4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
111 unsigned long zero_pfn __read_mostly
;
112 unsigned long highest_memmap_pfn __read_mostly
;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init
init_zero_pfn(void)
119 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
122 core_initcall(init_zero_pfn
);
125 #if defined(SPLIT_RSS_COUNTING)
127 void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
131 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
132 if (task
->rss_stat
.count
[i
]) {
133 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
134 task
->rss_stat
.count
[i
] = 0;
137 task
->rss_stat
.events
= 0;
140 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
142 struct task_struct
*task
= current
;
144 if (likely(task
->mm
== mm
))
145 task
->rss_stat
.count
[member
] += val
;
147 add_mm_counter(mm
, member
, val
);
149 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
150 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 /* sync counter once per 64 page faults */
153 #define TASK_RSS_EVENTS_THRESH (64)
154 static void check_sync_rss_stat(struct task_struct
*task
)
156 if (unlikely(task
!= current
))
158 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
159 __sync_task_rss_stat(task
, task
->mm
);
162 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
167 * Don't use task->mm here...for avoiding to use task_get_mm()..
168 * The caller must guarantee task->mm is not invalid.
170 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
172 * counter is updated in asynchronous manner and may go to minus.
173 * But it's never be expected number for users.
177 return (unsigned long)val
;
180 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
182 __sync_task_rss_stat(task
, mm
);
186 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
187 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 static void check_sync_rss_stat(struct task_struct
*task
)
196 * If a p?d_bad entry is found while walking page tables, report
197 * the error, before resetting entry to p?d_none. Usually (but
198 * very seldom) called out from the p?d_none_or_clear_bad macros.
201 void pgd_clear_bad(pgd_t
*pgd
)
207 void pud_clear_bad(pud_t
*pud
)
213 void pmd_clear_bad(pmd_t
*pmd
)
220 * Note: this doesn't free the actual pages themselves. That
221 * has been handled earlier when unmapping all the memory regions.
223 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
226 pgtable_t token
= pmd_pgtable(*pmd
);
228 pte_free_tlb(tlb
, token
, addr
);
232 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
233 unsigned long addr
, unsigned long end
,
234 unsigned long floor
, unsigned long ceiling
)
241 pmd
= pmd_offset(pud
, addr
);
243 next
= pmd_addr_end(addr
, end
);
244 if (pmd_none_or_clear_bad(pmd
))
246 free_pte_range(tlb
, pmd
, addr
);
247 } while (pmd
++, addr
= next
, addr
!= end
);
257 if (end
- 1 > ceiling
- 1)
260 pmd
= pmd_offset(pud
, start
);
262 pmd_free_tlb(tlb
, pmd
, start
);
265 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
266 unsigned long addr
, unsigned long end
,
267 unsigned long floor
, unsigned long ceiling
)
274 pud
= pud_offset(pgd
, addr
);
276 next
= pud_addr_end(addr
, end
);
277 if (pud_none_or_clear_bad(pud
))
279 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
280 } while (pud
++, addr
= next
, addr
!= end
);
286 ceiling
&= PGDIR_MASK
;
290 if (end
- 1 > ceiling
- 1)
293 pud
= pud_offset(pgd
, start
);
295 pud_free_tlb(tlb
, pud
, start
);
299 * This function frees user-level page tables of a process.
301 * Must be called with pagetable lock held.
303 void free_pgd_range(struct mmu_gather
*tlb
,
304 unsigned long addr
, unsigned long end
,
305 unsigned long floor
, unsigned long ceiling
)
312 * The next few lines have given us lots of grief...
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
348 if (end
- 1 > ceiling
- 1)
354 pgd
= pgd_offset(tlb
->mm
, addr
);
356 next
= pgd_addr_end(addr
, end
);
357 if (pgd_none_or_clear_bad(pgd
))
359 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
360 } while (pgd
++, addr
= next
, addr
!= end
);
363 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
364 unsigned long floor
, unsigned long ceiling
)
367 struct vm_area_struct
*next
= vma
->vm_next
;
368 unsigned long addr
= vma
->vm_start
;
371 * Hide vma from rmap and truncate_pagecache before freeing
374 unlink_anon_vmas(vma
);
375 unlink_file_vma(vma
);
377 if (is_vm_hugetlb_page(vma
)) {
378 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
379 floor
, next
? next
->vm_start
: ceiling
);
382 * Optimization: gather nearby vmas into one call down
384 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
385 && !is_vm_hugetlb_page(next
)) {
388 unlink_anon_vmas(vma
);
389 unlink_file_vma(vma
);
391 free_pgd_range(tlb
, addr
, vma
->vm_end
,
392 floor
, next
? next
->vm_start
: ceiling
);
398 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
400 pgtable_t
new = pte_alloc_one(mm
, address
);
405 * Ensure all pte setup (eg. pte page lock and page clearing) are
406 * visible before the pte is made visible to other CPUs by being
407 * put into page tables.
409 * The other side of the story is the pointer chasing in the page
410 * table walking code (when walking the page table without locking;
411 * ie. most of the time). Fortunately, these data accesses consist
412 * of a chain of data-dependent loads, meaning most CPUs (alpha
413 * being the notable exception) will already guarantee loads are
414 * seen in-order. See the alpha page table accessors for the
415 * smp_read_barrier_depends() barriers in page table walking code.
417 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419 spin_lock(&mm
->page_table_lock
);
420 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
422 pmd_populate(mm
, pmd
, new);
425 spin_unlock(&mm
->page_table_lock
);
431 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
433 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
437 smp_wmb(); /* See comment in __pte_alloc */
439 spin_lock(&init_mm
.page_table_lock
);
440 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
441 pmd_populate_kernel(&init_mm
, pmd
, new);
444 spin_unlock(&init_mm
.page_table_lock
);
446 pte_free_kernel(&init_mm
, new);
450 static inline void init_rss_vec(int *rss
)
452 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
455 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
459 if (current
->mm
== mm
)
460 sync_mm_rss(current
, mm
);
461 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
463 add_mm_counter(mm
, i
, rss
[i
]);
467 * This function is called to print an error when a bad pte
468 * is found. For example, we might have a PFN-mapped pte in
469 * a region that doesn't allow it.
471 * The calling function must still handle the error.
473 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
474 pte_t pte
, struct page
*page
)
476 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
477 pud_t
*pud
= pud_offset(pgd
, addr
);
478 pmd_t
*pmd
= pmd_offset(pud
, addr
);
479 struct address_space
*mapping
;
481 static unsigned long resume
;
482 static unsigned long nr_shown
;
483 static unsigned long nr_unshown
;
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
489 if (nr_shown
== 60) {
490 if (time_before(jiffies
, resume
)) {
496 "BUG: Bad page map: %lu messages suppressed\n",
503 resume
= jiffies
+ 60 * HZ
;
505 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
506 index
= linear_page_index(vma
, addr
);
509 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
511 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
515 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
516 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
518 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
522 (unsigned long)vma
->vm_ops
->fault
);
523 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
524 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
525 (unsigned long)vma
->vm_file
->f_op
->mmap
);
527 add_taint(TAINT_BAD_PAGE
);
530 static inline int is_cow_mapping(unsigned int flags
)
532 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
536 static inline int is_zero_pfn(unsigned long pfn
)
538 return pfn
== zero_pfn
;
543 static inline unsigned long my_zero_pfn(unsigned long addr
)
550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 * And for normal mappings this is false.
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
591 #ifdef __HAVE_ARCH_PTE_SPECIAL
592 # define HAVE_PTE_SPECIAL 1
594 # define HAVE_PTE_SPECIAL 0
596 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
599 unsigned long pfn
= pte_pfn(pte
);
601 if (HAVE_PTE_SPECIAL
) {
602 if (likely(!pte_special(pte
)))
604 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
606 if (!is_zero_pfn(pfn
))
607 print_bad_pte(vma
, addr
, pte
, NULL
);
611 /* !HAVE_PTE_SPECIAL case follows: */
613 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
614 if (vma
->vm_flags
& VM_MIXEDMAP
) {
620 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
621 if (pfn
== vma
->vm_pgoff
+ off
)
623 if (!is_cow_mapping(vma
->vm_flags
))
628 if (is_zero_pfn(pfn
))
631 if (unlikely(pfn
> highest_memmap_pfn
)) {
632 print_bad_pte(vma
, addr
, pte
, NULL
);
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
641 return pfn_to_page(pfn
);
645 * copy one vm_area from one task to the other. Assumes the page tables
646 * already present in the new task to be cleared in the whole range
647 * covered by this vma.
650 static inline unsigned long
651 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
652 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
653 unsigned long addr
, int *rss
)
655 unsigned long vm_flags
= vma
->vm_flags
;
656 pte_t pte
= *src_pte
;
659 /* pte contains position in swap or file, so copy. */
660 if (unlikely(!pte_present(pte
))) {
661 if (!pte_file(pte
)) {
662 swp_entry_t entry
= pte_to_swp_entry(pte
);
664 if (swap_duplicate(entry
) < 0)
667 /* make sure dst_mm is on swapoff's mmlist. */
668 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
669 spin_lock(&mmlist_lock
);
670 if (list_empty(&dst_mm
->mmlist
))
671 list_add(&dst_mm
->mmlist
,
673 spin_unlock(&mmlist_lock
);
675 if (likely(!non_swap_entry(entry
)))
677 else if (is_write_migration_entry(entry
) &&
678 is_cow_mapping(vm_flags
)) {
680 * COW mappings require pages in both parent
681 * and child to be set to read.
683 make_migration_entry_read(&entry
);
684 pte
= swp_entry_to_pte(entry
);
685 set_pte_at(src_mm
, addr
, src_pte
, pte
);
692 * If it's a COW mapping, write protect it both
693 * in the parent and the child
695 if (is_cow_mapping(vm_flags
)) {
696 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
697 pte
= pte_wrprotect(pte
);
701 * If it's a shared mapping, mark it clean in
704 if (vm_flags
& VM_SHARED
)
705 pte
= pte_mkclean(pte
);
706 pte
= pte_mkold(pte
);
708 page
= vm_normal_page(vma
, addr
, pte
);
719 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
723 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
724 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
725 unsigned long addr
, unsigned long end
)
727 pte_t
*orig_src_pte
, *orig_dst_pte
;
728 pte_t
*src_pte
, *dst_pte
;
729 spinlock_t
*src_ptl
, *dst_ptl
;
731 int rss
[NR_MM_COUNTERS
];
732 swp_entry_t entry
= (swp_entry_t
){0};
737 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
740 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
741 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
742 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
743 orig_src_pte
= src_pte
;
744 orig_dst_pte
= dst_pte
;
745 arch_enter_lazy_mmu_mode();
749 * We are holding two locks at this point - either of them
750 * could generate latencies in another task on another CPU.
752 if (progress
>= 32) {
754 if (need_resched() ||
755 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
758 if (pte_none(*src_pte
)) {
762 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
767 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
769 arch_leave_lazy_mmu_mode();
770 spin_unlock(src_ptl
);
771 pte_unmap_nested(orig_src_pte
);
772 add_mm_rss_vec(dst_mm
, rss
);
773 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
777 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
786 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
787 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
788 unsigned long addr
, unsigned long end
)
790 pmd_t
*src_pmd
, *dst_pmd
;
793 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
796 src_pmd
= pmd_offset(src_pud
, addr
);
798 next
= pmd_addr_end(addr
, end
);
799 if (pmd_none_or_clear_bad(src_pmd
))
801 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
804 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
808 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
809 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
810 unsigned long addr
, unsigned long end
)
812 pud_t
*src_pud
, *dst_pud
;
815 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
818 src_pud
= pud_offset(src_pgd
, addr
);
820 next
= pud_addr_end(addr
, end
);
821 if (pud_none_or_clear_bad(src_pud
))
823 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
826 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
830 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
831 struct vm_area_struct
*vma
)
833 pgd_t
*src_pgd
, *dst_pgd
;
835 unsigned long addr
= vma
->vm_start
;
836 unsigned long end
= vma
->vm_end
;
840 * Don't copy ptes where a page fault will fill them correctly.
841 * Fork becomes much lighter when there are big shared or private
842 * readonly mappings. The tradeoff is that copy_page_range is more
843 * efficient than faulting.
845 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
850 if (is_vm_hugetlb_page(vma
))
851 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
853 if (unlikely(is_pfn_mapping(vma
))) {
855 * We do not free on error cases below as remove_vma
856 * gets called on error from higher level routine
858 ret
= track_pfn_vma_copy(vma
);
864 * We need to invalidate the secondary MMU mappings only when
865 * there could be a permission downgrade on the ptes of the
866 * parent mm. And a permission downgrade will only happen if
867 * is_cow_mapping() returns true.
869 if (is_cow_mapping(vma
->vm_flags
))
870 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
873 dst_pgd
= pgd_offset(dst_mm
, addr
);
874 src_pgd
= pgd_offset(src_mm
, addr
);
876 next
= pgd_addr_end(addr
, end
);
877 if (pgd_none_or_clear_bad(src_pgd
))
879 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
884 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
886 if (is_cow_mapping(vma
->vm_flags
))
887 mmu_notifier_invalidate_range_end(src_mm
,
892 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
893 struct vm_area_struct
*vma
, pmd_t
*pmd
,
894 unsigned long addr
, unsigned long end
,
895 long *zap_work
, struct zap_details
*details
)
897 struct mm_struct
*mm
= tlb
->mm
;
900 int rss
[NR_MM_COUNTERS
];
904 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
905 arch_enter_lazy_mmu_mode();
908 if (pte_none(ptent
)) {
913 (*zap_work
) -= PAGE_SIZE
;
915 if (pte_present(ptent
)) {
918 page
= vm_normal_page(vma
, addr
, ptent
);
919 if (unlikely(details
) && page
) {
921 * unmap_shared_mapping_pages() wants to
922 * invalidate cache without truncating:
923 * unmap shared but keep private pages.
925 if (details
->check_mapping
&&
926 details
->check_mapping
!= page
->mapping
)
929 * Each page->index must be checked when
930 * invalidating or truncating nonlinear.
932 if (details
->nonlinear_vma
&&
933 (page
->index
< details
->first_index
||
934 page
->index
> details
->last_index
))
937 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
939 tlb_remove_tlb_entry(tlb
, pte
, addr
);
942 if (unlikely(details
) && details
->nonlinear_vma
943 && linear_page_index(details
->nonlinear_vma
,
944 addr
) != page
->index
)
945 set_pte_at(mm
, addr
, pte
,
946 pgoff_to_pte(page
->index
));
950 if (pte_dirty(ptent
))
951 set_page_dirty(page
);
952 if (pte_young(ptent
) &&
953 likely(!VM_SequentialReadHint(vma
)))
954 mark_page_accessed(page
);
957 page_remove_rmap(page
);
958 if (unlikely(page_mapcount(page
) < 0))
959 print_bad_pte(vma
, addr
, ptent
, page
);
960 tlb_remove_page(tlb
, page
);
964 * If details->check_mapping, we leave swap entries;
965 * if details->nonlinear_vma, we leave file entries.
967 if (unlikely(details
))
969 if (pte_file(ptent
)) {
970 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
971 print_bad_pte(vma
, addr
, ptent
, NULL
);
973 swp_entry_t entry
= pte_to_swp_entry(ptent
);
975 if (!non_swap_entry(entry
))
977 if (unlikely(!free_swap_and_cache(entry
)))
978 print_bad_pte(vma
, addr
, ptent
, NULL
);
980 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
981 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
983 add_mm_rss_vec(mm
, rss
);
984 arch_leave_lazy_mmu_mode();
985 pte_unmap_unlock(pte
- 1, ptl
);
990 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
991 struct vm_area_struct
*vma
, pud_t
*pud
,
992 unsigned long addr
, unsigned long end
,
993 long *zap_work
, struct zap_details
*details
)
998 pmd
= pmd_offset(pud
, addr
);
1000 next
= pmd_addr_end(addr
, end
);
1001 if (pmd_none_or_clear_bad(pmd
)) {
1005 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
1007 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1012 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1013 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1014 unsigned long addr
, unsigned long end
,
1015 long *zap_work
, struct zap_details
*details
)
1020 pud
= pud_offset(pgd
, addr
);
1022 next
= pud_addr_end(addr
, end
);
1023 if (pud_none_or_clear_bad(pud
)) {
1027 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
1029 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1034 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1035 struct vm_area_struct
*vma
,
1036 unsigned long addr
, unsigned long end
,
1037 long *zap_work
, struct zap_details
*details
)
1042 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1045 BUG_ON(addr
>= end
);
1046 mem_cgroup_uncharge_start();
1047 tlb_start_vma(tlb
, vma
);
1048 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1050 next
= pgd_addr_end(addr
, end
);
1051 if (pgd_none_or_clear_bad(pgd
)) {
1055 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
1057 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1058 tlb_end_vma(tlb
, vma
);
1059 mem_cgroup_uncharge_end();
1064 #ifdef CONFIG_PREEMPT
1065 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1067 /* No preempt: go for improved straight-line efficiency */
1068 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1072 * unmap_vmas - unmap a range of memory covered by a list of vma's
1073 * @tlbp: address of the caller's struct mmu_gather
1074 * @vma: the starting vma
1075 * @start_addr: virtual address at which to start unmapping
1076 * @end_addr: virtual address at which to end unmapping
1077 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1078 * @details: details of nonlinear truncation or shared cache invalidation
1080 * Returns the end address of the unmapping (restart addr if interrupted).
1082 * Unmap all pages in the vma list.
1084 * We aim to not hold locks for too long (for scheduling latency reasons).
1085 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1086 * return the ending mmu_gather to the caller.
1088 * Only addresses between `start' and `end' will be unmapped.
1090 * The VMA list must be sorted in ascending virtual address order.
1092 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1093 * range after unmap_vmas() returns. So the only responsibility here is to
1094 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1095 * drops the lock and schedules.
1097 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
1098 struct vm_area_struct
*vma
, unsigned long start_addr
,
1099 unsigned long end_addr
, unsigned long *nr_accounted
,
1100 struct zap_details
*details
)
1102 long zap_work
= ZAP_BLOCK_SIZE
;
1103 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1104 int tlb_start_valid
= 0;
1105 unsigned long start
= start_addr
;
1106 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1107 int fullmm
= (*tlbp
)->fullmm
;
1108 struct mm_struct
*mm
= vma
->vm_mm
;
1110 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1111 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1114 start
= max(vma
->vm_start
, start_addr
);
1115 if (start
>= vma
->vm_end
)
1117 end
= min(vma
->vm_end
, end_addr
);
1118 if (end
<= vma
->vm_start
)
1121 if (vma
->vm_flags
& VM_ACCOUNT
)
1122 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1124 if (unlikely(is_pfn_mapping(vma
)))
1125 untrack_pfn_vma(vma
, 0, 0);
1127 while (start
!= end
) {
1128 if (!tlb_start_valid
) {
1130 tlb_start_valid
= 1;
1133 if (unlikely(is_vm_hugetlb_page(vma
))) {
1135 * It is undesirable to test vma->vm_file as it
1136 * should be non-null for valid hugetlb area.
1137 * However, vm_file will be NULL in the error
1138 * cleanup path of do_mmap_pgoff. When
1139 * hugetlbfs ->mmap method fails,
1140 * do_mmap_pgoff() nullifies vma->vm_file
1141 * before calling this function to clean up.
1142 * Since no pte has actually been setup, it is
1143 * safe to do nothing in this case.
1146 unmap_hugepage_range(vma
, start
, end
, NULL
);
1147 zap_work
-= (end
- start
) /
1148 pages_per_huge_page(hstate_vma(vma
));
1153 start
= unmap_page_range(*tlbp
, vma
,
1154 start
, end
, &zap_work
, details
);
1157 BUG_ON(start
!= end
);
1161 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1163 if (need_resched() ||
1164 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1172 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1173 tlb_start_valid
= 0;
1174 zap_work
= ZAP_BLOCK_SIZE
;
1178 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1179 return start
; /* which is now the end (or restart) address */
1183 * zap_page_range - remove user pages in a given range
1184 * @vma: vm_area_struct holding the applicable pages
1185 * @address: starting address of pages to zap
1186 * @size: number of bytes to zap
1187 * @details: details of nonlinear truncation or shared cache invalidation
1189 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1190 unsigned long size
, struct zap_details
*details
)
1192 struct mm_struct
*mm
= vma
->vm_mm
;
1193 struct mmu_gather
*tlb
;
1194 unsigned long end
= address
+ size
;
1195 unsigned long nr_accounted
= 0;
1198 tlb
= tlb_gather_mmu(mm
, 0);
1199 update_hiwater_rss(mm
);
1200 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1202 tlb_finish_mmu(tlb
, address
, end
);
1207 * zap_vma_ptes - remove ptes mapping the vma
1208 * @vma: vm_area_struct holding ptes to be zapped
1209 * @address: starting address of pages to zap
1210 * @size: number of bytes to zap
1212 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1214 * The entire address range must be fully contained within the vma.
1216 * Returns 0 if successful.
1218 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1221 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1222 !(vma
->vm_flags
& VM_PFNMAP
))
1224 zap_page_range(vma
, address
, size
, NULL
);
1227 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1230 * Do a quick page-table lookup for a single page.
1232 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1241 struct mm_struct
*mm
= vma
->vm_mm
;
1243 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1244 if (!IS_ERR(page
)) {
1245 BUG_ON(flags
& FOLL_GET
);
1250 pgd
= pgd_offset(mm
, address
);
1251 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1254 pud
= pud_offset(pgd
, address
);
1257 if (pud_huge(*pud
)) {
1258 BUG_ON(flags
& FOLL_GET
);
1259 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1262 if (unlikely(pud_bad(*pud
)))
1265 pmd
= pmd_offset(pud
, address
);
1268 if (pmd_huge(*pmd
)) {
1269 BUG_ON(flags
& FOLL_GET
);
1270 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1273 if (unlikely(pmd_bad(*pmd
)))
1276 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1279 if (!pte_present(pte
))
1281 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1284 page
= vm_normal_page(vma
, address
, pte
);
1285 if (unlikely(!page
)) {
1286 if ((flags
& FOLL_DUMP
) ||
1287 !is_zero_pfn(pte_pfn(pte
)))
1289 page
= pte_page(pte
);
1292 if (flags
& FOLL_GET
)
1294 if (flags
& FOLL_TOUCH
) {
1295 if ((flags
& FOLL_WRITE
) &&
1296 !pte_dirty(pte
) && !PageDirty(page
))
1297 set_page_dirty(page
);
1299 * pte_mkyoung() would be more correct here, but atomic care
1300 * is needed to avoid losing the dirty bit: it is easier to use
1301 * mark_page_accessed().
1303 mark_page_accessed(page
);
1306 pte_unmap_unlock(ptep
, ptl
);
1311 pte_unmap_unlock(ptep
, ptl
);
1312 return ERR_PTR(-EFAULT
);
1315 pte_unmap_unlock(ptep
, ptl
);
1321 * When core dumping an enormous anonymous area that nobody
1322 * has touched so far, we don't want to allocate unnecessary pages or
1323 * page tables. Return error instead of NULL to skip handle_mm_fault,
1324 * then get_dump_page() will return NULL to leave a hole in the dump.
1325 * But we can only make this optimization where a hole would surely
1326 * be zero-filled if handle_mm_fault() actually did handle it.
1328 if ((flags
& FOLL_DUMP
) &&
1329 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1330 return ERR_PTR(-EFAULT
);
1334 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1335 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1336 struct page
**pages
, struct vm_area_struct
**vmas
)
1339 unsigned long vm_flags
;
1344 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1347 * Require read or write permissions.
1348 * If FOLL_FORCE is set, we only require the "MAY" flags.
1350 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1351 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1352 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1353 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1357 struct vm_area_struct
*vma
;
1359 vma
= find_extend_vma(mm
, start
);
1360 if (!vma
&& in_gate_area(tsk
, start
)) {
1361 unsigned long pg
= start
& PAGE_MASK
;
1362 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1368 /* user gate pages are read-only */
1369 if (gup_flags
& FOLL_WRITE
)
1370 return i
? : -EFAULT
;
1372 pgd
= pgd_offset_k(pg
);
1374 pgd
= pgd_offset_gate(mm
, pg
);
1375 BUG_ON(pgd_none(*pgd
));
1376 pud
= pud_offset(pgd
, pg
);
1377 BUG_ON(pud_none(*pud
));
1378 pmd
= pmd_offset(pud
, pg
);
1380 return i
? : -EFAULT
;
1381 pte
= pte_offset_map(pmd
, pg
);
1382 if (pte_none(*pte
)) {
1384 return i
? : -EFAULT
;
1387 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1402 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1403 !(vm_flags
& vma
->vm_flags
))
1404 return i
? : -EFAULT
;
1406 if (is_vm_hugetlb_page(vma
)) {
1407 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1408 &start
, &nr_pages
, i
, gup_flags
);
1414 unsigned int foll_flags
= gup_flags
;
1417 * If we have a pending SIGKILL, don't keep faulting
1418 * pages and potentially allocating memory.
1420 if (unlikely(fatal_signal_pending(current
)))
1421 return i
? i
: -ERESTARTSYS
;
1424 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1427 ret
= handle_mm_fault(mm
, vma
, start
,
1428 (foll_flags
& FOLL_WRITE
) ?
1429 FAULT_FLAG_WRITE
: 0);
1431 if (ret
& VM_FAULT_ERROR
) {
1432 if (ret
& VM_FAULT_OOM
)
1433 return i
? i
: -ENOMEM
;
1435 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1436 return i
? i
: -EFAULT
;
1439 if (ret
& VM_FAULT_MAJOR
)
1445 * The VM_FAULT_WRITE bit tells us that
1446 * do_wp_page has broken COW when necessary,
1447 * even if maybe_mkwrite decided not to set
1448 * pte_write. We can thus safely do subsequent
1449 * page lookups as if they were reads. But only
1450 * do so when looping for pte_write is futile:
1451 * in some cases userspace may also be wanting
1452 * to write to the gotten user page, which a
1453 * read fault here might prevent (a readonly
1454 * page might get reCOWed by userspace write).
1456 if ((ret
& VM_FAULT_WRITE
) &&
1457 !(vma
->vm_flags
& VM_WRITE
))
1458 foll_flags
&= ~FOLL_WRITE
;
1463 return i
? i
: PTR_ERR(page
);
1467 flush_anon_page(vma
, page
, start
);
1468 flush_dcache_page(page
);
1475 } while (nr_pages
&& start
< vma
->vm_end
);
1481 * get_user_pages() - pin user pages in memory
1482 * @tsk: task_struct of target task
1483 * @mm: mm_struct of target mm
1484 * @start: starting user address
1485 * @nr_pages: number of pages from start to pin
1486 * @write: whether pages will be written to by the caller
1487 * @force: whether to force write access even if user mapping is
1488 * readonly. This will result in the page being COWed even
1489 * in MAP_SHARED mappings. You do not want this.
1490 * @pages: array that receives pointers to the pages pinned.
1491 * Should be at least nr_pages long. Or NULL, if caller
1492 * only intends to ensure the pages are faulted in.
1493 * @vmas: array of pointers to vmas corresponding to each page.
1494 * Or NULL if the caller does not require them.
1496 * Returns number of pages pinned. This may be fewer than the number
1497 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1498 * were pinned, returns -errno. Each page returned must be released
1499 * with a put_page() call when it is finished with. vmas will only
1500 * remain valid while mmap_sem is held.
1502 * Must be called with mmap_sem held for read or write.
1504 * get_user_pages walks a process's page tables and takes a reference to
1505 * each struct page that each user address corresponds to at a given
1506 * instant. That is, it takes the page that would be accessed if a user
1507 * thread accesses the given user virtual address at that instant.
1509 * This does not guarantee that the page exists in the user mappings when
1510 * get_user_pages returns, and there may even be a completely different
1511 * page there in some cases (eg. if mmapped pagecache has been invalidated
1512 * and subsequently re faulted). However it does guarantee that the page
1513 * won't be freed completely. And mostly callers simply care that the page
1514 * contains data that was valid *at some point in time*. Typically, an IO
1515 * or similar operation cannot guarantee anything stronger anyway because
1516 * locks can't be held over the syscall boundary.
1518 * If write=0, the page must not be written to. If the page is written to,
1519 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1520 * after the page is finished with, and before put_page is called.
1522 * get_user_pages is typically used for fewer-copy IO operations, to get a
1523 * handle on the memory by some means other than accesses via the user virtual
1524 * addresses. The pages may be submitted for DMA to devices or accessed via
1525 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1526 * use the correct cache flushing APIs.
1528 * See also get_user_pages_fast, for performance critical applications.
1530 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1531 unsigned long start
, int nr_pages
, int write
, int force
,
1532 struct page
**pages
, struct vm_area_struct
**vmas
)
1534 int flags
= FOLL_TOUCH
;
1539 flags
|= FOLL_WRITE
;
1541 flags
|= FOLL_FORCE
;
1543 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1545 EXPORT_SYMBOL(get_user_pages
);
1548 * get_dump_page() - pin user page in memory while writing it to core dump
1549 * @addr: user address
1551 * Returns struct page pointer of user page pinned for dump,
1552 * to be freed afterwards by page_cache_release() or put_page().
1554 * Returns NULL on any kind of failure - a hole must then be inserted into
1555 * the corefile, to preserve alignment with its headers; and also returns
1556 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1557 * allowing a hole to be left in the corefile to save diskspace.
1559 * Called without mmap_sem, but after all other threads have been killed.
1561 #ifdef CONFIG_ELF_CORE
1562 struct page
*get_dump_page(unsigned long addr
)
1564 struct vm_area_struct
*vma
;
1567 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1568 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1570 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1573 #endif /* CONFIG_ELF_CORE */
1575 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1578 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1579 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1581 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1583 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1589 * This is the old fallback for page remapping.
1591 * For historical reasons, it only allows reserved pages. Only
1592 * old drivers should use this, and they needed to mark their
1593 * pages reserved for the old functions anyway.
1595 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1596 struct page
*page
, pgprot_t prot
)
1598 struct mm_struct
*mm
= vma
->vm_mm
;
1607 flush_dcache_page(page
);
1608 pte
= get_locked_pte(mm
, addr
, &ptl
);
1612 if (!pte_none(*pte
))
1615 /* Ok, finally just insert the thing.. */
1617 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1618 page_add_file_rmap(page
);
1619 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1622 pte_unmap_unlock(pte
, ptl
);
1625 pte_unmap_unlock(pte
, ptl
);
1631 * vm_insert_page - insert single page into user vma
1632 * @vma: user vma to map to
1633 * @addr: target user address of this page
1634 * @page: source kernel page
1636 * This allows drivers to insert individual pages they've allocated
1639 * The page has to be a nice clean _individual_ kernel allocation.
1640 * If you allocate a compound page, you need to have marked it as
1641 * such (__GFP_COMP), or manually just split the page up yourself
1642 * (see split_page()).
1644 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1645 * took an arbitrary page protection parameter. This doesn't allow
1646 * that. Your vma protection will have to be set up correctly, which
1647 * means that if you want a shared writable mapping, you'd better
1648 * ask for a shared writable mapping!
1650 * The page does not need to be reserved.
1652 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1655 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1657 if (!page_count(page
))
1659 vma
->vm_flags
|= VM_INSERTPAGE
;
1660 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1662 EXPORT_SYMBOL(vm_insert_page
);
1664 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1665 unsigned long pfn
, pgprot_t prot
)
1667 struct mm_struct
*mm
= vma
->vm_mm
;
1673 pte
= get_locked_pte(mm
, addr
, &ptl
);
1677 if (!pte_none(*pte
))
1680 /* Ok, finally just insert the thing.. */
1681 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1682 set_pte_at(mm
, addr
, pte
, entry
);
1683 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1687 pte_unmap_unlock(pte
, ptl
);
1693 * vm_insert_pfn - insert single pfn into user vma
1694 * @vma: user vma to map to
1695 * @addr: target user address of this page
1696 * @pfn: source kernel pfn
1698 * Similar to vm_inert_page, this allows drivers to insert individual pages
1699 * they've allocated into a user vma. Same comments apply.
1701 * This function should only be called from a vm_ops->fault handler, and
1702 * in that case the handler should return NULL.
1704 * vma cannot be a COW mapping.
1706 * As this is called only for pages that do not currently exist, we
1707 * do not need to flush old virtual caches or the TLB.
1709 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1713 pgprot_t pgprot
= vma
->vm_page_prot
;
1715 * Technically, architectures with pte_special can avoid all these
1716 * restrictions (same for remap_pfn_range). However we would like
1717 * consistency in testing and feature parity among all, so we should
1718 * try to keep these invariants in place for everybody.
1720 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1721 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1722 (VM_PFNMAP
|VM_MIXEDMAP
));
1723 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1724 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1726 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1728 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1731 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1734 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1738 EXPORT_SYMBOL(vm_insert_pfn
);
1740 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1743 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1745 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1749 * If we don't have pte special, then we have to use the pfn_valid()
1750 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1751 * refcount the page if pfn_valid is true (hence insert_page rather
1752 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1753 * without pte special, it would there be refcounted as a normal page.
1755 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1758 page
= pfn_to_page(pfn
);
1759 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1761 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1763 EXPORT_SYMBOL(vm_insert_mixed
);
1766 * maps a range of physical memory into the requested pages. the old
1767 * mappings are removed. any references to nonexistent pages results
1768 * in null mappings (currently treated as "copy-on-access")
1770 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1771 unsigned long addr
, unsigned long end
,
1772 unsigned long pfn
, pgprot_t prot
)
1777 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1780 arch_enter_lazy_mmu_mode();
1782 BUG_ON(!pte_none(*pte
));
1783 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1785 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1786 arch_leave_lazy_mmu_mode();
1787 pte_unmap_unlock(pte
- 1, ptl
);
1791 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1792 unsigned long addr
, unsigned long end
,
1793 unsigned long pfn
, pgprot_t prot
)
1798 pfn
-= addr
>> PAGE_SHIFT
;
1799 pmd
= pmd_alloc(mm
, pud
, addr
);
1803 next
= pmd_addr_end(addr
, end
);
1804 if (remap_pte_range(mm
, pmd
, addr
, next
,
1805 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1807 } while (pmd
++, addr
= next
, addr
!= end
);
1811 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1812 unsigned long addr
, unsigned long end
,
1813 unsigned long pfn
, pgprot_t prot
)
1818 pfn
-= addr
>> PAGE_SHIFT
;
1819 pud
= pud_alloc(mm
, pgd
, addr
);
1823 next
= pud_addr_end(addr
, end
);
1824 if (remap_pmd_range(mm
, pud
, addr
, next
,
1825 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1827 } while (pud
++, addr
= next
, addr
!= end
);
1832 * remap_pfn_range - remap kernel memory to userspace
1833 * @vma: user vma to map to
1834 * @addr: target user address to start at
1835 * @pfn: physical address of kernel memory
1836 * @size: size of map area
1837 * @prot: page protection flags for this mapping
1839 * Note: this is only safe if the mm semaphore is held when called.
1841 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1842 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1846 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1847 struct mm_struct
*mm
= vma
->vm_mm
;
1851 * Physically remapped pages are special. Tell the
1852 * rest of the world about it:
1853 * VM_IO tells people not to look at these pages
1854 * (accesses can have side effects).
1855 * VM_RESERVED is specified all over the place, because
1856 * in 2.4 it kept swapout's vma scan off this vma; but
1857 * in 2.6 the LRU scan won't even find its pages, so this
1858 * flag means no more than count its pages in reserved_vm,
1859 * and omit it from core dump, even when VM_IO turned off.
1860 * VM_PFNMAP tells the core MM that the base pages are just
1861 * raw PFN mappings, and do not have a "struct page" associated
1864 * There's a horrible special case to handle copy-on-write
1865 * behaviour that some programs depend on. We mark the "original"
1866 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1868 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1869 vma
->vm_pgoff
= pfn
;
1870 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1871 } else if (is_cow_mapping(vma
->vm_flags
))
1874 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1876 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1879 * To indicate that track_pfn related cleanup is not
1880 * needed from higher level routine calling unmap_vmas
1882 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1883 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1887 BUG_ON(addr
>= end
);
1888 pfn
-= addr
>> PAGE_SHIFT
;
1889 pgd
= pgd_offset(mm
, addr
);
1890 flush_cache_range(vma
, addr
, end
);
1892 next
= pgd_addr_end(addr
, end
);
1893 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1894 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1897 } while (pgd
++, addr
= next
, addr
!= end
);
1900 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1904 EXPORT_SYMBOL(remap_pfn_range
);
1906 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1907 unsigned long addr
, unsigned long end
,
1908 pte_fn_t fn
, void *data
)
1913 spinlock_t
*uninitialized_var(ptl
);
1915 pte
= (mm
== &init_mm
) ?
1916 pte_alloc_kernel(pmd
, addr
) :
1917 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1921 BUG_ON(pmd_huge(*pmd
));
1923 arch_enter_lazy_mmu_mode();
1925 token
= pmd_pgtable(*pmd
);
1928 err
= fn(pte
++, token
, addr
, data
);
1931 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1933 arch_leave_lazy_mmu_mode();
1936 pte_unmap_unlock(pte
-1, ptl
);
1940 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1941 unsigned long addr
, unsigned long end
,
1942 pte_fn_t fn
, void *data
)
1948 BUG_ON(pud_huge(*pud
));
1950 pmd
= pmd_alloc(mm
, pud
, addr
);
1954 next
= pmd_addr_end(addr
, end
);
1955 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1958 } while (pmd
++, addr
= next
, addr
!= end
);
1962 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1963 unsigned long addr
, unsigned long end
,
1964 pte_fn_t fn
, void *data
)
1970 pud
= pud_alloc(mm
, pgd
, addr
);
1974 next
= pud_addr_end(addr
, end
);
1975 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1978 } while (pud
++, addr
= next
, addr
!= end
);
1983 * Scan a region of virtual memory, filling in page tables as necessary
1984 * and calling a provided function on each leaf page table.
1986 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1987 unsigned long size
, pte_fn_t fn
, void *data
)
1991 unsigned long start
= addr
, end
= addr
+ size
;
1994 BUG_ON(addr
>= end
);
1995 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1996 pgd
= pgd_offset(mm
, addr
);
1998 next
= pgd_addr_end(addr
, end
);
1999 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2002 } while (pgd
++, addr
= next
, addr
!= end
);
2003 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2006 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2009 * handle_pte_fault chooses page fault handler according to an entry
2010 * which was read non-atomically. Before making any commitment, on
2011 * those architectures or configurations (e.g. i386 with PAE) which
2012 * might give a mix of unmatched parts, do_swap_page and do_file_page
2013 * must check under lock before unmapping the pte and proceeding
2014 * (but do_wp_page is only called after already making such a check;
2015 * and do_anonymous_page and do_no_page can safely check later on).
2017 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2018 pte_t
*page_table
, pte_t orig_pte
)
2021 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2022 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2023 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2025 same
= pte_same(*page_table
, orig_pte
);
2029 pte_unmap(page_table
);
2034 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2035 * servicing faults for write access. In the normal case, do always want
2036 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2037 * that do not have writing enabled, when used by access_process_vm.
2039 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
2041 if (likely(vma
->vm_flags
& VM_WRITE
))
2042 pte
= pte_mkwrite(pte
);
2046 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2049 * If the source page was a PFN mapping, we don't have
2050 * a "struct page" for it. We do a best-effort copy by
2051 * just copying from the original user address. If that
2052 * fails, we just zero-fill it. Live with it.
2054 if (unlikely(!src
)) {
2055 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2056 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2059 * This really shouldn't fail, because the page is there
2060 * in the page tables. But it might just be unreadable,
2061 * in which case we just give up and fill the result with
2064 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2065 memset(kaddr
, 0, PAGE_SIZE
);
2066 kunmap_atomic(kaddr
, KM_USER0
);
2067 flush_dcache_page(dst
);
2069 copy_user_highpage(dst
, src
, va
, vma
);
2073 * This routine handles present pages, when users try to write
2074 * to a shared page. It is done by copying the page to a new address
2075 * and decrementing the shared-page counter for the old page.
2077 * Note that this routine assumes that the protection checks have been
2078 * done by the caller (the low-level page fault routine in most cases).
2079 * Thus we can safely just mark it writable once we've done any necessary
2082 * We also mark the page dirty at this point even though the page will
2083 * change only once the write actually happens. This avoids a few races,
2084 * and potentially makes it more efficient.
2086 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2087 * but allow concurrent faults), with pte both mapped and locked.
2088 * We return with mmap_sem still held, but pte unmapped and unlocked.
2090 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2091 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2092 spinlock_t
*ptl
, pte_t orig_pte
)
2094 struct page
*old_page
, *new_page
;
2096 int reuse
= 0, ret
= 0;
2097 int page_mkwrite
= 0;
2098 struct page
*dirty_page
= NULL
;
2100 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2103 * VM_MIXEDMAP !pfn_valid() case
2105 * We should not cow pages in a shared writeable mapping.
2106 * Just mark the pages writable as we can't do any dirty
2107 * accounting on raw pfn maps.
2109 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2110 (VM_WRITE
|VM_SHARED
))
2116 * Take out anonymous pages first, anonymous shared vmas are
2117 * not dirty accountable.
2119 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2120 if (!trylock_page(old_page
)) {
2121 page_cache_get(old_page
);
2122 pte_unmap_unlock(page_table
, ptl
);
2123 lock_page(old_page
);
2124 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2126 if (!pte_same(*page_table
, orig_pte
)) {
2127 unlock_page(old_page
);
2128 page_cache_release(old_page
);
2131 page_cache_release(old_page
);
2133 reuse
= reuse_swap_page(old_page
);
2136 * The page is all ours. Move it to our anon_vma so
2137 * the rmap code will not search our parent or siblings.
2138 * Protected against the rmap code by the page lock.
2140 page_move_anon_rmap(old_page
, vma
, address
);
2141 unlock_page(old_page
);
2142 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2143 (VM_WRITE
|VM_SHARED
))) {
2145 * Only catch write-faults on shared writable pages,
2146 * read-only shared pages can get COWed by
2147 * get_user_pages(.write=1, .force=1).
2149 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2150 struct vm_fault vmf
;
2153 vmf
.virtual_address
= (void __user
*)(address
&
2155 vmf
.pgoff
= old_page
->index
;
2156 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2157 vmf
.page
= old_page
;
2160 * Notify the address space that the page is about to
2161 * become writable so that it can prohibit this or wait
2162 * for the page to get into an appropriate state.
2164 * We do this without the lock held, so that it can
2165 * sleep if it needs to.
2167 page_cache_get(old_page
);
2168 pte_unmap_unlock(page_table
, ptl
);
2170 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2172 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2174 goto unwritable_page
;
2176 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2177 lock_page(old_page
);
2178 if (!old_page
->mapping
) {
2179 ret
= 0; /* retry the fault */
2180 unlock_page(old_page
);
2181 goto unwritable_page
;
2184 VM_BUG_ON(!PageLocked(old_page
));
2187 * Since we dropped the lock we need to revalidate
2188 * the PTE as someone else may have changed it. If
2189 * they did, we just return, as we can count on the
2190 * MMU to tell us if they didn't also make it writable.
2192 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2194 if (!pte_same(*page_table
, orig_pte
)) {
2195 unlock_page(old_page
);
2196 page_cache_release(old_page
);
2202 dirty_page
= old_page
;
2203 get_page(dirty_page
);
2209 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2210 entry
= pte_mkyoung(orig_pte
);
2211 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2212 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2213 update_mmu_cache(vma
, address
, page_table
);
2214 ret
|= VM_FAULT_WRITE
;
2219 * Ok, we need to copy. Oh, well..
2221 page_cache_get(old_page
);
2223 pte_unmap_unlock(page_table
, ptl
);
2225 if (unlikely(anon_vma_prepare(vma
)))
2228 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2229 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2233 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2236 cow_user_page(new_page
, old_page
, address
, vma
);
2238 __SetPageUptodate(new_page
);
2241 * Don't let another task, with possibly unlocked vma,
2242 * keep the mlocked page.
2244 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2245 lock_page(old_page
); /* for LRU manipulation */
2246 clear_page_mlock(old_page
);
2247 unlock_page(old_page
);
2250 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2254 * Re-check the pte - we dropped the lock
2256 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2257 if (likely(pte_same(*page_table
, orig_pte
))) {
2259 if (!PageAnon(old_page
)) {
2260 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2261 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2264 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2265 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2266 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2267 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2269 * Clear the pte entry and flush it first, before updating the
2270 * pte with the new entry. This will avoid a race condition
2271 * seen in the presence of one thread doing SMC and another
2274 ptep_clear_flush(vma
, address
, page_table
);
2275 page_add_new_anon_rmap(new_page
, vma
, address
);
2277 * We call the notify macro here because, when using secondary
2278 * mmu page tables (such as kvm shadow page tables), we want the
2279 * new page to be mapped directly into the secondary page table.
2281 set_pte_at_notify(mm
, address
, page_table
, entry
);
2282 update_mmu_cache(vma
, address
, page_table
);
2285 * Only after switching the pte to the new page may
2286 * we remove the mapcount here. Otherwise another
2287 * process may come and find the rmap count decremented
2288 * before the pte is switched to the new page, and
2289 * "reuse" the old page writing into it while our pte
2290 * here still points into it and can be read by other
2293 * The critical issue is to order this
2294 * page_remove_rmap with the ptp_clear_flush above.
2295 * Those stores are ordered by (if nothing else,)
2296 * the barrier present in the atomic_add_negative
2297 * in page_remove_rmap.
2299 * Then the TLB flush in ptep_clear_flush ensures that
2300 * no process can access the old page before the
2301 * decremented mapcount is visible. And the old page
2302 * cannot be reused until after the decremented
2303 * mapcount is visible. So transitively, TLBs to
2304 * old page will be flushed before it can be reused.
2306 page_remove_rmap(old_page
);
2309 /* Free the old page.. */
2310 new_page
= old_page
;
2311 ret
|= VM_FAULT_WRITE
;
2313 mem_cgroup_uncharge_page(new_page
);
2316 page_cache_release(new_page
);
2318 page_cache_release(old_page
);
2320 pte_unmap_unlock(page_table
, ptl
);
2323 * Yes, Virginia, this is actually required to prevent a race
2324 * with clear_page_dirty_for_io() from clearing the page dirty
2325 * bit after it clear all dirty ptes, but before a racing
2326 * do_wp_page installs a dirty pte.
2328 * do_no_page is protected similarly.
2330 if (!page_mkwrite
) {
2331 wait_on_page_locked(dirty_page
);
2332 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2334 put_page(dirty_page
);
2336 struct address_space
*mapping
= dirty_page
->mapping
;
2338 set_page_dirty(dirty_page
);
2339 unlock_page(dirty_page
);
2340 page_cache_release(dirty_page
);
2343 * Some device drivers do not set page.mapping
2344 * but still dirty their pages
2346 balance_dirty_pages_ratelimited(mapping
);
2350 /* file_update_time outside page_lock */
2352 file_update_time(vma
->vm_file
);
2356 page_cache_release(new_page
);
2360 unlock_page(old_page
);
2361 page_cache_release(old_page
);
2363 page_cache_release(old_page
);
2365 return VM_FAULT_OOM
;
2368 page_cache_release(old_page
);
2373 * Helper functions for unmap_mapping_range().
2375 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2377 * We have to restart searching the prio_tree whenever we drop the lock,
2378 * since the iterator is only valid while the lock is held, and anyway
2379 * a later vma might be split and reinserted earlier while lock dropped.
2381 * The list of nonlinear vmas could be handled more efficiently, using
2382 * a placeholder, but handle it in the same way until a need is shown.
2383 * It is important to search the prio_tree before nonlinear list: a vma
2384 * may become nonlinear and be shifted from prio_tree to nonlinear list
2385 * while the lock is dropped; but never shifted from list to prio_tree.
2387 * In order to make forward progress despite restarting the search,
2388 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2389 * quickly skip it next time around. Since the prio_tree search only
2390 * shows us those vmas affected by unmapping the range in question, we
2391 * can't efficiently keep all vmas in step with mapping->truncate_count:
2392 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2393 * mapping->truncate_count and vma->vm_truncate_count are protected by
2396 * In order to make forward progress despite repeatedly restarting some
2397 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2398 * and restart from that address when we reach that vma again. It might
2399 * have been split or merged, shrunk or extended, but never shifted: so
2400 * restart_addr remains valid so long as it remains in the vma's range.
2401 * unmap_mapping_range forces truncate_count to leap over page-aligned
2402 * values so we can save vma's restart_addr in its truncate_count field.
2404 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2406 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2408 struct vm_area_struct
*vma
;
2409 struct prio_tree_iter iter
;
2411 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2412 vma
->vm_truncate_count
= 0;
2413 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2414 vma
->vm_truncate_count
= 0;
2417 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2418 unsigned long start_addr
, unsigned long end_addr
,
2419 struct zap_details
*details
)
2421 unsigned long restart_addr
;
2425 * files that support invalidating or truncating portions of the
2426 * file from under mmaped areas must have their ->fault function
2427 * return a locked page (and set VM_FAULT_LOCKED in the return).
2428 * This provides synchronisation against concurrent unmapping here.
2432 restart_addr
= vma
->vm_truncate_count
;
2433 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2434 start_addr
= restart_addr
;
2435 if (start_addr
>= end_addr
) {
2436 /* Top of vma has been split off since last time */
2437 vma
->vm_truncate_count
= details
->truncate_count
;
2442 restart_addr
= zap_page_range(vma
, start_addr
,
2443 end_addr
- start_addr
, details
);
2444 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2446 if (restart_addr
>= end_addr
) {
2447 /* We have now completed this vma: mark it so */
2448 vma
->vm_truncate_count
= details
->truncate_count
;
2452 /* Note restart_addr in vma's truncate_count field */
2453 vma
->vm_truncate_count
= restart_addr
;
2458 spin_unlock(details
->i_mmap_lock
);
2460 spin_lock(details
->i_mmap_lock
);
2464 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2465 struct zap_details
*details
)
2467 struct vm_area_struct
*vma
;
2468 struct prio_tree_iter iter
;
2469 pgoff_t vba
, vea
, zba
, zea
;
2472 vma_prio_tree_foreach(vma
, &iter
, root
,
2473 details
->first_index
, details
->last_index
) {
2474 /* Skip quickly over those we have already dealt with */
2475 if (vma
->vm_truncate_count
== details
->truncate_count
)
2478 vba
= vma
->vm_pgoff
;
2479 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2480 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2481 zba
= details
->first_index
;
2484 zea
= details
->last_index
;
2488 if (unmap_mapping_range_vma(vma
,
2489 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2490 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2496 static inline void unmap_mapping_range_list(struct list_head
*head
,
2497 struct zap_details
*details
)
2499 struct vm_area_struct
*vma
;
2502 * In nonlinear VMAs there is no correspondence between virtual address
2503 * offset and file offset. So we must perform an exhaustive search
2504 * across *all* the pages in each nonlinear VMA, not just the pages
2505 * whose virtual address lies outside the file truncation point.
2508 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2509 /* Skip quickly over those we have already dealt with */
2510 if (vma
->vm_truncate_count
== details
->truncate_count
)
2512 details
->nonlinear_vma
= vma
;
2513 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2514 vma
->vm_end
, details
) < 0)
2520 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2521 * @mapping: the address space containing mmaps to be unmapped.
2522 * @holebegin: byte in first page to unmap, relative to the start of
2523 * the underlying file. This will be rounded down to a PAGE_SIZE
2524 * boundary. Note that this is different from truncate_pagecache(), which
2525 * must keep the partial page. In contrast, we must get rid of
2527 * @holelen: size of prospective hole in bytes. This will be rounded
2528 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2530 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2531 * but 0 when invalidating pagecache, don't throw away private data.
2533 void unmap_mapping_range(struct address_space
*mapping
,
2534 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2536 struct zap_details details
;
2537 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2538 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2540 /* Check for overflow. */
2541 if (sizeof(holelen
) > sizeof(hlen
)) {
2543 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2544 if (holeend
& ~(long long)ULONG_MAX
)
2545 hlen
= ULONG_MAX
- hba
+ 1;
2548 details
.check_mapping
= even_cows
? NULL
: mapping
;
2549 details
.nonlinear_vma
= NULL
;
2550 details
.first_index
= hba
;
2551 details
.last_index
= hba
+ hlen
- 1;
2552 if (details
.last_index
< details
.first_index
)
2553 details
.last_index
= ULONG_MAX
;
2554 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2556 spin_lock(&mapping
->i_mmap_lock
);
2558 /* Protect against endless unmapping loops */
2559 mapping
->truncate_count
++;
2560 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2561 if (mapping
->truncate_count
== 0)
2562 reset_vma_truncate_counts(mapping
);
2563 mapping
->truncate_count
++;
2565 details
.truncate_count
= mapping
->truncate_count
;
2567 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2568 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2569 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2570 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2571 spin_unlock(&mapping
->i_mmap_lock
);
2573 EXPORT_SYMBOL(unmap_mapping_range
);
2575 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2577 struct address_space
*mapping
= inode
->i_mapping
;
2580 * If the underlying filesystem is not going to provide
2581 * a way to truncate a range of blocks (punch a hole) -
2582 * we should return failure right now.
2584 if (!inode
->i_op
->truncate_range
)
2587 mutex_lock(&inode
->i_mutex
);
2588 down_write(&inode
->i_alloc_sem
);
2589 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2590 truncate_inode_pages_range(mapping
, offset
, end
);
2591 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2592 inode
->i_op
->truncate_range(inode
, offset
, end
);
2593 up_write(&inode
->i_alloc_sem
);
2594 mutex_unlock(&inode
->i_mutex
);
2600 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601 * but allow concurrent faults), and pte mapped but not yet locked.
2602 * We return with mmap_sem still held, but pte unmapped and unlocked.
2604 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2605 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2606 unsigned int flags
, pte_t orig_pte
)
2612 struct mem_cgroup
*ptr
= NULL
;
2615 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2618 entry
= pte_to_swp_entry(orig_pte
);
2619 if (unlikely(non_swap_entry(entry
))) {
2620 if (is_migration_entry(entry
)) {
2621 migration_entry_wait(mm
, pmd
, address
);
2622 } else if (is_hwpoison_entry(entry
)) {
2623 ret
= VM_FAULT_HWPOISON
;
2625 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2626 ret
= VM_FAULT_SIGBUS
;
2630 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2631 page
= lookup_swap_cache(entry
);
2633 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2634 page
= swapin_readahead(entry
,
2635 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2638 * Back out if somebody else faulted in this pte
2639 * while we released the pte lock.
2641 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2642 if (likely(pte_same(*page_table
, orig_pte
)))
2644 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2648 /* Had to read the page from swap area: Major fault */
2649 ret
= VM_FAULT_MAJOR
;
2650 count_vm_event(PGMAJFAULT
);
2651 } else if (PageHWPoison(page
)) {
2653 * hwpoisoned dirty swapcache pages are kept for killing
2654 * owner processes (which may be unknown at hwpoison time)
2656 ret
= VM_FAULT_HWPOISON
;
2657 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2662 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2664 page
= ksm_might_need_to_copy(page
, vma
, address
);
2670 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2676 * Back out if somebody else already faulted in this pte.
2678 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2679 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2682 if (unlikely(!PageUptodate(page
))) {
2683 ret
= VM_FAULT_SIGBUS
;
2688 * The page isn't present yet, go ahead with the fault.
2690 * Be careful about the sequence of operations here.
2691 * To get its accounting right, reuse_swap_page() must be called
2692 * while the page is counted on swap but not yet in mapcount i.e.
2693 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2694 * must be called after the swap_free(), or it will never succeed.
2695 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2696 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2697 * in page->private. In this case, a record in swap_cgroup is silently
2698 * discarded at swap_free().
2701 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2702 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2703 pte
= mk_pte(page
, vma
->vm_page_prot
);
2704 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2705 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2706 flags
&= ~FAULT_FLAG_WRITE
;
2708 flush_icache_page(vma
, page
);
2709 set_pte_at(mm
, address
, page_table
, pte
);
2710 page_add_anon_rmap(page
, vma
, address
);
2711 /* It's better to call commit-charge after rmap is established */
2712 mem_cgroup_commit_charge_swapin(page
, ptr
);
2715 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2716 try_to_free_swap(page
);
2719 if (flags
& FAULT_FLAG_WRITE
) {
2720 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2721 if (ret
& VM_FAULT_ERROR
)
2722 ret
&= VM_FAULT_ERROR
;
2726 /* No need to invalidate - it was non-present before */
2727 update_mmu_cache(vma
, address
, page_table
);
2729 pte_unmap_unlock(page_table
, ptl
);
2733 mem_cgroup_cancel_charge_swapin(ptr
);
2734 pte_unmap_unlock(page_table
, ptl
);
2738 page_cache_release(page
);
2743 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2744 * but allow concurrent faults), and pte mapped but not yet locked.
2745 * We return with mmap_sem still held, but pte unmapped and unlocked.
2747 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2748 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2755 if (!(flags
& FAULT_FLAG_WRITE
)) {
2756 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2757 vma
->vm_page_prot
));
2758 ptl
= pte_lockptr(mm
, pmd
);
2760 if (!pte_none(*page_table
))
2765 /* Allocate our own private page. */
2766 pte_unmap(page_table
);
2768 if (unlikely(anon_vma_prepare(vma
)))
2770 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2773 __SetPageUptodate(page
);
2775 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2778 entry
= mk_pte(page
, vma
->vm_page_prot
);
2779 if (vma
->vm_flags
& VM_WRITE
)
2780 entry
= pte_mkwrite(pte_mkdirty(entry
));
2782 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2783 if (!pte_none(*page_table
))
2786 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2787 page_add_new_anon_rmap(page
, vma
, address
);
2789 set_pte_at(mm
, address
, page_table
, entry
);
2791 /* No need to invalidate - it was non-present before */
2792 update_mmu_cache(vma
, address
, page_table
);
2794 pte_unmap_unlock(page_table
, ptl
);
2797 mem_cgroup_uncharge_page(page
);
2798 page_cache_release(page
);
2801 page_cache_release(page
);
2803 return VM_FAULT_OOM
;
2807 * __do_fault() tries to create a new page mapping. It aggressively
2808 * tries to share with existing pages, but makes a separate copy if
2809 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2810 * the next page fault.
2812 * As this is called only for pages that do not currently exist, we
2813 * do not need to flush old virtual caches or the TLB.
2815 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2816 * but allow concurrent faults), and pte neither mapped nor locked.
2817 * We return with mmap_sem still held, but pte unmapped and unlocked.
2819 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2820 unsigned long address
, pmd_t
*pmd
,
2821 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2829 struct page
*dirty_page
= NULL
;
2830 struct vm_fault vmf
;
2832 int page_mkwrite
= 0;
2834 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2839 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2840 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2843 if (unlikely(PageHWPoison(vmf
.page
))) {
2844 if (ret
& VM_FAULT_LOCKED
)
2845 unlock_page(vmf
.page
);
2846 return VM_FAULT_HWPOISON
;
2850 * For consistency in subsequent calls, make the faulted page always
2853 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2854 lock_page(vmf
.page
);
2856 VM_BUG_ON(!PageLocked(vmf
.page
));
2859 * Should we do an early C-O-W break?
2862 if (flags
& FAULT_FLAG_WRITE
) {
2863 if (!(vma
->vm_flags
& VM_SHARED
)) {
2865 if (unlikely(anon_vma_prepare(vma
))) {
2869 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2875 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2877 page_cache_release(page
);
2882 * Don't let another task, with possibly unlocked vma,
2883 * keep the mlocked page.
2885 if (vma
->vm_flags
& VM_LOCKED
)
2886 clear_page_mlock(vmf
.page
);
2887 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2888 __SetPageUptodate(page
);
2891 * If the page will be shareable, see if the backing
2892 * address space wants to know that the page is about
2893 * to become writable
2895 if (vma
->vm_ops
->page_mkwrite
) {
2899 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2900 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2902 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2904 goto unwritable_page
;
2906 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2908 if (!page
->mapping
) {
2909 ret
= 0; /* retry the fault */
2911 goto unwritable_page
;
2914 VM_BUG_ON(!PageLocked(page
));
2921 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2924 * This silly early PAGE_DIRTY setting removes a race
2925 * due to the bad i386 page protection. But it's valid
2926 * for other architectures too.
2928 * Note that if FAULT_FLAG_WRITE is set, we either now have
2929 * an exclusive copy of the page, or this is a shared mapping,
2930 * so we can make it writable and dirty to avoid having to
2931 * handle that later.
2933 /* Only go through if we didn't race with anybody else... */
2934 if (likely(pte_same(*page_table
, orig_pte
))) {
2935 flush_icache_page(vma
, page
);
2936 entry
= mk_pte(page
, vma
->vm_page_prot
);
2937 if (flags
& FAULT_FLAG_WRITE
)
2938 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2940 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2941 page_add_new_anon_rmap(page
, vma
, address
);
2943 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2944 page_add_file_rmap(page
);
2945 if (flags
& FAULT_FLAG_WRITE
) {
2947 get_page(dirty_page
);
2950 set_pte_at(mm
, address
, page_table
, entry
);
2952 /* no need to invalidate: a not-present page won't be cached */
2953 update_mmu_cache(vma
, address
, page_table
);
2956 mem_cgroup_uncharge_page(page
);
2958 page_cache_release(page
);
2960 anon
= 1; /* no anon but release faulted_page */
2963 pte_unmap_unlock(page_table
, ptl
);
2967 struct address_space
*mapping
= page
->mapping
;
2969 if (set_page_dirty(dirty_page
))
2971 unlock_page(dirty_page
);
2972 put_page(dirty_page
);
2973 if (page_mkwrite
&& mapping
) {
2975 * Some device drivers do not set page.mapping but still
2978 balance_dirty_pages_ratelimited(mapping
);
2981 /* file_update_time outside page_lock */
2983 file_update_time(vma
->vm_file
);
2985 unlock_page(vmf
.page
);
2987 page_cache_release(vmf
.page
);
2993 page_cache_release(page
);
2997 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2998 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2999 unsigned int flags
, pte_t orig_pte
)
3001 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3002 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3004 pte_unmap(page_table
);
3005 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3009 * Fault of a previously existing named mapping. Repopulate the pte
3010 * from the encoded file_pte if possible. This enables swappable
3013 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3014 * but allow concurrent faults), and pte mapped but not yet locked.
3015 * We return with mmap_sem still held, but pte unmapped and unlocked.
3017 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3018 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3019 unsigned int flags
, pte_t orig_pte
)
3023 flags
|= FAULT_FLAG_NONLINEAR
;
3025 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3028 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3030 * Page table corrupted: show pte and kill process.
3032 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3033 return VM_FAULT_SIGBUS
;
3036 pgoff
= pte_to_pgoff(orig_pte
);
3037 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3041 * These routines also need to handle stuff like marking pages dirty
3042 * and/or accessed for architectures that don't do it in hardware (most
3043 * RISC architectures). The early dirtying is also good on the i386.
3045 * There is also a hook called "update_mmu_cache()" that architectures
3046 * with external mmu caches can use to update those (ie the Sparc or
3047 * PowerPC hashed page tables that act as extended TLBs).
3049 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3050 * but allow concurrent faults), and pte mapped but not yet locked.
3051 * We return with mmap_sem still held, but pte unmapped and unlocked.
3053 static inline int handle_pte_fault(struct mm_struct
*mm
,
3054 struct vm_area_struct
*vma
, unsigned long address
,
3055 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3061 if (!pte_present(entry
)) {
3062 if (pte_none(entry
)) {
3064 if (likely(vma
->vm_ops
->fault
))
3065 return do_linear_fault(mm
, vma
, address
,
3066 pte
, pmd
, flags
, entry
);
3068 return do_anonymous_page(mm
, vma
, address
,
3071 if (pte_file(entry
))
3072 return do_nonlinear_fault(mm
, vma
, address
,
3073 pte
, pmd
, flags
, entry
);
3074 return do_swap_page(mm
, vma
, address
,
3075 pte
, pmd
, flags
, entry
);
3078 ptl
= pte_lockptr(mm
, pmd
);
3080 if (unlikely(!pte_same(*pte
, entry
)))
3082 if (flags
& FAULT_FLAG_WRITE
) {
3083 if (!pte_write(entry
))
3084 return do_wp_page(mm
, vma
, address
,
3085 pte
, pmd
, ptl
, entry
);
3086 entry
= pte_mkdirty(entry
);
3088 entry
= pte_mkyoung(entry
);
3089 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3090 update_mmu_cache(vma
, address
, pte
);
3093 * This is needed only for protection faults but the arch code
3094 * is not yet telling us if this is a protection fault or not.
3095 * This still avoids useless tlb flushes for .text page faults
3098 if (flags
& FAULT_FLAG_WRITE
)
3099 flush_tlb_page(vma
, address
);
3102 pte_unmap_unlock(pte
, ptl
);
3107 * By the time we get here, we already hold the mm semaphore
3109 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3110 unsigned long address
, unsigned int flags
)
3117 __set_current_state(TASK_RUNNING
);
3119 count_vm_event(PGFAULT
);
3121 /* do counter updates before entering really critical section. */
3122 check_sync_rss_stat(current
);
3124 if (unlikely(is_vm_hugetlb_page(vma
)))
3125 return hugetlb_fault(mm
, vma
, address
, flags
);
3127 pgd
= pgd_offset(mm
, address
);
3128 pud
= pud_alloc(mm
, pgd
, address
);
3130 return VM_FAULT_OOM
;
3131 pmd
= pmd_alloc(mm
, pud
, address
);
3133 return VM_FAULT_OOM
;
3134 pte
= pte_alloc_map(mm
, pmd
, address
);
3136 return VM_FAULT_OOM
;
3138 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3141 #ifndef __PAGETABLE_PUD_FOLDED
3143 * Allocate page upper directory.
3144 * We've already handled the fast-path in-line.
3146 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3148 pud_t
*new = pud_alloc_one(mm
, address
);
3152 smp_wmb(); /* See comment in __pte_alloc */
3154 spin_lock(&mm
->page_table_lock
);
3155 if (pgd_present(*pgd
)) /* Another has populated it */
3158 pgd_populate(mm
, pgd
, new);
3159 spin_unlock(&mm
->page_table_lock
);
3162 #endif /* __PAGETABLE_PUD_FOLDED */
3164 #ifndef __PAGETABLE_PMD_FOLDED
3166 * Allocate page middle directory.
3167 * We've already handled the fast-path in-line.
3169 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3171 pmd_t
*new = pmd_alloc_one(mm
, address
);
3175 smp_wmb(); /* See comment in __pte_alloc */
3177 spin_lock(&mm
->page_table_lock
);
3178 #ifndef __ARCH_HAS_4LEVEL_HACK
3179 if (pud_present(*pud
)) /* Another has populated it */
3182 pud_populate(mm
, pud
, new);
3184 if (pgd_present(*pud
)) /* Another has populated it */
3187 pgd_populate(mm
, pud
, new);
3188 #endif /* __ARCH_HAS_4LEVEL_HACK */
3189 spin_unlock(&mm
->page_table_lock
);
3192 #endif /* __PAGETABLE_PMD_FOLDED */
3194 int make_pages_present(unsigned long addr
, unsigned long end
)
3196 int ret
, len
, write
;
3197 struct vm_area_struct
* vma
;
3199 vma
= find_vma(current
->mm
, addr
);
3202 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3203 BUG_ON(addr
>= end
);
3204 BUG_ON(end
> vma
->vm_end
);
3205 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3206 ret
= get_user_pages(current
, current
->mm
, addr
,
3207 len
, write
, 0, NULL
, NULL
);
3210 return ret
== len
? 0 : -EFAULT
;
3213 #if !defined(__HAVE_ARCH_GATE_AREA)
3215 #if defined(AT_SYSINFO_EHDR)
3216 static struct vm_area_struct gate_vma
;
3218 static int __init
gate_vma_init(void)
3220 gate_vma
.vm_mm
= NULL
;
3221 gate_vma
.vm_start
= FIXADDR_USER_START
;
3222 gate_vma
.vm_end
= FIXADDR_USER_END
;
3223 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3224 gate_vma
.vm_page_prot
= __P101
;
3226 * Make sure the vDSO gets into every core dump.
3227 * Dumping its contents makes post-mortem fully interpretable later
3228 * without matching up the same kernel and hardware config to see
3229 * what PC values meant.
3231 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3234 __initcall(gate_vma_init
);
3237 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3239 #ifdef AT_SYSINFO_EHDR
3246 int in_gate_area_no_task(unsigned long addr
)
3248 #ifdef AT_SYSINFO_EHDR
3249 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3255 #endif /* __HAVE_ARCH_GATE_AREA */
3257 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3258 pte_t
**ptepp
, spinlock_t
**ptlp
)
3265 pgd
= pgd_offset(mm
, address
);
3266 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3269 pud
= pud_offset(pgd
, address
);
3270 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3273 pmd
= pmd_offset(pud
, address
);
3274 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3277 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3281 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3284 if (!pte_present(*ptep
))
3289 pte_unmap_unlock(ptep
, *ptlp
);
3295 * follow_pfn - look up PFN at a user virtual address
3296 * @vma: memory mapping
3297 * @address: user virtual address
3298 * @pfn: location to store found PFN
3300 * Only IO mappings and raw PFN mappings are allowed.
3302 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3304 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3311 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3314 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3317 *pfn
= pte_pfn(*ptep
);
3318 pte_unmap_unlock(ptep
, ptl
);
3321 EXPORT_SYMBOL(follow_pfn
);
3323 #ifdef CONFIG_HAVE_IOREMAP_PROT
3324 int follow_phys(struct vm_area_struct
*vma
,
3325 unsigned long address
, unsigned int flags
,
3326 unsigned long *prot
, resource_size_t
*phys
)
3332 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3335 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3339 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3342 *prot
= pgprot_val(pte_pgprot(pte
));
3343 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3347 pte_unmap_unlock(ptep
, ptl
);
3352 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3353 void *buf
, int len
, int write
)
3355 resource_size_t phys_addr
;
3356 unsigned long prot
= 0;
3357 void __iomem
*maddr
;
3358 int offset
= addr
& (PAGE_SIZE
-1);
3360 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3363 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3365 memcpy_toio(maddr
+ offset
, buf
, len
);
3367 memcpy_fromio(buf
, maddr
+ offset
, len
);
3375 * Access another process' address space.
3376 * Source/target buffer must be kernel space,
3377 * Do not walk the page table directly, use get_user_pages
3379 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3381 struct mm_struct
*mm
;
3382 struct vm_area_struct
*vma
;
3383 void *old_buf
= buf
;
3385 mm
= get_task_mm(tsk
);
3389 down_read(&mm
->mmap_sem
);
3390 /* ignore errors, just check how much was successfully transferred */
3392 int bytes
, ret
, offset
;
3394 struct page
*page
= NULL
;
3396 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3397 write
, 1, &page
, &vma
);
3400 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3401 * we can access using slightly different code.
3403 #ifdef CONFIG_HAVE_IOREMAP_PROT
3404 vma
= find_vma(mm
, addr
);
3407 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3408 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3416 offset
= addr
& (PAGE_SIZE
-1);
3417 if (bytes
> PAGE_SIZE
-offset
)
3418 bytes
= PAGE_SIZE
-offset
;
3422 copy_to_user_page(vma
, page
, addr
,
3423 maddr
+ offset
, buf
, bytes
);
3424 set_page_dirty_lock(page
);
3426 copy_from_user_page(vma
, page
, addr
,
3427 buf
, maddr
+ offset
, bytes
);
3430 page_cache_release(page
);
3436 up_read(&mm
->mmap_sem
);
3439 return buf
- old_buf
;
3443 * Print the name of a VMA.
3445 void print_vma_addr(char *prefix
, unsigned long ip
)
3447 struct mm_struct
*mm
= current
->mm
;
3448 struct vm_area_struct
*vma
;
3451 * Do not print if we are in atomic
3452 * contexts (in exception stacks, etc.):
3454 if (preempt_count())
3457 down_read(&mm
->mmap_sem
);
3458 vma
= find_vma(mm
, ip
);
3459 if (vma
&& vma
->vm_file
) {
3460 struct file
*f
= vma
->vm_file
;
3461 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3465 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3468 s
= strrchr(p
, '/');
3471 printk("%s%s[%lx+%lx]", prefix
, p
,
3473 vma
->vm_end
- vma
->vm_start
);
3474 free_page((unsigned long)buf
);
3477 up_read(¤t
->mm
->mmap_sem
);
3480 #ifdef CONFIG_PROVE_LOCKING
3481 void might_fault(void)
3484 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3485 * holding the mmap_sem, this is safe because kernel memory doesn't
3486 * get paged out, therefore we'll never actually fault, and the
3487 * below annotations will generate false positives.
3489 if (segment_eq(get_fs(), KERNEL_DS
))
3494 * it would be nicer only to annotate paths which are not under
3495 * pagefault_disable, however that requires a larger audit and
3496 * providing helpers like get_user_atomic.
3498 if (!in_atomic() && current
->mm
)
3499 might_lock_read(¤t
->mm
->mmap_sem
);
3501 EXPORT_SYMBOL(might_fault
);