2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
104 SGP_READ
, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE
, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE
, /* may exceed i_size, may allocate page */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages
/ 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
122 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
123 struct page
**pagep
, enum sgp_type sgp
, int *type
);
125 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
135 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
138 static inline void shmem_dir_free(struct page
*page
)
140 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
143 static struct page
**shmem_dir_map(struct page
*page
)
145 return (struct page
**)kmap_atomic(page
, KM_USER0
);
148 static inline void shmem_dir_unmap(struct page
**dir
)
150 kunmap_atomic(dir
, KM_USER0
);
153 static swp_entry_t
*shmem_swp_map(struct page
*page
)
155 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
170 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
172 kunmap_atomic(entry
, KM_USER1
);
175 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
177 return sb
->s_fs_info
;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
188 return (flags
& VM_NORESERVE
) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
192 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
194 if (!(flags
& VM_NORESERVE
))
195 vm_unacct_memory(VM_ACCT(size
));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags
)
206 return (flags
& VM_NORESERVE
) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
212 if (flags
& VM_NORESERVE
)
213 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
216 static const struct super_operations shmem_ops
;
217 static const struct address_space_operations shmem_aops
;
218 static const struct file_operations shmem_file_operations
;
219 static const struct inode_operations shmem_inode_operations
;
220 static const struct inode_operations shmem_dir_inode_operations
;
221 static const struct inode_operations shmem_special_inode_operations
;
222 static const struct vm_operations_struct shmem_vm_ops
;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
225 .ra_pages
= 0, /* No readahead */
226 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
229 static LIST_HEAD(shmem_swaplist
);
230 static DEFINE_MUTEX(shmem_swaplist_mutex
);
232 static void shmem_free_blocks(struct inode
*inode
, long pages
)
234 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
235 if (sbinfo
->max_blocks
) {
236 percpu_counter_add(&sbinfo
->used_blocks
, -pages
);
237 spin_lock(&inode
->i_lock
);
238 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
239 spin_unlock(&inode
->i_lock
);
243 static int shmem_reserve_inode(struct super_block
*sb
)
245 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
246 if (sbinfo
->max_inodes
) {
247 spin_lock(&sbinfo
->stat_lock
);
248 if (!sbinfo
->free_inodes
) {
249 spin_unlock(&sbinfo
->stat_lock
);
252 sbinfo
->free_inodes
--;
253 spin_unlock(&sbinfo
->stat_lock
);
258 static void shmem_free_inode(struct super_block
*sb
)
260 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
261 if (sbinfo
->max_inodes
) {
262 spin_lock(&sbinfo
->stat_lock
);
263 sbinfo
->free_inodes
++;
264 spin_unlock(&sbinfo
->stat_lock
);
269 * shmem_recalc_inode - recalculate the size of an inode
270 * @inode: inode to recalc
272 * We have to calculate the free blocks since the mm can drop
273 * undirtied hole pages behind our back.
275 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
276 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 * It has to be called with the spinlock held.
280 static void shmem_recalc_inode(struct inode
*inode
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
285 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
287 info
->alloced
-= freed
;
288 shmem_unacct_blocks(info
->flags
, freed
);
289 shmem_free_blocks(inode
, freed
);
294 * shmem_swp_entry - find the swap vector position in the info structure
295 * @info: info structure for the inode
296 * @index: index of the page to find
297 * @page: optional page to add to the structure. Has to be preset to
300 * If there is no space allocated yet it will return NULL when
301 * page is NULL, else it will use the page for the needed block,
302 * setting it to NULL on return to indicate that it has been used.
304 * The swap vector is organized the following way:
306 * There are SHMEM_NR_DIRECT entries directly stored in the
307 * shmem_inode_info structure. So small files do not need an addional
310 * For pages with index > SHMEM_NR_DIRECT there is the pointer
311 * i_indirect which points to a page which holds in the first half
312 * doubly indirect blocks, in the second half triple indirect blocks:
314 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
315 * following layout (for SHMEM_NR_DIRECT == 16):
317 * i_indirect -> dir --> 16-19
330 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
332 unsigned long offset
;
336 if (index
< SHMEM_NR_DIRECT
) {
337 shmem_swp_balance_unmap();
338 return info
->i_direct
+index
;
340 if (!info
->i_indirect
) {
342 info
->i_indirect
= *page
;
345 return NULL
; /* need another page */
348 index
-= SHMEM_NR_DIRECT
;
349 offset
= index
% ENTRIES_PER_PAGE
;
350 index
/= ENTRIES_PER_PAGE
;
351 dir
= shmem_dir_map(info
->i_indirect
);
353 if (index
>= ENTRIES_PER_PAGE
/2) {
354 index
-= ENTRIES_PER_PAGE
/2;
355 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
356 index
%= ENTRIES_PER_PAGE
;
363 shmem_dir_unmap(dir
);
364 return NULL
; /* need another page */
366 shmem_dir_unmap(dir
);
367 dir
= shmem_dir_map(subdir
);
373 if (!page
|| !(subdir
= *page
)) {
374 shmem_dir_unmap(dir
);
375 return NULL
; /* need a page */
380 shmem_dir_unmap(dir
);
381 return shmem_swp_map(subdir
) + offset
;
384 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
386 long incdec
= value
? 1: -1;
389 info
->swapped
+= incdec
;
390 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
391 struct page
*page
= kmap_atomic_to_page(entry
);
392 set_page_private(page
, page_private(page
) + incdec
);
397 * shmem_swp_alloc - get the position of the swap entry for the page.
398 * @info: info structure for the inode
399 * @index: index of the page to find
400 * @sgp: check and recheck i_size? skip allocation?
402 * If the entry does not exist, allocate it.
404 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
406 struct inode
*inode
= &info
->vfs_inode
;
407 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
408 struct page
*page
= NULL
;
411 if (sgp
!= SGP_WRITE
&&
412 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
413 return ERR_PTR(-EINVAL
);
415 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
417 return shmem_swp_map(ZERO_PAGE(0));
419 * Test used_blocks against 1 less max_blocks, since we have 1 data
420 * page (and perhaps indirect index pages) yet to allocate:
421 * a waste to allocate index if we cannot allocate data.
423 if (sbinfo
->max_blocks
) {
424 if (percpu_counter_compare(&sbinfo
->used_blocks
,
425 sbinfo
->max_blocks
- 1) >= 0)
426 return ERR_PTR(-ENOSPC
);
427 percpu_counter_inc(&sbinfo
->used_blocks
);
428 spin_lock(&inode
->i_lock
);
429 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
430 spin_unlock(&inode
->i_lock
);
433 spin_unlock(&info
->lock
);
434 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
435 spin_lock(&info
->lock
);
438 shmem_free_blocks(inode
, 1);
439 return ERR_PTR(-ENOMEM
);
441 if (sgp
!= SGP_WRITE
&&
442 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
443 entry
= ERR_PTR(-EINVAL
);
446 if (info
->next_index
<= index
)
447 info
->next_index
= index
+ 1;
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode
, 1);
452 shmem_dir_free(page
);
454 if (info
->next_index
<= index
&& !IS_ERR(entry
))
455 info
->next_index
= index
+ 1;
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
466 spinlock_t
*punch_lock
)
468 spinlock_t
*punch_unlock
= NULL
;
472 for (ptr
= dir
; ptr
< edir
; ptr
++) {
474 if (unlikely(punch_lock
)) {
475 punch_unlock
= punch_lock
;
477 spin_lock(punch_unlock
);
481 free_swap_and_cache(*ptr
);
482 *ptr
= (swp_entry_t
){0};
487 spin_unlock(punch_unlock
);
491 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
492 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
497 ptr
= shmem_swp_map(subdir
);
498 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
499 int size
= limit
- offset
;
500 if (size
> LATENCY_LIMIT
)
501 size
= LATENCY_LIMIT
;
502 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
504 if (need_resched()) {
505 shmem_swp_unmap(ptr
);
507 shmem_dir_unmap(*dir
);
511 ptr
= shmem_swp_map(subdir
);
514 shmem_swp_unmap(ptr
);
518 static void shmem_free_pages(struct list_head
*next
)
524 page
= container_of(next
, struct page
, lru
);
526 shmem_dir_free(page
);
528 if (freed
>= LATENCY_LIMIT
) {
535 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
537 struct shmem_inode_info
*info
= SHMEM_I(inode
);
542 unsigned long diroff
;
548 LIST_HEAD(pages_to_free
);
549 long nr_pages_to_free
= 0;
550 long nr_swaps_freed
= 0;
554 spinlock_t
*needs_lock
;
555 spinlock_t
*punch_lock
;
556 unsigned long upper_limit
;
558 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
559 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
560 if (idx
>= info
->next_index
)
563 spin_lock(&info
->lock
);
564 info
->flags
|= SHMEM_TRUNCATE
;
565 if (likely(end
== (loff_t
) -1)) {
566 limit
= info
->next_index
;
567 upper_limit
= SHMEM_MAX_INDEX
;
568 info
->next_index
= idx
;
572 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
573 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
575 upper_limit
= SHMEM_MAX_INDEX
;
577 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
580 needs_lock
= &info
->lock
;
584 topdir
= info
->i_indirect
;
585 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
586 info
->i_indirect
= NULL
;
588 list_add(&topdir
->lru
, &pages_to_free
);
590 spin_unlock(&info
->lock
);
592 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
593 ptr
= info
->i_direct
;
595 if (size
> SHMEM_NR_DIRECT
)
596 size
= SHMEM_NR_DIRECT
;
597 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
604 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
620 upper_limit
-= SHMEM_NR_DIRECT
;
621 limit
-= SHMEM_NR_DIRECT
;
622 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
623 offset
= idx
% ENTRIES_PER_PAGE
;
626 dir
= shmem_dir_map(topdir
);
627 stage
= ENTRIES_PER_PAGEPAGE
/2;
628 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
630 diroff
= idx
/ENTRIES_PER_PAGE
;
632 dir
+= ENTRIES_PER_PAGE
/2;
633 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
635 stage
+= ENTRIES_PER_PAGEPAGE
;
638 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
639 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
640 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
642 spin_lock(needs_lock
);
644 spin_unlock(needs_lock
);
649 list_add(&middir
->lru
, &pages_to_free
);
651 shmem_dir_unmap(dir
);
652 dir
= shmem_dir_map(middir
);
660 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
661 if (unlikely(idx
== stage
)) {
662 shmem_dir_unmap(dir
);
663 dir
= shmem_dir_map(topdir
) +
664 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
667 idx
+= ENTRIES_PER_PAGEPAGE
;
671 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
674 needs_lock
= &info
->lock
;
675 if (upper_limit
>= stage
) {
677 spin_lock(needs_lock
);
679 spin_unlock(needs_lock
);
684 list_add(&middir
->lru
, &pages_to_free
);
686 shmem_dir_unmap(dir
);
688 dir
= shmem_dir_map(middir
);
691 punch_lock
= needs_lock
;
692 subdir
= dir
[diroff
];
693 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
695 spin_lock(needs_lock
);
697 spin_unlock(needs_lock
);
702 list_add(&subdir
->lru
, &pages_to_free
);
704 if (subdir
&& page_private(subdir
) /* has swap entries */) {
706 if (size
> ENTRIES_PER_PAGE
)
707 size
= ENTRIES_PER_PAGE
;
708 freed
= shmem_map_and_free_swp(subdir
,
709 offset
, size
, &dir
, punch_lock
);
711 dir
= shmem_dir_map(middir
);
712 nr_swaps_freed
+= freed
;
713 if (offset
|| punch_lock
) {
714 spin_lock(&info
->lock
);
715 set_page_private(subdir
,
716 page_private(subdir
) - freed
);
717 spin_unlock(&info
->lock
);
719 BUG_ON(page_private(subdir
) != freed
);
724 shmem_dir_unmap(dir
);
726 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
740 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
742 unmap_mapping_range(inode
->i_mapping
, start
,
746 spin_lock(&info
->lock
);
747 info
->flags
&= ~SHMEM_TRUNCATE
;
748 info
->swapped
-= nr_swaps_freed
;
749 if (nr_pages_to_free
)
750 shmem_free_blocks(inode
, nr_pages_to_free
);
751 shmem_recalc_inode(inode
);
752 spin_unlock(&info
->lock
);
755 * Empty swap vector directory pages to be freed?
757 if (!list_empty(&pages_to_free
)) {
758 pages_to_free
.prev
->next
= NULL
;
759 shmem_free_pages(pages_to_free
.next
);
763 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
765 struct inode
*inode
= dentry
->d_inode
;
766 loff_t newsize
= attr
->ia_size
;
769 error
= inode_change_ok(inode
, attr
);
773 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)
774 && newsize
!= inode
->i_size
) {
775 struct page
*page
= NULL
;
777 if (newsize
< inode
->i_size
) {
779 * If truncating down to a partial page, then
780 * if that page is already allocated, hold it
781 * in memory until the truncation is over, so
782 * truncate_partial_page cannot miss it were
783 * it assigned to swap.
785 if (newsize
& (PAGE_CACHE_SIZE
-1)) {
786 (void) shmem_getpage(inode
,
787 newsize
>> PAGE_CACHE_SHIFT
,
788 &page
, SGP_READ
, NULL
);
793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 * detect if any pages might have been added to cache
795 * after truncate_inode_pages. But we needn't bother
796 * if it's being fully truncated to zero-length: the
797 * nrpages check is efficient enough in that case.
800 struct shmem_inode_info
*info
= SHMEM_I(inode
);
801 spin_lock(&info
->lock
);
802 info
->flags
&= ~SHMEM_PAGEIN
;
803 spin_unlock(&info
->lock
);
807 /* XXX(truncate): truncate_setsize should be called last */
808 truncate_setsize(inode
, newsize
);
810 page_cache_release(page
);
811 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
814 setattr_copy(inode
, attr
);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 if (attr
->ia_valid
& ATTR_MODE
)
817 error
= generic_acl_chmod(inode
);
822 static void shmem_evict_inode(struct inode
*inode
)
824 struct shmem_inode_info
*info
= SHMEM_I(inode
);
826 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
827 truncate_inode_pages(inode
->i_mapping
, 0);
828 shmem_unacct_size(info
->flags
, inode
->i_size
);
830 shmem_truncate_range(inode
, 0, (loff_t
)-1);
831 if (!list_empty(&info
->swaplist
)) {
832 mutex_lock(&shmem_swaplist_mutex
);
833 list_del_init(&info
->swaplist
);
834 mutex_unlock(&shmem_swaplist_mutex
);
837 BUG_ON(inode
->i_blocks
);
838 shmem_free_inode(inode
->i_sb
);
839 end_writeback(inode
);
842 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
846 for (ptr
= dir
; ptr
< edir
; ptr
++) {
847 if (ptr
->val
== entry
.val
)
853 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
855 struct address_space
*mapping
;
867 ptr
= info
->i_direct
;
868 spin_lock(&info
->lock
);
869 if (!info
->swapped
) {
870 list_del_init(&info
->swaplist
);
873 limit
= info
->next_index
;
875 if (size
> SHMEM_NR_DIRECT
)
876 size
= SHMEM_NR_DIRECT
;
877 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
879 shmem_swp_balance_unmap();
882 if (!info
->i_indirect
)
885 dir
= shmem_dir_map(info
->i_indirect
);
886 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
888 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
889 if (unlikely(idx
== stage
)) {
890 shmem_dir_unmap(dir
-1);
891 if (cond_resched_lock(&info
->lock
)) {
892 /* check it has not been truncated */
893 if (limit
> info
->next_index
) {
894 limit
= info
->next_index
;
899 dir
= shmem_dir_map(info
->i_indirect
) +
900 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
903 idx
+= ENTRIES_PER_PAGEPAGE
;
907 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
909 shmem_dir_unmap(dir
);
910 dir
= shmem_dir_map(subdir
);
913 if (subdir
&& page_private(subdir
)) {
914 ptr
= shmem_swp_map(subdir
);
916 if (size
> ENTRIES_PER_PAGE
)
917 size
= ENTRIES_PER_PAGE
;
918 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
920 shmem_dir_unmap(dir
);
923 shmem_swp_unmap(ptr
);
927 shmem_dir_unmap(dir
-1);
929 spin_unlock(&info
->lock
);
936 * Move _head_ to start search for next from here.
937 * But be careful: shmem_evict_inode checks list_empty without taking
938 * mutex, and there's an instant in list_move_tail when info->swaplist
939 * would appear empty, if it were the only one on shmem_swaplist. We
940 * could avoid doing it if inode NULL; or use this minor optimization.
942 if (shmem_swaplist
.next
!= &info
->swaplist
)
943 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
946 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
947 * but also to hold up shmem_evict_inode(): so inode cannot be freed
948 * beneath us (pagelock doesn't help until the page is in pagecache).
950 mapping
= info
->vfs_inode
.i_mapping
;
951 error
= add_to_page_cache_locked(page
, mapping
, idx
, GFP_NOWAIT
);
952 /* which does mem_cgroup_uncharge_cache_page on error */
954 if (error
== -EEXIST
) {
955 struct page
*filepage
= find_get_page(mapping
, idx
);
959 * There might be a more uptodate page coming down
960 * from a stacked writepage: forget our swappage if so.
962 if (PageUptodate(filepage
))
964 page_cache_release(filepage
);
968 delete_from_swap_cache(page
);
969 set_page_dirty(page
);
970 info
->flags
|= SHMEM_PAGEIN
;
971 shmem_swp_set(info
, ptr
, 0);
973 error
= 1; /* not an error, but entry was found */
975 shmem_swp_unmap(ptr
);
976 spin_unlock(&info
->lock
);
981 * shmem_unuse() search for an eventually swapped out shmem page.
983 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
985 struct list_head
*p
, *next
;
986 struct shmem_inode_info
*info
;
991 * Charge page using GFP_KERNEL while we can wait, before taking
992 * the shmem_swaplist_mutex which might hold up shmem_writepage().
993 * Charged back to the user (not to caller) when swap account is used.
994 * add_to_page_cache() will be called with GFP_NOWAIT.
996 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
1000 * Try to preload while we can wait, to not make a habit of
1001 * draining atomic reserves; but don't latch on to this cpu,
1002 * it's okay if sometimes we get rescheduled after this.
1004 error
= radix_tree_preload(GFP_KERNEL
);
1007 radix_tree_preload_end();
1009 mutex_lock(&shmem_swaplist_mutex
);
1010 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1011 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1012 found
= shmem_unuse_inode(info
, entry
, page
);
1017 mutex_unlock(&shmem_swaplist_mutex
);
1021 mem_cgroup_uncharge_cache_page(page
);
1026 page_cache_release(page
);
1031 * Move the page from the page cache to the swap cache.
1033 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1035 struct shmem_inode_info
*info
;
1036 swp_entry_t
*entry
, swap
;
1037 struct address_space
*mapping
;
1038 unsigned long index
;
1039 struct inode
*inode
;
1041 BUG_ON(!PageLocked(page
));
1042 mapping
= page
->mapping
;
1043 index
= page
->index
;
1044 inode
= mapping
->host
;
1045 info
= SHMEM_I(inode
);
1046 if (info
->flags
& VM_LOCKED
)
1048 if (!total_swap_pages
)
1052 * shmem_backing_dev_info's capabilities prevent regular writeback or
1053 * sync from ever calling shmem_writepage; but a stacking filesystem
1054 * may use the ->writepage of its underlying filesystem, in which case
1055 * tmpfs should write out to swap only in response to memory pressure,
1056 * and not for the writeback threads or sync. However, in those cases,
1057 * we do still want to check if there's a redundant swappage to be
1060 if (wbc
->for_reclaim
)
1061 swap
= get_swap_page();
1066 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1067 * if it's not already there. Do it now because we cannot take
1068 * mutex while holding spinlock, and must do so before the page
1069 * is moved to swap cache, when its pagelock no longer protects
1070 * the inode from eviction. But don't unlock the mutex until
1071 * we've taken the spinlock, because shmem_unuse_inode() will
1072 * prune a !swapped inode from the swaplist under both locks.
1075 mutex_lock(&shmem_swaplist_mutex
);
1076 if (list_empty(&info
->swaplist
))
1077 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1080 spin_lock(&info
->lock
);
1082 mutex_unlock(&shmem_swaplist_mutex
);
1084 if (index
>= info
->next_index
) {
1085 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1088 entry
= shmem_swp_entry(info
, index
, NULL
);
1091 * The more uptodate page coming down from a stacked
1092 * writepage should replace our old swappage.
1094 free_swap_and_cache(*entry
);
1095 shmem_swp_set(info
, entry
, 0);
1097 shmem_recalc_inode(inode
);
1099 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1100 delete_from_page_cache(page
);
1101 shmem_swp_set(info
, entry
, swap
.val
);
1102 shmem_swp_unmap(entry
);
1103 spin_unlock(&info
->lock
);
1104 swap_shmem_alloc(swap
);
1105 BUG_ON(page_mapped(page
));
1106 swap_writepage(page
, wbc
);
1110 shmem_swp_unmap(entry
);
1112 spin_unlock(&info
->lock
);
1114 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1115 * clear SWAP_HAS_CACHE flag.
1117 swapcache_free(swap
, NULL
);
1119 set_page_dirty(page
);
1120 if (wbc
->for_reclaim
)
1121 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1128 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1132 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1133 return; /* show nothing */
1135 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1137 seq_printf(seq
, ",mpol=%s", buffer
);
1140 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1142 struct mempolicy
*mpol
= NULL
;
1144 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1145 mpol
= sbinfo
->mpol
;
1147 spin_unlock(&sbinfo
->stat_lock
);
1151 #endif /* CONFIG_TMPFS */
1153 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1154 struct shmem_inode_info
*info
, unsigned long idx
)
1156 struct mempolicy mpol
, *spol
;
1157 struct vm_area_struct pvma
;
1160 spol
= mpol_cond_copy(&mpol
,
1161 mpol_shared_policy_lookup(&info
->policy
, idx
));
1163 /* Create a pseudo vma that just contains the policy */
1165 pvma
.vm_pgoff
= idx
;
1167 pvma
.vm_policy
= spol
;
1168 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1172 static struct page
*shmem_alloc_page(gfp_t gfp
,
1173 struct shmem_inode_info
*info
, unsigned long idx
)
1175 struct vm_area_struct pvma
;
1177 /* Create a pseudo vma that just contains the policy */
1179 pvma
.vm_pgoff
= idx
;
1181 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1184 * alloc_page_vma() will drop the shared policy reference
1186 return alloc_page_vma(gfp
, &pvma
, 0);
1188 #else /* !CONFIG_NUMA */
1190 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1193 #endif /* CONFIG_TMPFS */
1195 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1196 struct shmem_inode_info
*info
, unsigned long idx
)
1198 return swapin_readahead(entry
, gfp
, NULL
, 0);
1201 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1202 struct shmem_inode_info
*info
, unsigned long idx
)
1204 return alloc_page(gfp
);
1206 #endif /* CONFIG_NUMA */
1208 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1209 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1216 * shmem_getpage - either get the page from swap or allocate a new one
1218 * If we allocate a new one we do not mark it dirty. That's up to the
1219 * vm. If we swap it in we mark it dirty since we also free the swap
1220 * entry since a page cannot live in both the swap and page cache
1222 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1223 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1225 struct address_space
*mapping
= inode
->i_mapping
;
1226 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1227 struct shmem_sb_info
*sbinfo
;
1228 struct page
*filepage
= *pagep
;
1229 struct page
*swappage
;
1230 struct page
*prealloc_page
= NULL
;
1236 if (idx
>= SHMEM_MAX_INDEX
)
1243 * Normally, filepage is NULL on entry, and either found
1244 * uptodate immediately, or allocated and zeroed, or read
1245 * in under swappage, which is then assigned to filepage.
1246 * But shmem_readpage (required for splice) passes in a locked
1247 * filepage, which may be found not uptodate by other callers
1248 * too, and may need to be copied from the swappage read in.
1252 filepage
= find_lock_page(mapping
, idx
);
1253 if (filepage
&& PageUptodate(filepage
))
1255 gfp
= mapping_gfp_mask(mapping
);
1258 * Try to preload while we can wait, to not make a habit of
1259 * draining atomic reserves; but don't latch on to this cpu.
1261 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1264 radix_tree_preload_end();
1265 if (sgp
!= SGP_READ
&& !prealloc_page
) {
1266 /* We don't care if this fails */
1267 prealloc_page
= shmem_alloc_page(gfp
, info
, idx
);
1268 if (prealloc_page
) {
1269 if (mem_cgroup_cache_charge(prealloc_page
,
1270 current
->mm
, GFP_KERNEL
)) {
1271 page_cache_release(prealloc_page
);
1272 prealloc_page
= NULL
;
1279 spin_lock(&info
->lock
);
1280 shmem_recalc_inode(inode
);
1281 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1282 if (IS_ERR(entry
)) {
1283 spin_unlock(&info
->lock
);
1284 error
= PTR_ERR(entry
);
1290 /* Look it up and read it in.. */
1291 swappage
= lookup_swap_cache(swap
);
1293 shmem_swp_unmap(entry
);
1294 /* here we actually do the io */
1295 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1296 __count_vm_event(PGMAJFAULT
);
1297 *type
|= VM_FAULT_MAJOR
;
1299 spin_unlock(&info
->lock
);
1300 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1302 spin_lock(&info
->lock
);
1303 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1305 error
= PTR_ERR(entry
);
1307 if (entry
->val
== swap
.val
)
1309 shmem_swp_unmap(entry
);
1311 spin_unlock(&info
->lock
);
1316 wait_on_page_locked(swappage
);
1317 page_cache_release(swappage
);
1321 /* We have to do this with page locked to prevent races */
1322 if (!trylock_page(swappage
)) {
1323 shmem_swp_unmap(entry
);
1324 spin_unlock(&info
->lock
);
1325 wait_on_page_locked(swappage
);
1326 page_cache_release(swappage
);
1329 if (PageWriteback(swappage
)) {
1330 shmem_swp_unmap(entry
);
1331 spin_unlock(&info
->lock
);
1332 wait_on_page_writeback(swappage
);
1333 unlock_page(swappage
);
1334 page_cache_release(swappage
);
1337 if (!PageUptodate(swappage
)) {
1338 shmem_swp_unmap(entry
);
1339 spin_unlock(&info
->lock
);
1340 unlock_page(swappage
);
1341 page_cache_release(swappage
);
1347 shmem_swp_set(info
, entry
, 0);
1348 shmem_swp_unmap(entry
);
1349 delete_from_swap_cache(swappage
);
1350 spin_unlock(&info
->lock
);
1351 copy_highpage(filepage
, swappage
);
1352 unlock_page(swappage
);
1353 page_cache_release(swappage
);
1354 flush_dcache_page(filepage
);
1355 SetPageUptodate(filepage
);
1356 set_page_dirty(filepage
);
1358 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1359 idx
, GFP_NOWAIT
))) {
1360 info
->flags
|= SHMEM_PAGEIN
;
1361 shmem_swp_set(info
, entry
, 0);
1362 shmem_swp_unmap(entry
);
1363 delete_from_swap_cache(swappage
);
1364 spin_unlock(&info
->lock
);
1365 filepage
= swappage
;
1366 set_page_dirty(filepage
);
1369 shmem_swp_unmap(entry
);
1370 spin_unlock(&info
->lock
);
1371 if (error
== -ENOMEM
) {
1373 * reclaim from proper memory cgroup and
1374 * call memcg's OOM if needed.
1376 error
= mem_cgroup_shmem_charge_fallback(
1381 unlock_page(swappage
);
1382 page_cache_release(swappage
);
1386 unlock_page(swappage
);
1387 page_cache_release(swappage
);
1390 } else if (sgp
== SGP_READ
&& !filepage
) {
1391 shmem_swp_unmap(entry
);
1392 filepage
= find_get_page(mapping
, idx
);
1394 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1395 spin_unlock(&info
->lock
);
1396 wait_on_page_locked(filepage
);
1397 page_cache_release(filepage
);
1401 spin_unlock(&info
->lock
);
1403 shmem_swp_unmap(entry
);
1404 sbinfo
= SHMEM_SB(inode
->i_sb
);
1405 if (sbinfo
->max_blocks
) {
1406 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1407 sbinfo
->max_blocks
) >= 0 ||
1408 shmem_acct_block(info
->flags
))
1410 percpu_counter_inc(&sbinfo
->used_blocks
);
1411 spin_lock(&inode
->i_lock
);
1412 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1413 spin_unlock(&inode
->i_lock
);
1414 } else if (shmem_acct_block(info
->flags
))
1420 if (!prealloc_page
) {
1421 spin_unlock(&info
->lock
);
1422 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1424 shmem_unacct_blocks(info
->flags
, 1);
1425 shmem_free_blocks(inode
, 1);
1429 SetPageSwapBacked(filepage
);
1432 * Precharge page while we can wait, compensate
1435 error
= mem_cgroup_cache_charge(filepage
,
1436 current
->mm
, GFP_KERNEL
);
1438 page_cache_release(filepage
);
1439 shmem_unacct_blocks(info
->flags
, 1);
1440 shmem_free_blocks(inode
, 1);
1445 spin_lock(&info
->lock
);
1447 filepage
= prealloc_page
;
1448 prealloc_page
= NULL
;
1449 SetPageSwapBacked(filepage
);
1452 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1454 error
= PTR_ERR(entry
);
1457 shmem_swp_unmap(entry
);
1459 ret
= error
|| swap
.val
;
1461 mem_cgroup_uncharge_cache_page(filepage
);
1463 ret
= add_to_page_cache_lru(filepage
, mapping
,
1466 * At add_to_page_cache_lru() failure, uncharge will
1467 * be done automatically.
1470 spin_unlock(&info
->lock
);
1471 page_cache_release(filepage
);
1472 shmem_unacct_blocks(info
->flags
, 1);
1473 shmem_free_blocks(inode
, 1);
1479 info
->flags
|= SHMEM_PAGEIN
;
1483 spin_unlock(&info
->lock
);
1484 clear_highpage(filepage
);
1485 flush_dcache_page(filepage
);
1486 SetPageUptodate(filepage
);
1487 if (sgp
== SGP_DIRTY
)
1488 set_page_dirty(filepage
);
1497 * Perhaps the page was brought in from swap between find_lock_page
1498 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1499 * but must also avoid reporting a spurious ENOSPC while working on a
1500 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1501 * is already in page cache, which prevents this race from occurring.)
1504 struct page
*page
= find_get_page(mapping
, idx
);
1506 spin_unlock(&info
->lock
);
1507 page_cache_release(page
);
1511 spin_unlock(&info
->lock
);
1514 if (*pagep
!= filepage
) {
1515 unlock_page(filepage
);
1516 page_cache_release(filepage
);
1519 if (prealloc_page
) {
1520 mem_cgroup_uncharge_cache_page(prealloc_page
);
1521 page_cache_release(prealloc_page
);
1526 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1528 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1532 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1533 return VM_FAULT_SIGBUS
;
1535 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1537 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1539 return ret
| VM_FAULT_LOCKED
;
1543 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1545 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1546 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1549 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1552 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1555 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1556 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1560 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1562 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1563 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1564 int retval
= -ENOMEM
;
1566 spin_lock(&info
->lock
);
1567 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1568 if (!user_shm_lock(inode
->i_size
, user
))
1570 info
->flags
|= VM_LOCKED
;
1571 mapping_set_unevictable(file
->f_mapping
);
1573 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1574 user_shm_unlock(inode
->i_size
, user
);
1575 info
->flags
&= ~VM_LOCKED
;
1576 mapping_clear_unevictable(file
->f_mapping
);
1577 scan_mapping_unevictable_pages(file
->f_mapping
);
1582 spin_unlock(&info
->lock
);
1586 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1588 file_accessed(file
);
1589 vma
->vm_ops
= &shmem_vm_ops
;
1590 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1594 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1595 int mode
, dev_t dev
, unsigned long flags
)
1597 struct inode
*inode
;
1598 struct shmem_inode_info
*info
;
1599 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1601 if (shmem_reserve_inode(sb
))
1604 inode
= new_inode(sb
);
1606 inode
->i_ino
= get_next_ino();
1607 inode_init_owner(inode
, dir
, mode
);
1608 inode
->i_blocks
= 0;
1609 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1610 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1611 inode
->i_generation
= get_seconds();
1612 info
= SHMEM_I(inode
);
1613 memset(info
, 0, (char *)inode
- (char *)info
);
1614 spin_lock_init(&info
->lock
);
1615 info
->flags
= flags
& VM_NORESERVE
;
1616 INIT_LIST_HEAD(&info
->swaplist
);
1617 cache_no_acl(inode
);
1619 switch (mode
& S_IFMT
) {
1621 inode
->i_op
= &shmem_special_inode_operations
;
1622 init_special_inode(inode
, mode
, dev
);
1625 inode
->i_mapping
->a_ops
= &shmem_aops
;
1626 inode
->i_op
= &shmem_inode_operations
;
1627 inode
->i_fop
= &shmem_file_operations
;
1628 mpol_shared_policy_init(&info
->policy
,
1629 shmem_get_sbmpol(sbinfo
));
1633 /* Some things misbehave if size == 0 on a directory */
1634 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1635 inode
->i_op
= &shmem_dir_inode_operations
;
1636 inode
->i_fop
= &simple_dir_operations
;
1640 * Must not load anything in the rbtree,
1641 * mpol_free_shared_policy will not be called.
1643 mpol_shared_policy_init(&info
->policy
, NULL
);
1647 shmem_free_inode(sb
);
1652 static const struct inode_operations shmem_symlink_inode_operations
;
1653 static const struct inode_operations shmem_symlink_inline_operations
;
1656 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1657 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1658 * below the loop driver, in the generic fashion that many filesystems support.
1660 static int shmem_readpage(struct file
*file
, struct page
*page
)
1662 struct inode
*inode
= page
->mapping
->host
;
1663 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1669 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1670 loff_t pos
, unsigned len
, unsigned flags
,
1671 struct page
**pagep
, void **fsdata
)
1673 struct inode
*inode
= mapping
->host
;
1674 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1676 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1680 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1681 loff_t pos
, unsigned len
, unsigned copied
,
1682 struct page
*page
, void *fsdata
)
1684 struct inode
*inode
= mapping
->host
;
1686 if (pos
+ copied
> inode
->i_size
)
1687 i_size_write(inode
, pos
+ copied
);
1689 set_page_dirty(page
);
1691 page_cache_release(page
);
1696 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1698 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1699 struct address_space
*mapping
= inode
->i_mapping
;
1700 unsigned long index
, offset
;
1701 enum sgp_type sgp
= SGP_READ
;
1704 * Might this read be for a stacking filesystem? Then when reading
1705 * holes of a sparse file, we actually need to allocate those pages,
1706 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1708 if (segment_eq(get_fs(), KERNEL_DS
))
1711 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1712 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1715 struct page
*page
= NULL
;
1716 unsigned long end_index
, nr
, ret
;
1717 loff_t i_size
= i_size_read(inode
);
1719 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1720 if (index
> end_index
)
1722 if (index
== end_index
) {
1723 nr
= i_size
& ~PAGE_CACHE_MASK
;
1728 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1730 if (desc
->error
== -EINVAL
)
1738 * We must evaluate after, since reads (unlike writes)
1739 * are called without i_mutex protection against truncate
1741 nr
= PAGE_CACHE_SIZE
;
1742 i_size
= i_size_read(inode
);
1743 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1744 if (index
== end_index
) {
1745 nr
= i_size
& ~PAGE_CACHE_MASK
;
1748 page_cache_release(page
);
1756 * If users can be writing to this page using arbitrary
1757 * virtual addresses, take care about potential aliasing
1758 * before reading the page on the kernel side.
1760 if (mapping_writably_mapped(mapping
))
1761 flush_dcache_page(page
);
1763 * Mark the page accessed if we read the beginning.
1766 mark_page_accessed(page
);
1768 page
= ZERO_PAGE(0);
1769 page_cache_get(page
);
1773 * Ok, we have the page, and it's up-to-date, so
1774 * now we can copy it to user space...
1776 * The actor routine returns how many bytes were actually used..
1777 * NOTE! This may not be the same as how much of a user buffer
1778 * we filled up (we may be padding etc), so we can only update
1779 * "pos" here (the actor routine has to update the user buffer
1780 * pointers and the remaining count).
1782 ret
= actor(desc
, page
, offset
, nr
);
1784 index
+= offset
>> PAGE_CACHE_SHIFT
;
1785 offset
&= ~PAGE_CACHE_MASK
;
1787 page_cache_release(page
);
1788 if (ret
!= nr
|| !desc
->count
)
1794 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1795 file_accessed(filp
);
1798 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1799 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1801 struct file
*filp
= iocb
->ki_filp
;
1805 loff_t
*ppos
= &iocb
->ki_pos
;
1807 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1811 for (seg
= 0; seg
< nr_segs
; seg
++) {
1812 read_descriptor_t desc
;
1815 desc
.arg
.buf
= iov
[seg
].iov_base
;
1816 desc
.count
= iov
[seg
].iov_len
;
1817 if (desc
.count
== 0)
1820 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1821 retval
+= desc
.written
;
1823 retval
= retval
?: desc
.error
;
1832 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1834 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1836 buf
->f_type
= TMPFS_MAGIC
;
1837 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1838 buf
->f_namelen
= NAME_MAX
;
1839 if (sbinfo
->max_blocks
) {
1840 buf
->f_blocks
= sbinfo
->max_blocks
;
1841 buf
->f_bavail
= buf
->f_bfree
=
1842 sbinfo
->max_blocks
- percpu_counter_sum(&sbinfo
->used_blocks
);
1844 if (sbinfo
->max_inodes
) {
1845 buf
->f_files
= sbinfo
->max_inodes
;
1846 buf
->f_ffree
= sbinfo
->free_inodes
;
1848 /* else leave those fields 0 like simple_statfs */
1853 * File creation. Allocate an inode, and we're done..
1856 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1858 struct inode
*inode
;
1859 int error
= -ENOSPC
;
1861 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1863 error
= security_inode_init_security(inode
, dir
,
1864 &dentry
->d_name
, NULL
,
1867 if (error
!= -EOPNOTSUPP
) {
1872 #ifdef CONFIG_TMPFS_POSIX_ACL
1873 error
= generic_acl_init(inode
, dir
);
1881 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1882 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1883 d_instantiate(dentry
, inode
);
1884 dget(dentry
); /* Extra count - pin the dentry in core */
1889 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1893 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1899 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1900 struct nameidata
*nd
)
1902 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1908 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1910 struct inode
*inode
= old_dentry
->d_inode
;
1914 * No ordinary (disk based) filesystem counts links as inodes;
1915 * but each new link needs a new dentry, pinning lowmem, and
1916 * tmpfs dentries cannot be pruned until they are unlinked.
1918 ret
= shmem_reserve_inode(inode
->i_sb
);
1922 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1923 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1925 ihold(inode
); /* New dentry reference */
1926 dget(dentry
); /* Extra pinning count for the created dentry */
1927 d_instantiate(dentry
, inode
);
1932 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1934 struct inode
*inode
= dentry
->d_inode
;
1936 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1937 shmem_free_inode(inode
->i_sb
);
1939 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1940 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1942 dput(dentry
); /* Undo the count from "create" - this does all the work */
1946 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1948 if (!simple_empty(dentry
))
1951 drop_nlink(dentry
->d_inode
);
1953 return shmem_unlink(dir
, dentry
);
1957 * The VFS layer already does all the dentry stuff for rename,
1958 * we just have to decrement the usage count for the target if
1959 * it exists so that the VFS layer correctly free's it when it
1962 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1964 struct inode
*inode
= old_dentry
->d_inode
;
1965 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1967 if (!simple_empty(new_dentry
))
1970 if (new_dentry
->d_inode
) {
1971 (void) shmem_unlink(new_dir
, new_dentry
);
1973 drop_nlink(old_dir
);
1974 } else if (they_are_dirs
) {
1975 drop_nlink(old_dir
);
1979 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1980 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1981 old_dir
->i_ctime
= old_dir
->i_mtime
=
1982 new_dir
->i_ctime
= new_dir
->i_mtime
=
1983 inode
->i_ctime
= CURRENT_TIME
;
1987 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1991 struct inode
*inode
;
1992 struct page
*page
= NULL
;
1994 struct shmem_inode_info
*info
;
1996 len
= strlen(symname
) + 1;
1997 if (len
> PAGE_CACHE_SIZE
)
1998 return -ENAMETOOLONG
;
2000 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2004 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
, NULL
,
2007 if (error
!= -EOPNOTSUPP
) {
2014 info
= SHMEM_I(inode
);
2015 inode
->i_size
= len
-1;
2016 if (len
<= (char *)inode
- (char *)info
) {
2018 memcpy(info
, symname
, len
);
2019 inode
->i_op
= &shmem_symlink_inline_operations
;
2021 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2026 inode
->i_mapping
->a_ops
= &shmem_aops
;
2027 inode
->i_op
= &shmem_symlink_inode_operations
;
2028 kaddr
= kmap_atomic(page
, KM_USER0
);
2029 memcpy(kaddr
, symname
, len
);
2030 kunmap_atomic(kaddr
, KM_USER0
);
2031 set_page_dirty(page
);
2033 page_cache_release(page
);
2035 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2036 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2037 d_instantiate(dentry
, inode
);
2042 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
2044 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
2048 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2050 struct page
*page
= NULL
;
2051 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2052 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2058 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2060 if (!IS_ERR(nd_get_link(nd
))) {
2061 struct page
*page
= cookie
;
2063 mark_page_accessed(page
);
2064 page_cache_release(page
);
2068 static const struct inode_operations shmem_symlink_inline_operations
= {
2069 .readlink
= generic_readlink
,
2070 .follow_link
= shmem_follow_link_inline
,
2073 static const struct inode_operations shmem_symlink_inode_operations
= {
2074 .readlink
= generic_readlink
,
2075 .follow_link
= shmem_follow_link
,
2076 .put_link
= shmem_put_link
,
2079 #ifdef CONFIG_TMPFS_POSIX_ACL
2081 * Superblocks without xattr inode operations will get security.* xattr
2082 * support from the VFS "for free". As soon as we have any other xattrs
2083 * like ACLs, we also need to implement the security.* handlers at
2084 * filesystem level, though.
2087 static size_t shmem_xattr_security_list(struct dentry
*dentry
, char *list
,
2088 size_t list_len
, const char *name
,
2089 size_t name_len
, int handler_flags
)
2091 return security_inode_listsecurity(dentry
->d_inode
, list
, list_len
);
2094 static int shmem_xattr_security_get(struct dentry
*dentry
, const char *name
,
2095 void *buffer
, size_t size
, int handler_flags
)
2097 if (strcmp(name
, "") == 0)
2099 return xattr_getsecurity(dentry
->d_inode
, name
, buffer
, size
);
2102 static int shmem_xattr_security_set(struct dentry
*dentry
, const char *name
,
2103 const void *value
, size_t size
, int flags
, int handler_flags
)
2105 if (strcmp(name
, "") == 0)
2107 return security_inode_setsecurity(dentry
->d_inode
, name
, value
,
2111 static const struct xattr_handler shmem_xattr_security_handler
= {
2112 .prefix
= XATTR_SECURITY_PREFIX
,
2113 .list
= shmem_xattr_security_list
,
2114 .get
= shmem_xattr_security_get
,
2115 .set
= shmem_xattr_security_set
,
2118 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2119 &generic_acl_access_handler
,
2120 &generic_acl_default_handler
,
2121 &shmem_xattr_security_handler
,
2126 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2128 return ERR_PTR(-ESTALE
);
2131 static int shmem_match(struct inode
*ino
, void *vfh
)
2135 inum
= (inum
<< 32) | fh
[1];
2136 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2139 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2140 struct fid
*fid
, int fh_len
, int fh_type
)
2142 struct inode
*inode
;
2143 struct dentry
*dentry
= NULL
;
2144 u64 inum
= fid
->raw
[2];
2145 inum
= (inum
<< 32) | fid
->raw
[1];
2150 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2151 shmem_match
, fid
->raw
);
2153 dentry
= d_find_alias(inode
);
2160 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2163 struct inode
*inode
= dentry
->d_inode
;
2170 if (inode_unhashed(inode
)) {
2171 /* Unfortunately insert_inode_hash is not idempotent,
2172 * so as we hash inodes here rather than at creation
2173 * time, we need a lock to ensure we only try
2176 static DEFINE_SPINLOCK(lock
);
2178 if (inode_unhashed(inode
))
2179 __insert_inode_hash(inode
,
2180 inode
->i_ino
+ inode
->i_generation
);
2184 fh
[0] = inode
->i_generation
;
2185 fh
[1] = inode
->i_ino
;
2186 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2192 static const struct export_operations shmem_export_ops
= {
2193 .get_parent
= shmem_get_parent
,
2194 .encode_fh
= shmem_encode_fh
,
2195 .fh_to_dentry
= shmem_fh_to_dentry
,
2198 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2201 char *this_char
, *value
, *rest
;
2203 while (options
!= NULL
) {
2204 this_char
= options
;
2207 * NUL-terminate this option: unfortunately,
2208 * mount options form a comma-separated list,
2209 * but mpol's nodelist may also contain commas.
2211 options
= strchr(options
, ',');
2212 if (options
== NULL
)
2215 if (!isdigit(*options
)) {
2222 if ((value
= strchr(this_char
,'=')) != NULL
) {
2226 "tmpfs: No value for mount option '%s'\n",
2231 if (!strcmp(this_char
,"size")) {
2232 unsigned long long size
;
2233 size
= memparse(value
,&rest
);
2235 size
<<= PAGE_SHIFT
;
2236 size
*= totalram_pages
;
2242 sbinfo
->max_blocks
=
2243 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2244 } else if (!strcmp(this_char
,"nr_blocks")) {
2245 sbinfo
->max_blocks
= memparse(value
, &rest
);
2248 } else if (!strcmp(this_char
,"nr_inodes")) {
2249 sbinfo
->max_inodes
= memparse(value
, &rest
);
2252 } else if (!strcmp(this_char
,"mode")) {
2255 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2258 } else if (!strcmp(this_char
,"uid")) {
2261 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2264 } else if (!strcmp(this_char
,"gid")) {
2267 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2270 } else if (!strcmp(this_char
,"mpol")) {
2271 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2274 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2282 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2288 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2290 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2291 struct shmem_sb_info config
= *sbinfo
;
2292 unsigned long inodes
;
2293 int error
= -EINVAL
;
2295 if (shmem_parse_options(data
, &config
, true))
2298 spin_lock(&sbinfo
->stat_lock
);
2299 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2300 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2302 if (config
.max_inodes
< inodes
)
2305 * Those tests also disallow limited->unlimited while any are in
2306 * use, so i_blocks will always be zero when max_blocks is zero;
2307 * but we must separately disallow unlimited->limited, because
2308 * in that case we have no record of how much is already in use.
2310 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2312 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2316 sbinfo
->max_blocks
= config
.max_blocks
;
2317 sbinfo
->max_inodes
= config
.max_inodes
;
2318 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2320 mpol_put(sbinfo
->mpol
);
2321 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2323 spin_unlock(&sbinfo
->stat_lock
);
2327 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2329 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2331 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2332 seq_printf(seq
, ",size=%luk",
2333 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2334 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2335 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2336 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2337 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2338 if (sbinfo
->uid
!= 0)
2339 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2340 if (sbinfo
->gid
!= 0)
2341 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2342 shmem_show_mpol(seq
, sbinfo
->mpol
);
2345 #endif /* CONFIG_TMPFS */
2347 static void shmem_put_super(struct super_block
*sb
)
2349 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2351 percpu_counter_destroy(&sbinfo
->used_blocks
);
2353 sb
->s_fs_info
= NULL
;
2356 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2358 struct inode
*inode
;
2359 struct dentry
*root
;
2360 struct shmem_sb_info
*sbinfo
;
2363 /* Round up to L1_CACHE_BYTES to resist false sharing */
2364 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2365 L1_CACHE_BYTES
), GFP_KERNEL
);
2369 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2370 sbinfo
->uid
= current_fsuid();
2371 sbinfo
->gid
= current_fsgid();
2372 sb
->s_fs_info
= sbinfo
;
2376 * Per default we only allow half of the physical ram per
2377 * tmpfs instance, limiting inodes to one per page of lowmem;
2378 * but the internal instance is left unlimited.
2380 if (!(sb
->s_flags
& MS_NOUSER
)) {
2381 sbinfo
->max_blocks
= shmem_default_max_blocks();
2382 sbinfo
->max_inodes
= shmem_default_max_inodes();
2383 if (shmem_parse_options(data
, sbinfo
, false)) {
2388 sb
->s_export_op
= &shmem_export_ops
;
2390 sb
->s_flags
|= MS_NOUSER
;
2393 spin_lock_init(&sbinfo
->stat_lock
);
2394 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2396 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2398 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2399 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2400 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2401 sb
->s_magic
= TMPFS_MAGIC
;
2402 sb
->s_op
= &shmem_ops
;
2403 sb
->s_time_gran
= 1;
2404 #ifdef CONFIG_TMPFS_POSIX_ACL
2405 sb
->s_xattr
= shmem_xattr_handlers
;
2406 sb
->s_flags
|= MS_POSIXACL
;
2409 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2412 inode
->i_uid
= sbinfo
->uid
;
2413 inode
->i_gid
= sbinfo
->gid
;
2414 root
= d_alloc_root(inode
);
2423 shmem_put_super(sb
);
2427 static struct kmem_cache
*shmem_inode_cachep
;
2429 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2431 struct shmem_inode_info
*p
;
2432 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2435 return &p
->vfs_inode
;
2438 static void shmem_i_callback(struct rcu_head
*head
)
2440 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2441 INIT_LIST_HEAD(&inode
->i_dentry
);
2442 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2445 static void shmem_destroy_inode(struct inode
*inode
)
2447 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2448 /* only struct inode is valid if it's an inline symlink */
2449 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2451 call_rcu(&inode
->i_rcu
, shmem_i_callback
);
2454 static void init_once(void *foo
)
2456 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2458 inode_init_once(&p
->vfs_inode
);
2461 static int init_inodecache(void)
2463 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2464 sizeof(struct shmem_inode_info
),
2465 0, SLAB_PANIC
, init_once
);
2469 static void destroy_inodecache(void)
2471 kmem_cache_destroy(shmem_inode_cachep
);
2474 static const struct address_space_operations shmem_aops
= {
2475 .writepage
= shmem_writepage
,
2476 .set_page_dirty
= __set_page_dirty_no_writeback
,
2478 .readpage
= shmem_readpage
,
2479 .write_begin
= shmem_write_begin
,
2480 .write_end
= shmem_write_end
,
2482 .migratepage
= migrate_page
,
2483 .error_remove_page
= generic_error_remove_page
,
2486 static const struct file_operations shmem_file_operations
= {
2489 .llseek
= generic_file_llseek
,
2490 .read
= do_sync_read
,
2491 .write
= do_sync_write
,
2492 .aio_read
= shmem_file_aio_read
,
2493 .aio_write
= generic_file_aio_write
,
2494 .fsync
= noop_fsync
,
2495 .splice_read
= generic_file_splice_read
,
2496 .splice_write
= generic_file_splice_write
,
2500 static const struct inode_operations shmem_inode_operations
= {
2501 .setattr
= shmem_notify_change
,
2502 .truncate_range
= shmem_truncate_range
,
2503 #ifdef CONFIG_TMPFS_POSIX_ACL
2504 .setxattr
= generic_setxattr
,
2505 .getxattr
= generic_getxattr
,
2506 .listxattr
= generic_listxattr
,
2507 .removexattr
= generic_removexattr
,
2508 .check_acl
= generic_check_acl
,
2513 static const struct inode_operations shmem_dir_inode_operations
= {
2515 .create
= shmem_create
,
2516 .lookup
= simple_lookup
,
2518 .unlink
= shmem_unlink
,
2519 .symlink
= shmem_symlink
,
2520 .mkdir
= shmem_mkdir
,
2521 .rmdir
= shmem_rmdir
,
2522 .mknod
= shmem_mknod
,
2523 .rename
= shmem_rename
,
2525 #ifdef CONFIG_TMPFS_POSIX_ACL
2526 .setattr
= shmem_notify_change
,
2527 .setxattr
= generic_setxattr
,
2528 .getxattr
= generic_getxattr
,
2529 .listxattr
= generic_listxattr
,
2530 .removexattr
= generic_removexattr
,
2531 .check_acl
= generic_check_acl
,
2535 static const struct inode_operations shmem_special_inode_operations
= {
2536 #ifdef CONFIG_TMPFS_POSIX_ACL
2537 .setattr
= shmem_notify_change
,
2538 .setxattr
= generic_setxattr
,
2539 .getxattr
= generic_getxattr
,
2540 .listxattr
= generic_listxattr
,
2541 .removexattr
= generic_removexattr
,
2542 .check_acl
= generic_check_acl
,
2546 static const struct super_operations shmem_ops
= {
2547 .alloc_inode
= shmem_alloc_inode
,
2548 .destroy_inode
= shmem_destroy_inode
,
2550 .statfs
= shmem_statfs
,
2551 .remount_fs
= shmem_remount_fs
,
2552 .show_options
= shmem_show_options
,
2554 .evict_inode
= shmem_evict_inode
,
2555 .drop_inode
= generic_delete_inode
,
2556 .put_super
= shmem_put_super
,
2559 static const struct vm_operations_struct shmem_vm_ops
= {
2560 .fault
= shmem_fault
,
2562 .set_policy
= shmem_set_policy
,
2563 .get_policy
= shmem_get_policy
,
2568 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2569 int flags
, const char *dev_name
, void *data
)
2571 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2574 static struct file_system_type tmpfs_fs_type
= {
2575 .owner
= THIS_MODULE
,
2577 .mount
= shmem_mount
,
2578 .kill_sb
= kill_litter_super
,
2581 int __init
init_tmpfs(void)
2585 error
= bdi_init(&shmem_backing_dev_info
);
2589 error
= init_inodecache();
2593 error
= register_filesystem(&tmpfs_fs_type
);
2595 printk(KERN_ERR
"Could not register tmpfs\n");
2599 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2600 tmpfs_fs_type
.name
, NULL
);
2601 if (IS_ERR(shm_mnt
)) {
2602 error
= PTR_ERR(shm_mnt
);
2603 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2609 unregister_filesystem(&tmpfs_fs_type
);
2611 destroy_inodecache();
2613 bdi_destroy(&shmem_backing_dev_info
);
2615 shm_mnt
= ERR_PTR(error
);
2619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2621 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2622 * @inode: the inode to be searched
2623 * @pgoff: the offset to be searched
2624 * @pagep: the pointer for the found page to be stored
2625 * @ent: the pointer for the found swap entry to be stored
2627 * If a page is found, refcount of it is incremented. Callers should handle
2630 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2631 struct page
**pagep
, swp_entry_t
*ent
)
2633 swp_entry_t entry
= { .val
= 0 }, *ptr
;
2634 struct page
*page
= NULL
;
2635 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2637 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2640 spin_lock(&info
->lock
);
2641 ptr
= shmem_swp_entry(info
, pgoff
, NULL
);
2643 if (ptr
&& ptr
->val
) {
2644 entry
.val
= ptr
->val
;
2645 page
= find_get_page(&swapper_space
, entry
.val
);
2648 page
= find_get_page(inode
->i_mapping
, pgoff
);
2650 shmem_swp_unmap(ptr
);
2651 spin_unlock(&info
->lock
);
2658 #else /* !CONFIG_SHMEM */
2661 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2663 * This is intended for small system where the benefits of the full
2664 * shmem code (swap-backed and resource-limited) are outweighed by
2665 * their complexity. On systems without swap this code should be
2666 * effectively equivalent, but much lighter weight.
2669 #include <linux/ramfs.h>
2671 static struct file_system_type tmpfs_fs_type
= {
2673 .mount
= ramfs_mount
,
2674 .kill_sb
= kill_litter_super
,
2677 int __init
init_tmpfs(void)
2679 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2681 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2682 BUG_ON(IS_ERR(shm_mnt
));
2687 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2692 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2697 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2699 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2700 * @inode: the inode to be searched
2701 * @pgoff: the offset to be searched
2702 * @pagep: the pointer for the found page to be stored
2703 * @ent: the pointer for the found swap entry to be stored
2705 * If a page is found, refcount of it is incremented. Callers should handle
2708 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2709 struct page
**pagep
, swp_entry_t
*ent
)
2711 struct page
*page
= NULL
;
2713 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2715 page
= find_get_page(inode
->i_mapping
, pgoff
);
2718 *ent
= (swp_entry_t
){ .val
= 0 };
2722 #define shmem_vm_ops generic_file_vm_ops
2723 #define shmem_file_operations ramfs_file_operations
2724 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2725 #define shmem_acct_size(flags, size) 0
2726 #define shmem_unacct_size(flags, size) do {} while (0)
2727 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2729 #endif /* CONFIG_SHMEM */
2734 * shmem_file_setup - get an unlinked file living in tmpfs
2735 * @name: name for dentry (to be seen in /proc/<pid>/maps
2736 * @size: size to be set for the file
2737 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2739 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2743 struct inode
*inode
;
2745 struct dentry
*root
;
2748 if (IS_ERR(shm_mnt
))
2749 return (void *)shm_mnt
;
2751 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2752 return ERR_PTR(-EINVAL
);
2754 if (shmem_acct_size(flags
, size
))
2755 return ERR_PTR(-ENOMEM
);
2759 this.len
= strlen(name
);
2760 this.hash
= 0; /* will go */
2761 root
= shm_mnt
->mnt_root
;
2762 path
.dentry
= d_alloc(root
, &this);
2765 path
.mnt
= mntget(shm_mnt
);
2768 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2772 d_instantiate(path
.dentry
, inode
);
2773 inode
->i_size
= size
;
2774 inode
->i_nlink
= 0; /* It is unlinked */
2776 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2782 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2783 &shmem_file_operations
);
2792 shmem_unacct_size(flags
, size
);
2793 return ERR_PTR(error
);
2795 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2798 * shmem_zero_setup - setup a shared anonymous mapping
2799 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2801 int shmem_zero_setup(struct vm_area_struct
*vma
)
2804 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2806 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2808 return PTR_ERR(file
);
2812 vma
->vm_file
= file
;
2813 vma
->vm_ops
= &shmem_vm_ops
;
2814 vma
->vm_flags
|= VM_CAN_NONLINEAR
;