_is_error_hva(ghc
->hva
))
1566 start_gfn
+= nr_pages_avail
;
1568 /* Use the slow path for cross page reads and writes. */
1569 ghc
->memslot
= NULL
;
1573 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1575 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1576 void *data
, unsigned long len
)
1578 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1581 BUG_ON(len
> ghc
->len
);
1583 if (slots
->generation
!= ghc
->generation
)
1584 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1586 if (unlikely(!ghc
->memslot
))
1587 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1589 if (kvm_is_error_hva(ghc
->hva
))
1592 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1595 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1599 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1601 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1602 void *data
, unsigned long len
)
1604 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1607 BUG_ON(len
> ghc
->len
);
1609 if (slots
->generation
!= ghc
->generation
)
1610 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1612 if (unlikely(!ghc
->memslot
))
1613 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1615 if (kvm_is_error_hva(ghc
->hva
))
1618 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1624 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1626 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1628 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1631 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1633 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1635 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1637 int offset
= offset_in_page(gpa
);
1640 while ((seg
= next_segment(len
, offset
)) != 0) {
1641 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1650 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1652 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1655 if (memslot
&& memslot
->dirty_bitmap
) {
1656 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1658 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1662 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1664 struct kvm_memory_slot
*memslot
;
1666 memslot
= gfn_to_memslot(kvm
, gfn
);
1667 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1671 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1673 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1678 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1680 if (kvm_arch_vcpu_runnable(vcpu
)) {
1681 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1684 if (kvm_cpu_has_pending_timer(vcpu
))
1686 if (signal_pending(current
))
1692 finish_wait(&vcpu
->wq
, &wait
);
1697 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1699 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1702 int cpu
= vcpu
->cpu
;
1703 wait_queue_head_t
*wqp
;
1705 wqp
= kvm_arch_vcpu_wq(vcpu
);
1706 if (waitqueue_active(wqp
)) {
1707 wake_up_interruptible(wqp
);
1708 ++vcpu
->stat
.halt_wakeup
;
1712 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1713 if (kvm_arch_vcpu_should_kick(vcpu
))
1714 smp_send_reschedule(cpu
);
1717 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
1718 #endif /* !CONFIG_S390 */
1720 void kvm_resched(struct kvm_vcpu
*vcpu
)
1722 if (!need_resched())
1726 EXPORT_SYMBOL_GPL(kvm_resched
);
1728 bool kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1731 struct task_struct
*task
= NULL
;
1735 pid
= rcu_dereference(target
->pid
);
1737 task
= get_pid_task(target
->pid
, PIDTYPE_PID
);
1741 if (task
->flags
& PF_VCPU
) {
1742 put_task_struct(task
);
1745 ret
= yield_to(task
, 1);
1746 put_task_struct(task
);
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1752 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1754 * Helper that checks whether a VCPU is eligible for directed yield.
1755 * Most eligible candidate to yield is decided by following heuristics:
1757 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1758 * (preempted lock holder), indicated by @in_spin_loop.
1759 * Set at the beiginning and cleared at the end of interception/PLE handler.
1761 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1762 * chance last time (mostly it has become eligible now since we have probably
1763 * yielded to lockholder in last iteration. This is done by toggling
1764 * @dy_eligible each time a VCPU checked for eligibility.)
1766 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1767 * to preempted lock-holder could result in wrong VCPU selection and CPU
1768 * burning. Giving priority for a potential lock-holder increases lock
1771 * Since algorithm is based on heuristics, accessing another VCPU data without
1772 * locking does not harm. It may result in trying to yield to same VCPU, fail
1773 * and continue with next VCPU and so on.
1775 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
1779 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
1780 (vcpu
->spin_loop
.in_spin_loop
&&
1781 vcpu
->spin_loop
.dy_eligible
);
1783 if (vcpu
->spin_loop
.in_spin_loop
)
1784 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
1790 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1792 struct kvm
*kvm
= me
->kvm
;
1793 struct kvm_vcpu
*vcpu
;
1794 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1800 kvm_vcpu_set_in_spin_loop(me
, true);
1802 * We boost the priority of a VCPU that is runnable but not
1803 * currently running, because it got preempted by something
1804 * else and called schedule in __vcpu_run. Hopefully that
1805 * VCPU is holding the lock that we need and will release it.
1806 * We approximate round-robin by starting at the last boosted VCPU.
1808 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
1809 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1810 if (!pass
&& i
<= last_boosted_vcpu
) {
1811 i
= last_boosted_vcpu
;
1813 } else if (pass
&& i
> last_boosted_vcpu
)
1815 if (!ACCESS_ONCE(vcpu
->preempted
))
1819 if (waitqueue_active(&vcpu
->wq
))
1821 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
1824 yielded
= kvm_vcpu_yield_to(vcpu
);
1826 kvm
->last_boosted_vcpu
= i
;
1828 } else if (yielded
< 0) {
1835 kvm_vcpu_set_in_spin_loop(me
, false);
1837 /* Ensure vcpu is not eligible during next spinloop */
1838 kvm_vcpu_set_dy_eligible(me
, false);
1840 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1842 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1844 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1847 if (vmf
->pgoff
== 0)
1848 page
= virt_to_page(vcpu
->run
);
1850 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1851 page
= virt_to_page(vcpu
->arch
.pio_data
);
1853 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1854 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1855 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1858 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1864 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1865 .fault
= kvm_vcpu_fault
,
1868 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1870 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1874 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1876 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1878 kvm_put_kvm(vcpu
->kvm
);
1882 static struct file_operations kvm_vcpu_fops
= {
1883 .release
= kvm_vcpu_release
,
1884 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1885 #ifdef CONFIG_COMPAT
1886 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1888 .mmap
= kvm_vcpu_mmap
,
1889 .llseek
= noop_llseek
,
1893 * Allocates an inode for the vcpu.
1895 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1897 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
1901 * Creates some virtual cpus. Good luck creating more than one.
1903 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1906 struct kvm_vcpu
*vcpu
, *v
;
1908 if (id
>= KVM_MAX_VCPUS
)
1911 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1913 return PTR_ERR(vcpu
);
1915 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1917 r
= kvm_arch_vcpu_setup(vcpu
);
1921 mutex_lock(&kvm
->lock
);
1922 if (!kvm_vcpu_compatible(vcpu
)) {
1924 goto unlock_vcpu_destroy
;
1926 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1928 goto unlock_vcpu_destroy
;
1931 kvm_for_each_vcpu(r
, v
, kvm
)
1932 if (v
->vcpu_id
== id
) {
1934 goto unlock_vcpu_destroy
;
1937 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1939 /* Now it's all set up, let userspace reach it */
1941 r
= create_vcpu_fd(vcpu
);
1944 goto unlock_vcpu_destroy
;
1947 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1949 atomic_inc(&kvm
->online_vcpus
);
1951 mutex_unlock(&kvm
->lock
);
1952 kvm_arch_vcpu_postcreate(vcpu
);
1955 unlock_vcpu_destroy
:
1956 mutex_unlock(&kvm
->lock
);
1958 kvm_arch_vcpu_destroy(vcpu
);
1962 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1965 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1966 vcpu
->sigset_active
= 1;
1967 vcpu
->sigset
= *sigset
;
1969 vcpu
->sigset_active
= 0;
1973 static long kvm_vcpu_ioctl(struct file
*filp
,
1974 unsigned int ioctl
, unsigned long arg
)
1976 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1977 void __user
*argp
= (void __user
*)arg
;
1979 struct kvm_fpu
*fpu
= NULL
;
1980 struct kvm_sregs
*kvm_sregs
= NULL
;
1982 if (vcpu
->kvm
->mm
!= current
->mm
)
1985 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
1988 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1990 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1991 * so vcpu_load() would break it.
1993 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1994 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1998 r
= vcpu_load(vcpu
);
2006 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2007 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2009 case KVM_GET_REGS
: {
2010 struct kvm_regs
*kvm_regs
;
2013 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2016 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2020 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2027 case KVM_SET_REGS
: {
2028 struct kvm_regs
*kvm_regs
;
2031 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2032 if (IS_ERR(kvm_regs
)) {
2033 r
= PTR_ERR(kvm_regs
);
2036 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2040 case KVM_GET_SREGS
: {
2041 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2045 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2049 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2054 case KVM_SET_SREGS
: {
2055 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2056 if (IS_ERR(kvm_sregs
)) {
2057 r
= PTR_ERR(kvm_sregs
);
2061 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2064 case KVM_GET_MP_STATE
: {
2065 struct kvm_mp_state mp_state
;
2067 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2071 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
2076 case KVM_SET_MP_STATE
: {
2077 struct kvm_mp_state mp_state
;
2080 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
2082 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2085 case KVM_TRANSLATE
: {
2086 struct kvm_translation tr
;
2089 if (copy_from_user(&tr
, argp
, sizeof tr
))
2091 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2095 if (copy_to_user(argp
, &tr
, sizeof tr
))
2100 case KVM_SET_GUEST_DEBUG
: {
2101 struct kvm_guest_debug dbg
;
2104 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2106 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2109 case KVM_SET_SIGNAL_MASK
: {
2110 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2111 struct kvm_signal_mask kvm_sigmask
;
2112 sigset_t sigset
, *p
;
2117 if (copy_from_user(&kvm_sigmask
, argp
,
2118 sizeof kvm_sigmask
))
2121 if (kvm_sigmask
.len
!= sizeof sigset
)
2124 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2129 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2133 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2137 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2141 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2147 fpu
= memdup_user(argp
, sizeof(*fpu
));
2153 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2157 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2166 #ifdef CONFIG_COMPAT
2167 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2168 unsigned int ioctl
, unsigned long arg
)
2170 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2171 void __user
*argp
= compat_ptr(arg
);
2174 if (vcpu
->kvm
->mm
!= current
->mm
)
2178 case KVM_SET_SIGNAL_MASK
: {
2179 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2180 struct kvm_signal_mask kvm_sigmask
;
2181 compat_sigset_t csigset
;
2186 if (copy_from_user(&kvm_sigmask
, argp
,
2187 sizeof kvm_sigmask
))
2190 if (kvm_sigmask
.len
!= sizeof csigset
)
2193 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2196 sigset_from_compat(&sigset
, &csigset
);
2197 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2199 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2203 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2211 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2212 int (*accessor
)(struct kvm_device
*dev
,
2213 struct kvm_device_attr
*attr
),
2216 struct kvm_device_attr attr
;
2221 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2224 return accessor(dev
, &attr
);
2227 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2230 struct kvm_device
*dev
= filp
->private_data
;
2233 case KVM_SET_DEVICE_ATTR
:
2234 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2235 case KVM_GET_DEVICE_ATTR
:
2236 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2237 case KVM_HAS_DEVICE_ATTR
:
2238 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2240 if (dev
->ops
->ioctl
)
2241 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2247 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2249 struct kvm_device
*dev
= filp
->private_data
;
2250 struct kvm
*kvm
= dev
->kvm
;
2256 static const struct file_operations kvm_device_fops
= {
2257 .unlocked_ioctl
= kvm_device_ioctl
,
2258 #ifdef CONFIG_COMPAT
2259 .compat_ioctl
= kvm_device_ioctl
,
2261 .release
= kvm_device_release
,
2264 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2266 if (filp
->f_op
!= &kvm_device_fops
)
2269 return filp
->private_data
;
2272 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2273 struct kvm_create_device
*cd
)
2275 struct kvm_device_ops
*ops
= NULL
;
2276 struct kvm_device
*dev
;
2277 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2281 #ifdef CONFIG_KVM_MPIC
2282 case KVM_DEV_TYPE_FSL_MPIC_20
:
2283 case KVM_DEV_TYPE_FSL_MPIC_42
:
2284 ops
= &kvm_mpic_ops
;
2287 #ifdef CONFIG_KVM_XICS
2288 case KVM_DEV_TYPE_XICS
:
2289 ops
= &kvm_xics_ops
;
2299 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2306 ret
= ops
->create(dev
, cd
->type
);
2312 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2318 list_add(&dev
->vm_node
, &kvm
->devices
);
2324 static long kvm_vm_ioctl(struct file
*filp
,
2325 unsigned int ioctl
, unsigned long arg
)
2327 struct kvm
*kvm
= filp
->private_data
;
2328 void __user
*argp
= (void __user
*)arg
;
2331 if (kvm
->mm
!= current
->mm
)
2334 case KVM_CREATE_VCPU
:
2335 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2337 case KVM_SET_USER_MEMORY_REGION
: {
2338 struct kvm_userspace_memory_region kvm_userspace_mem
;
2341 if (copy_from_user(&kvm_userspace_mem
, argp
,
2342 sizeof kvm_userspace_mem
))
2345 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2348 case KVM_GET_DIRTY_LOG
: {
2349 struct kvm_dirty_log log
;
2352 if (copy_from_user(&log
, argp
, sizeof log
))
2354 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2357 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2358 case KVM_REGISTER_COALESCED_MMIO
: {
2359 struct kvm_coalesced_mmio_zone zone
;
2361 if (copy_from_user(&zone
, argp
, sizeof zone
))
2363 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2366 case KVM_UNREGISTER_COALESCED_MMIO
: {
2367 struct kvm_coalesced_mmio_zone zone
;
2369 if (copy_from_user(&zone
, argp
, sizeof zone
))
2371 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2376 struct kvm_irqfd data
;
2379 if (copy_from_user(&data
, argp
, sizeof data
))
2381 r
= kvm_irqfd(kvm
, &data
);
2384 case KVM_IOEVENTFD
: {
2385 struct kvm_ioeventfd data
;
2388 if (copy_from_user(&data
, argp
, sizeof data
))
2390 r
= kvm_ioeventfd(kvm
, &data
);
2393 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2394 case KVM_SET_BOOT_CPU_ID
:
2396 mutex_lock(&kvm
->lock
);
2397 if (atomic_read(&kvm
->online_vcpus
) != 0)
2400 kvm
->bsp_vcpu_id
= arg
;
2401 mutex_unlock(&kvm
->lock
);
2404 #ifdef CONFIG_HAVE_KVM_MSI
2405 case KVM_SIGNAL_MSI
: {
2409 if (copy_from_user(&msi
, argp
, sizeof msi
))
2411 r
= kvm_send_userspace_msi(kvm
, &msi
);
2415 #ifdef __KVM_HAVE_IRQ_LINE
2416 case KVM_IRQ_LINE_STATUS
:
2417 case KVM_IRQ_LINE
: {
2418 struct kvm_irq_level irq_event
;
2421 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2424 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2425 ioctl
== KVM_IRQ_LINE_STATUS
);
2430 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2431 if (copy_to_user(argp
, &irq_event
, sizeof irq_event
))
2439 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2440 case KVM_SET_GSI_ROUTING
: {
2441 struct kvm_irq_routing routing
;
2442 struct kvm_irq_routing __user
*urouting
;
2443 struct kvm_irq_routing_entry
*entries
;
2446 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2449 if (routing
.nr
>= KVM_MAX_IRQ_ROUTES
)
2454 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2459 if (copy_from_user(entries
, urouting
->entries
,
2460 routing
.nr
* sizeof(*entries
)))
2461 goto out_free_irq_routing
;
2462 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2464 out_free_irq_routing
:
2468 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2469 case KVM_CREATE_DEVICE
: {
2470 struct kvm_create_device cd
;
2473 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2476 r
= kvm_ioctl_create_device(kvm
, &cd
);
2481 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2488 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2490 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2496 #ifdef CONFIG_COMPAT
2497 struct compat_kvm_dirty_log
{
2501 compat_uptr_t dirty_bitmap
; /* one bit per page */
2506 static long kvm_vm_compat_ioctl(struct file
*filp
,
2507 unsigned int ioctl
, unsigned long arg
)
2509 struct kvm
*kvm
= filp
->private_data
;
2512 if (kvm
->mm
!= current
->mm
)
2515 case KVM_GET_DIRTY_LOG
: {
2516 struct compat_kvm_dirty_log compat_log
;
2517 struct kvm_dirty_log log
;
2520 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2521 sizeof(compat_log
)))
2523 log
.slot
= compat_log
.slot
;
2524 log
.padding1
= compat_log
.padding1
;
2525 log
.padding2
= compat_log
.padding2
;
2526 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2528 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2532 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2540 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2542 struct page
*page
[1];
2545 gfn_t gfn
= vmf
->pgoff
;
2546 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2548 addr
= gfn_to_hva(kvm
, gfn
);
2549 if (kvm_is_error_hva(addr
))
2550 return VM_FAULT_SIGBUS
;
2552 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2554 if (unlikely(npages
!= 1))
2555 return VM_FAULT_SIGBUS
;
2557 vmf
->page
= page
[0];
2561 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2562 .fault
= kvm_vm_fault
,
2565 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2567 vma
->vm_ops
= &kvm_vm_vm_ops
;
2571 static struct file_operations kvm_vm_fops
= {
2572 .release
= kvm_vm_release
,
2573 .unlocked_ioctl
= kvm_vm_ioctl
,
2574 #ifdef CONFIG_COMPAT
2575 .compat_ioctl
= kvm_vm_compat_ioctl
,
2577 .mmap
= kvm_vm_mmap
,
2578 .llseek
= noop_llseek
,
2581 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2586 kvm
= kvm_create_vm(type
);
2588 return PTR_ERR(kvm
);
2589 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2590 r
= kvm_coalesced_mmio_init(kvm
);
2596 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2603 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2606 case KVM_CAP_USER_MEMORY
:
2607 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2608 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2609 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2610 case KVM_CAP_SET_BOOT_CPU_ID
:
2612 case KVM_CAP_INTERNAL_ERROR_DATA
:
2613 #ifdef CONFIG_HAVE_KVM_MSI
2614 case KVM_CAP_SIGNAL_MSI
:
2616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2617 case KVM_CAP_IRQFD_RESAMPLE
:
2620 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2621 case KVM_CAP_IRQ_ROUTING
:
2622 return KVM_MAX_IRQ_ROUTES
;
2627 return kvm_dev_ioctl_check_extension(arg
);
2630 static long kvm_dev_ioctl(struct file
*filp
,
2631 unsigned int ioctl
, unsigned long arg
)
2636 case KVM_GET_API_VERSION
:
2640 r
= KVM_API_VERSION
;
2643 r
= kvm_dev_ioctl_create_vm(arg
);
2645 case KVM_CHECK_EXTENSION
:
2646 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2648 case KVM_GET_VCPU_MMAP_SIZE
:
2652 r
= PAGE_SIZE
; /* struct kvm_run */
2654 r
+= PAGE_SIZE
; /* pio data page */
2656 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2657 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2660 case KVM_TRACE_ENABLE
:
2661 case KVM_TRACE_PAUSE
:
2662 case KVM_TRACE_DISABLE
:
2666 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2672 static struct file_operations kvm_chardev_ops
= {
2673 .unlocked_ioctl
= kvm_dev_ioctl
,
2674 .compat_ioctl
= kvm_dev_ioctl
,
2675 .llseek
= noop_llseek
,
2678 static struct miscdevice kvm_dev
= {
2684 static void hardware_enable_nolock(void *junk
)
2686 int cpu
= raw_smp_processor_id();
2689 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2692 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2694 r
= kvm_arch_hardware_enable(NULL
);
2697 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2698 atomic_inc(&hardware_enable_failed
);
2699 printk(KERN_INFO
"kvm: enabling virtualization on "
2700 "CPU%d failed\n", cpu
);
2704 static void hardware_enable(void *junk
)
2706 raw_spin_lock(&kvm_lock
);
2707 hardware_enable_nolock(junk
);
2708 raw_spin_unlock(&kvm_lock
);
2711 static void hardware_disable_nolock(void *junk
)
2713 int cpu
= raw_smp_processor_id();
2715 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2717 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2718 kvm_arch_hardware_disable(NULL
);
2721 static void hardware_disable(void *junk
)
2723 raw_spin_lock(&kvm_lock
);
2724 hardware_disable_nolock(junk
);
2725 raw_spin_unlock(&kvm_lock
);
2728 static void hardware_disable_all_nolock(void)
2730 BUG_ON(!kvm_usage_count
);
2733 if (!kvm_usage_count
)
2734 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2737 static void hardware_disable_all(void)
2739 raw_spin_lock(&kvm_lock
);
2740 hardware_disable_all_nolock();
2741 raw_spin_unlock(&kvm_lock
);
2744 static int hardware_enable_all(void)
2748 raw_spin_lock(&kvm_lock
);
2751 if (kvm_usage_count
== 1) {
2752 atomic_set(&hardware_enable_failed
, 0);
2753 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2755 if (atomic_read(&hardware_enable_failed
)) {
2756 hardware_disable_all_nolock();
2761 raw_spin_unlock(&kvm_lock
);
2766 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2771 if (!kvm_usage_count
)
2774 val
&= ~CPU_TASKS_FROZEN
;
2777 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2779 hardware_disable(NULL
);
2782 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2784 hardware_enable(NULL
);
2790 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2794 * Some (well, at least mine) BIOSes hang on reboot if
2797 * And Intel TXT required VMX off for all cpu when system shutdown.
2799 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2800 kvm_rebooting
= true;
2801 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2805 static struct notifier_block kvm_reboot_notifier
= {
2806 .notifier_call
= kvm_reboot
,
2810 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2814 for (i
= 0; i
< bus
->dev_count
; i
++) {
2815 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2817 kvm_iodevice_destructor(pos
);
2822 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
2823 const struct kvm_io_range
*r2
)
2825 if (r1
->addr
< r2
->addr
)
2827 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2832 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2834 return kvm_io_bus_cmp(p1
, p2
);
2837 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2838 gpa_t addr
, int len
)
2840 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2846 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2847 kvm_io_bus_sort_cmp
, NULL
);
2852 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2853 gpa_t addr
, int len
)
2855 struct kvm_io_range
*range
, key
;
2858 key
= (struct kvm_io_range
) {
2863 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2864 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2868 off
= range
- bus
->range
;
2870 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
2876 static int __kvm_io_bus_write(struct kvm_io_bus
*bus
,
2877 struct kvm_io_range
*range
, const void *val
)
2881 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
2885 while (idx
< bus
->dev_count
&&
2886 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
2887 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, range
->addr
,
2896 /* kvm_io_bus_write - called under kvm->slots_lock */
2897 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2898 int len
, const void *val
)
2900 struct kvm_io_bus
*bus
;
2901 struct kvm_io_range range
;
2904 range
= (struct kvm_io_range
) {
2909 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2910 r
= __kvm_io_bus_write(bus
, &range
, val
);
2911 return r
< 0 ? r
: 0;
2914 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2915 int kvm_io_bus_write_cookie(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2916 int len
, const void *val
, long cookie
)
2918 struct kvm_io_bus
*bus
;
2919 struct kvm_io_range range
;
2921 range
= (struct kvm_io_range
) {
2926 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2928 /* First try the device referenced by cookie. */
2929 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
2930 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
2931 if (!kvm_iodevice_write(bus
->range
[cookie
].dev
, addr
, len
,
2936 * cookie contained garbage; fall back to search and return the
2937 * correct cookie value.
2939 return __kvm_io_bus_write(bus
, &range
, val
);
2942 static int __kvm_io_bus_read(struct kvm_io_bus
*bus
, struct kvm_io_range
*range
,
2947 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
2951 while (idx
< bus
->dev_count
&&
2952 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
2953 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, range
->addr
,
2962 /* kvm_io_bus_read - called under kvm->slots_lock */
2963 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2966 struct kvm_io_bus
*bus
;
2967 struct kvm_io_range range
;
2970 range
= (struct kvm_io_range
) {
2975 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2976 r
= __kvm_io_bus_read(bus
, &range
, val
);
2977 return r
< 0 ? r
: 0;
2980 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2981 int kvm_io_bus_read_cookie(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2982 int len
, void *val
, long cookie
)
2984 struct kvm_io_bus
*bus
;
2985 struct kvm_io_range range
;
2987 range
= (struct kvm_io_range
) {
2992 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2994 /* First try the device referenced by cookie. */
2995 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
2996 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
2997 if (!kvm_iodevice_read(bus
->range
[cookie
].dev
, addr
, len
,
3002 * cookie contained garbage; fall back to search and return the
3003 * correct cookie value.
3005 return __kvm_io_bus_read(bus
, &range
, val
);
3008 /* Caller must hold slots_lock. */
3009 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3010 int len
, struct kvm_io_device
*dev
)
3012 struct kvm_io_bus
*new_bus
, *bus
;
3014 bus
= kvm
->buses
[bus_idx
];
3015 /* exclude ioeventfd which is limited by maximum fd */
3016 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3019 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3020 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3023 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3024 sizeof(struct kvm_io_range
)));
3025 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3026 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3027 synchronize_srcu_expedited(&kvm
->srcu
);
3033 /* Caller must hold slots_lock. */
3034 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3035 struct kvm_io_device
*dev
)
3038 struct kvm_io_bus
*new_bus
, *bus
;
3040 bus
= kvm
->buses
[bus_idx
];
3042 for (i
= 0; i
< bus
->dev_count
; i
++)
3043 if (bus
->range
[i
].dev
== dev
) {
3051 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3052 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3056 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3057 new_bus
->dev_count
--;
3058 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3059 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3061 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3062 synchronize_srcu_expedited(&kvm
->srcu
);
3067 static struct notifier_block kvm_cpu_notifier
= {
3068 .notifier_call
= kvm_cpu_hotplug
,
3071 static int vm_stat_get(void *_offset
, u64
*val
)
3073 unsigned offset
= (long)_offset
;
3077 raw_spin_lock(&kvm_lock
);
3078 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3079 *val
+= *(u32
*)((void *)kvm
+ offset
);
3080 raw_spin_unlock(&kvm_lock
);
3084 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3086 static int vcpu_stat_get(void *_offset
, u64
*val
)
3088 unsigned offset
= (long)_offset
;
3090 struct kvm_vcpu
*vcpu
;
3094 raw_spin_lock(&kvm_lock
);
3095 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3096 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3097 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3099 raw_spin_unlock(&kvm_lock
);
3103 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3105 static const struct file_operations
*stat_fops
[] = {
3106 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3107 [KVM_STAT_VM
] = &vm_stat_fops
,
3110 static int kvm_init_debug(void)
3113 struct kvm_stats_debugfs_item
*p
;
3115 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3116 if (kvm_debugfs_dir
== NULL
)
3119 for (p
= debugfs_entries
; p
->name
; ++p
) {
3120 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3121 (void *)(long)p
->offset
,
3122 stat_fops
[p
->kind
]);
3123 if (p
->dentry
== NULL
)
3130 debugfs_remove_recursive(kvm_debugfs_dir
);
3135 static void kvm_exit_debug(void)
3137 struct kvm_stats_debugfs_item
*p
;
3139 for (p
= debugfs_entries
; p
->name
; ++p
)
3140 debugfs_remove(p
->dentry
);
3141 debugfs_remove(kvm_debugfs_dir
);
3144 static int kvm_suspend(void)
3146 if (kvm_usage_count
)
3147 hardware_disable_nolock(NULL
);
3151 static void kvm_resume(void)
3153 if (kvm_usage_count
) {
3154 WARN_ON(raw_spin_is_locked(&kvm_lock
));
3155 hardware_enable_nolock(NULL
);
3159 static struct syscore_ops kvm_syscore_ops
= {
3160 .suspend
= kvm_suspend
,
3161 .resume
= kvm_resume
,
3165 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3167 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3170 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3172 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3173 if (vcpu
->preempted
)
3174 vcpu
->preempted
= false;
3176 kvm_arch_vcpu_load(vcpu
, cpu
);
3179 static void kvm_sched_out(struct preempt_notifier
*pn
,
3180 struct task_struct
*next
)
3182 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3184 if (current
->state
== TASK_RUNNING
)
3185 vcpu
->preempted
= true;
3186 kvm_arch_vcpu_put(vcpu
);
3189 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3190 struct module
*module
)
3195 r
= kvm_arch_init(opaque
);
3200 * kvm_arch_init makes sure there's at most one caller
3201 * for architectures that support multiple implementations,
3202 * like intel and amd on x86.
3203 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3204 * conflicts in case kvm is already setup for another implementation.
3206 r
= kvm_irqfd_init();
3210 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3215 r
= kvm_arch_hardware_setup();
3219 for_each_online_cpu(cpu
) {
3220 smp_call_function_single(cpu
,
3221 kvm_arch_check_processor_compat
,
3227 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3230 register_reboot_notifier(&kvm_reboot_notifier
);
3232 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3234 vcpu_align
= __alignof__(struct kvm_vcpu
);
3235 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3237 if (!kvm_vcpu_cache
) {
3242 r
= kvm_async_pf_init();
3246 kvm_chardev_ops
.owner
= module
;
3247 kvm_vm_fops
.owner
= module
;
3248 kvm_vcpu_fops
.owner
= module
;
3250 r
= misc_register(&kvm_dev
);
3252 printk(KERN_ERR
"kvm: misc device register failed\n");
3256 register_syscore_ops(&kvm_syscore_ops
);
3258 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3259 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3261 r
= kvm_init_debug();
3263 printk(KERN_ERR
"kvm: create debugfs files failed\n");
3270 unregister_syscore_ops(&kvm_syscore_ops
);
3271 misc_deregister(&kvm_dev
);
3273 kvm_async_pf_deinit();
3275 kmem_cache_destroy(kvm_vcpu_cache
);
3277 unregister_reboot_notifier(&kvm_reboot_notifier
);
3278 unregister_cpu_notifier(&kvm_cpu_notifier
);
3281 kvm_arch_hardware_unsetup();
3283 free_cpumask_var(cpus_hardware_enabled
);
3291 EXPORT_SYMBOL_GPL(kvm_init
);
3296 misc_deregister(&kvm_dev
);
3297 kmem_cache_destroy(kvm_vcpu_cache
);
3298 kvm_async_pf_deinit();
3299 unregister_syscore_ops(&kvm_syscore_ops
);
3300 unregister_reboot_notifier(&kvm_reboot_notifier
);
3301 unregister_cpu_notifier(&kvm_cpu_notifier
);
3302 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3303 kvm_arch_hardware_unsetup();
3306 free_cpumask_var(cpus_hardware_enabled
);
3308 EXPORT_SYMBOL_GPL(kvm_exit
);