1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
39 char e1000_driver_name
[] = "e1000";
40 char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
44 #define DRIVERNAPI "-NAPI"
46 #define DRV_VERSION "6.1.16-k2"DRIVERNAPI
47 char e1000_driver_version
[] = DRV_VERSION
;
48 char e1000_copyright
[] = "Copyright (c) 1999-2005 Intel Corporation.";
50 /* e1000_pci_tbl - PCI Device ID Table
52 * Last entry must be all 0s
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
57 static struct pci_device_id e1000_pci_tbl
[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x105E),
84 INTEL_E1000_ETHERNET_DEVICE(0x105F),
85 INTEL_E1000_ETHERNET_DEVICE(0x1060),
86 INTEL_E1000_ETHERNET_DEVICE(0x1075),
87 INTEL_E1000_ETHERNET_DEVICE(0x1076),
88 INTEL_E1000_ETHERNET_DEVICE(0x1077),
89 INTEL_E1000_ETHERNET_DEVICE(0x1078),
90 INTEL_E1000_ETHERNET_DEVICE(0x1079),
91 INTEL_E1000_ETHERNET_DEVICE(0x107A),
92 INTEL_E1000_ETHERNET_DEVICE(0x107B),
93 INTEL_E1000_ETHERNET_DEVICE(0x107C),
94 INTEL_E1000_ETHERNET_DEVICE(0x107D),
95 INTEL_E1000_ETHERNET_DEVICE(0x107E),
96 INTEL_E1000_ETHERNET_DEVICE(0x107F),
97 INTEL_E1000_ETHERNET_DEVICE(0x108A),
98 INTEL_E1000_ETHERNET_DEVICE(0x108B),
99 INTEL_E1000_ETHERNET_DEVICE(0x108C),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 /* required last entry */
105 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
107 int e1000_up(struct e1000_adapter
*adapter
);
108 void e1000_down(struct e1000_adapter
*adapter
);
109 void e1000_reset(struct e1000_adapter
*adapter
);
110 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
111 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
112 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
113 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
114 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
115 int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
116 struct e1000_tx_ring
*txdr
);
117 int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
118 struct e1000_rx_ring
*rxdr
);
119 void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
120 struct e1000_tx_ring
*tx_ring
);
121 void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
122 struct e1000_rx_ring
*rx_ring
);
123 void e1000_update_stats(struct e1000_adapter
*adapter
);
125 /* Local Function Prototypes */
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
130 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
131 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter
*adapter
);
135 static int e1000_sw_init(struct e1000_adapter
*adapter
);
136 static int e1000_open(struct net_device
*netdev
);
137 static int e1000_close(struct net_device
*netdev
);
138 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
139 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
140 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
143 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
144 struct e1000_tx_ring
*tx_ring
);
145 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
146 struct e1000_rx_ring
*rx_ring
);
147 static void e1000_set_multi(struct net_device
*netdev
);
148 static void e1000_update_phy_info(unsigned long data
);
149 static void e1000_watchdog(unsigned long data
);
150 static void e1000_watchdog_task(struct e1000_adapter
*adapter
);
151 static void e1000_82547_tx_fifo_stall(unsigned long data
);
152 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
153 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
154 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
155 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
156 static irqreturn_t
e1000_intr(int irq
, void *data
, struct pt_regs
*regs
);
157 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
158 struct e1000_tx_ring
*tx_ring
);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
161 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
162 struct e1000_rx_ring
*rx_ring
,
163 int *work_done
, int work_to_do
);
164 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
165 struct e1000_rx_ring
*rx_ring
,
166 int *work_done
, int work_to_do
);
168 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
);
170 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
171 struct e1000_rx_ring
*rx_ring
);
173 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
174 struct e1000_rx_ring
*rx_ring
);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
176 struct e1000_rx_ring
*rx_ring
);
177 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
178 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
180 void e1000_set_ethtool_ops(struct net_device
*netdev
);
181 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
182 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
183 static void e1000_tx_timeout(struct net_device
*dev
);
184 static void e1000_tx_timeout_task(struct net_device
*dev
);
185 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
187 struct sk_buff
*skb
);
189 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
190 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
191 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
192 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
194 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
196 static int e1000_resume(struct pci_dev
*pdev
);
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device
*netdev
);
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data
);
209 /* Exported from other modules */
211 extern void e1000_check_options(struct e1000_adapter
*adapter
);
213 static struct pci_driver e1000_driver
= {
214 .name
= e1000_driver_name
,
215 .id_table
= e1000_pci_tbl
,
216 .probe
= e1000_probe
,
217 .remove
= __devexit_p(e1000_remove
),
218 /* Power Managment Hooks */
220 .suspend
= e1000_suspend
,
221 .resume
= e1000_resume
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION
);
230 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
231 module_param(debug
, int, 0);
232 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
235 * e1000_init_module - Driver Registration Routine
237 * e1000_init_module is the first routine called when the driver is
238 * loaded. All it does is register with the PCI subsystem.
242 e1000_init_module(void)
245 printk(KERN_INFO
"%s - version %s\n",
246 e1000_driver_string
, e1000_driver_version
);
248 printk(KERN_INFO
"%s\n", e1000_copyright
);
250 ret
= pci_module_init(&e1000_driver
);
255 module_init(e1000_init_module
);
258 * e1000_exit_module - Driver Exit Cleanup Routine
260 * e1000_exit_module is called just before the driver is removed
265 e1000_exit_module(void)
267 pci_unregister_driver(&e1000_driver
);
270 module_exit(e1000_exit_module
);
273 * e1000_irq_disable - Mask off interrupt generation on the NIC
274 * @adapter: board private structure
278 e1000_irq_disable(struct e1000_adapter
*adapter
)
280 atomic_inc(&adapter
->irq_sem
);
281 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
282 E1000_WRITE_FLUSH(&adapter
->hw
);
283 synchronize_irq(adapter
->pdev
->irq
);
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
292 e1000_irq_enable(struct e1000_adapter
*adapter
)
294 if(likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
295 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
296 E1000_WRITE_FLUSH(&adapter
->hw
);
300 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
302 struct net_device
*netdev
= adapter
->netdev
;
303 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
304 uint16_t old_vid
= adapter
->mng_vlan_id
;
306 if(!adapter
->vlgrp
->vlan_devices
[vid
]) {
307 if(adapter
->hw
.mng_cookie
.status
&
308 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
309 e1000_vlan_rx_add_vid(netdev
, vid
);
310 adapter
->mng_vlan_id
= vid
;
312 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
314 if((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
316 !adapter
->vlgrp
->vlan_devices
[old_vid
])
317 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
323 e1000_up(struct e1000_adapter
*adapter
)
325 struct net_device
*netdev
= adapter
->netdev
;
328 /* hardware has been reset, we need to reload some things */
330 /* Reset the PHY if it was previously powered down */
331 if(adapter
->hw
.media_type
== e1000_media_type_copper
) {
333 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
334 if(mii_reg
& MII_CR_POWER_DOWN
)
335 e1000_phy_reset(&adapter
->hw
);
338 e1000_set_multi(netdev
);
340 e1000_restore_vlan(adapter
);
342 e1000_configure_tx(adapter
);
343 e1000_setup_rctl(adapter
);
344 e1000_configure_rx(adapter
);
345 for (i
= 0; i
< adapter
->num_queues
; i
++)
346 adapter
->alloc_rx_buf(adapter
, &adapter
->rx_ring
[i
]);
348 #ifdef CONFIG_PCI_MSI
349 if(adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
350 adapter
->have_msi
= TRUE
;
351 if((err
= pci_enable_msi(adapter
->pdev
))) {
353 "Unable to allocate MSI interrupt Error: %d\n", err
);
354 adapter
->have_msi
= FALSE
;
358 if((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
,
359 SA_SHIRQ
| SA_SAMPLE_RANDOM
,
360 netdev
->name
, netdev
))) {
362 "Unable to allocate interrupt Error: %d\n", err
);
366 mod_timer(&adapter
->watchdog_timer
, jiffies
);
368 #ifdef CONFIG_E1000_NAPI
369 netif_poll_enable(netdev
);
371 e1000_irq_enable(adapter
);
377 e1000_down(struct e1000_adapter
*adapter
)
379 struct net_device
*netdev
= adapter
->netdev
;
381 e1000_irq_disable(adapter
);
382 #ifdef CONFIG_E1000_MQ
383 while (atomic_read(&adapter
->rx_sched_call_data
.count
) != 0);
385 free_irq(adapter
->pdev
->irq
, netdev
);
386 #ifdef CONFIG_PCI_MSI
387 if(adapter
->hw
.mac_type
> e1000_82547_rev_2
&&
388 adapter
->have_msi
== TRUE
)
389 pci_disable_msi(adapter
->pdev
);
391 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
392 del_timer_sync(&adapter
->watchdog_timer
);
393 del_timer_sync(&adapter
->phy_info_timer
);
395 #ifdef CONFIG_E1000_NAPI
396 netif_poll_disable(netdev
);
398 adapter
->link_speed
= 0;
399 adapter
->link_duplex
= 0;
400 netif_carrier_off(netdev
);
401 netif_stop_queue(netdev
);
403 e1000_reset(adapter
);
404 e1000_clean_all_tx_rings(adapter
);
405 e1000_clean_all_rx_rings(adapter
);
407 /* If WoL is not enabled and management mode is not IAMT
408 * Power down the PHY so no link is implied when interface is down */
409 if(!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
410 adapter
->hw
.media_type
== e1000_media_type_copper
&&
411 !e1000_check_mng_mode(&adapter
->hw
) &&
412 !(E1000_READ_REG(&adapter
->hw
, MANC
) & E1000_MANC_SMBUS_EN
)) {
414 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
415 mii_reg
|= MII_CR_POWER_DOWN
;
416 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
422 e1000_reset(struct e1000_adapter
*adapter
)
424 struct net_device
*netdev
= adapter
->netdev
;
426 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
427 uint16_t fc_low_water_mark
= E1000_FC_LOW_DIFF
;
429 /* Repartition Pba for greater than 9k mtu
430 * To take effect CTRL.RST is required.
433 switch (adapter
->hw
.mac_type
) {
435 case e1000_82547_rev_2
:
450 if((adapter
->hw
.mac_type
!= e1000_82573
) &&
451 (adapter
->rx_buffer_len
> E1000_RXBUFFER_8192
)) {
452 pba
-= 8; /* allocate more FIFO for Tx */
453 /* send an XOFF when there is enough space in the
454 * Rx FIFO to hold one extra full size Rx packet
456 fc_high_water_mark
= netdev
->mtu
+ ENET_HEADER_SIZE
+
457 ETHERNET_FCS_SIZE
+ 1;
458 fc_low_water_mark
= fc_high_water_mark
+ 8;
462 if(adapter
->hw
.mac_type
== e1000_82547
) {
463 adapter
->tx_fifo_head
= 0;
464 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
465 adapter
->tx_fifo_size
=
466 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
467 atomic_set(&adapter
->tx_fifo_stall
, 0);
470 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
472 /* flow control settings */
473 adapter
->hw
.fc_high_water
= (pba
<< E1000_PBA_BYTES_SHIFT
) -
475 adapter
->hw
.fc_low_water
= (pba
<< E1000_PBA_BYTES_SHIFT
) -
477 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
478 adapter
->hw
.fc_send_xon
= 1;
479 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
481 /* Allow time for pending master requests to run */
482 e1000_reset_hw(&adapter
->hw
);
483 if(adapter
->hw
.mac_type
>= e1000_82544
)
484 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
485 if(e1000_init_hw(&adapter
->hw
))
486 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
487 e1000_update_mng_vlan(adapter
);
488 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
489 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
491 e1000_reset_adaptive(&adapter
->hw
);
492 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
493 if (adapter
->en_mng_pt
) {
494 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
495 manc
|= (E1000_MANC_ARP_EN
| E1000_MANC_EN_MNG2HOST
);
496 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
501 * e1000_probe - Device Initialization Routine
502 * @pdev: PCI device information struct
503 * @ent: entry in e1000_pci_tbl
505 * Returns 0 on success, negative on failure
507 * e1000_probe initializes an adapter identified by a pci_dev structure.
508 * The OS initialization, configuring of the adapter private structure,
509 * and a hardware reset occur.
513 e1000_probe(struct pci_dev
*pdev
,
514 const struct pci_device_id
*ent
)
516 struct net_device
*netdev
;
517 struct e1000_adapter
*adapter
;
518 unsigned long mmio_start
, mmio_len
;
522 static int cards_found
= 0;
523 int i
, err
, pci_using_dac
;
524 uint16_t eeprom_data
;
525 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
526 if((err
= pci_enable_device(pdev
)))
529 if(!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
))) {
532 if((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
533 E1000_ERR("No usable DMA configuration, aborting\n");
539 if((err
= pci_request_regions(pdev
, e1000_driver_name
)))
542 pci_set_master(pdev
);
544 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
547 goto err_alloc_etherdev
;
550 SET_MODULE_OWNER(netdev
);
551 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
553 pci_set_drvdata(pdev
, netdev
);
554 adapter
= netdev_priv(netdev
);
555 adapter
->netdev
= netdev
;
556 adapter
->pdev
= pdev
;
557 adapter
->hw
.back
= adapter
;
558 adapter
->msg_enable
= (1 << debug
) - 1;
560 mmio_start
= pci_resource_start(pdev
, BAR_0
);
561 mmio_len
= pci_resource_len(pdev
, BAR_0
);
563 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
564 if(!adapter
->hw
.hw_addr
) {
569 for(i
= BAR_1
; i
<= BAR_5
; i
++) {
570 if(pci_resource_len(pdev
, i
) == 0)
572 if(pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
573 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
578 netdev
->open
= &e1000_open
;
579 netdev
->stop
= &e1000_close
;
580 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
581 netdev
->get_stats
= &e1000_get_stats
;
582 netdev
->set_multicast_list
= &e1000_set_multi
;
583 netdev
->set_mac_address
= &e1000_set_mac
;
584 netdev
->change_mtu
= &e1000_change_mtu
;
585 netdev
->do_ioctl
= &e1000_ioctl
;
586 e1000_set_ethtool_ops(netdev
);
587 netdev
->tx_timeout
= &e1000_tx_timeout
;
588 netdev
->watchdog_timeo
= 5 * HZ
;
589 #ifdef CONFIG_E1000_NAPI
590 netdev
->poll
= &e1000_clean
;
593 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
594 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
595 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
596 #ifdef CONFIG_NET_POLL_CONTROLLER
597 netdev
->poll_controller
= e1000_netpoll
;
599 strcpy(netdev
->name
, pci_name(pdev
));
601 netdev
->mem_start
= mmio_start
;
602 netdev
->mem_end
= mmio_start
+ mmio_len
;
603 netdev
->base_addr
= adapter
->hw
.io_base
;
605 adapter
->bd_number
= cards_found
;
607 /* setup the private structure */
609 if((err
= e1000_sw_init(adapter
)))
612 if((err
= e1000_check_phy_reset_block(&adapter
->hw
)))
613 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
615 if(adapter
->hw
.mac_type
>= e1000_82543
) {
616 netdev
->features
= NETIF_F_SG
|
620 NETIF_F_HW_VLAN_FILTER
;
624 if((adapter
->hw
.mac_type
>= e1000_82544
) &&
625 (adapter
->hw
.mac_type
!= e1000_82547
))
626 netdev
->features
|= NETIF_F_TSO
;
628 #ifdef NETIF_F_TSO_IPV6
629 if(adapter
->hw
.mac_type
> e1000_82547_rev_2
)
630 netdev
->features
|= NETIF_F_TSO_IPV6
;
634 netdev
->features
|= NETIF_F_HIGHDMA
;
636 /* hard_start_xmit is safe against parallel locking */
637 netdev
->features
|= NETIF_F_LLTX
;
639 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
641 /* before reading the EEPROM, reset the controller to
642 * put the device in a known good starting state */
644 e1000_reset_hw(&adapter
->hw
);
646 /* make sure the EEPROM is good */
648 if(e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
649 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
654 /* copy the MAC address out of the EEPROM */
656 if(e1000_read_mac_addr(&adapter
->hw
))
657 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
658 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
659 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
661 if(!is_valid_ether_addr(netdev
->perm_addr
)) {
662 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
667 e1000_read_part_num(&adapter
->hw
, &(adapter
->part_num
));
669 e1000_get_bus_info(&adapter
->hw
);
671 init_timer(&adapter
->tx_fifo_stall_timer
);
672 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
673 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
675 init_timer(&adapter
->watchdog_timer
);
676 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
677 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
679 INIT_WORK(&adapter
->watchdog_task
,
680 (void (*)(void *))e1000_watchdog_task
, adapter
);
682 init_timer(&adapter
->phy_info_timer
);
683 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
684 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
686 INIT_WORK(&adapter
->tx_timeout_task
,
687 (void (*)(void *))e1000_tx_timeout_task
, netdev
);
689 /* we're going to reset, so assume we have no link for now */
691 netif_carrier_off(netdev
);
692 netif_stop_queue(netdev
);
694 e1000_check_options(adapter
);
696 /* Initial Wake on LAN setting
697 * If APM wake is enabled in the EEPROM,
698 * enable the ACPI Magic Packet filter
701 switch(adapter
->hw
.mac_type
) {
702 case e1000_82542_rev2_0
:
703 case e1000_82542_rev2_1
:
707 e1000_read_eeprom(&adapter
->hw
,
708 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
709 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
712 case e1000_82546_rev_3
:
713 if((E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
714 && (adapter
->hw
.media_type
== e1000_media_type_copper
)) {
715 e1000_read_eeprom(&adapter
->hw
,
716 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
721 e1000_read_eeprom(&adapter
->hw
,
722 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
725 if(eeprom_data
& eeprom_apme_mask
)
726 adapter
->wol
|= E1000_WUFC_MAG
;
728 /* reset the hardware with the new settings */
729 e1000_reset(adapter
);
731 /* Let firmware know the driver has taken over */
732 switch(adapter
->hw
.mac_type
) {
735 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
736 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
737 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
740 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
741 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
742 swsm
| E1000_SWSM_DRV_LOAD
);
748 strcpy(netdev
->name
, "eth%d");
749 if((err
= register_netdev(netdev
)))
752 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
760 iounmap(adapter
->hw
.hw_addr
);
764 pci_release_regions(pdev
);
769 * e1000_remove - Device Removal Routine
770 * @pdev: PCI device information struct
772 * e1000_remove is called by the PCI subsystem to alert the driver
773 * that it should release a PCI device. The could be caused by a
774 * Hot-Plug event, or because the driver is going to be removed from
778 static void __devexit
779 e1000_remove(struct pci_dev
*pdev
)
781 struct net_device
*netdev
= pci_get_drvdata(pdev
);
782 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
785 #ifdef CONFIG_E1000_NAPI
789 flush_scheduled_work();
791 if(adapter
->hw
.mac_type
>= e1000_82540
&&
792 adapter
->hw
.media_type
== e1000_media_type_copper
) {
793 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
794 if(manc
& E1000_MANC_SMBUS_EN
) {
795 manc
|= E1000_MANC_ARP_EN
;
796 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
800 switch(adapter
->hw
.mac_type
) {
803 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
804 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
805 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
808 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
809 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
810 swsm
& ~E1000_SWSM_DRV_LOAD
);
817 unregister_netdev(netdev
);
818 #ifdef CONFIG_E1000_NAPI
819 for (i
= 0; i
< adapter
->num_queues
; i
++)
820 __dev_put(&adapter
->polling_netdev
[i
]);
823 if(!e1000_check_phy_reset_block(&adapter
->hw
))
824 e1000_phy_hw_reset(&adapter
->hw
);
826 kfree(adapter
->tx_ring
);
827 kfree(adapter
->rx_ring
);
828 #ifdef CONFIG_E1000_NAPI
829 kfree(adapter
->polling_netdev
);
832 iounmap(adapter
->hw
.hw_addr
);
833 pci_release_regions(pdev
);
835 #ifdef CONFIG_E1000_MQ
836 free_percpu(adapter
->cpu_netdev
);
837 free_percpu(adapter
->cpu_tx_ring
);
841 pci_disable_device(pdev
);
845 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
846 * @adapter: board private structure to initialize
848 * e1000_sw_init initializes the Adapter private data structure.
849 * Fields are initialized based on PCI device information and
850 * OS network device settings (MTU size).
854 e1000_sw_init(struct e1000_adapter
*adapter
)
856 struct e1000_hw
*hw
= &adapter
->hw
;
857 struct net_device
*netdev
= adapter
->netdev
;
858 struct pci_dev
*pdev
= adapter
->pdev
;
859 #ifdef CONFIG_E1000_NAPI
863 /* PCI config space info */
865 hw
->vendor_id
= pdev
->vendor
;
866 hw
->device_id
= pdev
->device
;
867 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
868 hw
->subsystem_id
= pdev
->subsystem_device
;
870 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
872 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
874 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
875 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_256
;
876 hw
->max_frame_size
= netdev
->mtu
+
877 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
878 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
880 /* identify the MAC */
882 if(e1000_set_mac_type(hw
)) {
883 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
887 /* initialize eeprom parameters */
889 if(e1000_init_eeprom_params(hw
)) {
890 E1000_ERR("EEPROM initialization failed\n");
894 switch(hw
->mac_type
) {
899 case e1000_82541_rev_2
:
900 case e1000_82547_rev_2
:
901 hw
->phy_init_script
= 1;
905 e1000_set_media_type(hw
);
907 hw
->wait_autoneg_complete
= FALSE
;
908 hw
->tbi_compatibility_en
= TRUE
;
909 hw
->adaptive_ifs
= TRUE
;
913 if(hw
->media_type
== e1000_media_type_copper
) {
914 hw
->mdix
= AUTO_ALL_MODES
;
915 hw
->disable_polarity_correction
= FALSE
;
916 hw
->master_slave
= E1000_MASTER_SLAVE
;
919 #ifdef CONFIG_E1000_MQ
920 /* Number of supported queues */
921 switch (hw
->mac_type
) {
924 adapter
->num_queues
= 2;
927 adapter
->num_queues
= 1;
930 adapter
->num_queues
= min(adapter
->num_queues
, num_online_cpus());
932 adapter
->num_queues
= 1;
935 if (e1000_alloc_queues(adapter
)) {
936 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
940 #ifdef CONFIG_E1000_NAPI
941 for (i
= 0; i
< adapter
->num_queues
; i
++) {
942 adapter
->polling_netdev
[i
].priv
= adapter
;
943 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
944 adapter
->polling_netdev
[i
].weight
= 64;
945 dev_hold(&adapter
->polling_netdev
[i
]);
946 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
950 #ifdef CONFIG_E1000_MQ
951 e1000_setup_queue_mapping(adapter
);
954 atomic_set(&adapter
->irq_sem
, 1);
955 spin_lock_init(&adapter
->stats_lock
);
961 * e1000_alloc_queues - Allocate memory for all rings
962 * @adapter: board private structure to initialize
964 * We allocate one ring per queue at run-time since we don't know the
965 * number of queues at compile-time. The polling_netdev array is
966 * intended for Multiqueue, but should work fine with a single queue.
970 e1000_alloc_queues(struct e1000_adapter
*adapter
)
974 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_queues
;
975 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
976 if (!adapter
->tx_ring
)
978 memset(adapter
->tx_ring
, 0, size
);
980 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_queues
;
981 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
982 if (!adapter
->rx_ring
) {
983 kfree(adapter
->tx_ring
);
986 memset(adapter
->rx_ring
, 0, size
);
988 #ifdef CONFIG_E1000_NAPI
989 size
= sizeof(struct net_device
) * adapter
->num_queues
;
990 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
991 if (!adapter
->polling_netdev
) {
992 kfree(adapter
->tx_ring
);
993 kfree(adapter
->rx_ring
);
996 memset(adapter
->polling_netdev
, 0, size
);
999 return E1000_SUCCESS
;
1002 #ifdef CONFIG_E1000_MQ
1003 static void __devinit
1004 e1000_setup_queue_mapping(struct e1000_adapter
*adapter
)
1008 adapter
->rx_sched_call_data
.func
= e1000_rx_schedule
;
1009 adapter
->rx_sched_call_data
.info
= adapter
->netdev
;
1010 cpus_clear(adapter
->rx_sched_call_data
.cpumask
);
1012 adapter
->cpu_netdev
= alloc_percpu(struct net_device
*);
1013 adapter
->cpu_tx_ring
= alloc_percpu(struct e1000_tx_ring
*);
1017 for_each_online_cpu(cpu
) {
1018 *per_cpu_ptr(adapter
->cpu_tx_ring
, cpu
) = &adapter
->tx_ring
[i
% adapter
->num_queues
];
1019 /* This is incomplete because we'd like to assign separate
1020 * physical cpus to these netdev polling structures and
1021 * avoid saturating a subset of cpus.
1023 if (i
< adapter
->num_queues
) {
1024 *per_cpu_ptr(adapter
->cpu_netdev
, cpu
) = &adapter
->polling_netdev
[i
];
1025 adapter
->cpu_for_queue
[i
] = cpu
;
1027 *per_cpu_ptr(adapter
->cpu_netdev
, cpu
) = NULL
;
1031 unlock_cpu_hotplug();
1036 * e1000_open - Called when a network interface is made active
1037 * @netdev: network interface device structure
1039 * Returns 0 on success, negative value on failure
1041 * The open entry point is called when a network interface is made
1042 * active by the system (IFF_UP). At this point all resources needed
1043 * for transmit and receive operations are allocated, the interrupt
1044 * handler is registered with the OS, the watchdog timer is started,
1045 * and the stack is notified that the interface is ready.
1049 e1000_open(struct net_device
*netdev
)
1051 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1054 /* allocate transmit descriptors */
1056 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1059 /* allocate receive descriptors */
1061 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1064 if((err
= e1000_up(adapter
)))
1066 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1067 if((adapter
->hw
.mng_cookie
.status
&
1068 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1069 e1000_update_mng_vlan(adapter
);
1072 return E1000_SUCCESS
;
1075 e1000_free_all_rx_resources(adapter
);
1077 e1000_free_all_tx_resources(adapter
);
1079 e1000_reset(adapter
);
1085 * e1000_close - Disables a network interface
1086 * @netdev: network interface device structure
1088 * Returns 0, this is not allowed to fail
1090 * The close entry point is called when an interface is de-activated
1091 * by the OS. The hardware is still under the drivers control, but
1092 * needs to be disabled. A global MAC reset is issued to stop the
1093 * hardware, and all transmit and receive resources are freed.
1097 e1000_close(struct net_device
*netdev
)
1099 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1101 e1000_down(adapter
);
1103 e1000_free_all_tx_resources(adapter
);
1104 e1000_free_all_rx_resources(adapter
);
1106 if((adapter
->hw
.mng_cookie
.status
&
1107 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1108 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1114 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1115 * @adapter: address of board private structure
1116 * @start: address of beginning of memory
1117 * @len: length of memory
1119 static inline boolean_t
1120 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1121 void *start
, unsigned long len
)
1123 unsigned long begin
= (unsigned long) start
;
1124 unsigned long end
= begin
+ len
;
1126 /* First rev 82545 and 82546 need to not allow any memory
1127 * write location to cross 64k boundary due to errata 23 */
1128 if (adapter
->hw
.mac_type
== e1000_82545
||
1129 adapter
->hw
.mac_type
== e1000_82546
) {
1130 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1137 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1138 * @adapter: board private structure
1139 * @txdr: tx descriptor ring (for a specific queue) to setup
1141 * Return 0 on success, negative on failure
1145 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1146 struct e1000_tx_ring
*txdr
)
1148 struct pci_dev
*pdev
= adapter
->pdev
;
1151 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1152 txdr
->buffer_info
= vmalloc(size
);
1153 if(!txdr
->buffer_info
) {
1155 "Unable to allocate memory for the transmit descriptor ring\n");
1158 memset(txdr
->buffer_info
, 0, size
);
1159 memset(&txdr
->previous_buffer_info
, 0, sizeof(struct e1000_buffer
));
1161 /* round up to nearest 4K */
1163 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1164 E1000_ROUNDUP(txdr
->size
, 4096);
1166 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1169 vfree(txdr
->buffer_info
);
1171 "Unable to allocate memory for the transmit descriptor ring\n");
1175 /* Fix for errata 23, can't cross 64kB boundary */
1176 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1177 void *olddesc
= txdr
->desc
;
1178 dma_addr_t olddma
= txdr
->dma
;
1179 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1180 "at %p\n", txdr
->size
, txdr
->desc
);
1181 /* Try again, without freeing the previous */
1182 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1184 /* Failed allocation, critical failure */
1185 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1186 goto setup_tx_desc_die
;
1189 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1191 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1193 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1195 "Unable to allocate aligned memory "
1196 "for the transmit descriptor ring\n");
1197 vfree(txdr
->buffer_info
);
1200 /* Free old allocation, new allocation was successful */
1201 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1204 memset(txdr
->desc
, 0, txdr
->size
);
1206 txdr
->next_to_use
= 0;
1207 txdr
->next_to_clean
= 0;
1208 spin_lock_init(&txdr
->tx_lock
);
1214 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1215 * (Descriptors) for all queues
1216 * @adapter: board private structure
1218 * If this function returns with an error, then it's possible one or
1219 * more of the rings is populated (while the rest are not). It is the
1220 * callers duty to clean those orphaned rings.
1222 * Return 0 on success, negative on failure
1226 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1230 for (i
= 0; i
< adapter
->num_queues
; i
++) {
1231 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1234 "Allocation for Tx Queue %u failed\n", i
);
1243 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1244 * @adapter: board private structure
1246 * Configure the Tx unit of the MAC after a reset.
1250 e1000_configure_tx(struct e1000_adapter
*adapter
)
1253 struct e1000_hw
*hw
= &adapter
->hw
;
1254 uint32_t tdlen
, tctl
, tipg
, tarc
;
1256 /* Setup the HW Tx Head and Tail descriptor pointers */
1258 switch (adapter
->num_queues
) {
1260 tdba
= adapter
->tx_ring
[1].dma
;
1261 tdlen
= adapter
->tx_ring
[1].count
*
1262 sizeof(struct e1000_tx_desc
);
1263 E1000_WRITE_REG(hw
, TDBAL1
, (tdba
& 0x00000000ffffffffULL
));
1264 E1000_WRITE_REG(hw
, TDBAH1
, (tdba
>> 32));
1265 E1000_WRITE_REG(hw
, TDLEN1
, tdlen
);
1266 E1000_WRITE_REG(hw
, TDH1
, 0);
1267 E1000_WRITE_REG(hw
, TDT1
, 0);
1268 adapter
->tx_ring
[1].tdh
= E1000_TDH1
;
1269 adapter
->tx_ring
[1].tdt
= E1000_TDT1
;
1273 tdba
= adapter
->tx_ring
[0].dma
;
1274 tdlen
= adapter
->tx_ring
[0].count
*
1275 sizeof(struct e1000_tx_desc
);
1276 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1277 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1278 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1279 E1000_WRITE_REG(hw
, TDH
, 0);
1280 E1000_WRITE_REG(hw
, TDT
, 0);
1281 adapter
->tx_ring
[0].tdh
= E1000_TDH
;
1282 adapter
->tx_ring
[0].tdt
= E1000_TDT
;
1286 /* Set the default values for the Tx Inter Packet Gap timer */
1288 switch (hw
->mac_type
) {
1289 case e1000_82542_rev2_0
:
1290 case e1000_82542_rev2_1
:
1291 tipg
= DEFAULT_82542_TIPG_IPGT
;
1292 tipg
|= DEFAULT_82542_TIPG_IPGR1
<< E1000_TIPG_IPGR1_SHIFT
;
1293 tipg
|= DEFAULT_82542_TIPG_IPGR2
<< E1000_TIPG_IPGR2_SHIFT
;
1296 if (hw
->media_type
== e1000_media_type_fiber
||
1297 hw
->media_type
== e1000_media_type_internal_serdes
)
1298 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1300 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1301 tipg
|= DEFAULT_82543_TIPG_IPGR1
<< E1000_TIPG_IPGR1_SHIFT
;
1302 tipg
|= DEFAULT_82543_TIPG_IPGR2
<< E1000_TIPG_IPGR2_SHIFT
;
1304 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1306 /* Set the Tx Interrupt Delay register */
1308 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1309 if (hw
->mac_type
>= e1000_82540
)
1310 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1312 /* Program the Transmit Control Register */
1314 tctl
= E1000_READ_REG(hw
, TCTL
);
1316 tctl
&= ~E1000_TCTL_CT
;
1317 tctl
|= E1000_TCTL_EN
| E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1318 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1320 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1322 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1323 tarc
= E1000_READ_REG(hw
, TARC0
);
1324 tarc
|= ((1 << 25) | (1 << 21));
1325 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1326 tarc
= E1000_READ_REG(hw
, TARC1
);
1328 if (tctl
& E1000_TCTL_MULR
)
1332 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1335 e1000_config_collision_dist(hw
);
1337 /* Setup Transmit Descriptor Settings for eop descriptor */
1338 adapter
->txd_cmd
= E1000_TXD_CMD_IDE
| E1000_TXD_CMD_EOP
|
1341 if (hw
->mac_type
< e1000_82543
)
1342 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1344 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1346 /* Cache if we're 82544 running in PCI-X because we'll
1347 * need this to apply a workaround later in the send path. */
1348 if (hw
->mac_type
== e1000_82544
&&
1349 hw
->bus_type
== e1000_bus_type_pcix
)
1350 adapter
->pcix_82544
= 1;
1354 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1355 * @adapter: board private structure
1356 * @rxdr: rx descriptor ring (for a specific queue) to setup
1358 * Returns 0 on success, negative on failure
1362 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1363 struct e1000_rx_ring
*rxdr
)
1365 struct pci_dev
*pdev
= adapter
->pdev
;
1368 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1369 rxdr
->buffer_info
= vmalloc(size
);
1370 if (!rxdr
->buffer_info
) {
1372 "Unable to allocate memory for the receive descriptor ring\n");
1375 memset(rxdr
->buffer_info
, 0, size
);
1377 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1378 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1379 if(!rxdr
->ps_page
) {
1380 vfree(rxdr
->buffer_info
);
1382 "Unable to allocate memory for the receive descriptor ring\n");
1385 memset(rxdr
->ps_page
, 0, size
);
1387 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1388 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1389 if(!rxdr
->ps_page_dma
) {
1390 vfree(rxdr
->buffer_info
);
1391 kfree(rxdr
->ps_page
);
1393 "Unable to allocate memory for the receive descriptor ring\n");
1396 memset(rxdr
->ps_page_dma
, 0, size
);
1398 if(adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1399 desc_len
= sizeof(struct e1000_rx_desc
);
1401 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1403 /* Round up to nearest 4K */
1405 rxdr
->size
= rxdr
->count
* desc_len
;
1406 E1000_ROUNDUP(rxdr
->size
, 4096);
1408 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1412 "Unable to allocate memory for the receive descriptor ring\n");
1414 vfree(rxdr
->buffer_info
);
1415 kfree(rxdr
->ps_page
);
1416 kfree(rxdr
->ps_page_dma
);
1420 /* Fix for errata 23, can't cross 64kB boundary */
1421 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1422 void *olddesc
= rxdr
->desc
;
1423 dma_addr_t olddma
= rxdr
->dma
;
1424 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1425 "at %p\n", rxdr
->size
, rxdr
->desc
);
1426 /* Try again, without freeing the previous */
1427 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1428 /* Failed allocation, critical failure */
1430 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1432 "Unable to allocate memory "
1433 "for the receive descriptor ring\n");
1434 goto setup_rx_desc_die
;
1437 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1439 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1441 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1443 "Unable to allocate aligned memory "
1444 "for the receive descriptor ring\n");
1445 goto setup_rx_desc_die
;
1447 /* Free old allocation, new allocation was successful */
1448 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1451 memset(rxdr
->desc
, 0, rxdr
->size
);
1453 rxdr
->next_to_clean
= 0;
1454 rxdr
->next_to_use
= 0;
1460 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1461 * (Descriptors) for all queues
1462 * @adapter: board private structure
1464 * If this function returns with an error, then it's possible one or
1465 * more of the rings is populated (while the rest are not). It is the
1466 * callers duty to clean those orphaned rings.
1468 * Return 0 on success, negative on failure
1472 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1476 for (i
= 0; i
< adapter
->num_queues
; i
++) {
1477 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1480 "Allocation for Rx Queue %u failed\n", i
);
1489 * e1000_setup_rctl - configure the receive control registers
1490 * @adapter: Board private structure
1492 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1493 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1495 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1497 uint32_t rctl
, rfctl
;
1498 uint32_t psrctl
= 0;
1499 #ifdef CONFIG_E1000_PACKET_SPLIT
1503 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1505 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1507 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1508 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1509 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1511 if(adapter
->hw
.tbi_compatibility_on
== 1)
1512 rctl
|= E1000_RCTL_SBP
;
1514 rctl
&= ~E1000_RCTL_SBP
;
1516 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1517 rctl
&= ~E1000_RCTL_LPE
;
1519 rctl
|= E1000_RCTL_LPE
;
1521 /* Setup buffer sizes */
1522 if(adapter
->hw
.mac_type
>= e1000_82571
) {
1523 /* We can now specify buffers in 1K increments.
1524 * BSIZE and BSEX are ignored in this case. */
1525 rctl
|= adapter
->rx_buffer_len
<< 0x11;
1527 rctl
&= ~E1000_RCTL_SZ_4096
;
1528 rctl
|= E1000_RCTL_BSEX
;
1529 switch (adapter
->rx_buffer_len
) {
1530 case E1000_RXBUFFER_2048
:
1532 rctl
|= E1000_RCTL_SZ_2048
;
1533 rctl
&= ~E1000_RCTL_BSEX
;
1535 case E1000_RXBUFFER_4096
:
1536 rctl
|= E1000_RCTL_SZ_4096
;
1538 case E1000_RXBUFFER_8192
:
1539 rctl
|= E1000_RCTL_SZ_8192
;
1541 case E1000_RXBUFFER_16384
:
1542 rctl
|= E1000_RCTL_SZ_16384
;
1547 #ifdef CONFIG_E1000_PACKET_SPLIT
1548 /* 82571 and greater support packet-split where the protocol
1549 * header is placed in skb->data and the packet data is
1550 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1551 * In the case of a non-split, skb->data is linearly filled,
1552 * followed by the page buffers. Therefore, skb->data is
1553 * sized to hold the largest protocol header.
1555 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1556 if ((adapter
->hw
.mac_type
> e1000_82547_rev_2
) && (pages
<= 3) &&
1558 adapter
->rx_ps_pages
= pages
;
1560 adapter
->rx_ps_pages
= 0;
1562 if (adapter
->rx_ps_pages
) {
1563 /* Configure extra packet-split registers */
1564 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1565 rfctl
|= E1000_RFCTL_EXTEN
;
1566 /* disable IPv6 packet split support */
1567 rfctl
|= E1000_RFCTL_IPV6_DIS
;
1568 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1570 rctl
|= E1000_RCTL_DTYP_PS
| E1000_RCTL_SECRC
;
1572 psrctl
|= adapter
->rx_ps_bsize0
>>
1573 E1000_PSRCTL_BSIZE0_SHIFT
;
1575 switch (adapter
->rx_ps_pages
) {
1577 psrctl
|= PAGE_SIZE
<<
1578 E1000_PSRCTL_BSIZE3_SHIFT
;
1580 psrctl
|= PAGE_SIZE
<<
1581 E1000_PSRCTL_BSIZE2_SHIFT
;
1583 psrctl
|= PAGE_SIZE
>>
1584 E1000_PSRCTL_BSIZE1_SHIFT
;
1588 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1591 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1595 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1596 * @adapter: board private structure
1598 * Configure the Rx unit of the MAC after a reset.
1602 e1000_configure_rx(struct e1000_adapter
*adapter
)
1605 struct e1000_hw
*hw
= &adapter
->hw
;
1606 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
1607 #ifdef CONFIG_E1000_MQ
1608 uint32_t reta
, mrqc
;
1612 if (adapter
->rx_ps_pages
) {
1613 rdlen
= adapter
->rx_ring
[0].count
*
1614 sizeof(union e1000_rx_desc_packet_split
);
1615 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1616 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1618 rdlen
= adapter
->rx_ring
[0].count
*
1619 sizeof(struct e1000_rx_desc
);
1620 adapter
->clean_rx
= e1000_clean_rx_irq
;
1621 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1624 /* disable receives while setting up the descriptors */
1625 rctl
= E1000_READ_REG(hw
, RCTL
);
1626 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1628 /* set the Receive Delay Timer Register */
1629 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
1631 if (hw
->mac_type
>= e1000_82540
) {
1632 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
1633 if(adapter
->itr
> 1)
1634 E1000_WRITE_REG(hw
, ITR
,
1635 1000000000 / (adapter
->itr
* 256));
1638 if (hw
->mac_type
>= e1000_82571
) {
1639 /* Reset delay timers after every interrupt */
1640 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
1641 ctrl_ext
|= E1000_CTRL_EXT_CANC
;
1642 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1643 E1000_WRITE_FLUSH(hw
);
1646 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1647 * the Base and Length of the Rx Descriptor Ring */
1648 switch (adapter
->num_queues
) {
1649 #ifdef CONFIG_E1000_MQ
1651 rdba
= adapter
->rx_ring
[1].dma
;
1652 E1000_WRITE_REG(hw
, RDBAL1
, (rdba
& 0x00000000ffffffffULL
));
1653 E1000_WRITE_REG(hw
, RDBAH1
, (rdba
>> 32));
1654 E1000_WRITE_REG(hw
, RDLEN1
, rdlen
);
1655 E1000_WRITE_REG(hw
, RDH1
, 0);
1656 E1000_WRITE_REG(hw
, RDT1
, 0);
1657 adapter
->rx_ring
[1].rdh
= E1000_RDH1
;
1658 adapter
->rx_ring
[1].rdt
= E1000_RDT1
;
1663 rdba
= adapter
->rx_ring
[0].dma
;
1664 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1665 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
1666 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
1667 E1000_WRITE_REG(hw
, RDH
, 0);
1668 E1000_WRITE_REG(hw
, RDT
, 0);
1669 adapter
->rx_ring
[0].rdh
= E1000_RDH
;
1670 adapter
->rx_ring
[0].rdt
= E1000_RDT
;
1674 #ifdef CONFIG_E1000_MQ
1675 if (adapter
->num_queues
> 1) {
1676 uint32_t random
[10];
1678 get_random_bytes(&random
[0], 40);
1680 if (hw
->mac_type
<= e1000_82572
) {
1681 E1000_WRITE_REG(hw
, RSSIR
, 0);
1682 E1000_WRITE_REG(hw
, RSSIM
, 0);
1685 switch (adapter
->num_queues
) {
1689 mrqc
= E1000_MRQC_ENABLE_RSS_2Q
;
1693 /* Fill out redirection table */
1694 for (i
= 0; i
< 32; i
++)
1695 E1000_WRITE_REG_ARRAY(hw
, RETA
, i
, reta
);
1696 /* Fill out hash function seeds */
1697 for (i
= 0; i
< 10; i
++)
1698 E1000_WRITE_REG_ARRAY(hw
, RSSRK
, i
, random
[i
]);
1700 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1701 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1702 E1000_WRITE_REG(hw
, MRQC
, mrqc
);
1705 /* Multiqueue and packet checksumming are mutually exclusive. */
1706 if (hw
->mac_type
>= e1000_82571
) {
1707 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
1708 rxcsum
|= E1000_RXCSUM_PCSD
;
1709 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
1714 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1715 if (hw
->mac_type
>= e1000_82543
) {
1716 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
1717 if(adapter
->rx_csum
== TRUE
) {
1718 rxcsum
|= E1000_RXCSUM_TUOFL
;
1720 /* Enable 82571 IPv4 payload checksum for UDP fragments
1721 * Must be used in conjunction with packet-split. */
1722 if ((hw
->mac_type
>= e1000_82571
) &&
1723 (adapter
->rx_ps_pages
)) {
1724 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1727 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1728 /* don't need to clear IPPCSE as it defaults to 0 */
1730 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
1732 #endif /* CONFIG_E1000_MQ */
1734 if (hw
->mac_type
== e1000_82573
)
1735 E1000_WRITE_REG(hw
, ERT
, 0x0100);
1737 /* Enable Receives */
1738 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1742 * e1000_free_tx_resources - Free Tx Resources per Queue
1743 * @adapter: board private structure
1744 * @tx_ring: Tx descriptor ring for a specific queue
1746 * Free all transmit software resources
1750 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1751 struct e1000_tx_ring
*tx_ring
)
1753 struct pci_dev
*pdev
= adapter
->pdev
;
1755 e1000_clean_tx_ring(adapter
, tx_ring
);
1757 vfree(tx_ring
->buffer_info
);
1758 tx_ring
->buffer_info
= NULL
;
1760 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1762 tx_ring
->desc
= NULL
;
1766 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1767 * @adapter: board private structure
1769 * Free all transmit software resources
1773 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1777 for (i
= 0; i
< adapter
->num_queues
; i
++)
1778 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1782 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1783 struct e1000_buffer
*buffer_info
)
1785 if(buffer_info
->dma
) {
1786 pci_unmap_page(adapter
->pdev
,
1788 buffer_info
->length
,
1790 buffer_info
->dma
= 0;
1792 if(buffer_info
->skb
) {
1793 dev_kfree_skb_any(buffer_info
->skb
);
1794 buffer_info
->skb
= NULL
;
1799 * e1000_clean_tx_ring - Free Tx Buffers
1800 * @adapter: board private structure
1801 * @tx_ring: ring to be cleaned
1805 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1806 struct e1000_tx_ring
*tx_ring
)
1808 struct e1000_buffer
*buffer_info
;
1812 /* Free all the Tx ring sk_buffs */
1814 if (likely(tx_ring
->previous_buffer_info
.skb
!= NULL
)) {
1815 e1000_unmap_and_free_tx_resource(adapter
,
1816 &tx_ring
->previous_buffer_info
);
1819 for(i
= 0; i
< tx_ring
->count
; i
++) {
1820 buffer_info
= &tx_ring
->buffer_info
[i
];
1821 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1824 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1825 memset(tx_ring
->buffer_info
, 0, size
);
1827 /* Zero out the descriptor ring */
1829 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1831 tx_ring
->next_to_use
= 0;
1832 tx_ring
->next_to_clean
= 0;
1834 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
1835 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
1839 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1840 * @adapter: board private structure
1844 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1848 for (i
= 0; i
< adapter
->num_queues
; i
++)
1849 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1853 * e1000_free_rx_resources - Free Rx Resources
1854 * @adapter: board private structure
1855 * @rx_ring: ring to clean the resources from
1857 * Free all receive software resources
1861 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1862 struct e1000_rx_ring
*rx_ring
)
1864 struct pci_dev
*pdev
= adapter
->pdev
;
1866 e1000_clean_rx_ring(adapter
, rx_ring
);
1868 vfree(rx_ring
->buffer_info
);
1869 rx_ring
->buffer_info
= NULL
;
1870 kfree(rx_ring
->ps_page
);
1871 rx_ring
->ps_page
= NULL
;
1872 kfree(rx_ring
->ps_page_dma
);
1873 rx_ring
->ps_page_dma
= NULL
;
1875 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1877 rx_ring
->desc
= NULL
;
1881 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1882 * @adapter: board private structure
1884 * Free all receive software resources
1888 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1892 for (i
= 0; i
< adapter
->num_queues
; i
++)
1893 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1897 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1898 * @adapter: board private structure
1899 * @rx_ring: ring to free buffers from
1903 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1904 struct e1000_rx_ring
*rx_ring
)
1906 struct e1000_buffer
*buffer_info
;
1907 struct e1000_ps_page
*ps_page
;
1908 struct e1000_ps_page_dma
*ps_page_dma
;
1909 struct pci_dev
*pdev
= adapter
->pdev
;
1913 /* Free all the Rx ring sk_buffs */
1915 for(i
= 0; i
< rx_ring
->count
; i
++) {
1916 buffer_info
= &rx_ring
->buffer_info
[i
];
1917 if(buffer_info
->skb
) {
1918 ps_page
= &rx_ring
->ps_page
[i
];
1919 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
1920 pci_unmap_single(pdev
,
1922 buffer_info
->length
,
1923 PCI_DMA_FROMDEVICE
);
1925 dev_kfree_skb(buffer_info
->skb
);
1926 buffer_info
->skb
= NULL
;
1928 for(j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
1929 if(!ps_page
->ps_page
[j
]) break;
1930 pci_unmap_single(pdev
,
1931 ps_page_dma
->ps_page_dma
[j
],
1932 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1933 ps_page_dma
->ps_page_dma
[j
] = 0;
1934 put_page(ps_page
->ps_page
[j
]);
1935 ps_page
->ps_page
[j
] = NULL
;
1940 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1941 memset(rx_ring
->buffer_info
, 0, size
);
1942 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
1943 memset(rx_ring
->ps_page
, 0, size
);
1944 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
1945 memset(rx_ring
->ps_page_dma
, 0, size
);
1947 /* Zero out the descriptor ring */
1949 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1951 rx_ring
->next_to_clean
= 0;
1952 rx_ring
->next_to_use
= 0;
1954 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
1955 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
1959 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1960 * @adapter: board private structure
1964 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
1968 for (i
= 0; i
< adapter
->num_queues
; i
++)
1969 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
1972 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1973 * and memory write and invalidate disabled for certain operations
1976 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
1978 struct net_device
*netdev
= adapter
->netdev
;
1981 e1000_pci_clear_mwi(&adapter
->hw
);
1983 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1984 rctl
|= E1000_RCTL_RST
;
1985 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1986 E1000_WRITE_FLUSH(&adapter
->hw
);
1989 if(netif_running(netdev
))
1990 e1000_clean_all_rx_rings(adapter
);
1994 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
1996 struct net_device
*netdev
= adapter
->netdev
;
1999 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2000 rctl
&= ~E1000_RCTL_RST
;
2001 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2002 E1000_WRITE_FLUSH(&adapter
->hw
);
2005 if(adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2006 e1000_pci_set_mwi(&adapter
->hw
);
2008 if(netif_running(netdev
)) {
2009 e1000_configure_rx(adapter
);
2010 e1000_alloc_rx_buffers(adapter
, &adapter
->rx_ring
[0]);
2015 * e1000_set_mac - Change the Ethernet Address of the NIC
2016 * @netdev: network interface device structure
2017 * @p: pointer to an address structure
2019 * Returns 0 on success, negative on failure
2023 e1000_set_mac(struct net_device
*netdev
, void *p
)
2025 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2026 struct sockaddr
*addr
= p
;
2028 if(!is_valid_ether_addr(addr
->sa_data
))
2029 return -EADDRNOTAVAIL
;
2031 /* 82542 2.0 needs to be in reset to write receive address registers */
2033 if(adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2034 e1000_enter_82542_rst(adapter
);
2036 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2037 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2039 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2041 /* With 82571 controllers, LAA may be overwritten (with the default)
2042 * due to controller reset from the other port. */
2043 if (adapter
->hw
.mac_type
== e1000_82571
) {
2044 /* activate the work around */
2045 adapter
->hw
.laa_is_present
= 1;
2047 /* Hold a copy of the LAA in RAR[14] This is done so that
2048 * between the time RAR[0] gets clobbered and the time it
2049 * gets fixed (in e1000_watchdog), the actual LAA is in one
2050 * of the RARs and no incoming packets directed to this port
2051 * are dropped. Eventaully the LAA will be in RAR[0] and
2053 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2054 E1000_RAR_ENTRIES
- 1);
2057 if(adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2058 e1000_leave_82542_rst(adapter
);
2064 * e1000_set_multi - Multicast and Promiscuous mode set
2065 * @netdev: network interface device structure
2067 * The set_multi entry point is called whenever the multicast address
2068 * list or the network interface flags are updated. This routine is
2069 * responsible for configuring the hardware for proper multicast,
2070 * promiscuous mode, and all-multi behavior.
2074 e1000_set_multi(struct net_device
*netdev
)
2076 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2077 struct e1000_hw
*hw
= &adapter
->hw
;
2078 struct dev_mc_list
*mc_ptr
;
2080 uint32_t hash_value
;
2081 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2083 /* reserve RAR[14] for LAA over-write work-around */
2084 if (adapter
->hw
.mac_type
== e1000_82571
)
2087 /* Check for Promiscuous and All Multicast modes */
2089 rctl
= E1000_READ_REG(hw
, RCTL
);
2091 if(netdev
->flags
& IFF_PROMISC
) {
2092 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2093 } else if(netdev
->flags
& IFF_ALLMULTI
) {
2094 rctl
|= E1000_RCTL_MPE
;
2095 rctl
&= ~E1000_RCTL_UPE
;
2097 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2100 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2102 /* 82542 2.0 needs to be in reset to write receive address registers */
2104 if(hw
->mac_type
== e1000_82542_rev2_0
)
2105 e1000_enter_82542_rst(adapter
);
2107 /* load the first 14 multicast address into the exact filters 1-14
2108 * RAR 0 is used for the station MAC adddress
2109 * if there are not 14 addresses, go ahead and clear the filters
2110 * -- with 82571 controllers only 0-13 entries are filled here
2112 mc_ptr
= netdev
->mc_list
;
2114 for(i
= 1; i
< rar_entries
; i
++) {
2116 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2117 mc_ptr
= mc_ptr
->next
;
2119 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2120 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2124 /* clear the old settings from the multicast hash table */
2126 for(i
= 0; i
< E1000_NUM_MTA_REGISTERS
; i
++)
2127 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2129 /* load any remaining addresses into the hash table */
2131 for(; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2132 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2133 e1000_mta_set(hw
, hash_value
);
2136 if(hw
->mac_type
== e1000_82542_rev2_0
)
2137 e1000_leave_82542_rst(adapter
);
2140 /* Need to wait a few seconds after link up to get diagnostic information from
2144 e1000_update_phy_info(unsigned long data
)
2146 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2147 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2151 * e1000_82547_tx_fifo_stall - Timer Call-back
2152 * @data: pointer to adapter cast into an unsigned long
2156 e1000_82547_tx_fifo_stall(unsigned long data
)
2158 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2159 struct net_device
*netdev
= adapter
->netdev
;
2162 if(atomic_read(&adapter
->tx_fifo_stall
)) {
2163 if((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2164 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2165 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2166 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2167 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2168 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2169 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2170 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2171 tctl
& ~E1000_TCTL_EN
);
2172 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2173 adapter
->tx_head_addr
);
2174 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2175 adapter
->tx_head_addr
);
2176 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2177 adapter
->tx_head_addr
);
2178 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2179 adapter
->tx_head_addr
);
2180 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2181 E1000_WRITE_FLUSH(&adapter
->hw
);
2183 adapter
->tx_fifo_head
= 0;
2184 atomic_set(&adapter
->tx_fifo_stall
, 0);
2185 netif_wake_queue(netdev
);
2187 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2193 * e1000_watchdog - Timer Call-back
2194 * @data: pointer to adapter cast into an unsigned long
2197 e1000_watchdog(unsigned long data
)
2199 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2201 /* Do the rest outside of interrupt context */
2202 schedule_work(&adapter
->watchdog_task
);
2206 e1000_watchdog_task(struct e1000_adapter
*adapter
)
2208 struct net_device
*netdev
= adapter
->netdev
;
2209 struct e1000_tx_ring
*txdr
= &adapter
->tx_ring
[0];
2212 e1000_check_for_link(&adapter
->hw
);
2213 if (adapter
->hw
.mac_type
== e1000_82573
) {
2214 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2215 if(adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2216 e1000_update_mng_vlan(adapter
);
2219 if((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2220 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2221 link
= !adapter
->hw
.serdes_link_down
;
2223 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2226 if(!netif_carrier_ok(netdev
)) {
2227 e1000_get_speed_and_duplex(&adapter
->hw
,
2228 &adapter
->link_speed
,
2229 &adapter
->link_duplex
);
2231 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s\n",
2232 adapter
->link_speed
,
2233 adapter
->link_duplex
== FULL_DUPLEX
?
2234 "Full Duplex" : "Half Duplex");
2236 netif_carrier_on(netdev
);
2237 netif_wake_queue(netdev
);
2238 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2239 adapter
->smartspeed
= 0;
2242 if(netif_carrier_ok(netdev
)) {
2243 adapter
->link_speed
= 0;
2244 adapter
->link_duplex
= 0;
2245 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2246 netif_carrier_off(netdev
);
2247 netif_stop_queue(netdev
);
2248 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2251 e1000_smartspeed(adapter
);
2254 e1000_update_stats(adapter
);
2256 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2257 adapter
->tpt_old
= adapter
->stats
.tpt
;
2258 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2259 adapter
->colc_old
= adapter
->stats
.colc
;
2261 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2262 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2263 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2264 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2266 e1000_update_adaptive(&adapter
->hw
);
2268 if (adapter
->num_queues
== 1 && !netif_carrier_ok(netdev
)) {
2269 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2270 /* We've lost link, so the controller stops DMA,
2271 * but we've got queued Tx work that's never going
2272 * to get done, so reset controller to flush Tx.
2273 * (Do the reset outside of interrupt context). */
2274 schedule_work(&adapter
->tx_timeout_task
);
2278 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2279 if(adapter
->hw
.mac_type
>= e1000_82540
&& adapter
->itr
== 1) {
2280 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2281 * asymmetrical Tx or Rx gets ITR=8000; everyone
2282 * else is between 2000-8000. */
2283 uint32_t goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2284 uint32_t dif
= (adapter
->gotcl
> adapter
->gorcl
?
2285 adapter
->gotcl
- adapter
->gorcl
:
2286 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2287 uint32_t itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2288 E1000_WRITE_REG(&adapter
->hw
, ITR
, 1000000000 / (itr
* 256));
2291 /* Cause software interrupt to ensure rx ring is cleaned */
2292 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2294 /* Force detection of hung controller every watchdog period */
2295 adapter
->detect_tx_hung
= TRUE
;
2297 /* With 82571 controllers, LAA may be overwritten due to controller
2298 * reset from the other port. Set the appropriate LAA in RAR[0] */
2299 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2300 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2302 /* Reset the timer */
2303 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2306 #define E1000_TX_FLAGS_CSUM 0x00000001
2307 #define E1000_TX_FLAGS_VLAN 0x00000002
2308 #define E1000_TX_FLAGS_TSO 0x00000004
2309 #define E1000_TX_FLAGS_IPV4 0x00000008
2310 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2311 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2314 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2315 struct sk_buff
*skb
)
2318 struct e1000_context_desc
*context_desc
;
2320 uint32_t cmd_length
= 0;
2321 uint16_t ipcse
= 0, tucse
, mss
;
2322 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2325 if(skb_shinfo(skb
)->tso_size
) {
2326 if (skb_header_cloned(skb
)) {
2327 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2332 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2333 mss
= skb_shinfo(skb
)->tso_size
;
2334 if(skb
->protocol
== ntohs(ETH_P_IP
)) {
2335 skb
->nh
.iph
->tot_len
= 0;
2336 skb
->nh
.iph
->check
= 0;
2338 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2343 cmd_length
= E1000_TXD_CMD_IP
;
2344 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2345 #ifdef NETIF_F_TSO_IPV6
2346 } else if(skb
->protocol
== ntohs(ETH_P_IPV6
)) {
2347 skb
->nh
.ipv6h
->payload_len
= 0;
2349 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2350 &skb
->nh
.ipv6h
->daddr
,
2357 ipcss
= skb
->nh
.raw
- skb
->data
;
2358 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2359 tucss
= skb
->h
.raw
- skb
->data
;
2360 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2363 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2364 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2366 i
= tx_ring
->next_to_use
;
2367 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2369 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2370 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2371 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2372 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2373 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2374 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2375 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2376 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2377 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2379 if (++i
== tx_ring
->count
) i
= 0;
2380 tx_ring
->next_to_use
= i
;
2389 static inline boolean_t
2390 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2391 struct sk_buff
*skb
)
2393 struct e1000_context_desc
*context_desc
;
2397 if(likely(skb
->ip_summed
== CHECKSUM_HW
)) {
2398 css
= skb
->h
.raw
- skb
->data
;
2400 i
= tx_ring
->next_to_use
;
2401 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2403 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2404 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum
;
2405 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2406 context_desc
->tcp_seg_setup
.data
= 0;
2407 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2409 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2410 tx_ring
->next_to_use
= i
;
2418 #define E1000_MAX_TXD_PWR 12
2419 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2422 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2423 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2424 unsigned int nr_frags
, unsigned int mss
)
2426 struct e1000_buffer
*buffer_info
;
2427 unsigned int len
= skb
->len
;
2428 unsigned int offset
= 0, size
, count
= 0, i
;
2430 len
-= skb
->data_len
;
2432 i
= tx_ring
->next_to_use
;
2435 buffer_info
= &tx_ring
->buffer_info
[i
];
2436 size
= min(len
, max_per_txd
);
2438 /* Workaround for premature desc write-backs
2439 * in TSO mode. Append 4-byte sentinel desc */
2440 if(unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2443 /* work-around for errata 10 and it applies
2444 * to all controllers in PCI-X mode
2445 * The fix is to make sure that the first descriptor of a
2446 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2448 if(unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2449 (size
> 2015) && count
== 0))
2452 /* Workaround for potential 82544 hang in PCI-X. Avoid
2453 * terminating buffers within evenly-aligned dwords. */
2454 if(unlikely(adapter
->pcix_82544
&&
2455 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2459 buffer_info
->length
= size
;
2461 pci_map_single(adapter
->pdev
,
2465 buffer_info
->time_stamp
= jiffies
;
2470 if(unlikely(++i
== tx_ring
->count
)) i
= 0;
2473 for(f
= 0; f
< nr_frags
; f
++) {
2474 struct skb_frag_struct
*frag
;
2476 frag
= &skb_shinfo(skb
)->frags
[f
];
2478 offset
= frag
->page_offset
;
2481 buffer_info
= &tx_ring
->buffer_info
[i
];
2482 size
= min(len
, max_per_txd
);
2484 /* Workaround for premature desc write-backs
2485 * in TSO mode. Append 4-byte sentinel desc */
2486 if(unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2489 /* Workaround for potential 82544 hang in PCI-X.
2490 * Avoid terminating buffers within evenly-aligned
2492 if(unlikely(adapter
->pcix_82544
&&
2493 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
2497 buffer_info
->length
= size
;
2499 pci_map_page(adapter
->pdev
,
2504 buffer_info
->time_stamp
= jiffies
;
2509 if(unlikely(++i
== tx_ring
->count
)) i
= 0;
2513 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2514 tx_ring
->buffer_info
[i
].skb
= skb
;
2515 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2521 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2522 int tx_flags
, int count
)
2524 struct e1000_tx_desc
*tx_desc
= NULL
;
2525 struct e1000_buffer
*buffer_info
;
2526 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2529 if(likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2530 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2532 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2534 if(likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2535 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2538 if(likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2539 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2540 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2543 if(unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2544 txd_lower
|= E1000_TXD_CMD_VLE
;
2545 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2548 i
= tx_ring
->next_to_use
;
2551 buffer_info
= &tx_ring
->buffer_info
[i
];
2552 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2553 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2554 tx_desc
->lower
.data
=
2555 cpu_to_le32(txd_lower
| buffer_info
->length
);
2556 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2557 if(unlikely(++i
== tx_ring
->count
)) i
= 0;
2560 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2562 /* Force memory writes to complete before letting h/w
2563 * know there are new descriptors to fetch. (Only
2564 * applicable for weak-ordered memory model archs,
2565 * such as IA-64). */
2568 tx_ring
->next_to_use
= i
;
2569 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2573 * 82547 workaround to avoid controller hang in half-duplex environment.
2574 * The workaround is to avoid queuing a large packet that would span
2575 * the internal Tx FIFO ring boundary by notifying the stack to resend
2576 * the packet at a later time. This gives the Tx FIFO an opportunity to
2577 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2578 * to the beginning of the Tx FIFO.
2581 #define E1000_FIFO_HDR 0x10
2582 #define E1000_82547_PAD_LEN 0x3E0
2585 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2587 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2588 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2590 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
2592 if(adapter
->link_duplex
!= HALF_DUPLEX
)
2593 goto no_fifo_stall_required
;
2595 if(atomic_read(&adapter
->tx_fifo_stall
))
2598 if(skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2599 atomic_set(&adapter
->tx_fifo_stall
, 1);
2603 no_fifo_stall_required
:
2604 adapter
->tx_fifo_head
+= skb_fifo_len
;
2605 if(adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2606 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2610 #define MINIMUM_DHCP_PACKET_SIZE 282
2612 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2614 struct e1000_hw
*hw
= &adapter
->hw
;
2615 uint16_t length
, offset
;
2616 if(vlan_tx_tag_present(skb
)) {
2617 if(!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
2618 ( adapter
->hw
.mng_cookie
.status
&
2619 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
2622 if(htons(ETH_P_IP
) == skb
->protocol
) {
2623 const struct iphdr
*ip
= skb
->nh
.iph
;
2624 if(IPPROTO_UDP
== ip
->protocol
) {
2625 struct udphdr
*udp
= (struct udphdr
*)(skb
->h
.uh
);
2626 if(ntohs(udp
->dest
) == 67) {
2627 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
2628 length
= skb
->len
- offset
;
2630 return e1000_mng_write_dhcp_info(hw
,
2631 (uint8_t *)udp
+ 8, length
);
2634 } else if((skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) && (!skb
->protocol
)) {
2635 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
2636 if((htons(ETH_P_IP
) == eth
->h_proto
)) {
2637 const struct iphdr
*ip
=
2638 (struct iphdr
*)((uint8_t *)skb
->data
+14);
2639 if(IPPROTO_UDP
== ip
->protocol
) {
2640 struct udphdr
*udp
=
2641 (struct udphdr
*)((uint8_t *)ip
+
2643 if(ntohs(udp
->dest
) == 67) {
2644 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
2645 length
= skb
->len
- offset
;
2647 return e1000_mng_write_dhcp_info(hw
,
2657 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2659 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2661 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2662 struct e1000_tx_ring
*tx_ring
;
2663 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2664 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2665 unsigned int tx_flags
= 0;
2666 unsigned int len
= skb
->len
;
2667 unsigned long flags
;
2668 unsigned int nr_frags
= 0;
2669 unsigned int mss
= 0;
2673 len
-= skb
->data_len
;
2675 #ifdef CONFIG_E1000_MQ
2676 tx_ring
= *per_cpu_ptr(adapter
->cpu_tx_ring
, smp_processor_id());
2678 tx_ring
= adapter
->tx_ring
;
2681 if (unlikely(skb
->len
<= 0)) {
2682 dev_kfree_skb_any(skb
);
2683 return NETDEV_TX_OK
;
2687 mss
= skb_shinfo(skb
)->tso_size
;
2688 /* The controller does a simple calculation to
2689 * make sure there is enough room in the FIFO before
2690 * initiating the DMA for each buffer. The calc is:
2691 * 4 = ceil(buffer len/mss). To make sure we don't
2692 * overrun the FIFO, adjust the max buffer len if mss
2695 max_per_txd
= min(mss
<< 2, max_per_txd
);
2696 max_txd_pwr
= fls(max_per_txd
) - 1;
2699 if((mss
) || (skb
->ip_summed
== CHECKSUM_HW
))
2703 if(skb
->ip_summed
== CHECKSUM_HW
)
2706 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
2708 if(adapter
->pcix_82544
)
2711 /* work-around for errata 10 and it applies to all controllers
2712 * in PCI-X mode, so add one more descriptor to the count
2714 if(unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2718 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2719 for(f
= 0; f
< nr_frags
; f
++)
2720 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
2722 if(adapter
->pcix_82544
)
2726 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2727 * points to just header, pull a few bytes of payload from
2728 * frags into skb->data */
2729 if (skb_shinfo(skb
)->tso_size
) {
2731 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2732 if (skb
->data_len
&& (hdr_len
< (skb
->len
- skb
->data_len
)) &&
2733 (adapter
->hw
.mac_type
== e1000_82571
||
2734 adapter
->hw
.mac_type
== e1000_82572
)) {
2735 unsigned int pull_size
;
2736 pull_size
= min((unsigned int)4, skb
->data_len
);
2737 if (!__pskb_pull_tail(skb
, pull_size
)) {
2738 printk(KERN_ERR
"__pskb_pull_tail failed.\n");
2739 dev_kfree_skb_any(skb
);
2746 if(adapter
->hw
.tx_pkt_filtering
&& (adapter
->hw
.mac_type
== e1000_82573
) )
2747 e1000_transfer_dhcp_info(adapter
, skb
);
2749 local_irq_save(flags
);
2750 if (!spin_trylock(&tx_ring
->tx_lock
)) {
2751 /* Collision - tell upper layer to requeue */
2752 local_irq_restore(flags
);
2753 return NETDEV_TX_LOCKED
;
2756 /* need: count + 2 desc gap to keep tail from touching
2757 * head, otherwise try next time */
2758 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < count
+ 2)) {
2759 netif_stop_queue(netdev
);
2760 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2761 return NETDEV_TX_BUSY
;
2764 if(unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
2765 if(unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
2766 netif_stop_queue(netdev
);
2767 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
);
2768 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2769 return NETDEV_TX_BUSY
;
2773 if(unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
2774 tx_flags
|= E1000_TX_FLAGS_VLAN
;
2775 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
2778 first
= tx_ring
->next_to_use
;
2780 tso
= e1000_tso(adapter
, tx_ring
, skb
);
2782 dev_kfree_skb_any(skb
);
2783 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2784 return NETDEV_TX_OK
;
2788 tx_flags
|= E1000_TX_FLAGS_TSO
;
2789 else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
2790 tx_flags
|= E1000_TX_FLAGS_CSUM
;
2792 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2793 * 82571 hardware supports TSO capabilities for IPv6 as well...
2794 * no longer assume, we must. */
2795 if (likely(skb
->protocol
== ntohs(ETH_P_IP
)))
2796 tx_flags
|= E1000_TX_FLAGS_IPV4
;
2798 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
2799 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
2800 max_per_txd
, nr_frags
, mss
));
2802 netdev
->trans_start
= jiffies
;
2804 /* Make sure there is space in the ring for the next send. */
2805 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < MAX_SKB_FRAGS
+ 2))
2806 netif_stop_queue(netdev
);
2808 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2809 return NETDEV_TX_OK
;
2813 * e1000_tx_timeout - Respond to a Tx Hang
2814 * @netdev: network interface device structure
2818 e1000_tx_timeout(struct net_device
*netdev
)
2820 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2822 /* Do the reset outside of interrupt context */
2823 schedule_work(&adapter
->tx_timeout_task
);
2827 e1000_tx_timeout_task(struct net_device
*netdev
)
2829 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2831 e1000_down(adapter
);
2836 * e1000_get_stats - Get System Network Statistics
2837 * @netdev: network interface device structure
2839 * Returns the address of the device statistics structure.
2840 * The statistics are actually updated from the timer callback.
2843 static struct net_device_stats
*
2844 e1000_get_stats(struct net_device
*netdev
)
2846 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2848 e1000_update_stats(adapter
);
2849 return &adapter
->net_stats
;
2853 * e1000_change_mtu - Change the Maximum Transfer Unit
2854 * @netdev: network interface device structure
2855 * @new_mtu: new value for maximum frame size
2857 * Returns 0 on success, negative on failure
2861 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
2863 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2864 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
2866 if((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
2867 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2868 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
2872 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2873 /* might want this to be bigger enum check... */
2874 /* 82571 controllers limit jumbo frame size to 10500 bytes */
2875 if ((adapter
->hw
.mac_type
== e1000_82571
||
2876 adapter
->hw
.mac_type
== e1000_82572
) &&
2877 max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2878 DPRINTK(PROBE
, ERR
, "MTU > 9216 bytes not supported "
2879 "on 82571 and 82572 controllers.\n");
2883 if(adapter
->hw
.mac_type
== e1000_82573
&&
2884 max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
2885 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported "
2890 if(adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
2891 adapter
->rx_buffer_len
= max_frame
;
2892 E1000_ROUNDUP(adapter
->rx_buffer_len
, 1024);
2894 if(unlikely((adapter
->hw
.mac_type
< e1000_82543
) &&
2895 (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
))) {
2896 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported "
2901 if(max_frame
<= E1000_RXBUFFER_2048
) {
2902 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
2903 } else if(max_frame
<= E1000_RXBUFFER_4096
) {
2904 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
2905 } else if(max_frame
<= E1000_RXBUFFER_8192
) {
2906 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
2907 } else if(max_frame
<= E1000_RXBUFFER_16384
) {
2908 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
2913 netdev
->mtu
= new_mtu
;
2915 if(netif_running(netdev
)) {
2916 e1000_down(adapter
);
2920 adapter
->hw
.max_frame_size
= max_frame
;
2926 * e1000_update_stats - Update the board statistics counters
2927 * @adapter: board private structure
2931 e1000_update_stats(struct e1000_adapter
*adapter
)
2933 struct e1000_hw
*hw
= &adapter
->hw
;
2934 unsigned long flags
;
2937 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2939 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
2941 /* these counters are modified from e1000_adjust_tbi_stats,
2942 * called from the interrupt context, so they must only
2943 * be written while holding adapter->stats_lock
2946 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
2947 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
2948 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
2949 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
2950 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
2951 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
2952 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
2953 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
2954 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
2955 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
2956 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
2957 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
2958 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
2960 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
2961 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
2962 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
2963 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
2964 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
2965 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
2966 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
2967 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
2968 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
2969 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
2970 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
2971 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
2972 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
2973 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
2974 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
2975 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
2976 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
2977 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
2978 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
2979 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
2980 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
2981 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
2982 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
2983 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
2984 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
2985 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
2986 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
2987 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
2988 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
2989 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
2990 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
2991 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
2992 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
2993 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
2995 /* used for adaptive IFS */
2997 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
2998 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
2999 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3000 adapter
->stats
.colc
+= hw
->collision_delta
;
3002 if(hw
->mac_type
>= e1000_82543
) {
3003 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3004 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3005 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3006 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3007 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3008 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3010 if(hw
->mac_type
> e1000_82547_rev_2
) {
3011 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3012 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3013 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3014 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3015 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3016 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3017 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3018 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3019 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3022 /* Fill out the OS statistics structure */
3024 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3025 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3026 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3027 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3028 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3029 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3033 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3034 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3035 adapter
->stats
.rlec
+ adapter
->stats
.mpc
+
3036 adapter
->stats
.cexterr
;
3037 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlec
;
3038 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3039 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3040 adapter
->net_stats
.rx_fifo_errors
= adapter
->stats
.mpc
;
3041 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3045 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3046 adapter
->stats
.latecol
;
3047 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3048 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3049 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3051 /* Tx Dropped needs to be maintained elsewhere */
3055 if(hw
->media_type
== e1000_media_type_copper
) {
3056 if((adapter
->link_speed
== SPEED_1000
) &&
3057 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3058 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3059 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3062 if((hw
->mac_type
<= e1000_82546
) &&
3063 (hw
->phy_type
== e1000_phy_m88
) &&
3064 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3065 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3068 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3071 #ifdef CONFIG_E1000_MQ
3073 e1000_rx_schedule(void *data
)
3075 struct net_device
*poll_dev
, *netdev
= data
;
3076 struct e1000_adapter
*adapter
= netdev
->priv
;
3077 int this_cpu
= get_cpu();
3079 poll_dev
= *per_cpu_ptr(adapter
->cpu_netdev
, this_cpu
);
3080 if (poll_dev
== NULL
) {
3085 if (likely(netif_rx_schedule_prep(poll_dev
)))
3086 __netif_rx_schedule(poll_dev
);
3088 e1000_irq_enable(adapter
);
3095 * e1000_intr - Interrupt Handler
3096 * @irq: interrupt number
3097 * @data: pointer to a network interface device structure
3098 * @pt_regs: CPU registers structure
3102 e1000_intr(int irq
, void *data
, struct pt_regs
*regs
)
3104 struct net_device
*netdev
= data
;
3105 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3106 struct e1000_hw
*hw
= &adapter
->hw
;
3107 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3108 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3113 return IRQ_NONE
; /* Not our interrupt */
3115 if(unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3116 hw
->get_link_status
= 1;
3117 mod_timer(&adapter
->watchdog_timer
, jiffies
);
3120 #ifdef CONFIG_E1000_NAPI
3121 atomic_inc(&adapter
->irq_sem
);
3122 E1000_WRITE_REG(hw
, IMC
, ~0);
3123 E1000_WRITE_FLUSH(hw
);
3124 #ifdef CONFIG_E1000_MQ
3125 if (atomic_read(&adapter
->rx_sched_call_data
.count
) == 0) {
3126 cpu_set(adapter
->cpu_for_queue
[0],
3127 adapter
->rx_sched_call_data
.cpumask
);
3128 for (i
= 1; i
< adapter
->num_queues
; i
++) {
3129 cpu_set(adapter
->cpu_for_queue
[i
],
3130 adapter
->rx_sched_call_data
.cpumask
);
3131 atomic_inc(&adapter
->irq_sem
);
3133 atomic_set(&adapter
->rx_sched_call_data
.count
, i
);
3134 smp_call_async_mask(&adapter
->rx_sched_call_data
);
3136 printk("call_data.count == %u\n", atomic_read(&adapter
->rx_sched_call_data
.count
));
3138 #else /* if !CONFIG_E1000_MQ */
3139 if (likely(netif_rx_schedule_prep(&adapter
->polling_netdev
[0])))
3140 __netif_rx_schedule(&adapter
->polling_netdev
[0]);
3142 e1000_irq_enable(adapter
);
3143 #endif /* CONFIG_E1000_MQ */
3145 #else /* if !CONFIG_E1000_NAPI */
3146 /* Writing IMC and IMS is needed for 82547.
3147 Due to Hub Link bus being occupied, an interrupt
3148 de-assertion message is not able to be sent.
3149 When an interrupt assertion message is generated later,
3150 two messages are re-ordered and sent out.
3151 That causes APIC to think 82547 is in de-assertion
3152 state, while 82547 is in assertion state, resulting
3153 in dead lock. Writing IMC forces 82547 into
3156 if(hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
){
3157 atomic_inc(&adapter
->irq_sem
);
3158 E1000_WRITE_REG(hw
, IMC
, ~0);
3161 for(i
= 0; i
< E1000_MAX_INTR
; i
++)
3162 if(unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3163 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3166 if(hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3167 e1000_irq_enable(adapter
);
3169 #endif /* CONFIG_E1000_NAPI */
3174 #ifdef CONFIG_E1000_NAPI
3176 * e1000_clean - NAPI Rx polling callback
3177 * @adapter: board private structure
3181 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3183 struct e1000_adapter
*adapter
;
3184 int work_to_do
= min(*budget
, poll_dev
->quota
);
3185 int tx_cleaned
, i
= 0, work_done
= 0;
3187 /* Must NOT use netdev_priv macro here. */
3188 adapter
= poll_dev
->priv
;
3190 /* Keep link state information with original netdev */
3191 if (!netif_carrier_ok(adapter
->netdev
))
3194 while (poll_dev
!= &adapter
->polling_netdev
[i
]) {
3196 if (unlikely(i
== adapter
->num_queues
))
3200 tx_cleaned
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
3201 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[i
],
3202 &work_done
, work_to_do
);
3204 *budget
-= work_done
;
3205 poll_dev
->quota
-= work_done
;
3207 /* If no Tx and not enough Rx work done, exit the polling mode */
3208 if((!tx_cleaned
&& (work_done
== 0)) ||
3209 !netif_running(adapter
->netdev
)) {
3211 netif_rx_complete(poll_dev
);
3212 e1000_irq_enable(adapter
);
3221 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3222 * @adapter: board private structure
3226 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3227 struct e1000_tx_ring
*tx_ring
)
3229 struct net_device
*netdev
= adapter
->netdev
;
3230 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3231 struct e1000_buffer
*buffer_info
;
3232 unsigned int i
, eop
;
3233 boolean_t cleaned
= FALSE
;
3235 i
= tx_ring
->next_to_clean
;
3236 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3237 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3239 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3240 /* Premature writeback of Tx descriptors clear (free buffers
3241 * and unmap pci_mapping) previous_buffer_info */
3242 if (likely(tx_ring
->previous_buffer_info
.skb
!= NULL
)) {
3243 e1000_unmap_and_free_tx_resource(adapter
,
3244 &tx_ring
->previous_buffer_info
);
3247 for(cleaned
= FALSE
; !cleaned
; ) {
3248 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3249 buffer_info
= &tx_ring
->buffer_info
[i
];
3250 cleaned
= (i
== eop
);
3253 if (!(netdev
->features
& NETIF_F_TSO
)) {
3255 e1000_unmap_and_free_tx_resource(adapter
,
3260 memcpy(&tx_ring
->previous_buffer_info
,
3262 sizeof(struct e1000_buffer
));
3263 memset(buffer_info
, 0,
3264 sizeof(struct e1000_buffer
));
3266 e1000_unmap_and_free_tx_resource(
3267 adapter
, buffer_info
);
3272 tx_desc
->buffer_addr
= 0;
3273 tx_desc
->lower
.data
= 0;
3274 tx_desc
->upper
.data
= 0;
3276 if(unlikely(++i
== tx_ring
->count
)) i
= 0;
3281 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3282 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3285 tx_ring
->next_to_clean
= i
;
3287 spin_lock(&tx_ring
->tx_lock
);
3289 if(unlikely(cleaned
&& netif_queue_stopped(netdev
) &&
3290 netif_carrier_ok(netdev
)))
3291 netif_wake_queue(netdev
);
3293 spin_unlock(&tx_ring
->tx_lock
);
3295 if (adapter
->detect_tx_hung
) {
3296 /* Detect a transmit hang in hardware, this serializes the
3297 * check with the clearing of time_stamp and movement of i */
3298 adapter
->detect_tx_hung
= FALSE
;
3299 if (tx_ring
->buffer_info
[i
].dma
&&
3300 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+ HZ
)
3301 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
3302 E1000_STATUS_TXOFF
)) {
3304 /* detected Tx unit hang */
3305 i
= tx_ring
->next_to_clean
;
3306 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3307 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3308 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3311 " next_to_use <%x>\n"
3312 " next_to_clean <%x>\n"
3313 "buffer_info[next_to_clean]\n"
3315 " time_stamp <%lx>\n"
3316 " next_to_watch <%x>\n"
3318 " next_to_watch.status <%x>\n",
3319 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
3320 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
3321 tx_ring
->next_to_use
,
3323 (unsigned long long)tx_ring
->buffer_info
[i
].dma
,
3324 tx_ring
->buffer_info
[i
].time_stamp
,
3327 eop_desc
->upper
.fields
.status
);
3328 netif_stop_queue(netdev
);
3332 if (unlikely(!(eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3333 time_after(jiffies
, tx_ring
->previous_buffer_info
.time_stamp
+ HZ
)))
3334 e1000_unmap_and_free_tx_resource(
3335 adapter
, &tx_ring
->previous_buffer_info
);
3341 * e1000_rx_checksum - Receive Checksum Offload for 82543
3342 * @adapter: board private structure
3343 * @status_err: receive descriptor status and error fields
3344 * @csum: receive descriptor csum field
3345 * @sk_buff: socket buffer with received data
3349 e1000_rx_checksum(struct e1000_adapter
*adapter
,
3350 uint32_t status_err
, uint32_t csum
,
3351 struct sk_buff
*skb
)
3353 uint16_t status
= (uint16_t)status_err
;
3354 uint8_t errors
= (uint8_t)(status_err
>> 24);
3355 skb
->ip_summed
= CHECKSUM_NONE
;
3357 /* 82543 or newer only */
3358 if(unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
3359 /* Ignore Checksum bit is set */
3360 if(unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3361 /* TCP/UDP checksum error bit is set */
3362 if(unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3363 /* let the stack verify checksum errors */
3364 adapter
->hw_csum_err
++;
3367 /* TCP/UDP Checksum has not been calculated */
3368 if(adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
3369 if(!(status
& E1000_RXD_STAT_TCPCS
))
3372 if(!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3375 /* It must be a TCP or UDP packet with a valid checksum */
3376 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3377 /* TCP checksum is good */
3378 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3379 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
3380 /* IP fragment with UDP payload */
3381 /* Hardware complements the payload checksum, so we undo it
3382 * and then put the value in host order for further stack use.
3384 csum
= ntohl(csum
^ 0xFFFF);
3386 skb
->ip_summed
= CHECKSUM_HW
;
3388 adapter
->hw_csum_good
++;
3392 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3393 * @adapter: board private structure
3397 #ifdef CONFIG_E1000_NAPI
3398 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3399 struct e1000_rx_ring
*rx_ring
,
3400 int *work_done
, int work_to_do
)
3402 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3403 struct e1000_rx_ring
*rx_ring
)
3406 struct net_device
*netdev
= adapter
->netdev
;
3407 struct pci_dev
*pdev
= adapter
->pdev
;
3408 struct e1000_rx_desc
*rx_desc
;
3409 struct e1000_buffer
*buffer_info
;
3410 struct sk_buff
*skb
;
3411 unsigned long flags
;
3415 boolean_t cleaned
= FALSE
;
3417 i
= rx_ring
->next_to_clean
;
3418 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3420 while(rx_desc
->status
& E1000_RXD_STAT_DD
) {
3421 buffer_info
= &rx_ring
->buffer_info
[i
];
3422 #ifdef CONFIG_E1000_NAPI
3423 if(*work_done
>= work_to_do
)
3429 pci_unmap_single(pdev
,
3431 buffer_info
->length
,
3432 PCI_DMA_FROMDEVICE
);
3434 skb
= buffer_info
->skb
;
3435 length
= le16_to_cpu(rx_desc
->length
);
3437 if(unlikely(!(rx_desc
->status
& E1000_RXD_STAT_EOP
))) {
3438 /* All receives must fit into a single buffer */
3439 E1000_DBG("%s: Receive packet consumed multiple"
3440 " buffers\n", netdev
->name
);
3441 dev_kfree_skb_irq(skb
);
3445 if(unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3446 last_byte
= *(skb
->data
+ length
- 1);
3447 if(TBI_ACCEPT(&adapter
->hw
, rx_desc
->status
,
3448 rx_desc
->errors
, length
, last_byte
)) {
3449 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3450 e1000_tbi_adjust_stats(&adapter
->hw
,
3453 spin_unlock_irqrestore(&adapter
->stats_lock
,
3457 dev_kfree_skb_irq(skb
);
3463 skb_put(skb
, length
- ETHERNET_FCS_SIZE
);
3465 /* Receive Checksum Offload */
3466 e1000_rx_checksum(adapter
,
3467 (uint32_t)(rx_desc
->status
) |
3468 ((uint32_t)(rx_desc
->errors
) << 24),
3469 rx_desc
->csum
, skb
);
3470 skb
->protocol
= eth_type_trans(skb
, netdev
);
3471 #ifdef CONFIG_E1000_NAPI
3472 if(unlikely(adapter
->vlgrp
&&
3473 (rx_desc
->status
& E1000_RXD_STAT_VP
))) {
3474 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3475 le16_to_cpu(rx_desc
->special
) &
3476 E1000_RXD_SPC_VLAN_MASK
);
3478 netif_receive_skb(skb
);
3480 #else /* CONFIG_E1000_NAPI */
3481 if(unlikely(adapter
->vlgrp
&&
3482 (rx_desc
->status
& E1000_RXD_STAT_VP
))) {
3483 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3484 le16_to_cpu(rx_desc
->special
) &
3485 E1000_RXD_SPC_VLAN_MASK
);
3489 #endif /* CONFIG_E1000_NAPI */
3490 netdev
->last_rx
= jiffies
;
3494 rx_desc
->status
= 0;
3495 buffer_info
->skb
= NULL
;
3496 if(unlikely(++i
== rx_ring
->count
)) i
= 0;
3498 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3500 rx_ring
->next_to_clean
= i
;
3501 adapter
->alloc_rx_buf(adapter
, rx_ring
);
3507 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3508 * @adapter: board private structure
3512 #ifdef CONFIG_E1000_NAPI
3513 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3514 struct e1000_rx_ring
*rx_ring
,
3515 int *work_done
, int work_to_do
)
3517 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3518 struct e1000_rx_ring
*rx_ring
)
3521 union e1000_rx_desc_packet_split
*rx_desc
;
3522 struct net_device
*netdev
= adapter
->netdev
;
3523 struct pci_dev
*pdev
= adapter
->pdev
;
3524 struct e1000_buffer
*buffer_info
;
3525 struct e1000_ps_page
*ps_page
;
3526 struct e1000_ps_page_dma
*ps_page_dma
;
3527 struct sk_buff
*skb
;
3529 uint32_t length
, staterr
;
3530 boolean_t cleaned
= FALSE
;
3532 i
= rx_ring
->next_to_clean
;
3533 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3534 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3536 while(staterr
& E1000_RXD_STAT_DD
) {
3537 buffer_info
= &rx_ring
->buffer_info
[i
];
3538 ps_page
= &rx_ring
->ps_page
[i
];
3539 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3540 #ifdef CONFIG_E1000_NAPI
3541 if(unlikely(*work_done
>= work_to_do
))
3546 pci_unmap_single(pdev
, buffer_info
->dma
,
3547 buffer_info
->length
,
3548 PCI_DMA_FROMDEVICE
);
3550 skb
= buffer_info
->skb
;
3552 if(unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
3553 E1000_DBG("%s: Packet Split buffers didn't pick up"
3554 " the full packet\n", netdev
->name
);
3555 dev_kfree_skb_irq(skb
);
3559 if(unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
3560 dev_kfree_skb_irq(skb
);
3564 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
3566 if(unlikely(!length
)) {
3567 E1000_DBG("%s: Last part of the packet spanning"
3568 " multiple descriptors\n", netdev
->name
);
3569 dev_kfree_skb_irq(skb
);
3574 skb_put(skb
, length
);
3576 for(j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
3577 if(!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
3580 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
3581 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3582 ps_page_dma
->ps_page_dma
[j
] = 0;
3583 skb_shinfo(skb
)->frags
[j
].page
=
3584 ps_page
->ps_page
[j
];
3585 ps_page
->ps_page
[j
] = NULL
;
3586 skb_shinfo(skb
)->frags
[j
].page_offset
= 0;
3587 skb_shinfo(skb
)->frags
[j
].size
= length
;
3588 skb_shinfo(skb
)->nr_frags
++;
3590 skb
->data_len
+= length
;
3593 e1000_rx_checksum(adapter
, staterr
,
3594 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
, skb
);
3595 skb
->protocol
= eth_type_trans(skb
, netdev
);
3597 if(likely(rx_desc
->wb
.upper
.header_status
&
3598 E1000_RXDPS_HDRSTAT_HDRSP
)) {
3599 adapter
->rx_hdr_split
++;
3600 #ifdef HAVE_RX_ZERO_COPY
3601 skb_shinfo(skb
)->zero_copy
= TRUE
;
3604 #ifdef CONFIG_E1000_NAPI
3605 if(unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3606 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3607 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3608 E1000_RXD_SPC_VLAN_MASK
);
3610 netif_receive_skb(skb
);
3612 #else /* CONFIG_E1000_NAPI */
3613 if(unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3614 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3615 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3616 E1000_RXD_SPC_VLAN_MASK
);
3620 #endif /* CONFIG_E1000_NAPI */
3621 netdev
->last_rx
= jiffies
;
3625 rx_desc
->wb
.middle
.status_error
&= ~0xFF;
3626 buffer_info
->skb
= NULL
;
3627 if(unlikely(++i
== rx_ring
->count
)) i
= 0;
3629 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3630 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3632 rx_ring
->next_to_clean
= i
;
3633 adapter
->alloc_rx_buf(adapter
, rx_ring
);
3639 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3640 * @adapter: address of board private structure
3644 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
3645 struct e1000_rx_ring
*rx_ring
)
3647 struct net_device
*netdev
= adapter
->netdev
;
3648 struct pci_dev
*pdev
= adapter
->pdev
;
3649 struct e1000_rx_desc
*rx_desc
;
3650 struct e1000_buffer
*buffer_info
;
3651 struct sk_buff
*skb
;
3653 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
3655 i
= rx_ring
->next_to_use
;
3656 buffer_info
= &rx_ring
->buffer_info
[i
];
3658 while(!buffer_info
->skb
) {
3659 skb
= dev_alloc_skb(bufsz
);
3661 if(unlikely(!skb
)) {
3662 /* Better luck next round */
3666 /* Fix for errata 23, can't cross 64kB boundary */
3667 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3668 struct sk_buff
*oldskb
= skb
;
3669 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
3670 "at %p\n", bufsz
, skb
->data
);
3671 /* Try again, without freeing the previous */
3672 skb
= dev_alloc_skb(bufsz
);
3673 /* Failed allocation, critical failure */
3675 dev_kfree_skb(oldskb
);
3679 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3682 dev_kfree_skb(oldskb
);
3683 break; /* while !buffer_info->skb */
3685 /* Use new allocation */
3686 dev_kfree_skb(oldskb
);
3689 /* Make buffer alignment 2 beyond a 16 byte boundary
3690 * this will result in a 16 byte aligned IP header after
3691 * the 14 byte MAC header is removed
3693 skb_reserve(skb
, NET_IP_ALIGN
);
3697 buffer_info
->skb
= skb
;
3698 buffer_info
->length
= adapter
->rx_buffer_len
;
3699 buffer_info
->dma
= pci_map_single(pdev
,
3701 adapter
->rx_buffer_len
,
3702 PCI_DMA_FROMDEVICE
);
3704 /* Fix for errata 23, can't cross 64kB boundary */
3705 if (!e1000_check_64k_bound(adapter
,
3706 (void *)(unsigned long)buffer_info
->dma
,
3707 adapter
->rx_buffer_len
)) {
3708 DPRINTK(RX_ERR
, ERR
,
3709 "dma align check failed: %u bytes at %p\n",
3710 adapter
->rx_buffer_len
,
3711 (void *)(unsigned long)buffer_info
->dma
);
3713 buffer_info
->skb
= NULL
;
3715 pci_unmap_single(pdev
, buffer_info
->dma
,
3716 adapter
->rx_buffer_len
,
3717 PCI_DMA_FROMDEVICE
);
3719 break; /* while !buffer_info->skb */
3721 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3722 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3724 if(unlikely((i
& ~(E1000_RX_BUFFER_WRITE
- 1)) == i
)) {
3725 /* Force memory writes to complete before letting h/w
3726 * know there are new descriptors to fetch. (Only
3727 * applicable for weak-ordered memory model archs,
3728 * such as IA-64). */
3730 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
3733 if(unlikely(++i
== rx_ring
->count
)) i
= 0;
3734 buffer_info
= &rx_ring
->buffer_info
[i
];
3737 rx_ring
->next_to_use
= i
;
3741 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3742 * @adapter: address of board private structure
3746 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
3747 struct e1000_rx_ring
*rx_ring
)
3749 struct net_device
*netdev
= adapter
->netdev
;
3750 struct pci_dev
*pdev
= adapter
->pdev
;
3751 union e1000_rx_desc_packet_split
*rx_desc
;
3752 struct e1000_buffer
*buffer_info
;
3753 struct e1000_ps_page
*ps_page
;
3754 struct e1000_ps_page_dma
*ps_page_dma
;
3755 struct sk_buff
*skb
;
3758 i
= rx_ring
->next_to_use
;
3759 buffer_info
= &rx_ring
->buffer_info
[i
];
3760 ps_page
= &rx_ring
->ps_page
[i
];
3761 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3763 while(!buffer_info
->skb
) {
3764 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3766 for(j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
3767 if (j
< adapter
->rx_ps_pages
) {
3768 if (likely(!ps_page
->ps_page
[j
])) {
3769 ps_page
->ps_page
[j
] =
3770 alloc_page(GFP_ATOMIC
);
3771 if (unlikely(!ps_page
->ps_page
[j
]))
3773 ps_page_dma
->ps_page_dma
[j
] =
3775 ps_page
->ps_page
[j
],
3777 PCI_DMA_FROMDEVICE
);
3779 /* Refresh the desc even if buffer_addrs didn't
3780 * change because each write-back erases
3783 rx_desc
->read
.buffer_addr
[j
+1] =
3784 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
3786 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
3789 skb
= dev_alloc_skb(adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
3794 /* Make buffer alignment 2 beyond a 16 byte boundary
3795 * this will result in a 16 byte aligned IP header after
3796 * the 14 byte MAC header is removed
3798 skb_reserve(skb
, NET_IP_ALIGN
);
3802 buffer_info
->skb
= skb
;
3803 buffer_info
->length
= adapter
->rx_ps_bsize0
;
3804 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3805 adapter
->rx_ps_bsize0
,
3806 PCI_DMA_FROMDEVICE
);
3808 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
3810 if(unlikely((i
& ~(E1000_RX_BUFFER_WRITE
- 1)) == i
)) {
3811 /* Force memory writes to complete before letting h/w
3812 * know there are new descriptors to fetch. (Only
3813 * applicable for weak-ordered memory model archs,
3814 * such as IA-64). */
3816 /* Hardware increments by 16 bytes, but packet split
3817 * descriptors are 32 bytes...so we increment tail
3820 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
3823 if(unlikely(++i
== rx_ring
->count
)) i
= 0;
3824 buffer_info
= &rx_ring
->buffer_info
[i
];
3825 ps_page
= &rx_ring
->ps_page
[i
];
3826 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3830 rx_ring
->next_to_use
= i
;
3834 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3839 e1000_smartspeed(struct e1000_adapter
*adapter
)
3841 uint16_t phy_status
;
3844 if((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
3845 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
3848 if(adapter
->smartspeed
== 0) {
3849 /* If Master/Slave config fault is asserted twice,
3850 * we assume back-to-back */
3851 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
3852 if(!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
3853 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
3854 if(!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
3855 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
3856 if(phy_ctrl
& CR_1000T_MS_ENABLE
) {
3857 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
3858 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
3860 adapter
->smartspeed
++;
3861 if(!e1000_phy_setup_autoneg(&adapter
->hw
) &&
3862 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
3864 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
3865 MII_CR_RESTART_AUTO_NEG
);
3866 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
3871 } else if(adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
3872 /* If still no link, perhaps using 2/3 pair cable */
3873 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
3874 phy_ctrl
|= CR_1000T_MS_ENABLE
;
3875 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
3876 if(!e1000_phy_setup_autoneg(&adapter
->hw
) &&
3877 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
3878 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
3879 MII_CR_RESTART_AUTO_NEG
);
3880 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
3883 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3884 if(adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
3885 adapter
->smartspeed
= 0;
3896 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3902 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
3916 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3918 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3919 struct mii_ioctl_data
*data
= if_mii(ifr
);
3923 unsigned long flags
;
3925 if(adapter
->hw
.media_type
!= e1000_media_type_copper
)
3930 data
->phy_id
= adapter
->hw
.phy_addr
;
3933 if(!capable(CAP_NET_ADMIN
))
3935 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3936 if(e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
3938 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3941 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3944 if(!capable(CAP_NET_ADMIN
))
3946 if(data
->reg_num
& ~(0x1F))
3948 mii_reg
= data
->val_in
;
3949 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3950 if(e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
3952 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3955 if(adapter
->hw
.phy_type
== e1000_phy_m88
) {
3956 switch (data
->reg_num
) {
3958 if(mii_reg
& MII_CR_POWER_DOWN
)
3960 if(mii_reg
& MII_CR_AUTO_NEG_EN
) {
3961 adapter
->hw
.autoneg
= 1;
3962 adapter
->hw
.autoneg_advertised
= 0x2F;
3965 spddplx
= SPEED_1000
;
3966 else if (mii_reg
& 0x2000)
3967 spddplx
= SPEED_100
;
3970 spddplx
+= (mii_reg
& 0x100)
3973 retval
= e1000_set_spd_dplx(adapter
,
3976 spin_unlock_irqrestore(
3977 &adapter
->stats_lock
,
3982 if(netif_running(adapter
->netdev
)) {
3983 e1000_down(adapter
);
3986 e1000_reset(adapter
);
3988 case M88E1000_PHY_SPEC_CTRL
:
3989 case M88E1000_EXT_PHY_SPEC_CTRL
:
3990 if(e1000_phy_reset(&adapter
->hw
)) {
3991 spin_unlock_irqrestore(
3992 &adapter
->stats_lock
, flags
);
3998 switch (data
->reg_num
) {
4000 if(mii_reg
& MII_CR_POWER_DOWN
)
4002 if(netif_running(adapter
->netdev
)) {
4003 e1000_down(adapter
);
4006 e1000_reset(adapter
);
4010 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4015 return E1000_SUCCESS
;
4019 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4021 struct e1000_adapter
*adapter
= hw
->back
;
4022 int ret_val
= pci_set_mwi(adapter
->pdev
);
4025 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4029 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4031 struct e1000_adapter
*adapter
= hw
->back
;
4033 pci_clear_mwi(adapter
->pdev
);
4037 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4039 struct e1000_adapter
*adapter
= hw
->back
;
4041 pci_read_config_word(adapter
->pdev
, reg
, value
);
4045 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4047 struct e1000_adapter
*adapter
= hw
->back
;
4049 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4053 e1000_io_read(struct e1000_hw
*hw
, unsigned long port
)
4059 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4065 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4067 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4068 uint32_t ctrl
, rctl
;
4070 e1000_irq_disable(adapter
);
4071 adapter
->vlgrp
= grp
;
4074 /* enable VLAN tag insert/strip */
4075 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4076 ctrl
|= E1000_CTRL_VME
;
4077 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4079 /* enable VLAN receive filtering */
4080 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4081 rctl
|= E1000_RCTL_VFE
;
4082 rctl
&= ~E1000_RCTL_CFIEN
;
4083 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4084 e1000_update_mng_vlan(adapter
);
4086 /* disable VLAN tag insert/strip */
4087 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4088 ctrl
&= ~E1000_CTRL_VME
;
4089 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4091 /* disable VLAN filtering */
4092 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4093 rctl
&= ~E1000_RCTL_VFE
;
4094 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4095 if(adapter
->mng_vlan_id
!= (uint16_t)E1000_MNG_VLAN_NONE
) {
4096 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4097 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4101 e1000_irq_enable(adapter
);
4105 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4107 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4108 uint32_t vfta
, index
;
4109 if((adapter
->hw
.mng_cookie
.status
&
4110 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4111 (vid
== adapter
->mng_vlan_id
))
4113 /* add VID to filter table */
4114 index
= (vid
>> 5) & 0x7F;
4115 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4116 vfta
|= (1 << (vid
& 0x1F));
4117 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4121 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4123 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4124 uint32_t vfta
, index
;
4126 e1000_irq_disable(adapter
);
4129 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
4131 e1000_irq_enable(adapter
);
4133 if((adapter
->hw
.mng_cookie
.status
&
4134 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4135 (vid
== adapter
->mng_vlan_id
))
4137 /* remove VID from filter table */
4138 index
= (vid
>> 5) & 0x7F;
4139 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4140 vfta
&= ~(1 << (vid
& 0x1F));
4141 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4145 e1000_restore_vlan(struct e1000_adapter
*adapter
)
4147 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4149 if(adapter
->vlgrp
) {
4151 for(vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4152 if(!adapter
->vlgrp
->vlan_devices
[vid
])
4154 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4160 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
4162 adapter
->hw
.autoneg
= 0;
4164 /* Fiber NICs only allow 1000 gbps Full duplex */
4165 if((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
4166 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4167 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4172 case SPEED_10
+ DUPLEX_HALF
:
4173 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
4175 case SPEED_10
+ DUPLEX_FULL
:
4176 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
4178 case SPEED_100
+ DUPLEX_HALF
:
4179 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
4181 case SPEED_100
+ DUPLEX_FULL
:
4182 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
4184 case SPEED_1000
+ DUPLEX_FULL
:
4185 adapter
->hw
.autoneg
= 1;
4186 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4188 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4190 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4197 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4199 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4200 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4201 uint32_t ctrl
, ctrl_ext
, rctl
, manc
, status
, swsm
;
4202 uint32_t wufc
= adapter
->wol
;
4204 netif_device_detach(netdev
);
4206 if(netif_running(netdev
))
4207 e1000_down(adapter
);
4209 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
4210 if(status
& E1000_STATUS_LU
)
4211 wufc
&= ~E1000_WUFC_LNKC
;
4214 e1000_setup_rctl(adapter
);
4215 e1000_set_multi(netdev
);
4217 /* turn on all-multi mode if wake on multicast is enabled */
4218 if(adapter
->wol
& E1000_WUFC_MC
) {
4219 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4220 rctl
|= E1000_RCTL_MPE
;
4221 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4224 if(adapter
->hw
.mac_type
>= e1000_82540
) {
4225 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4226 /* advertise wake from D3Cold */
4227 #define E1000_CTRL_ADVD3WUC 0x00100000
4228 /* phy power management enable */
4229 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4230 ctrl
|= E1000_CTRL_ADVD3WUC
|
4231 E1000_CTRL_EN_PHY_PWR_MGMT
;
4232 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4235 if(adapter
->hw
.media_type
== e1000_media_type_fiber
||
4236 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
4237 /* keep the laser running in D3 */
4238 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4239 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4240 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
4243 /* Allow time for pending master requests to run */
4244 e1000_disable_pciex_master(&adapter
->hw
);
4246 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
4247 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
4248 pci_enable_wake(pdev
, 3, 1);
4249 pci_enable_wake(pdev
, 4, 1); /* 4 == D3 cold */
4251 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
4252 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
4253 pci_enable_wake(pdev
, 3, 0);
4254 pci_enable_wake(pdev
, 4, 0); /* 4 == D3 cold */
4257 pci_save_state(pdev
);
4259 if(adapter
->hw
.mac_type
>= e1000_82540
&&
4260 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4261 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4262 if(manc
& E1000_MANC_SMBUS_EN
) {
4263 manc
|= E1000_MANC_ARP_EN
;
4264 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4265 pci_enable_wake(pdev
, 3, 1);
4266 pci_enable_wake(pdev
, 4, 1); /* 4 == D3 cold */
4270 switch(adapter
->hw
.mac_type
) {
4273 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4274 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
4275 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
4278 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
4279 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
4280 swsm
& ~E1000_SWSM_DRV_LOAD
);
4286 pci_disable_device(pdev
);
4287 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4294 e1000_resume(struct pci_dev
*pdev
)
4296 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4297 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4298 uint32_t manc
, ret_val
, swsm
;
4301 pci_set_power_state(pdev
, PCI_D0
);
4302 pci_restore_state(pdev
);
4303 ret_val
= pci_enable_device(pdev
);
4304 pci_set_master(pdev
);
4306 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4307 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4309 e1000_reset(adapter
);
4310 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4312 if(netif_running(netdev
))
4315 netif_device_attach(netdev
);
4317 if(adapter
->hw
.mac_type
>= e1000_82540
&&
4318 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4319 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4320 manc
&= ~(E1000_MANC_ARP_EN
);
4321 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4324 switch(adapter
->hw
.mac_type
) {
4327 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4328 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
4329 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
4332 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
4333 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
4334 swsm
| E1000_SWSM_DRV_LOAD
);
4343 #ifdef CONFIG_NET_POLL_CONTROLLER
4345 * Polling 'interrupt' - used by things like netconsole to send skbs
4346 * without having to re-enable interrupts. It's not called while
4347 * the interrupt routine is executing.
4350 e1000_netpoll(struct net_device
*netdev
)
4352 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4353 disable_irq(adapter
->pdev
->irq
);
4354 e1000_intr(adapter
->pdev
->irq
, netdev
, NULL
);
4355 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
4356 enable_irq(adapter
->pdev
->irq
);