[PATCH] USB: Rename hcd->hub_suspend to hcd->bus_suspend
[linux/fpc-iii.git] / drivers / net / s2io.c
blobd303d162974f9caedf905bd603c583a8b6c538b9
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver.
31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
32 * is also an array of size 8.
33 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
34 * tx_fifo_len: This too is an array of 8. Each element defines the number of
35 * Tx descriptors that can be associated with each corresponding FIFO.
36 ************************************************************************/
38 #include <linux/config.h>
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/errno.h>
42 #include <linux/ioport.h>
43 #include <linux/pci.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kernel.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/skbuff.h>
49 #include <linux/init.h>
50 #include <linux/delay.h>
51 #include <linux/stddef.h>
52 #include <linux/ioctl.h>
53 #include <linux/timex.h>
54 #include <linux/sched.h>
55 #include <linux/ethtool.h>
56 #include <linux/version.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
60 #include <asm/system.h>
61 #include <asm/uaccess.h>
62 #include <asm/io.h>
64 /* local include */
65 #include "s2io.h"
66 #include "s2io-regs.h"
68 #define DRV_VERSION "Version 2.0.9.1"
70 /* S2io Driver name & version. */
71 static char s2io_driver_name[] = "Neterion";
72 static char s2io_driver_version[] = DRV_VERSION;
74 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
76 int ret;
78 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
79 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
81 return ret;
85 * Cards with following subsystem_id have a link state indication
86 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
87 * macro below identifies these cards given the subsystem_id.
89 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
90 (dev_type == XFRAME_I_DEVICE) ? \
91 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
92 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
94 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
95 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
96 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
97 #define PANIC 1
98 #define LOW 2
99 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
101 int level = 0;
102 mac_info_t *mac_control;
104 mac_control = &sp->mac_control;
105 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
106 level = LOW;
107 if (rxb_size <= MAX_RXDS_PER_BLOCK) {
108 level = PANIC;
112 return level;
115 /* Ethtool related variables and Macros. */
116 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
117 "Register test\t(offline)",
118 "Eeprom test\t(offline)",
119 "Link test\t(online)",
120 "RLDRAM test\t(offline)",
121 "BIST Test\t(offline)"
124 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
125 {"tmac_frms"},
126 {"tmac_data_octets"},
127 {"tmac_drop_frms"},
128 {"tmac_mcst_frms"},
129 {"tmac_bcst_frms"},
130 {"tmac_pause_ctrl_frms"},
131 {"tmac_any_err_frms"},
132 {"tmac_vld_ip_octets"},
133 {"tmac_vld_ip"},
134 {"tmac_drop_ip"},
135 {"tmac_icmp"},
136 {"tmac_rst_tcp"},
137 {"tmac_tcp"},
138 {"tmac_udp"},
139 {"rmac_vld_frms"},
140 {"rmac_data_octets"},
141 {"rmac_fcs_err_frms"},
142 {"rmac_drop_frms"},
143 {"rmac_vld_mcst_frms"},
144 {"rmac_vld_bcst_frms"},
145 {"rmac_in_rng_len_err_frms"},
146 {"rmac_long_frms"},
147 {"rmac_pause_ctrl_frms"},
148 {"rmac_discarded_frms"},
149 {"rmac_usized_frms"},
150 {"rmac_osized_frms"},
151 {"rmac_frag_frms"},
152 {"rmac_jabber_frms"},
153 {"rmac_ip"},
154 {"rmac_ip_octets"},
155 {"rmac_hdr_err_ip"},
156 {"rmac_drop_ip"},
157 {"rmac_icmp"},
158 {"rmac_tcp"},
159 {"rmac_udp"},
160 {"rmac_err_drp_udp"},
161 {"rmac_pause_cnt"},
162 {"rmac_accepted_ip"},
163 {"rmac_err_tcp"},
164 {"\n DRIVER STATISTICS"},
165 {"single_bit_ecc_errs"},
166 {"double_bit_ecc_errs"},
169 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
170 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
172 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
173 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
175 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
176 init_timer(&timer); \
177 timer.function = handle; \
178 timer.data = (unsigned long) arg; \
179 mod_timer(&timer, (jiffies + exp)) \
181 /* Add the vlan */
182 static void s2io_vlan_rx_register(struct net_device *dev,
183 struct vlan_group *grp)
185 nic_t *nic = dev->priv;
186 unsigned long flags;
188 spin_lock_irqsave(&nic->tx_lock, flags);
189 nic->vlgrp = grp;
190 spin_unlock_irqrestore(&nic->tx_lock, flags);
193 /* Unregister the vlan */
194 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
196 nic_t *nic = dev->priv;
197 unsigned long flags;
199 spin_lock_irqsave(&nic->tx_lock, flags);
200 if (nic->vlgrp)
201 nic->vlgrp->vlan_devices[vid] = NULL;
202 spin_unlock_irqrestore(&nic->tx_lock, flags);
206 * Constants to be programmed into the Xena's registers, to configure
207 * the XAUI.
210 #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
211 #define END_SIGN 0x0
213 static u64 herc_act_dtx_cfg[] = {
214 /* Set address */
215 0x8000051536750000ULL, 0x80000515367500E0ULL,
216 /* Write data */
217 0x8000051536750004ULL, 0x80000515367500E4ULL,
218 /* Set address */
219 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
220 /* Write data */
221 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
222 /* Set address */
223 0x801205150D440000ULL, 0x801205150D4400E0ULL,
224 /* Write data */
225 0x801205150D440004ULL, 0x801205150D4400E4ULL,
226 /* Set address */
227 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
228 /* Write data */
229 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
230 /* Done */
231 END_SIGN
234 static u64 xena_mdio_cfg[] = {
235 /* Reset PMA PLL */
236 0xC001010000000000ULL, 0xC0010100000000E0ULL,
237 0xC0010100008000E4ULL,
238 /* Remove Reset from PMA PLL */
239 0xC001010000000000ULL, 0xC0010100000000E0ULL,
240 0xC0010100000000E4ULL,
241 END_SIGN
244 static u64 xena_dtx_cfg[] = {
245 0x8000051500000000ULL, 0x80000515000000E0ULL,
246 0x80000515D93500E4ULL, 0x8001051500000000ULL,
247 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
248 0x8002051500000000ULL, 0x80020515000000E0ULL,
249 0x80020515F21000E4ULL,
250 /* Set PADLOOPBACKN */
251 0x8002051500000000ULL, 0x80020515000000E0ULL,
252 0x80020515B20000E4ULL, 0x8003051500000000ULL,
253 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
254 0x8004051500000000ULL, 0x80040515000000E0ULL,
255 0x80040515B20000E4ULL, 0x8005051500000000ULL,
256 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
257 SWITCH_SIGN,
258 /* Remove PADLOOPBACKN */
259 0x8002051500000000ULL, 0x80020515000000E0ULL,
260 0x80020515F20000E4ULL, 0x8003051500000000ULL,
261 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
262 0x8004051500000000ULL, 0x80040515000000E0ULL,
263 0x80040515F20000E4ULL, 0x8005051500000000ULL,
264 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
265 END_SIGN
269 * Constants for Fixing the MacAddress problem seen mostly on
270 * Alpha machines.
272 static u64 fix_mac[] = {
273 0x0060000000000000ULL, 0x0060600000000000ULL,
274 0x0040600000000000ULL, 0x0000600000000000ULL,
275 0x0020600000000000ULL, 0x0060600000000000ULL,
276 0x0020600000000000ULL, 0x0060600000000000ULL,
277 0x0020600000000000ULL, 0x0060600000000000ULL,
278 0x0020600000000000ULL, 0x0060600000000000ULL,
279 0x0020600000000000ULL, 0x0060600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0000600000000000ULL,
286 0x0040600000000000ULL, 0x0060600000000000ULL,
287 END_SIGN
290 /* Module Loadable parameters. */
291 static unsigned int tx_fifo_num = 1;
292 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
293 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
294 static unsigned int rx_ring_num = 1;
295 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
296 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
297 static unsigned int rts_frm_len[MAX_RX_RINGS] =
298 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
299 static unsigned int use_continuous_tx_intrs = 1;
300 static unsigned int rmac_pause_time = 65535;
301 static unsigned int mc_pause_threshold_q0q3 = 187;
302 static unsigned int mc_pause_threshold_q4q7 = 187;
303 static unsigned int shared_splits;
304 static unsigned int tmac_util_period = 5;
305 static unsigned int rmac_util_period = 5;
306 static unsigned int bimodal = 0;
307 #ifndef CONFIG_S2IO_NAPI
308 static unsigned int indicate_max_pkts;
309 #endif
310 /* Frequency of Rx desc syncs expressed as power of 2 */
311 static unsigned int rxsync_frequency = 3;
312 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
313 static unsigned int intr_type = 0;
316 * S2IO device table.
317 * This table lists all the devices that this driver supports.
319 static struct pci_device_id s2io_tbl[] __devinitdata = {
320 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
321 PCI_ANY_ID, PCI_ANY_ID},
322 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
323 PCI_ANY_ID, PCI_ANY_ID},
324 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
325 PCI_ANY_ID, PCI_ANY_ID},
326 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
327 PCI_ANY_ID, PCI_ANY_ID},
328 {0,}
331 MODULE_DEVICE_TABLE(pci, s2io_tbl);
333 static struct pci_driver s2io_driver = {
334 .name = "S2IO",
335 .id_table = s2io_tbl,
336 .probe = s2io_init_nic,
337 .remove = __devexit_p(s2io_rem_nic),
340 /* A simplifier macro used both by init and free shared_mem Fns(). */
341 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
344 * init_shared_mem - Allocation and Initialization of Memory
345 * @nic: Device private variable.
346 * Description: The function allocates all the memory areas shared
347 * between the NIC and the driver. This includes Tx descriptors,
348 * Rx descriptors and the statistics block.
351 static int init_shared_mem(struct s2io_nic *nic)
353 u32 size;
354 void *tmp_v_addr, *tmp_v_addr_next;
355 dma_addr_t tmp_p_addr, tmp_p_addr_next;
356 RxD_block_t *pre_rxd_blk = NULL;
357 int i, j, blk_cnt, rx_sz, tx_sz;
358 int lst_size, lst_per_page;
359 struct net_device *dev = nic->dev;
360 #ifdef CONFIG_2BUFF_MODE
361 unsigned long tmp;
362 buffAdd_t *ba;
363 #endif
365 mac_info_t *mac_control;
366 struct config_param *config;
368 mac_control = &nic->mac_control;
369 config = &nic->config;
372 /* Allocation and initialization of TXDLs in FIOFs */
373 size = 0;
374 for (i = 0; i < config->tx_fifo_num; i++) {
375 size += config->tx_cfg[i].fifo_len;
377 if (size > MAX_AVAILABLE_TXDS) {
378 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
379 __FUNCTION__);
380 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
381 return FAILURE;
384 lst_size = (sizeof(TxD_t) * config->max_txds);
385 tx_sz = lst_size * size;
386 lst_per_page = PAGE_SIZE / lst_size;
388 for (i = 0; i < config->tx_fifo_num; i++) {
389 int fifo_len = config->tx_cfg[i].fifo_len;
390 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
391 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
392 GFP_KERNEL);
393 if (!mac_control->fifos[i].list_info) {
394 DBG_PRINT(ERR_DBG,
395 "Malloc failed for list_info\n");
396 return -ENOMEM;
398 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
400 for (i = 0; i < config->tx_fifo_num; i++) {
401 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
402 lst_per_page);
403 mac_control->fifos[i].tx_curr_put_info.offset = 0;
404 mac_control->fifos[i].tx_curr_put_info.fifo_len =
405 config->tx_cfg[i].fifo_len - 1;
406 mac_control->fifos[i].tx_curr_get_info.offset = 0;
407 mac_control->fifos[i].tx_curr_get_info.fifo_len =
408 config->tx_cfg[i].fifo_len - 1;
409 mac_control->fifos[i].fifo_no = i;
410 mac_control->fifos[i].nic = nic;
411 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
413 for (j = 0; j < page_num; j++) {
414 int k = 0;
415 dma_addr_t tmp_p;
416 void *tmp_v;
417 tmp_v = pci_alloc_consistent(nic->pdev,
418 PAGE_SIZE, &tmp_p);
419 if (!tmp_v) {
420 DBG_PRINT(ERR_DBG,
421 "pci_alloc_consistent ");
422 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
423 return -ENOMEM;
425 /* If we got a zero DMA address(can happen on
426 * certain platforms like PPC), reallocate.
427 * Store virtual address of page we don't want,
428 * to be freed later.
430 if (!tmp_p) {
431 mac_control->zerodma_virt_addr = tmp_v;
432 DBG_PRINT(INIT_DBG,
433 "%s: Zero DMA address for TxDL. ", dev->name);
434 DBG_PRINT(INIT_DBG,
435 "Virtual address %p\n", tmp_v);
436 tmp_v = pci_alloc_consistent(nic->pdev,
437 PAGE_SIZE, &tmp_p);
438 if (!tmp_v) {
439 DBG_PRINT(ERR_DBG,
440 "pci_alloc_consistent ");
441 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
442 return -ENOMEM;
445 while (k < lst_per_page) {
446 int l = (j * lst_per_page) + k;
447 if (l == config->tx_cfg[i].fifo_len)
448 break;
449 mac_control->fifos[i].list_info[l].list_virt_addr =
450 tmp_v + (k * lst_size);
451 mac_control->fifos[i].list_info[l].list_phy_addr =
452 tmp_p + (k * lst_size);
453 k++;
458 /* Allocation and initialization of RXDs in Rings */
459 size = 0;
460 for (i = 0; i < config->rx_ring_num; i++) {
461 if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
462 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
463 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
465 DBG_PRINT(ERR_DBG, "RxDs per Block");
466 return FAILURE;
468 size += config->rx_cfg[i].num_rxd;
469 mac_control->rings[i].block_count =
470 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
471 mac_control->rings[i].pkt_cnt =
472 config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count;
474 size = (size * (sizeof(RxD_t)));
475 rx_sz = size;
477 for (i = 0; i < config->rx_ring_num; i++) {
478 mac_control->rings[i].rx_curr_get_info.block_index = 0;
479 mac_control->rings[i].rx_curr_get_info.offset = 0;
480 mac_control->rings[i].rx_curr_get_info.ring_len =
481 config->rx_cfg[i].num_rxd - 1;
482 mac_control->rings[i].rx_curr_put_info.block_index = 0;
483 mac_control->rings[i].rx_curr_put_info.offset = 0;
484 mac_control->rings[i].rx_curr_put_info.ring_len =
485 config->rx_cfg[i].num_rxd - 1;
486 mac_control->rings[i].nic = nic;
487 mac_control->rings[i].ring_no = i;
489 blk_cnt =
490 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
491 /* Allocating all the Rx blocks */
492 for (j = 0; j < blk_cnt; j++) {
493 #ifndef CONFIG_2BUFF_MODE
494 size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
495 #else
496 size = SIZE_OF_BLOCK;
497 #endif
498 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
499 &tmp_p_addr);
500 if (tmp_v_addr == NULL) {
502 * In case of failure, free_shared_mem()
503 * is called, which should free any
504 * memory that was alloced till the
505 * failure happened.
507 mac_control->rings[i].rx_blocks[j].block_virt_addr =
508 tmp_v_addr;
509 return -ENOMEM;
511 memset(tmp_v_addr, 0, size);
512 mac_control->rings[i].rx_blocks[j].block_virt_addr =
513 tmp_v_addr;
514 mac_control->rings[i].rx_blocks[j].block_dma_addr =
515 tmp_p_addr;
517 /* Interlinking all Rx Blocks */
518 for (j = 0; j < blk_cnt; j++) {
519 tmp_v_addr =
520 mac_control->rings[i].rx_blocks[j].block_virt_addr;
521 tmp_v_addr_next =
522 mac_control->rings[i].rx_blocks[(j + 1) %
523 blk_cnt].block_virt_addr;
524 tmp_p_addr =
525 mac_control->rings[i].rx_blocks[j].block_dma_addr;
526 tmp_p_addr_next =
527 mac_control->rings[i].rx_blocks[(j + 1) %
528 blk_cnt].block_dma_addr;
530 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
531 pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
532 * marker.
534 #ifndef CONFIG_2BUFF_MODE
535 pre_rxd_blk->reserved_2_pNext_RxD_block =
536 (unsigned long) tmp_v_addr_next;
537 #endif
538 pre_rxd_blk->pNext_RxD_Blk_physical =
539 (u64) tmp_p_addr_next;
543 #ifdef CONFIG_2BUFF_MODE
545 * Allocation of Storages for buffer addresses in 2BUFF mode
546 * and the buffers as well.
548 for (i = 0; i < config->rx_ring_num; i++) {
549 blk_cnt =
550 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
551 mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
552 GFP_KERNEL);
553 if (!mac_control->rings[i].ba)
554 return -ENOMEM;
555 for (j = 0; j < blk_cnt; j++) {
556 int k = 0;
557 mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) *
558 (MAX_RXDS_PER_BLOCK + 1)),
559 GFP_KERNEL);
560 if (!mac_control->rings[i].ba[j])
561 return -ENOMEM;
562 while (k != MAX_RXDS_PER_BLOCK) {
563 ba = &mac_control->rings[i].ba[j][k];
565 ba->ba_0_org = (void *) kmalloc
566 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
567 if (!ba->ba_0_org)
568 return -ENOMEM;
569 tmp = (unsigned long) ba->ba_0_org;
570 tmp += ALIGN_SIZE;
571 tmp &= ~((unsigned long) ALIGN_SIZE);
572 ba->ba_0 = (void *) tmp;
574 ba->ba_1_org = (void *) kmalloc
575 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
576 if (!ba->ba_1_org)
577 return -ENOMEM;
578 tmp = (unsigned long) ba->ba_1_org;
579 tmp += ALIGN_SIZE;
580 tmp &= ~((unsigned long) ALIGN_SIZE);
581 ba->ba_1 = (void *) tmp;
582 k++;
586 #endif
588 /* Allocation and initialization of Statistics block */
589 size = sizeof(StatInfo_t);
590 mac_control->stats_mem = pci_alloc_consistent
591 (nic->pdev, size, &mac_control->stats_mem_phy);
593 if (!mac_control->stats_mem) {
595 * In case of failure, free_shared_mem() is called, which
596 * should free any memory that was alloced till the
597 * failure happened.
599 return -ENOMEM;
601 mac_control->stats_mem_sz = size;
603 tmp_v_addr = mac_control->stats_mem;
604 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
605 memset(tmp_v_addr, 0, size);
606 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
607 (unsigned long long) tmp_p_addr);
609 return SUCCESS;
613 * free_shared_mem - Free the allocated Memory
614 * @nic: Device private variable.
615 * Description: This function is to free all memory locations allocated by
616 * the init_shared_mem() function and return it to the kernel.
619 static void free_shared_mem(struct s2io_nic *nic)
621 int i, j, blk_cnt, size;
622 void *tmp_v_addr;
623 dma_addr_t tmp_p_addr;
624 mac_info_t *mac_control;
625 struct config_param *config;
626 int lst_size, lst_per_page;
627 struct net_device *dev = nic->dev;
629 if (!nic)
630 return;
632 mac_control = &nic->mac_control;
633 config = &nic->config;
635 lst_size = (sizeof(TxD_t) * config->max_txds);
636 lst_per_page = PAGE_SIZE / lst_size;
638 for (i = 0; i < config->tx_fifo_num; i++) {
639 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
640 lst_per_page);
641 for (j = 0; j < page_num; j++) {
642 int mem_blks = (j * lst_per_page);
643 if (!mac_control->fifos[i].list_info)
644 return;
645 if (!mac_control->fifos[i].list_info[mem_blks].
646 list_virt_addr)
647 break;
648 pci_free_consistent(nic->pdev, PAGE_SIZE,
649 mac_control->fifos[i].
650 list_info[mem_blks].
651 list_virt_addr,
652 mac_control->fifos[i].
653 list_info[mem_blks].
654 list_phy_addr);
656 /* If we got a zero DMA address during allocation,
657 * free the page now
659 if (mac_control->zerodma_virt_addr) {
660 pci_free_consistent(nic->pdev, PAGE_SIZE,
661 mac_control->zerodma_virt_addr,
662 (dma_addr_t)0);
663 DBG_PRINT(INIT_DBG,
664 "%s: Freeing TxDL with zero DMA addr. ",
665 dev->name);
666 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
667 mac_control->zerodma_virt_addr);
669 kfree(mac_control->fifos[i].list_info);
672 #ifndef CONFIG_2BUFF_MODE
673 size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
674 #else
675 size = SIZE_OF_BLOCK;
676 #endif
677 for (i = 0; i < config->rx_ring_num; i++) {
678 blk_cnt = mac_control->rings[i].block_count;
679 for (j = 0; j < blk_cnt; j++) {
680 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
681 block_virt_addr;
682 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
683 block_dma_addr;
684 if (tmp_v_addr == NULL)
685 break;
686 pci_free_consistent(nic->pdev, size,
687 tmp_v_addr, tmp_p_addr);
691 #ifdef CONFIG_2BUFF_MODE
692 /* Freeing buffer storage addresses in 2BUFF mode. */
693 for (i = 0; i < config->rx_ring_num; i++) {
694 blk_cnt =
695 config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
696 for (j = 0; j < blk_cnt; j++) {
697 int k = 0;
698 if (!mac_control->rings[i].ba[j])
699 continue;
700 while (k != MAX_RXDS_PER_BLOCK) {
701 buffAdd_t *ba = &mac_control->rings[i].ba[j][k];
702 kfree(ba->ba_0_org);
703 kfree(ba->ba_1_org);
704 k++;
706 kfree(mac_control->rings[i].ba[j]);
708 if (mac_control->rings[i].ba)
709 kfree(mac_control->rings[i].ba);
711 #endif
713 if (mac_control->stats_mem) {
714 pci_free_consistent(nic->pdev,
715 mac_control->stats_mem_sz,
716 mac_control->stats_mem,
717 mac_control->stats_mem_phy);
722 * s2io_verify_pci_mode -
725 static int s2io_verify_pci_mode(nic_t *nic)
727 XENA_dev_config_t __iomem *bar0 = nic->bar0;
728 register u64 val64 = 0;
729 int mode;
731 val64 = readq(&bar0->pci_mode);
732 mode = (u8)GET_PCI_MODE(val64);
734 if ( val64 & PCI_MODE_UNKNOWN_MODE)
735 return -1; /* Unknown PCI mode */
736 return mode;
741 * s2io_print_pci_mode -
743 static int s2io_print_pci_mode(nic_t *nic)
745 XENA_dev_config_t __iomem *bar0 = nic->bar0;
746 register u64 val64 = 0;
747 int mode;
748 struct config_param *config = &nic->config;
750 val64 = readq(&bar0->pci_mode);
751 mode = (u8)GET_PCI_MODE(val64);
753 if ( val64 & PCI_MODE_UNKNOWN_MODE)
754 return -1; /* Unknown PCI mode */
756 if (val64 & PCI_MODE_32_BITS) {
757 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
758 } else {
759 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
762 switch(mode) {
763 case PCI_MODE_PCI_33:
764 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
765 config->bus_speed = 33;
766 break;
767 case PCI_MODE_PCI_66:
768 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
769 config->bus_speed = 133;
770 break;
771 case PCI_MODE_PCIX_M1_66:
772 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
773 config->bus_speed = 133; /* Herc doubles the clock rate */
774 break;
775 case PCI_MODE_PCIX_M1_100:
776 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
777 config->bus_speed = 200;
778 break;
779 case PCI_MODE_PCIX_M1_133:
780 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
781 config->bus_speed = 266;
782 break;
783 case PCI_MODE_PCIX_M2_66:
784 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
785 config->bus_speed = 133;
786 break;
787 case PCI_MODE_PCIX_M2_100:
788 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
789 config->bus_speed = 200;
790 break;
791 case PCI_MODE_PCIX_M2_133:
792 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
793 config->bus_speed = 266;
794 break;
795 default:
796 return -1; /* Unsupported bus speed */
799 return mode;
803 * init_nic - Initialization of hardware
804 * @nic: device peivate variable
805 * Description: The function sequentially configures every block
806 * of the H/W from their reset values.
807 * Return Value: SUCCESS on success and
808 * '-1' on failure (endian settings incorrect).
811 static int init_nic(struct s2io_nic *nic)
813 XENA_dev_config_t __iomem *bar0 = nic->bar0;
814 struct net_device *dev = nic->dev;
815 register u64 val64 = 0;
816 void __iomem *add;
817 u32 time;
818 int i, j;
819 mac_info_t *mac_control;
820 struct config_param *config;
821 int mdio_cnt = 0, dtx_cnt = 0;
822 unsigned long long mem_share;
823 int mem_size;
825 mac_control = &nic->mac_control;
826 config = &nic->config;
828 /* to set the swapper controle on the card */
829 if(s2io_set_swapper(nic)) {
830 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
831 return -1;
835 * Herc requires EOI to be removed from reset before XGXS, so..
837 if (nic->device_type & XFRAME_II_DEVICE) {
838 val64 = 0xA500000000ULL;
839 writeq(val64, &bar0->sw_reset);
840 msleep(500);
841 val64 = readq(&bar0->sw_reset);
844 /* Remove XGXS from reset state */
845 val64 = 0;
846 writeq(val64, &bar0->sw_reset);
847 msleep(500);
848 val64 = readq(&bar0->sw_reset);
850 /* Enable Receiving broadcasts */
851 add = &bar0->mac_cfg;
852 val64 = readq(&bar0->mac_cfg);
853 val64 |= MAC_RMAC_BCAST_ENABLE;
854 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
855 writel((u32) val64, add);
856 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
857 writel((u32) (val64 >> 32), (add + 4));
859 /* Read registers in all blocks */
860 val64 = readq(&bar0->mac_int_mask);
861 val64 = readq(&bar0->mc_int_mask);
862 val64 = readq(&bar0->xgxs_int_mask);
864 /* Set MTU */
865 val64 = dev->mtu;
866 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
869 * Configuring the XAUI Interface of Xena.
870 * ***************************************
871 * To Configure the Xena's XAUI, one has to write a series
872 * of 64 bit values into two registers in a particular
873 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
874 * which will be defined in the array of configuration values
875 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
876 * to switch writing from one regsiter to another. We continue
877 * writing these values until we encounter the 'END_SIGN' macro.
878 * For example, After making a series of 21 writes into
879 * dtx_control register the 'SWITCH_SIGN' appears and hence we
880 * start writing into mdio_control until we encounter END_SIGN.
882 if (nic->device_type & XFRAME_II_DEVICE) {
883 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
884 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
885 &bar0->dtx_control, UF);
886 if (dtx_cnt & 0x1)
887 msleep(1); /* Necessary!! */
888 dtx_cnt++;
890 } else {
891 while (1) {
892 dtx_cfg:
893 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
894 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
895 dtx_cnt++;
896 goto mdio_cfg;
898 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
899 &bar0->dtx_control, UF);
900 val64 = readq(&bar0->dtx_control);
901 dtx_cnt++;
903 mdio_cfg:
904 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
905 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
906 mdio_cnt++;
907 goto dtx_cfg;
909 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
910 &bar0->mdio_control, UF);
911 val64 = readq(&bar0->mdio_control);
912 mdio_cnt++;
914 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
915 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
916 break;
917 } else {
918 goto dtx_cfg;
923 /* Tx DMA Initialization */
924 val64 = 0;
925 writeq(val64, &bar0->tx_fifo_partition_0);
926 writeq(val64, &bar0->tx_fifo_partition_1);
927 writeq(val64, &bar0->tx_fifo_partition_2);
928 writeq(val64, &bar0->tx_fifo_partition_3);
931 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
932 val64 |=
933 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
934 13) | vBIT(config->tx_cfg[i].fifo_priority,
935 ((i * 32) + 5), 3);
937 if (i == (config->tx_fifo_num - 1)) {
938 if (i % 2 == 0)
939 i++;
942 switch (i) {
943 case 1:
944 writeq(val64, &bar0->tx_fifo_partition_0);
945 val64 = 0;
946 break;
947 case 3:
948 writeq(val64, &bar0->tx_fifo_partition_1);
949 val64 = 0;
950 break;
951 case 5:
952 writeq(val64, &bar0->tx_fifo_partition_2);
953 val64 = 0;
954 break;
955 case 7:
956 writeq(val64, &bar0->tx_fifo_partition_3);
957 break;
961 /* Enable Tx FIFO partition 0. */
962 val64 = readq(&bar0->tx_fifo_partition_0);
963 val64 |= BIT(0); /* To enable the FIFO partition. */
964 writeq(val64, &bar0->tx_fifo_partition_0);
967 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
968 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
970 if ((nic->device_type == XFRAME_I_DEVICE) &&
971 (get_xena_rev_id(nic->pdev) < 4))
972 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
974 val64 = readq(&bar0->tx_fifo_partition_0);
975 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
976 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
979 * Initialization of Tx_PA_CONFIG register to ignore packet
980 * integrity checking.
982 val64 = readq(&bar0->tx_pa_cfg);
983 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
984 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
985 writeq(val64, &bar0->tx_pa_cfg);
987 /* Rx DMA intialization. */
988 val64 = 0;
989 for (i = 0; i < config->rx_ring_num; i++) {
990 val64 |=
991 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
994 writeq(val64, &bar0->rx_queue_priority);
997 * Allocating equal share of memory to all the
998 * configured Rings.
1000 val64 = 0;
1001 if (nic->device_type & XFRAME_II_DEVICE)
1002 mem_size = 32;
1003 else
1004 mem_size = 64;
1006 for (i = 0; i < config->rx_ring_num; i++) {
1007 switch (i) {
1008 case 0:
1009 mem_share = (mem_size / config->rx_ring_num +
1010 mem_size % config->rx_ring_num);
1011 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1012 continue;
1013 case 1:
1014 mem_share = (mem_size / config->rx_ring_num);
1015 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1016 continue;
1017 case 2:
1018 mem_share = (mem_size / config->rx_ring_num);
1019 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1020 continue;
1021 case 3:
1022 mem_share = (mem_size / config->rx_ring_num);
1023 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1024 continue;
1025 case 4:
1026 mem_share = (mem_size / config->rx_ring_num);
1027 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1028 continue;
1029 case 5:
1030 mem_share = (mem_size / config->rx_ring_num);
1031 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1032 continue;
1033 case 6:
1034 mem_share = (mem_size / config->rx_ring_num);
1035 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1036 continue;
1037 case 7:
1038 mem_share = (mem_size / config->rx_ring_num);
1039 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1040 continue;
1043 writeq(val64, &bar0->rx_queue_cfg);
1046 * Filling Tx round robin registers
1047 * as per the number of FIFOs
1049 switch (config->tx_fifo_num) {
1050 case 1:
1051 val64 = 0x0000000000000000ULL;
1052 writeq(val64, &bar0->tx_w_round_robin_0);
1053 writeq(val64, &bar0->tx_w_round_robin_1);
1054 writeq(val64, &bar0->tx_w_round_robin_2);
1055 writeq(val64, &bar0->tx_w_round_robin_3);
1056 writeq(val64, &bar0->tx_w_round_robin_4);
1057 break;
1058 case 2:
1059 val64 = 0x0000010000010000ULL;
1060 writeq(val64, &bar0->tx_w_round_robin_0);
1061 val64 = 0x0100000100000100ULL;
1062 writeq(val64, &bar0->tx_w_round_robin_1);
1063 val64 = 0x0001000001000001ULL;
1064 writeq(val64, &bar0->tx_w_round_robin_2);
1065 val64 = 0x0000010000010000ULL;
1066 writeq(val64, &bar0->tx_w_round_robin_3);
1067 val64 = 0x0100000000000000ULL;
1068 writeq(val64, &bar0->tx_w_round_robin_4);
1069 break;
1070 case 3:
1071 val64 = 0x0001000102000001ULL;
1072 writeq(val64, &bar0->tx_w_round_robin_0);
1073 val64 = 0x0001020000010001ULL;
1074 writeq(val64, &bar0->tx_w_round_robin_1);
1075 val64 = 0x0200000100010200ULL;
1076 writeq(val64, &bar0->tx_w_round_robin_2);
1077 val64 = 0x0001000102000001ULL;
1078 writeq(val64, &bar0->tx_w_round_robin_3);
1079 val64 = 0x0001020000000000ULL;
1080 writeq(val64, &bar0->tx_w_round_robin_4);
1081 break;
1082 case 4:
1083 val64 = 0x0001020300010200ULL;
1084 writeq(val64, &bar0->tx_w_round_robin_0);
1085 val64 = 0x0100000102030001ULL;
1086 writeq(val64, &bar0->tx_w_round_robin_1);
1087 val64 = 0x0200010000010203ULL;
1088 writeq(val64, &bar0->tx_w_round_robin_2);
1089 val64 = 0x0001020001000001ULL;
1090 writeq(val64, &bar0->tx_w_round_robin_3);
1091 val64 = 0x0203000100000000ULL;
1092 writeq(val64, &bar0->tx_w_round_robin_4);
1093 break;
1094 case 5:
1095 val64 = 0x0001000203000102ULL;
1096 writeq(val64, &bar0->tx_w_round_robin_0);
1097 val64 = 0x0001020001030004ULL;
1098 writeq(val64, &bar0->tx_w_round_robin_1);
1099 val64 = 0x0001000203000102ULL;
1100 writeq(val64, &bar0->tx_w_round_robin_2);
1101 val64 = 0x0001020001030004ULL;
1102 writeq(val64, &bar0->tx_w_round_robin_3);
1103 val64 = 0x0001000000000000ULL;
1104 writeq(val64, &bar0->tx_w_round_robin_4);
1105 break;
1106 case 6:
1107 val64 = 0x0001020304000102ULL;
1108 writeq(val64, &bar0->tx_w_round_robin_0);
1109 val64 = 0x0304050001020001ULL;
1110 writeq(val64, &bar0->tx_w_round_robin_1);
1111 val64 = 0x0203000100000102ULL;
1112 writeq(val64, &bar0->tx_w_round_robin_2);
1113 val64 = 0x0304000102030405ULL;
1114 writeq(val64, &bar0->tx_w_round_robin_3);
1115 val64 = 0x0001000200000000ULL;
1116 writeq(val64, &bar0->tx_w_round_robin_4);
1117 break;
1118 case 7:
1119 val64 = 0x0001020001020300ULL;
1120 writeq(val64, &bar0->tx_w_round_robin_0);
1121 val64 = 0x0102030400010203ULL;
1122 writeq(val64, &bar0->tx_w_round_robin_1);
1123 val64 = 0x0405060001020001ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_2);
1125 val64 = 0x0304050000010200ULL;
1126 writeq(val64, &bar0->tx_w_round_robin_3);
1127 val64 = 0x0102030000000000ULL;
1128 writeq(val64, &bar0->tx_w_round_robin_4);
1129 break;
1130 case 8:
1131 val64 = 0x0001020300040105ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_0);
1133 val64 = 0x0200030106000204ULL;
1134 writeq(val64, &bar0->tx_w_round_robin_1);
1135 val64 = 0x0103000502010007ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_2);
1137 val64 = 0x0304010002060500ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_3);
1139 val64 = 0x0103020400000000ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_4);
1141 break;
1144 /* Filling the Rx round robin registers as per the
1145 * number of Rings and steering based on QoS.
1147 switch (config->rx_ring_num) {
1148 case 1:
1149 val64 = 0x8080808080808080ULL;
1150 writeq(val64, &bar0->rts_qos_steering);
1151 break;
1152 case 2:
1153 val64 = 0x0000010000010000ULL;
1154 writeq(val64, &bar0->rx_w_round_robin_0);
1155 val64 = 0x0100000100000100ULL;
1156 writeq(val64, &bar0->rx_w_round_robin_1);
1157 val64 = 0x0001000001000001ULL;
1158 writeq(val64, &bar0->rx_w_round_robin_2);
1159 val64 = 0x0000010000010000ULL;
1160 writeq(val64, &bar0->rx_w_round_robin_3);
1161 val64 = 0x0100000000000000ULL;
1162 writeq(val64, &bar0->rx_w_round_robin_4);
1164 val64 = 0x8080808040404040ULL;
1165 writeq(val64, &bar0->rts_qos_steering);
1166 break;
1167 case 3:
1168 val64 = 0x0001000102000001ULL;
1169 writeq(val64, &bar0->rx_w_round_robin_0);
1170 val64 = 0x0001020000010001ULL;
1171 writeq(val64, &bar0->rx_w_round_robin_1);
1172 val64 = 0x0200000100010200ULL;
1173 writeq(val64, &bar0->rx_w_round_robin_2);
1174 val64 = 0x0001000102000001ULL;
1175 writeq(val64, &bar0->rx_w_round_robin_3);
1176 val64 = 0x0001020000000000ULL;
1177 writeq(val64, &bar0->rx_w_round_robin_4);
1179 val64 = 0x8080804040402020ULL;
1180 writeq(val64, &bar0->rts_qos_steering);
1181 break;
1182 case 4:
1183 val64 = 0x0001020300010200ULL;
1184 writeq(val64, &bar0->rx_w_round_robin_0);
1185 val64 = 0x0100000102030001ULL;
1186 writeq(val64, &bar0->rx_w_round_robin_1);
1187 val64 = 0x0200010000010203ULL;
1188 writeq(val64, &bar0->rx_w_round_robin_2);
1189 val64 = 0x0001020001000001ULL;
1190 writeq(val64, &bar0->rx_w_round_robin_3);
1191 val64 = 0x0203000100000000ULL;
1192 writeq(val64, &bar0->rx_w_round_robin_4);
1194 val64 = 0x8080404020201010ULL;
1195 writeq(val64, &bar0->rts_qos_steering);
1196 break;
1197 case 5:
1198 val64 = 0x0001000203000102ULL;
1199 writeq(val64, &bar0->rx_w_round_robin_0);
1200 val64 = 0x0001020001030004ULL;
1201 writeq(val64, &bar0->rx_w_round_robin_1);
1202 val64 = 0x0001000203000102ULL;
1203 writeq(val64, &bar0->rx_w_round_robin_2);
1204 val64 = 0x0001020001030004ULL;
1205 writeq(val64, &bar0->rx_w_round_robin_3);
1206 val64 = 0x0001000000000000ULL;
1207 writeq(val64, &bar0->rx_w_round_robin_4);
1209 val64 = 0x8080404020201008ULL;
1210 writeq(val64, &bar0->rts_qos_steering);
1211 break;
1212 case 6:
1213 val64 = 0x0001020304000102ULL;
1214 writeq(val64, &bar0->rx_w_round_robin_0);
1215 val64 = 0x0304050001020001ULL;
1216 writeq(val64, &bar0->rx_w_round_robin_1);
1217 val64 = 0x0203000100000102ULL;
1218 writeq(val64, &bar0->rx_w_round_robin_2);
1219 val64 = 0x0304000102030405ULL;
1220 writeq(val64, &bar0->rx_w_round_robin_3);
1221 val64 = 0x0001000200000000ULL;
1222 writeq(val64, &bar0->rx_w_round_robin_4);
1224 val64 = 0x8080404020100804ULL;
1225 writeq(val64, &bar0->rts_qos_steering);
1226 break;
1227 case 7:
1228 val64 = 0x0001020001020300ULL;
1229 writeq(val64, &bar0->rx_w_round_robin_0);
1230 val64 = 0x0102030400010203ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_1);
1232 val64 = 0x0405060001020001ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_2);
1234 val64 = 0x0304050000010200ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_3);
1236 val64 = 0x0102030000000000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_4);
1239 val64 = 0x8080402010080402ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1241 break;
1242 case 8:
1243 val64 = 0x0001020300040105ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0200030106000204ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0103000502010007ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0304010002060500ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0103020400000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1254 val64 = 0x8040201008040201ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1256 break;
1259 /* UDP Fix */
1260 val64 = 0;
1261 for (i = 0; i < 8; i++)
1262 writeq(val64, &bar0->rts_frm_len_n[i]);
1264 /* Set the default rts frame length for the rings configured */
1265 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1266 for (i = 0 ; i < config->rx_ring_num ; i++)
1267 writeq(val64, &bar0->rts_frm_len_n[i]);
1269 /* Set the frame length for the configured rings
1270 * desired by the user
1272 for (i = 0; i < config->rx_ring_num; i++) {
1273 /* If rts_frm_len[i] == 0 then it is assumed that user not
1274 * specified frame length steering.
1275 * If the user provides the frame length then program
1276 * the rts_frm_len register for those values or else
1277 * leave it as it is.
1279 if (rts_frm_len[i] != 0) {
1280 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1281 &bar0->rts_frm_len_n[i]);
1285 /* Program statistics memory */
1286 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1288 if (nic->device_type == XFRAME_II_DEVICE) {
1289 val64 = STAT_BC(0x320);
1290 writeq(val64, &bar0->stat_byte_cnt);
1294 * Initializing the sampling rate for the device to calculate the
1295 * bandwidth utilization.
1297 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1298 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1299 writeq(val64, &bar0->mac_link_util);
1303 * Initializing the Transmit and Receive Traffic Interrupt
1304 * Scheme.
1307 * TTI Initialization. Default Tx timer gets us about
1308 * 250 interrupts per sec. Continuous interrupts are enabled
1309 * by default.
1311 if (nic->device_type == XFRAME_II_DEVICE) {
1312 int count = (nic->config.bus_speed * 125)/2;
1313 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1314 } else {
1316 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1318 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1319 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1320 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1321 if (use_continuous_tx_intrs)
1322 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1323 writeq(val64, &bar0->tti_data1_mem);
1325 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1326 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1327 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1328 writeq(val64, &bar0->tti_data2_mem);
1330 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1331 writeq(val64, &bar0->tti_command_mem);
1334 * Once the operation completes, the Strobe bit of the command
1335 * register will be reset. We poll for this particular condition
1336 * We wait for a maximum of 500ms for the operation to complete,
1337 * if it's not complete by then we return error.
1339 time = 0;
1340 while (TRUE) {
1341 val64 = readq(&bar0->tti_command_mem);
1342 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1343 break;
1345 if (time > 10) {
1346 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1347 dev->name);
1348 return -1;
1350 msleep(50);
1351 time++;
1354 if (nic->config.bimodal) {
1355 int k = 0;
1356 for (k = 0; k < config->rx_ring_num; k++) {
1357 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1358 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1359 writeq(val64, &bar0->tti_command_mem);
1362 * Once the operation completes, the Strobe bit of the command
1363 * register will be reset. We poll for this particular condition
1364 * We wait for a maximum of 500ms for the operation to complete,
1365 * if it's not complete by then we return error.
1367 time = 0;
1368 while (TRUE) {
1369 val64 = readq(&bar0->tti_command_mem);
1370 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1371 break;
1373 if (time > 10) {
1374 DBG_PRINT(ERR_DBG,
1375 "%s: TTI init Failed\n",
1376 dev->name);
1377 return -1;
1379 time++;
1380 msleep(50);
1383 } else {
1385 /* RTI Initialization */
1386 if (nic->device_type == XFRAME_II_DEVICE) {
1388 * Programmed to generate Apprx 500 Intrs per
1389 * second
1391 int count = (nic->config.bus_speed * 125)/4;
1392 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1393 } else {
1394 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1396 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1397 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1398 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1400 writeq(val64, &bar0->rti_data1_mem);
1402 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1403 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1404 if (nic->intr_type == MSI_X)
1405 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1406 RTI_DATA2_MEM_RX_UFC_D(0x40));
1407 else
1408 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1409 RTI_DATA2_MEM_RX_UFC_D(0x80));
1410 writeq(val64, &bar0->rti_data2_mem);
1412 for (i = 0; i < config->rx_ring_num; i++) {
1413 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1414 | RTI_CMD_MEM_OFFSET(i);
1415 writeq(val64, &bar0->rti_command_mem);
1418 * Once the operation completes, the Strobe bit of the
1419 * command register will be reset. We poll for this
1420 * particular condition. We wait for a maximum of 500ms
1421 * for the operation to complete, if it's not complete
1422 * by then we return error.
1424 time = 0;
1425 while (TRUE) {
1426 val64 = readq(&bar0->rti_command_mem);
1427 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1428 break;
1430 if (time > 10) {
1431 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1432 dev->name);
1433 return -1;
1435 time++;
1436 msleep(50);
1442 * Initializing proper values as Pause threshold into all
1443 * the 8 Queues on Rx side.
1445 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1446 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1448 /* Disable RMAC PAD STRIPPING */
1449 add = &bar0->mac_cfg;
1450 val64 = readq(&bar0->mac_cfg);
1451 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1452 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1453 writel((u32) (val64), add);
1454 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1455 writel((u32) (val64 >> 32), (add + 4));
1456 val64 = readq(&bar0->mac_cfg);
1459 * Set the time value to be inserted in the pause frame
1460 * generated by xena.
1462 val64 = readq(&bar0->rmac_pause_cfg);
1463 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1464 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1465 writeq(val64, &bar0->rmac_pause_cfg);
1468 * Set the Threshold Limit for Generating the pause frame
1469 * If the amount of data in any Queue exceeds ratio of
1470 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1471 * pause frame is generated
1473 val64 = 0;
1474 for (i = 0; i < 4; i++) {
1475 val64 |=
1476 (((u64) 0xFF00 | nic->mac_control.
1477 mc_pause_threshold_q0q3)
1478 << (i * 2 * 8));
1480 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1482 val64 = 0;
1483 for (i = 0; i < 4; i++) {
1484 val64 |=
1485 (((u64) 0xFF00 | nic->mac_control.
1486 mc_pause_threshold_q4q7)
1487 << (i * 2 * 8));
1489 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1492 * TxDMA will stop Read request if the number of read split has
1493 * exceeded the limit pointed by shared_splits
1495 val64 = readq(&bar0->pic_control);
1496 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1497 writeq(val64, &bar0->pic_control);
1500 * Programming the Herc to split every write transaction
1501 * that does not start on an ADB to reduce disconnects.
1503 if (nic->device_type == XFRAME_II_DEVICE) {
1504 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1505 writeq(val64, &bar0->wreq_split_mask);
1508 /* Setting Link stability period to 64 ms */
1509 if (nic->device_type == XFRAME_II_DEVICE) {
1510 val64 = MISC_LINK_STABILITY_PRD(3);
1511 writeq(val64, &bar0->misc_control);
1514 return SUCCESS;
1516 #define LINK_UP_DOWN_INTERRUPT 1
1517 #define MAC_RMAC_ERR_TIMER 2
1519 int s2io_link_fault_indication(nic_t *nic)
1521 if (nic->intr_type != INTA)
1522 return MAC_RMAC_ERR_TIMER;
1523 if (nic->device_type == XFRAME_II_DEVICE)
1524 return LINK_UP_DOWN_INTERRUPT;
1525 else
1526 return MAC_RMAC_ERR_TIMER;
1530 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1531 * @nic: device private variable,
1532 * @mask: A mask indicating which Intr block must be modified and,
1533 * @flag: A flag indicating whether to enable or disable the Intrs.
1534 * Description: This function will either disable or enable the interrupts
1535 * depending on the flag argument. The mask argument can be used to
1536 * enable/disable any Intr block.
1537 * Return Value: NONE.
1540 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1542 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1543 register u64 val64 = 0, temp64 = 0;
1545 /* Top level interrupt classification */
1546 /* PIC Interrupts */
1547 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1548 /* Enable PIC Intrs in the general intr mask register */
1549 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1550 if (flag == ENABLE_INTRS) {
1551 temp64 = readq(&bar0->general_int_mask);
1552 temp64 &= ~((u64) val64);
1553 writeq(temp64, &bar0->general_int_mask);
1555 * If Hercules adapter enable GPIO otherwise
1556 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1557 * interrupts for now.
1558 * TODO
1560 if (s2io_link_fault_indication(nic) ==
1561 LINK_UP_DOWN_INTERRUPT ) {
1562 temp64 = readq(&bar0->pic_int_mask);
1563 temp64 &= ~((u64) PIC_INT_GPIO);
1564 writeq(temp64, &bar0->pic_int_mask);
1565 temp64 = readq(&bar0->gpio_int_mask);
1566 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1567 writeq(temp64, &bar0->gpio_int_mask);
1568 } else {
1569 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1572 * No MSI Support is available presently, so TTI and
1573 * RTI interrupts are also disabled.
1575 } else if (flag == DISABLE_INTRS) {
1577 * Disable PIC Intrs in the general
1578 * intr mask register
1580 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1581 temp64 = readq(&bar0->general_int_mask);
1582 val64 |= temp64;
1583 writeq(val64, &bar0->general_int_mask);
1587 /* DMA Interrupts */
1588 /* Enabling/Disabling Tx DMA interrupts */
1589 if (mask & TX_DMA_INTR) {
1590 /* Enable TxDMA Intrs in the general intr mask register */
1591 val64 = TXDMA_INT_M;
1592 if (flag == ENABLE_INTRS) {
1593 temp64 = readq(&bar0->general_int_mask);
1594 temp64 &= ~((u64) val64);
1595 writeq(temp64, &bar0->general_int_mask);
1597 * Keep all interrupts other than PFC interrupt
1598 * and PCC interrupt disabled in DMA level.
1600 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1601 TXDMA_PCC_INT_M);
1602 writeq(val64, &bar0->txdma_int_mask);
1604 * Enable only the MISC error 1 interrupt in PFC block
1606 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1607 writeq(val64, &bar0->pfc_err_mask);
1609 * Enable only the FB_ECC error interrupt in PCC block
1611 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1612 writeq(val64, &bar0->pcc_err_mask);
1613 } else if (flag == DISABLE_INTRS) {
1615 * Disable TxDMA Intrs in the general intr mask
1616 * register
1618 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1619 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1620 temp64 = readq(&bar0->general_int_mask);
1621 val64 |= temp64;
1622 writeq(val64, &bar0->general_int_mask);
1626 /* Enabling/Disabling Rx DMA interrupts */
1627 if (mask & RX_DMA_INTR) {
1628 /* Enable RxDMA Intrs in the general intr mask register */
1629 val64 = RXDMA_INT_M;
1630 if (flag == ENABLE_INTRS) {
1631 temp64 = readq(&bar0->general_int_mask);
1632 temp64 &= ~((u64) val64);
1633 writeq(temp64, &bar0->general_int_mask);
1635 * All RxDMA block interrupts are disabled for now
1636 * TODO
1638 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1639 } else if (flag == DISABLE_INTRS) {
1641 * Disable RxDMA Intrs in the general intr mask
1642 * register
1644 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1645 temp64 = readq(&bar0->general_int_mask);
1646 val64 |= temp64;
1647 writeq(val64, &bar0->general_int_mask);
1651 /* MAC Interrupts */
1652 /* Enabling/Disabling MAC interrupts */
1653 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1654 val64 = TXMAC_INT_M | RXMAC_INT_M;
1655 if (flag == ENABLE_INTRS) {
1656 temp64 = readq(&bar0->general_int_mask);
1657 temp64 &= ~((u64) val64);
1658 writeq(temp64, &bar0->general_int_mask);
1660 * All MAC block error interrupts are disabled for now
1661 * TODO
1663 } else if (flag == DISABLE_INTRS) {
1665 * Disable MAC Intrs in the general intr mask register
1667 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1668 writeq(DISABLE_ALL_INTRS,
1669 &bar0->mac_rmac_err_mask);
1671 temp64 = readq(&bar0->general_int_mask);
1672 val64 |= temp64;
1673 writeq(val64, &bar0->general_int_mask);
1677 /* XGXS Interrupts */
1678 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1679 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1680 if (flag == ENABLE_INTRS) {
1681 temp64 = readq(&bar0->general_int_mask);
1682 temp64 &= ~((u64) val64);
1683 writeq(temp64, &bar0->general_int_mask);
1685 * All XGXS block error interrupts are disabled for now
1686 * TODO
1688 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1689 } else if (flag == DISABLE_INTRS) {
1691 * Disable MC Intrs in the general intr mask register
1693 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1694 temp64 = readq(&bar0->general_int_mask);
1695 val64 |= temp64;
1696 writeq(val64, &bar0->general_int_mask);
1700 /* Memory Controller(MC) interrupts */
1701 if (mask & MC_INTR) {
1702 val64 = MC_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
1708 * Enable all MC Intrs.
1710 writeq(0x0, &bar0->mc_int_mask);
1711 writeq(0x0, &bar0->mc_err_mask);
1712 } else if (flag == DISABLE_INTRS) {
1714 * Disable MC Intrs in the general intr mask register
1716 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1717 temp64 = readq(&bar0->general_int_mask);
1718 val64 |= temp64;
1719 writeq(val64, &bar0->general_int_mask);
1724 /* Tx traffic interrupts */
1725 if (mask & TX_TRAFFIC_INTR) {
1726 val64 = TXTRAFFIC_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1732 * Enable all the Tx side interrupts
1733 * writing 0 Enables all 64 TX interrupt levels
1735 writeq(0x0, &bar0->tx_traffic_mask);
1736 } else if (flag == DISABLE_INTRS) {
1738 * Disable Tx Traffic Intrs in the general intr mask
1739 * register.
1741 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1743 val64 |= temp64;
1744 writeq(val64, &bar0->general_int_mask);
1748 /* Rx traffic interrupts */
1749 if (mask & RX_TRAFFIC_INTR) {
1750 val64 = RXTRAFFIC_INT_M;
1751 if (flag == ENABLE_INTRS) {
1752 temp64 = readq(&bar0->general_int_mask);
1753 temp64 &= ~((u64) val64);
1754 writeq(temp64, &bar0->general_int_mask);
1755 /* writing 0 Enables all 8 RX interrupt levels */
1756 writeq(0x0, &bar0->rx_traffic_mask);
1757 } else if (flag == DISABLE_INTRS) {
1759 * Disable Rx Traffic Intrs in the general intr mask
1760 * register.
1762 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1763 temp64 = readq(&bar0->general_int_mask);
1764 val64 |= temp64;
1765 writeq(val64, &bar0->general_int_mask);
1770 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1772 int ret = 0;
1774 if (flag == FALSE) {
1775 if ((!herc && (rev_id >= 4)) || herc) {
1776 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1777 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1778 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1779 ret = 1;
1781 }else {
1782 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1783 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1784 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1785 ret = 1;
1788 } else {
1789 if ((!herc && (rev_id >= 4)) || herc) {
1790 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1791 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1792 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1793 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1794 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1795 ret = 1;
1797 } else {
1798 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1799 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1800 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1801 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1802 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1803 ret = 1;
1808 return ret;
1811 * verify_xena_quiescence - Checks whether the H/W is ready
1812 * @val64 : Value read from adapter status register.
1813 * @flag : indicates if the adapter enable bit was ever written once
1814 * before.
1815 * Description: Returns whether the H/W is ready to go or not. Depending
1816 * on whether adapter enable bit was written or not the comparison
1817 * differs and the calling function passes the input argument flag to
1818 * indicate this.
1819 * Return: 1 If xena is quiescence
1820 * 0 If Xena is not quiescence
1823 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1825 int ret = 0, herc;
1826 u64 tmp64 = ~((u64) val64);
1827 int rev_id = get_xena_rev_id(sp->pdev);
1829 herc = (sp->device_type == XFRAME_II_DEVICE);
1830 if (!
1831 (tmp64 &
1832 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1833 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1834 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1835 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1836 ADAPTER_STATUS_P_PLL_LOCK))) {
1837 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1840 return ret;
1844 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1845 * @sp: Pointer to device specifc structure
1846 * Description :
1847 * New procedure to clear mac address reading problems on Alpha platforms
1851 void fix_mac_address(nic_t * sp)
1853 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1854 u64 val64;
1855 int i = 0;
1857 while (fix_mac[i] != END_SIGN) {
1858 writeq(fix_mac[i++], &bar0->gpio_control);
1859 udelay(10);
1860 val64 = readq(&bar0->gpio_control);
1865 * start_nic - Turns the device on
1866 * @nic : device private variable.
1867 * Description:
1868 * This function actually turns the device on. Before this function is
1869 * called,all Registers are configured from their reset states
1870 * and shared memory is allocated but the NIC is still quiescent. On
1871 * calling this function, the device interrupts are cleared and the NIC is
1872 * literally switched on by writing into the adapter control register.
1873 * Return Value:
1874 * SUCCESS on success and -1 on failure.
1877 static int start_nic(struct s2io_nic *nic)
1879 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1880 struct net_device *dev = nic->dev;
1881 register u64 val64 = 0;
1882 u16 interruptible;
1883 u16 subid, i;
1884 mac_info_t *mac_control;
1885 struct config_param *config;
1887 mac_control = &nic->mac_control;
1888 config = &nic->config;
1890 /* PRC Initialization and configuration */
1891 for (i = 0; i < config->rx_ring_num; i++) {
1892 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1893 &bar0->prc_rxd0_n[i]);
1895 val64 = readq(&bar0->prc_ctrl_n[i]);
1896 if (nic->config.bimodal)
1897 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1898 #ifndef CONFIG_2BUFF_MODE
1899 val64 |= PRC_CTRL_RC_ENABLED;
1900 #else
1901 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1902 #endif
1903 writeq(val64, &bar0->prc_ctrl_n[i]);
1906 #ifdef CONFIG_2BUFF_MODE
1907 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1908 val64 = readq(&bar0->rx_pa_cfg);
1909 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1910 writeq(val64, &bar0->rx_pa_cfg);
1911 #endif
1914 * Enabling MC-RLDRAM. After enabling the device, we timeout
1915 * for around 100ms, which is approximately the time required
1916 * for the device to be ready for operation.
1918 val64 = readq(&bar0->mc_rldram_mrs);
1919 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1920 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1921 val64 = readq(&bar0->mc_rldram_mrs);
1923 msleep(100); /* Delay by around 100 ms. */
1925 /* Enabling ECC Protection. */
1926 val64 = readq(&bar0->adapter_control);
1927 val64 &= ~ADAPTER_ECC_EN;
1928 writeq(val64, &bar0->adapter_control);
1931 * Clearing any possible Link state change interrupts that
1932 * could have popped up just before Enabling the card.
1934 val64 = readq(&bar0->mac_rmac_err_reg);
1935 if (val64)
1936 writeq(val64, &bar0->mac_rmac_err_reg);
1939 * Verify if the device is ready to be enabled, if so enable
1940 * it.
1942 val64 = readq(&bar0->adapter_status);
1943 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1944 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1945 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1946 (unsigned long long) val64);
1947 return FAILURE;
1950 /* Enable select interrupts */
1951 if (nic->intr_type != INTA)
1952 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1953 else {
1954 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1955 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1956 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1957 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1961 * With some switches, link might be already up at this point.
1962 * Because of this weird behavior, when we enable laser,
1963 * we may not get link. We need to handle this. We cannot
1964 * figure out which switch is misbehaving. So we are forced to
1965 * make a global change.
1968 /* Enabling Laser. */
1969 val64 = readq(&bar0->adapter_control);
1970 val64 |= ADAPTER_EOI_TX_ON;
1971 writeq(val64, &bar0->adapter_control);
1973 /* SXE-002: Initialize link and activity LED */
1974 subid = nic->pdev->subsystem_device;
1975 if (((subid & 0xFF) >= 0x07) &&
1976 (nic->device_type == XFRAME_I_DEVICE)) {
1977 val64 = readq(&bar0->gpio_control);
1978 val64 |= 0x0000800000000000ULL;
1979 writeq(val64, &bar0->gpio_control);
1980 val64 = 0x0411040400000000ULL;
1981 writeq(val64, (void __iomem *)bar0 + 0x2700);
1985 * Don't see link state interrupts on certain switches, so
1986 * directly scheduling a link state task from here.
1988 schedule_work(&nic->set_link_task);
1990 return SUCCESS;
1994 * free_tx_buffers - Free all queued Tx buffers
1995 * @nic : device private variable.
1996 * Description:
1997 * Free all queued Tx buffers.
1998 * Return Value: void
2001 static void free_tx_buffers(struct s2io_nic *nic)
2003 struct net_device *dev = nic->dev;
2004 struct sk_buff *skb;
2005 TxD_t *txdp;
2006 int i, j;
2007 mac_info_t *mac_control;
2008 struct config_param *config;
2009 int cnt = 0, frg_cnt;
2011 mac_control = &nic->mac_control;
2012 config = &nic->config;
2014 for (i = 0; i < config->tx_fifo_num; i++) {
2015 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2016 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2017 list_virt_addr;
2018 skb =
2019 (struct sk_buff *) ((unsigned long) txdp->
2020 Host_Control);
2021 if (skb == NULL) {
2022 memset(txdp, 0, sizeof(TxD_t) *
2023 config->max_txds);
2024 continue;
2026 frg_cnt = skb_shinfo(skb)->nr_frags;
2027 pci_unmap_single(nic->pdev, (dma_addr_t)
2028 txdp->Buffer_Pointer,
2029 skb->len - skb->data_len,
2030 PCI_DMA_TODEVICE);
2031 if (frg_cnt) {
2032 TxD_t *temp;
2033 temp = txdp;
2034 txdp++;
2035 for (j = 0; j < frg_cnt; j++, txdp++) {
2036 skb_frag_t *frag =
2037 &skb_shinfo(skb)->frags[j];
2038 pci_unmap_page(nic->pdev,
2039 (dma_addr_t)
2040 txdp->
2041 Buffer_Pointer,
2042 frag->size,
2043 PCI_DMA_TODEVICE);
2045 txdp = temp;
2047 dev_kfree_skb(skb);
2048 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
2049 cnt++;
2051 DBG_PRINT(INTR_DBG,
2052 "%s:forcibly freeing %d skbs on FIFO%d\n",
2053 dev->name, cnt, i);
2054 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2055 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2060 * stop_nic - To stop the nic
2061 * @nic ; device private variable.
2062 * Description:
2063 * This function does exactly the opposite of what the start_nic()
2064 * function does. This function is called to stop the device.
2065 * Return Value:
2066 * void.
2069 static void stop_nic(struct s2io_nic *nic)
2071 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2072 register u64 val64 = 0;
2073 u16 interruptible, i;
2074 mac_info_t *mac_control;
2075 struct config_param *config;
2077 mac_control = &nic->mac_control;
2078 config = &nic->config;
2080 /* Disable all interrupts */
2081 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2082 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2083 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2084 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2086 /* Disable PRCs */
2087 for (i = 0; i < config->rx_ring_num; i++) {
2088 val64 = readq(&bar0->prc_ctrl_n[i]);
2089 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2090 writeq(val64, &bar0->prc_ctrl_n[i]);
2095 * fill_rx_buffers - Allocates the Rx side skbs
2096 * @nic: device private variable
2097 * @ring_no: ring number
2098 * Description:
2099 * The function allocates Rx side skbs and puts the physical
2100 * address of these buffers into the RxD buffer pointers, so that the NIC
2101 * can DMA the received frame into these locations.
2102 * The NIC supports 3 receive modes, viz
2103 * 1. single buffer,
2104 * 2. three buffer and
2105 * 3. Five buffer modes.
2106 * Each mode defines how many fragments the received frame will be split
2107 * up into by the NIC. The frame is split into L3 header, L4 Header,
2108 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2109 * is split into 3 fragments. As of now only single buffer mode is
2110 * supported.
2111 * Return Value:
2112 * SUCCESS on success or an appropriate -ve value on failure.
2115 int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2117 struct net_device *dev = nic->dev;
2118 struct sk_buff *skb;
2119 RxD_t *rxdp;
2120 int off, off1, size, block_no, block_no1;
2121 int offset, offset1;
2122 u32 alloc_tab = 0;
2123 u32 alloc_cnt;
2124 mac_info_t *mac_control;
2125 struct config_param *config;
2126 #ifdef CONFIG_2BUFF_MODE
2127 RxD_t *rxdpnext;
2128 int nextblk;
2129 u64 tmp;
2130 buffAdd_t *ba;
2131 dma_addr_t rxdpphys;
2132 #endif
2133 #ifndef CONFIG_S2IO_NAPI
2134 unsigned long flags;
2135 #endif
2136 RxD_t *first_rxdp = NULL;
2138 mac_control = &nic->mac_control;
2139 config = &nic->config;
2140 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2141 atomic_read(&nic->rx_bufs_left[ring_no]);
2142 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2143 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2145 while (alloc_tab < alloc_cnt) {
2146 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2147 block_index;
2148 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2149 block_index;
2150 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2151 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2152 #ifndef CONFIG_2BUFF_MODE
2153 offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
2154 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
2155 #else
2156 offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
2157 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
2158 #endif
2160 rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
2161 block_virt_addr + off;
2162 if ((offset == offset1) && (rxdp->Host_Control)) {
2163 DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
2164 DBG_PRINT(INTR_DBG, " info equated\n");
2165 goto end;
2167 #ifndef CONFIG_2BUFF_MODE
2168 if (rxdp->Control_1 == END_OF_BLOCK) {
2169 mac_control->rings[ring_no].rx_curr_put_info.
2170 block_index++;
2171 mac_control->rings[ring_no].rx_curr_put_info.
2172 block_index %= mac_control->rings[ring_no].block_count;
2173 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2174 block_index;
2175 off++;
2176 off %= (MAX_RXDS_PER_BLOCK + 1);
2177 mac_control->rings[ring_no].rx_curr_put_info.offset =
2178 off;
2179 rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
2180 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2181 dev->name, rxdp);
2183 #ifndef CONFIG_S2IO_NAPI
2184 spin_lock_irqsave(&nic->put_lock, flags);
2185 mac_control->rings[ring_no].put_pos =
2186 (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
2187 spin_unlock_irqrestore(&nic->put_lock, flags);
2188 #endif
2189 #else
2190 if (rxdp->Host_Control == END_OF_BLOCK) {
2191 mac_control->rings[ring_no].rx_curr_put_info.
2192 block_index++;
2193 mac_control->rings[ring_no].rx_curr_put_info.block_index
2194 %= mac_control->rings[ring_no].block_count;
2195 block_no = mac_control->rings[ring_no].rx_curr_put_info
2196 .block_index;
2197 off = 0;
2198 DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
2199 dev->name, block_no,
2200 (unsigned long long) rxdp->Control_1);
2201 mac_control->rings[ring_no].rx_curr_put_info.offset =
2202 off;
2203 rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
2204 block_virt_addr;
2206 #ifndef CONFIG_S2IO_NAPI
2207 spin_lock_irqsave(&nic->put_lock, flags);
2208 mac_control->rings[ring_no].put_pos = (block_no *
2209 (MAX_RXDS_PER_BLOCK + 1)) + off;
2210 spin_unlock_irqrestore(&nic->put_lock, flags);
2211 #endif
2212 #endif
2214 #ifndef CONFIG_2BUFF_MODE
2215 if (rxdp->Control_1 & RXD_OWN_XENA)
2216 #else
2217 if (rxdp->Control_2 & BIT(0))
2218 #endif
2220 mac_control->rings[ring_no].rx_curr_put_info.
2221 offset = off;
2222 goto end;
2224 #ifdef CONFIG_2BUFF_MODE
2226 * RxDs Spanning cache lines will be replenished only
2227 * if the succeeding RxD is also owned by Host. It
2228 * will always be the ((8*i)+3) and ((8*i)+6)
2229 * descriptors for the 48 byte descriptor. The offending
2230 * decsriptor is of-course the 3rd descriptor.
2232 rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no].
2233 block_dma_addr + (off * sizeof(RxD_t));
2234 if (((u64) (rxdpphys)) % 128 > 80) {
2235 rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no].
2236 block_virt_addr + (off + 1);
2237 if (rxdpnext->Host_Control == END_OF_BLOCK) {
2238 nextblk = (block_no + 1) %
2239 (mac_control->rings[ring_no].block_count);
2240 rxdpnext = mac_control->rings[ring_no].rx_blocks
2241 [nextblk].block_virt_addr;
2243 if (rxdpnext->Control_2 & BIT(0))
2244 goto end;
2246 #endif
2248 #ifndef CONFIG_2BUFF_MODE
2249 skb = dev_alloc_skb(size + NET_IP_ALIGN);
2250 #else
2251 skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
2252 #endif
2253 if (!skb) {
2254 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2255 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2256 if (first_rxdp) {
2257 wmb();
2258 first_rxdp->Control_1 |= RXD_OWN_XENA;
2260 return -ENOMEM;
2262 #ifndef CONFIG_2BUFF_MODE
2263 skb_reserve(skb, NET_IP_ALIGN);
2264 memset(rxdp, 0, sizeof(RxD_t));
2265 rxdp->Buffer0_ptr = pci_map_single
2266 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2267 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
2268 rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
2269 rxdp->Host_Control = (unsigned long) (skb);
2270 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2271 rxdp->Control_1 |= RXD_OWN_XENA;
2272 off++;
2273 off %= (MAX_RXDS_PER_BLOCK + 1);
2274 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2275 #else
2276 ba = &mac_control->rings[ring_no].ba[block_no][off];
2277 skb_reserve(skb, BUF0_LEN);
2278 tmp = ((unsigned long) skb->data & ALIGN_SIZE);
2279 if (tmp)
2280 skb_reserve(skb, (ALIGN_SIZE + 1) - tmp);
2282 memset(rxdp, 0, sizeof(RxD_t));
2283 rxdp->Buffer2_ptr = pci_map_single
2284 (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
2285 PCI_DMA_FROMDEVICE);
2286 rxdp->Buffer0_ptr =
2287 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2288 PCI_DMA_FROMDEVICE);
2289 rxdp->Buffer1_ptr =
2290 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2291 PCI_DMA_FROMDEVICE);
2293 rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
2294 rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
2295 rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */
2296 rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */
2297 rxdp->Host_Control = (u64) ((unsigned long) (skb));
2298 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2299 rxdp->Control_1 |= RXD_OWN_XENA;
2300 off++;
2301 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2302 #endif
2303 rxdp->Control_2 |= SET_RXD_MARKER;
2305 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2306 if (first_rxdp) {
2307 wmb();
2308 first_rxdp->Control_1 |= RXD_OWN_XENA;
2310 first_rxdp = rxdp;
2312 atomic_inc(&nic->rx_bufs_left[ring_no]);
2313 alloc_tab++;
2316 end:
2317 /* Transfer ownership of first descriptor to adapter just before
2318 * exiting. Before that, use memory barrier so that ownership
2319 * and other fields are seen by adapter correctly.
2321 if (first_rxdp) {
2322 wmb();
2323 first_rxdp->Control_1 |= RXD_OWN_XENA;
2326 return SUCCESS;
2330 * free_rx_buffers - Frees all Rx buffers
2331 * @sp: device private variable.
2332 * Description:
2333 * This function will free all Rx buffers allocated by host.
2334 * Return Value:
2335 * NONE.
2338 static void free_rx_buffers(struct s2io_nic *sp)
2340 struct net_device *dev = sp->dev;
2341 int i, j, blk = 0, off, buf_cnt = 0;
2342 RxD_t *rxdp;
2343 struct sk_buff *skb;
2344 mac_info_t *mac_control;
2345 struct config_param *config;
2346 #ifdef CONFIG_2BUFF_MODE
2347 buffAdd_t *ba;
2348 #endif
2350 mac_control = &sp->mac_control;
2351 config = &sp->config;
2353 for (i = 0; i < config->rx_ring_num; i++) {
2354 for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
2355 off = j % (MAX_RXDS_PER_BLOCK + 1);
2356 rxdp = mac_control->rings[i].rx_blocks[blk].
2357 block_virt_addr + off;
2359 #ifndef CONFIG_2BUFF_MODE
2360 if (rxdp->Control_1 == END_OF_BLOCK) {
2361 rxdp =
2362 (RxD_t *) ((unsigned long) rxdp->
2363 Control_2);
2364 j++;
2365 blk++;
2367 #else
2368 if (rxdp->Host_Control == END_OF_BLOCK) {
2369 blk++;
2370 continue;
2372 #endif
2374 if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
2375 memset(rxdp, 0, sizeof(RxD_t));
2376 continue;
2379 skb =
2380 (struct sk_buff *) ((unsigned long) rxdp->
2381 Host_Control);
2382 if (skb) {
2383 #ifndef CONFIG_2BUFF_MODE
2384 pci_unmap_single(sp->pdev, (dma_addr_t)
2385 rxdp->Buffer0_ptr,
2386 dev->mtu +
2387 HEADER_ETHERNET_II_802_3_SIZE
2388 + HEADER_802_2_SIZE +
2389 HEADER_SNAP_SIZE,
2390 PCI_DMA_FROMDEVICE);
2391 #else
2392 ba = &mac_control->rings[i].ba[blk][off];
2393 pci_unmap_single(sp->pdev, (dma_addr_t)
2394 rxdp->Buffer0_ptr,
2395 BUF0_LEN,
2396 PCI_DMA_FROMDEVICE);
2397 pci_unmap_single(sp->pdev, (dma_addr_t)
2398 rxdp->Buffer1_ptr,
2399 BUF1_LEN,
2400 PCI_DMA_FROMDEVICE);
2401 pci_unmap_single(sp->pdev, (dma_addr_t)
2402 rxdp->Buffer2_ptr,
2403 dev->mtu + BUF0_LEN + 4,
2404 PCI_DMA_FROMDEVICE);
2405 #endif
2406 dev_kfree_skb(skb);
2407 atomic_dec(&sp->rx_bufs_left[i]);
2408 buf_cnt++;
2410 memset(rxdp, 0, sizeof(RxD_t));
2412 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2413 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2414 mac_control->rings[i].rx_curr_put_info.offset = 0;
2415 mac_control->rings[i].rx_curr_get_info.offset = 0;
2416 atomic_set(&sp->rx_bufs_left[i], 0);
2417 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2418 dev->name, buf_cnt, i);
2423 * s2io_poll - Rx interrupt handler for NAPI support
2424 * @dev : pointer to the device structure.
2425 * @budget : The number of packets that were budgeted to be processed
2426 * during one pass through the 'Poll" function.
2427 * Description:
2428 * Comes into picture only if NAPI support has been incorporated. It does
2429 * the same thing that rx_intr_handler does, but not in a interrupt context
2430 * also It will process only a given number of packets.
2431 * Return value:
2432 * 0 on success and 1 if there are No Rx packets to be processed.
2435 #if defined(CONFIG_S2IO_NAPI)
2436 static int s2io_poll(struct net_device *dev, int *budget)
2438 nic_t *nic = dev->priv;
2439 int pkt_cnt = 0, org_pkts_to_process;
2440 mac_info_t *mac_control;
2441 struct config_param *config;
2442 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2443 u64 val64;
2444 int i;
2446 atomic_inc(&nic->isr_cnt);
2447 mac_control = &nic->mac_control;
2448 config = &nic->config;
2450 nic->pkts_to_process = *budget;
2451 if (nic->pkts_to_process > dev->quota)
2452 nic->pkts_to_process = dev->quota;
2453 org_pkts_to_process = nic->pkts_to_process;
2455 val64 = readq(&bar0->rx_traffic_int);
2456 writeq(val64, &bar0->rx_traffic_int);
2458 for (i = 0; i < config->rx_ring_num; i++) {
2459 rx_intr_handler(&mac_control->rings[i]);
2460 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2461 if (!nic->pkts_to_process) {
2462 /* Quota for the current iteration has been met */
2463 goto no_rx;
2466 if (!pkt_cnt)
2467 pkt_cnt = 1;
2469 dev->quota -= pkt_cnt;
2470 *budget -= pkt_cnt;
2471 netif_rx_complete(dev);
2473 for (i = 0; i < config->rx_ring_num; i++) {
2474 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2475 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2476 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2477 break;
2480 /* Re enable the Rx interrupts. */
2481 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2482 atomic_dec(&nic->isr_cnt);
2483 return 0;
2485 no_rx:
2486 dev->quota -= pkt_cnt;
2487 *budget -= pkt_cnt;
2489 for (i = 0; i < config->rx_ring_num; i++) {
2490 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2491 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2492 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2493 break;
2496 atomic_dec(&nic->isr_cnt);
2497 return 1;
2499 #endif
2502 * rx_intr_handler - Rx interrupt handler
2503 * @nic: device private variable.
2504 * Description:
2505 * If the interrupt is because of a received frame or if the
2506 * receive ring contains fresh as yet un-processed frames,this function is
2507 * called. It picks out the RxD at which place the last Rx processing had
2508 * stopped and sends the skb to the OSM's Rx handler and then increments
2509 * the offset.
2510 * Return Value:
2511 * NONE.
2513 static void rx_intr_handler(ring_info_t *ring_data)
2515 nic_t *nic = ring_data->nic;
2516 struct net_device *dev = (struct net_device *) nic->dev;
2517 int get_block, get_offset, put_block, put_offset, ring_bufs;
2518 rx_curr_get_info_t get_info, put_info;
2519 RxD_t *rxdp;
2520 struct sk_buff *skb;
2521 #ifndef CONFIG_S2IO_NAPI
2522 int pkt_cnt = 0;
2523 #endif
2524 spin_lock(&nic->rx_lock);
2525 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2526 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2527 __FUNCTION__, dev->name);
2528 spin_unlock(&nic->rx_lock);
2529 return;
2532 get_info = ring_data->rx_curr_get_info;
2533 get_block = get_info.block_index;
2534 put_info = ring_data->rx_curr_put_info;
2535 put_block = put_info.block_index;
2536 ring_bufs = get_info.ring_len+1;
2537 rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
2538 get_info.offset;
2539 get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
2540 get_info.offset;
2541 #ifndef CONFIG_S2IO_NAPI
2542 spin_lock(&nic->put_lock);
2543 put_offset = ring_data->put_pos;
2544 spin_unlock(&nic->put_lock);
2545 #else
2546 put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
2547 put_info.offset;
2548 #endif
2549 while (RXD_IS_UP2DT(rxdp) &&
2550 (((get_offset + 1) % ring_bufs) != put_offset)) {
2551 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2552 if (skb == NULL) {
2553 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2554 dev->name);
2555 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2556 spin_unlock(&nic->rx_lock);
2557 return;
2559 #ifndef CONFIG_2BUFF_MODE
2560 pci_unmap_single(nic->pdev, (dma_addr_t)
2561 rxdp->Buffer0_ptr,
2562 dev->mtu +
2563 HEADER_ETHERNET_II_802_3_SIZE +
2564 HEADER_802_2_SIZE +
2565 HEADER_SNAP_SIZE,
2566 PCI_DMA_FROMDEVICE);
2567 #else
2568 pci_unmap_single(nic->pdev, (dma_addr_t)
2569 rxdp->Buffer0_ptr,
2570 BUF0_LEN, PCI_DMA_FROMDEVICE);
2571 pci_unmap_single(nic->pdev, (dma_addr_t)
2572 rxdp->Buffer1_ptr,
2573 BUF1_LEN, PCI_DMA_FROMDEVICE);
2574 pci_unmap_single(nic->pdev, (dma_addr_t)
2575 rxdp->Buffer2_ptr,
2576 dev->mtu + BUF0_LEN + 4,
2577 PCI_DMA_FROMDEVICE);
2578 #endif
2579 rx_osm_handler(ring_data, rxdp);
2580 get_info.offset++;
2581 ring_data->rx_curr_get_info.offset =
2582 get_info.offset;
2583 rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
2584 get_info.offset;
2585 if (get_info.offset &&
2586 (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
2587 get_info.offset = 0;
2588 ring_data->rx_curr_get_info.offset
2589 = get_info.offset;
2590 get_block++;
2591 get_block %= ring_data->block_count;
2592 ring_data->rx_curr_get_info.block_index
2593 = get_block;
2594 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2597 get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
2598 get_info.offset;
2599 #ifdef CONFIG_S2IO_NAPI
2600 nic->pkts_to_process -= 1;
2601 if (!nic->pkts_to_process)
2602 break;
2603 #else
2604 pkt_cnt++;
2605 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2606 break;
2607 #endif
2609 spin_unlock(&nic->rx_lock);
2613 * tx_intr_handler - Transmit interrupt handler
2614 * @nic : device private variable
2615 * Description:
2616 * If an interrupt was raised to indicate DMA complete of the
2617 * Tx packet, this function is called. It identifies the last TxD
2618 * whose buffer was freed and frees all skbs whose data have already
2619 * DMA'ed into the NICs internal memory.
2620 * Return Value:
2621 * NONE
2624 static void tx_intr_handler(fifo_info_t *fifo_data)
2626 nic_t *nic = fifo_data->nic;
2627 struct net_device *dev = (struct net_device *) nic->dev;
2628 tx_curr_get_info_t get_info, put_info;
2629 struct sk_buff *skb;
2630 TxD_t *txdlp;
2631 u16 j, frg_cnt;
2633 get_info = fifo_data->tx_curr_get_info;
2634 put_info = fifo_data->tx_curr_put_info;
2635 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2636 list_virt_addr;
2637 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2638 (get_info.offset != put_info.offset) &&
2639 (txdlp->Host_Control)) {
2640 /* Check for TxD errors */
2641 if (txdlp->Control_1 & TXD_T_CODE) {
2642 unsigned long long err;
2643 err = txdlp->Control_1 & TXD_T_CODE;
2644 if ((err >> 48) == 0xA) {
2645 DBG_PRINT(TX_DBG, "TxD returned due \
2646 to loss of link\n");
2648 else {
2649 DBG_PRINT(ERR_DBG, "***TxD error \
2650 %llx\n", err);
2654 skb = (struct sk_buff *) ((unsigned long)
2655 txdlp->Host_Control);
2656 if (skb == NULL) {
2657 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2658 __FUNCTION__);
2659 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2660 return;
2663 frg_cnt = skb_shinfo(skb)->nr_frags;
2664 nic->tx_pkt_count++;
2666 pci_unmap_single(nic->pdev, (dma_addr_t)
2667 txdlp->Buffer_Pointer,
2668 skb->len - skb->data_len,
2669 PCI_DMA_TODEVICE);
2670 if (frg_cnt) {
2671 TxD_t *temp;
2672 temp = txdlp;
2673 txdlp++;
2674 for (j = 0; j < frg_cnt; j++, txdlp++) {
2675 skb_frag_t *frag =
2676 &skb_shinfo(skb)->frags[j];
2677 if (!txdlp->Buffer_Pointer)
2678 break;
2679 pci_unmap_page(nic->pdev,
2680 (dma_addr_t)
2681 txdlp->
2682 Buffer_Pointer,
2683 frag->size,
2684 PCI_DMA_TODEVICE);
2686 txdlp = temp;
2688 memset(txdlp, 0,
2689 (sizeof(TxD_t) * fifo_data->max_txds));
2691 /* Updating the statistics block */
2692 nic->stats.tx_bytes += skb->len;
2693 dev_kfree_skb_irq(skb);
2695 get_info.offset++;
2696 get_info.offset %= get_info.fifo_len + 1;
2697 txdlp = (TxD_t *) fifo_data->list_info
2698 [get_info.offset].list_virt_addr;
2699 fifo_data->tx_curr_get_info.offset =
2700 get_info.offset;
2703 spin_lock(&nic->tx_lock);
2704 if (netif_queue_stopped(dev))
2705 netif_wake_queue(dev);
2706 spin_unlock(&nic->tx_lock);
2710 * alarm_intr_handler - Alarm Interrrupt handler
2711 * @nic: device private variable
2712 * Description: If the interrupt was neither because of Rx packet or Tx
2713 * complete, this function is called. If the interrupt was to indicate
2714 * a loss of link, the OSM link status handler is invoked for any other
2715 * alarm interrupt the block that raised the interrupt is displayed
2716 * and a H/W reset is issued.
2717 * Return Value:
2718 * NONE
2721 static void alarm_intr_handler(struct s2io_nic *nic)
2723 struct net_device *dev = (struct net_device *) nic->dev;
2724 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2725 register u64 val64 = 0, err_reg = 0;
2727 /* Handling link status change error Intr */
2728 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2729 err_reg = readq(&bar0->mac_rmac_err_reg);
2730 writeq(err_reg, &bar0->mac_rmac_err_reg);
2731 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2732 schedule_work(&nic->set_link_task);
2736 /* Handling Ecc errors */
2737 val64 = readq(&bar0->mc_err_reg);
2738 writeq(val64, &bar0->mc_err_reg);
2739 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2740 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2741 nic->mac_control.stats_info->sw_stat.
2742 double_ecc_errs++;
2743 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2744 dev->name);
2745 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2746 if (nic->device_type != XFRAME_II_DEVICE) {
2747 /* Reset XframeI only if critical error */
2748 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2749 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2750 netif_stop_queue(dev);
2751 schedule_work(&nic->rst_timer_task);
2754 } else {
2755 nic->mac_control.stats_info->sw_stat.
2756 single_ecc_errs++;
2760 /* In case of a serious error, the device will be Reset. */
2761 val64 = readq(&bar0->serr_source);
2762 if (val64 & SERR_SOURCE_ANY) {
2763 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2764 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2765 (unsigned long long)val64);
2766 netif_stop_queue(dev);
2767 schedule_work(&nic->rst_timer_task);
2771 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2772 * Error occurs, the adapter will be recycled by disabling the
2773 * adapter enable bit and enabling it again after the device
2774 * becomes Quiescent.
2776 val64 = readq(&bar0->pcc_err_reg);
2777 writeq(val64, &bar0->pcc_err_reg);
2778 if (val64 & PCC_FB_ECC_DB_ERR) {
2779 u64 ac = readq(&bar0->adapter_control);
2780 ac &= ~(ADAPTER_CNTL_EN);
2781 writeq(ac, &bar0->adapter_control);
2782 ac = readq(&bar0->adapter_control);
2783 schedule_work(&nic->set_link_task);
2786 /* Other type of interrupts are not being handled now, TODO */
2790 * wait_for_cmd_complete - waits for a command to complete.
2791 * @sp : private member of the device structure, which is a pointer to the
2792 * s2io_nic structure.
2793 * Description: Function that waits for a command to Write into RMAC
2794 * ADDR DATA registers to be completed and returns either success or
2795 * error depending on whether the command was complete or not.
2796 * Return value:
2797 * SUCCESS on success and FAILURE on failure.
2800 int wait_for_cmd_complete(nic_t * sp)
2802 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2803 int ret = FAILURE, cnt = 0;
2804 u64 val64;
2806 while (TRUE) {
2807 val64 = readq(&bar0->rmac_addr_cmd_mem);
2808 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2809 ret = SUCCESS;
2810 break;
2812 msleep(50);
2813 if (cnt++ > 10)
2814 break;
2817 return ret;
2821 * s2io_reset - Resets the card.
2822 * @sp : private member of the device structure.
2823 * Description: Function to Reset the card. This function then also
2824 * restores the previously saved PCI configuration space registers as
2825 * the card reset also resets the configuration space.
2826 * Return value:
2827 * void.
2830 void s2io_reset(nic_t * sp)
2832 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2833 u64 val64;
2834 u16 subid, pci_cmd;
2836 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2837 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2839 val64 = SW_RESET_ALL;
2840 writeq(val64, &bar0->sw_reset);
2843 * At this stage, if the PCI write is indeed completed, the
2844 * card is reset and so is the PCI Config space of the device.
2845 * So a read cannot be issued at this stage on any of the
2846 * registers to ensure the write into "sw_reset" register
2847 * has gone through.
2848 * Question: Is there any system call that will explicitly force
2849 * all the write commands still pending on the bus to be pushed
2850 * through?
2851 * As of now I'am just giving a 250ms delay and hoping that the
2852 * PCI write to sw_reset register is done by this time.
2854 msleep(250);
2856 /* Restore the PCI state saved during initialization. */
2857 pci_restore_state(sp->pdev);
2858 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2859 pci_cmd);
2860 s2io_init_pci(sp);
2862 msleep(250);
2864 /* Set swapper to enable I/O register access */
2865 s2io_set_swapper(sp);
2867 /* Restore the MSIX table entries from local variables */
2868 restore_xmsi_data(sp);
2870 /* Clear certain PCI/PCI-X fields after reset */
2871 if (sp->device_type == XFRAME_II_DEVICE) {
2872 /* Clear parity err detect bit */
2873 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2875 /* Clearing PCIX Ecc status register */
2876 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2878 /* Clearing PCI_STATUS error reflected here */
2879 writeq(BIT(62), &bar0->txpic_int_reg);
2882 /* Reset device statistics maintained by OS */
2883 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2885 /* SXE-002: Configure link and activity LED to turn it off */
2886 subid = sp->pdev->subsystem_device;
2887 if (((subid & 0xFF) >= 0x07) &&
2888 (sp->device_type == XFRAME_I_DEVICE)) {
2889 val64 = readq(&bar0->gpio_control);
2890 val64 |= 0x0000800000000000ULL;
2891 writeq(val64, &bar0->gpio_control);
2892 val64 = 0x0411040400000000ULL;
2893 writeq(val64, (void __iomem *)bar0 + 0x2700);
2897 * Clear spurious ECC interrupts that would have occured on
2898 * XFRAME II cards after reset.
2900 if (sp->device_type == XFRAME_II_DEVICE) {
2901 val64 = readq(&bar0->pcc_err_reg);
2902 writeq(val64, &bar0->pcc_err_reg);
2905 sp->device_enabled_once = FALSE;
2909 * s2io_set_swapper - to set the swapper controle on the card
2910 * @sp : private member of the device structure,
2911 * pointer to the s2io_nic structure.
2912 * Description: Function to set the swapper control on the card
2913 * correctly depending on the 'endianness' of the system.
2914 * Return value:
2915 * SUCCESS on success and FAILURE on failure.
2918 int s2io_set_swapper(nic_t * sp)
2920 struct net_device *dev = sp->dev;
2921 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2922 u64 val64, valt, valr;
2925 * Set proper endian settings and verify the same by reading
2926 * the PIF Feed-back register.
2929 val64 = readq(&bar0->pif_rd_swapper_fb);
2930 if (val64 != 0x0123456789ABCDEFULL) {
2931 int i = 0;
2932 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2933 0x8100008181000081ULL, /* FE=1, SE=0 */
2934 0x4200004242000042ULL, /* FE=0, SE=1 */
2935 0}; /* FE=0, SE=0 */
2937 while(i<4) {
2938 writeq(value[i], &bar0->swapper_ctrl);
2939 val64 = readq(&bar0->pif_rd_swapper_fb);
2940 if (val64 == 0x0123456789ABCDEFULL)
2941 break;
2942 i++;
2944 if (i == 4) {
2945 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2946 dev->name);
2947 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2948 (unsigned long long) val64);
2949 return FAILURE;
2951 valr = value[i];
2952 } else {
2953 valr = readq(&bar0->swapper_ctrl);
2956 valt = 0x0123456789ABCDEFULL;
2957 writeq(valt, &bar0->xmsi_address);
2958 val64 = readq(&bar0->xmsi_address);
2960 if(val64 != valt) {
2961 int i = 0;
2962 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2963 0x0081810000818100ULL, /* FE=1, SE=0 */
2964 0x0042420000424200ULL, /* FE=0, SE=1 */
2965 0}; /* FE=0, SE=0 */
2967 while(i<4) {
2968 writeq((value[i] | valr), &bar0->swapper_ctrl);
2969 writeq(valt, &bar0->xmsi_address);
2970 val64 = readq(&bar0->xmsi_address);
2971 if(val64 == valt)
2972 break;
2973 i++;
2975 if(i == 4) {
2976 unsigned long long x = val64;
2977 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
2978 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
2979 return FAILURE;
2982 val64 = readq(&bar0->swapper_ctrl);
2983 val64 &= 0xFFFF000000000000ULL;
2985 #ifdef __BIG_ENDIAN
2987 * The device by default set to a big endian format, so a
2988 * big endian driver need not set anything.
2990 val64 |= (SWAPPER_CTRL_TXP_FE |
2991 SWAPPER_CTRL_TXP_SE |
2992 SWAPPER_CTRL_TXD_R_FE |
2993 SWAPPER_CTRL_TXD_W_FE |
2994 SWAPPER_CTRL_TXF_R_FE |
2995 SWAPPER_CTRL_RXD_R_FE |
2996 SWAPPER_CTRL_RXD_W_FE |
2997 SWAPPER_CTRL_RXF_W_FE |
2998 SWAPPER_CTRL_XMSI_FE |
2999 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3000 if (sp->intr_type == INTA)
3001 val64 |= SWAPPER_CTRL_XMSI_SE;
3002 writeq(val64, &bar0->swapper_ctrl);
3003 #else
3005 * Initially we enable all bits to make it accessible by the
3006 * driver, then we selectively enable only those bits that
3007 * we want to set.
3009 val64 |= (SWAPPER_CTRL_TXP_FE |
3010 SWAPPER_CTRL_TXP_SE |
3011 SWAPPER_CTRL_TXD_R_FE |
3012 SWAPPER_CTRL_TXD_R_SE |
3013 SWAPPER_CTRL_TXD_W_FE |
3014 SWAPPER_CTRL_TXD_W_SE |
3015 SWAPPER_CTRL_TXF_R_FE |
3016 SWAPPER_CTRL_RXD_R_FE |
3017 SWAPPER_CTRL_RXD_R_SE |
3018 SWAPPER_CTRL_RXD_W_FE |
3019 SWAPPER_CTRL_RXD_W_SE |
3020 SWAPPER_CTRL_RXF_W_FE |
3021 SWAPPER_CTRL_XMSI_FE |
3022 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3023 if (sp->intr_type == INTA)
3024 val64 |= SWAPPER_CTRL_XMSI_SE;
3025 writeq(val64, &bar0->swapper_ctrl);
3026 #endif
3027 val64 = readq(&bar0->swapper_ctrl);
3030 * Verifying if endian settings are accurate by reading a
3031 * feedback register.
3033 val64 = readq(&bar0->pif_rd_swapper_fb);
3034 if (val64 != 0x0123456789ABCDEFULL) {
3035 /* Endian settings are incorrect, calls for another dekko. */
3036 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3037 dev->name);
3038 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3039 (unsigned long long) val64);
3040 return FAILURE;
3043 return SUCCESS;
3046 int wait_for_msix_trans(nic_t *nic, int i)
3048 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3049 u64 val64;
3050 int ret = 0, cnt = 0;
3052 do {
3053 val64 = readq(&bar0->xmsi_access);
3054 if (!(val64 & BIT(15)))
3055 break;
3056 mdelay(1);
3057 cnt++;
3058 } while(cnt < 5);
3059 if (cnt == 5) {
3060 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3061 ret = 1;
3064 return ret;
3067 void restore_xmsi_data(nic_t *nic)
3069 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3070 u64 val64;
3071 int i;
3073 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3074 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3075 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3076 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3077 writeq(val64, &bar0->xmsi_access);
3078 if (wait_for_msix_trans(nic, i)) {
3079 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3080 continue;
3085 void store_xmsi_data(nic_t *nic)
3087 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3088 u64 val64, addr, data;
3089 int i;
3091 /* Store and display */
3092 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3093 val64 = (BIT(15) | vBIT(i, 26, 6));
3094 writeq(val64, &bar0->xmsi_access);
3095 if (wait_for_msix_trans(nic, i)) {
3096 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3097 continue;
3099 addr = readq(&bar0->xmsi_address);
3100 data = readq(&bar0->xmsi_data);
3101 if (addr && data) {
3102 nic->msix_info[i].addr = addr;
3103 nic->msix_info[i].data = data;
3108 int s2io_enable_msi(nic_t *nic)
3110 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3111 u16 msi_ctrl, msg_val;
3112 struct config_param *config = &nic->config;
3113 struct net_device *dev = nic->dev;
3114 u64 val64, tx_mat, rx_mat;
3115 int i, err;
3117 val64 = readq(&bar0->pic_control);
3118 val64 &= ~BIT(1);
3119 writeq(val64, &bar0->pic_control);
3121 err = pci_enable_msi(nic->pdev);
3122 if (err) {
3123 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3124 nic->dev->name);
3125 return err;
3129 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3130 * for interrupt handling.
3132 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3133 msg_val ^= 0x1;
3134 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3135 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3137 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3138 msi_ctrl |= 0x10;
3139 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3141 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3142 tx_mat = readq(&bar0->tx_mat0_n[0]);
3143 for (i=0; i<config->tx_fifo_num; i++) {
3144 tx_mat |= TX_MAT_SET(i, 1);
3146 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3148 rx_mat = readq(&bar0->rx_mat);
3149 for (i=0; i<config->rx_ring_num; i++) {
3150 rx_mat |= RX_MAT_SET(i, 1);
3152 writeq(rx_mat, &bar0->rx_mat);
3154 dev->irq = nic->pdev->irq;
3155 return 0;
3158 int s2io_enable_msi_x(nic_t *nic)
3160 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3161 u64 tx_mat, rx_mat;
3162 u16 msi_control; /* Temp variable */
3163 int ret, i, j, msix_indx = 1;
3165 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3166 GFP_KERNEL);
3167 if (nic->entries == NULL) {
3168 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3169 return -ENOMEM;
3171 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3173 nic->s2io_entries =
3174 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3175 GFP_KERNEL);
3176 if (nic->s2io_entries == NULL) {
3177 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3178 kfree(nic->entries);
3179 return -ENOMEM;
3181 memset(nic->s2io_entries, 0,
3182 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3184 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3185 nic->entries[i].entry = i;
3186 nic->s2io_entries[i].entry = i;
3187 nic->s2io_entries[i].arg = NULL;
3188 nic->s2io_entries[i].in_use = 0;
3191 tx_mat = readq(&bar0->tx_mat0_n[0]);
3192 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3193 tx_mat |= TX_MAT_SET(i, msix_indx);
3194 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3195 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3196 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3198 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3200 if (!nic->config.bimodal) {
3201 rx_mat = readq(&bar0->rx_mat);
3202 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3203 rx_mat |= RX_MAT_SET(j, msix_indx);
3204 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3205 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3206 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3208 writeq(rx_mat, &bar0->rx_mat);
3209 } else {
3210 tx_mat = readq(&bar0->tx_mat0_n[7]);
3211 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3212 tx_mat |= TX_MAT_SET(i, msix_indx);
3213 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3214 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3215 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3217 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3220 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3221 if (ret) {
3222 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3223 kfree(nic->entries);
3224 kfree(nic->s2io_entries);
3225 nic->entries = NULL;
3226 nic->s2io_entries = NULL;
3227 return -ENOMEM;
3231 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3232 * in the herc NIC. (Temp change, needs to be removed later)
3234 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3235 msi_control |= 0x1; /* Enable MSI */
3236 pci_write_config_word(nic->pdev, 0x42, msi_control);
3238 return 0;
3241 /* ********************************************************* *
3242 * Functions defined below concern the OS part of the driver *
3243 * ********************************************************* */
3246 * s2io_open - open entry point of the driver
3247 * @dev : pointer to the device structure.
3248 * Description:
3249 * This function is the open entry point of the driver. It mainly calls a
3250 * function to allocate Rx buffers and inserts them into the buffer
3251 * descriptors and then enables the Rx part of the NIC.
3252 * Return value:
3253 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3254 * file on failure.
3257 int s2io_open(struct net_device *dev)
3259 nic_t *sp = dev->priv;
3260 int err = 0;
3261 int i;
3262 u16 msi_control; /* Temp variable */
3265 * Make sure you have link off by default every time
3266 * Nic is initialized
3268 netif_carrier_off(dev);
3269 sp->last_link_state = 0;
3271 /* Initialize H/W and enable interrupts */
3272 if (s2io_card_up(sp)) {
3273 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3274 dev->name);
3275 err = -ENODEV;
3276 goto hw_init_failed;
3279 /* Store the values of the MSIX table in the nic_t structure */
3280 store_xmsi_data(sp);
3282 /* After proper initialization of H/W, register ISR */
3283 if (sp->intr_type == MSI) {
3284 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3285 SA_SHIRQ, sp->name, dev);
3286 if (err) {
3287 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3288 failed\n", dev->name);
3289 goto isr_registration_failed;
3292 if (sp->intr_type == MSI_X) {
3293 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3294 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3295 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3296 dev->name, i);
3297 err = request_irq(sp->entries[i].vector,
3298 s2io_msix_fifo_handle, 0, sp->desc1,
3299 sp->s2io_entries[i].arg);
3300 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3301 sp->msix_info[i].addr);
3302 } else {
3303 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3304 dev->name, i);
3305 err = request_irq(sp->entries[i].vector,
3306 s2io_msix_ring_handle, 0, sp->desc2,
3307 sp->s2io_entries[i].arg);
3308 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3309 sp->msix_info[i].addr);
3311 if (err) {
3312 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3313 failed\n", dev->name, i);
3314 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3315 goto isr_registration_failed;
3317 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3320 if (sp->intr_type == INTA) {
3321 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3322 sp->name, dev);
3323 if (err) {
3324 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3325 dev->name);
3326 goto isr_registration_failed;
3330 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3331 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3332 err = -ENODEV;
3333 goto setting_mac_address_failed;
3336 netif_start_queue(dev);
3337 return 0;
3339 setting_mac_address_failed:
3340 if (sp->intr_type != MSI_X)
3341 free_irq(sp->pdev->irq, dev);
3342 isr_registration_failed:
3343 del_timer_sync(&sp->alarm_timer);
3344 if (sp->intr_type == MSI_X) {
3345 if (sp->device_type == XFRAME_II_DEVICE) {
3346 for (i=1; (sp->s2io_entries[i].in_use ==
3347 MSIX_REGISTERED_SUCCESS); i++) {
3348 int vector = sp->entries[i].vector;
3349 void *arg = sp->s2io_entries[i].arg;
3351 free_irq(vector, arg);
3353 pci_disable_msix(sp->pdev);
3355 /* Temp */
3356 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3357 msi_control &= 0xFFFE; /* Disable MSI */
3358 pci_write_config_word(sp->pdev, 0x42, msi_control);
3361 else if (sp->intr_type == MSI)
3362 pci_disable_msi(sp->pdev);
3363 s2io_reset(sp);
3364 hw_init_failed:
3365 if (sp->intr_type == MSI_X) {
3366 if (sp->entries)
3367 kfree(sp->entries);
3368 if (sp->s2io_entries)
3369 kfree(sp->s2io_entries);
3371 return err;
3375 * s2io_close -close entry point of the driver
3376 * @dev : device pointer.
3377 * Description:
3378 * This is the stop entry point of the driver. It needs to undo exactly
3379 * whatever was done by the open entry point,thus it's usually referred to
3380 * as the close function.Among other things this function mainly stops the
3381 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3382 * Return value:
3383 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3384 * file on failure.
3387 int s2io_close(struct net_device *dev)
3389 nic_t *sp = dev->priv;
3390 int i;
3391 u16 msi_control;
3393 flush_scheduled_work();
3394 netif_stop_queue(dev);
3395 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3396 s2io_card_down(sp);
3398 if (sp->intr_type == MSI_X) {
3399 if (sp->device_type == XFRAME_II_DEVICE) {
3400 for (i=1; (sp->s2io_entries[i].in_use ==
3401 MSIX_REGISTERED_SUCCESS); i++) {
3402 int vector = sp->entries[i].vector;
3403 void *arg = sp->s2io_entries[i].arg;
3405 free_irq(vector, arg);
3407 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3408 msi_control &= 0xFFFE; /* Disable MSI */
3409 pci_write_config_word(sp->pdev, 0x42, msi_control);
3411 pci_disable_msix(sp->pdev);
3414 else {
3415 free_irq(sp->pdev->irq, dev);
3416 if (sp->intr_type == MSI)
3417 pci_disable_msi(sp->pdev);
3419 sp->device_close_flag = TRUE; /* Device is shut down. */
3420 return 0;
3424 * s2io_xmit - Tx entry point of te driver
3425 * @skb : the socket buffer containing the Tx data.
3426 * @dev : device pointer.
3427 * Description :
3428 * This function is the Tx entry point of the driver. S2IO NIC supports
3429 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3430 * NOTE: when device cant queue the pkt,just the trans_start variable will
3431 * not be upadted.
3432 * Return value:
3433 * 0 on success & 1 on failure.
3436 int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3438 nic_t *sp = dev->priv;
3439 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3440 register u64 val64;
3441 TxD_t *txdp;
3442 TxFIFO_element_t __iomem *tx_fifo;
3443 unsigned long flags;
3444 #ifdef NETIF_F_TSO
3445 int mss;
3446 #endif
3447 u16 vlan_tag = 0;
3448 int vlan_priority = 0;
3449 mac_info_t *mac_control;
3450 struct config_param *config;
3452 mac_control = &sp->mac_control;
3453 config = &sp->config;
3455 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3456 spin_lock_irqsave(&sp->tx_lock, flags);
3457 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3458 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3459 dev->name);
3460 spin_unlock_irqrestore(&sp->tx_lock, flags);
3461 dev_kfree_skb(skb);
3462 return 0;
3465 queue = 0;
3467 /* Get Fifo number to Transmit based on vlan priority */
3468 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3469 vlan_tag = vlan_tx_tag_get(skb);
3470 vlan_priority = vlan_tag >> 13;
3471 queue = config->fifo_mapping[vlan_priority];
3474 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3475 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3476 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3477 list_virt_addr;
3479 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3480 /* Avoid "put" pointer going beyond "get" pointer */
3481 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3482 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3483 netif_stop_queue(dev);
3484 dev_kfree_skb(skb);
3485 spin_unlock_irqrestore(&sp->tx_lock, flags);
3486 return 0;
3489 /* A buffer with no data will be dropped */
3490 if (!skb->len) {
3491 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3492 dev_kfree_skb(skb);
3493 spin_unlock_irqrestore(&sp->tx_lock, flags);
3494 return 0;
3497 #ifdef NETIF_F_TSO
3498 mss = skb_shinfo(skb)->tso_size;
3499 if (mss) {
3500 txdp->Control_1 |= TXD_TCP_LSO_EN;
3501 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3503 #endif
3505 frg_cnt = skb_shinfo(skb)->nr_frags;
3506 frg_len = skb->len - skb->data_len;
3508 txdp->Buffer_Pointer = pci_map_single
3509 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3510 txdp->Host_Control = (unsigned long) skb;
3511 if (skb->ip_summed == CHECKSUM_HW) {
3512 txdp->Control_2 |=
3513 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3514 TXD_TX_CKO_UDP_EN);
3517 txdp->Control_2 |= config->tx_intr_type;
3519 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3520 txdp->Control_2 |= TXD_VLAN_ENABLE;
3521 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3524 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3525 TXD_GATHER_CODE_FIRST);
3526 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3528 /* For fragmented SKB. */
3529 for (i = 0; i < frg_cnt; i++) {
3530 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3531 /* A '0' length fragment will be ignored */
3532 if (!frag->size)
3533 continue;
3534 txdp++;
3535 txdp->Buffer_Pointer = (u64) pci_map_page
3536 (sp->pdev, frag->page, frag->page_offset,
3537 frag->size, PCI_DMA_TODEVICE);
3538 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3540 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3542 tx_fifo = mac_control->tx_FIFO_start[queue];
3543 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3544 writeq(val64, &tx_fifo->TxDL_Pointer);
3546 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3547 TX_FIFO_LAST_LIST);
3549 #ifdef NETIF_F_TSO
3550 if (mss)
3551 val64 |= TX_FIFO_SPECIAL_FUNC;
3552 #endif
3553 writeq(val64, &tx_fifo->List_Control);
3555 mmiowb();
3557 put_off++;
3558 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3559 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3561 /* Avoid "put" pointer going beyond "get" pointer */
3562 if (((put_off + 1) % queue_len) == get_off) {
3563 DBG_PRINT(TX_DBG,
3564 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3565 put_off, get_off);
3566 netif_stop_queue(dev);
3569 dev->trans_start = jiffies;
3570 spin_unlock_irqrestore(&sp->tx_lock, flags);
3572 return 0;
3575 static void
3576 s2io_alarm_handle(unsigned long data)
3578 nic_t *sp = (nic_t *)data;
3580 alarm_intr_handler(sp);
3581 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3584 static irqreturn_t
3585 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3587 struct net_device *dev = (struct net_device *) dev_id;
3588 nic_t *sp = dev->priv;
3589 int i;
3590 int ret;
3591 mac_info_t *mac_control;
3592 struct config_param *config;
3594 atomic_inc(&sp->isr_cnt);
3595 mac_control = &sp->mac_control;
3596 config = &sp->config;
3597 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3599 /* If Intr is because of Rx Traffic */
3600 for (i = 0; i < config->rx_ring_num; i++)
3601 rx_intr_handler(&mac_control->rings[i]);
3603 /* If Intr is because of Tx Traffic */
3604 for (i = 0; i < config->tx_fifo_num; i++)
3605 tx_intr_handler(&mac_control->fifos[i]);
3608 * If the Rx buffer count is below the panic threshold then
3609 * reallocate the buffers from the interrupt handler itself,
3610 * else schedule a tasklet to reallocate the buffers.
3612 for (i = 0; i < config->rx_ring_num; i++) {
3613 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3614 int level = rx_buffer_level(sp, rxb_size, i);
3616 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3617 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3618 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3619 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3620 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3621 dev->name);
3622 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3623 clear_bit(0, (&sp->tasklet_status));
3624 atomic_dec(&sp->isr_cnt);
3625 return IRQ_HANDLED;
3627 clear_bit(0, (&sp->tasklet_status));
3628 } else if (level == LOW) {
3629 tasklet_schedule(&sp->task);
3633 atomic_dec(&sp->isr_cnt);
3634 return IRQ_HANDLED;
3637 static irqreturn_t
3638 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3640 ring_info_t *ring = (ring_info_t *)dev_id;
3641 nic_t *sp = ring->nic;
3642 int rxb_size, level, rng_n;
3644 atomic_inc(&sp->isr_cnt);
3645 rx_intr_handler(ring);
3647 rng_n = ring->ring_no;
3648 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3649 level = rx_buffer_level(sp, rxb_size, rng_n);
3651 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3652 int ret;
3653 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3654 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3655 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3656 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3657 __FUNCTION__);
3658 clear_bit(0, (&sp->tasklet_status));
3659 return IRQ_HANDLED;
3661 clear_bit(0, (&sp->tasklet_status));
3662 } else if (level == LOW) {
3663 tasklet_schedule(&sp->task);
3665 atomic_dec(&sp->isr_cnt);
3667 return IRQ_HANDLED;
3670 static irqreturn_t
3671 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3673 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3674 nic_t *sp = fifo->nic;
3676 atomic_inc(&sp->isr_cnt);
3677 tx_intr_handler(fifo);
3678 atomic_dec(&sp->isr_cnt);
3679 return IRQ_HANDLED;
3682 static void s2io_txpic_intr_handle(nic_t *sp)
3684 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3685 u64 val64;
3687 val64 = readq(&bar0->pic_int_status);
3688 if (val64 & PIC_INT_GPIO) {
3689 val64 = readq(&bar0->gpio_int_reg);
3690 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3691 (val64 & GPIO_INT_REG_LINK_UP)) {
3692 val64 |= GPIO_INT_REG_LINK_DOWN;
3693 val64 |= GPIO_INT_REG_LINK_UP;
3694 writeq(val64, &bar0->gpio_int_reg);
3695 goto masking;
3698 if (((sp->last_link_state == LINK_UP) &&
3699 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3700 ((sp->last_link_state == LINK_DOWN) &&
3701 (val64 & GPIO_INT_REG_LINK_UP))) {
3702 val64 = readq(&bar0->gpio_int_mask);
3703 val64 |= GPIO_INT_MASK_LINK_DOWN;
3704 val64 |= GPIO_INT_MASK_LINK_UP;
3705 writeq(val64, &bar0->gpio_int_mask);
3706 s2io_set_link((unsigned long)sp);
3708 masking:
3709 if (sp->last_link_state == LINK_UP) {
3710 /*enable down interrupt */
3711 val64 = readq(&bar0->gpio_int_mask);
3712 /* unmasks link down intr */
3713 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3714 /* masks link up intr */
3715 val64 |= GPIO_INT_MASK_LINK_UP;
3716 writeq(val64, &bar0->gpio_int_mask);
3717 } else {
3718 /*enable UP Interrupt */
3719 val64 = readq(&bar0->gpio_int_mask);
3720 /* unmasks link up interrupt */
3721 val64 &= ~GPIO_INT_MASK_LINK_UP;
3722 /* masks link down interrupt */
3723 val64 |= GPIO_INT_MASK_LINK_DOWN;
3724 writeq(val64, &bar0->gpio_int_mask);
3730 * s2io_isr - ISR handler of the device .
3731 * @irq: the irq of the device.
3732 * @dev_id: a void pointer to the dev structure of the NIC.
3733 * @pt_regs: pointer to the registers pushed on the stack.
3734 * Description: This function is the ISR handler of the device. It
3735 * identifies the reason for the interrupt and calls the relevant
3736 * service routines. As a contongency measure, this ISR allocates the
3737 * recv buffers, if their numbers are below the panic value which is
3738 * presently set to 25% of the original number of rcv buffers allocated.
3739 * Return value:
3740 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
3741 * IRQ_NONE: will be returned if interrupt is not from our device
3743 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3745 struct net_device *dev = (struct net_device *) dev_id;
3746 nic_t *sp = dev->priv;
3747 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3748 int i;
3749 u64 reason = 0, val64;
3750 mac_info_t *mac_control;
3751 struct config_param *config;
3753 atomic_inc(&sp->isr_cnt);
3754 mac_control = &sp->mac_control;
3755 config = &sp->config;
3758 * Identify the cause for interrupt and call the appropriate
3759 * interrupt handler. Causes for the interrupt could be;
3760 * 1. Rx of packet.
3761 * 2. Tx complete.
3762 * 3. Link down.
3763 * 4. Error in any functional blocks of the NIC.
3765 reason = readq(&bar0->general_int_status);
3767 if (!reason) {
3768 /* The interrupt was not raised by Xena. */
3769 atomic_dec(&sp->isr_cnt);
3770 return IRQ_NONE;
3773 #ifdef CONFIG_S2IO_NAPI
3774 if (reason & GEN_INTR_RXTRAFFIC) {
3775 if (netif_rx_schedule_prep(dev)) {
3776 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3777 DISABLE_INTRS);
3778 __netif_rx_schedule(dev);
3781 #else
3782 /* If Intr is because of Rx Traffic */
3783 if (reason & GEN_INTR_RXTRAFFIC) {
3785 * rx_traffic_int reg is an R1 register, writing all 1's
3786 * will ensure that the actual interrupt causing bit get's
3787 * cleared and hence a read can be avoided.
3789 val64 = 0xFFFFFFFFFFFFFFFFULL;
3790 writeq(val64, &bar0->rx_traffic_int);
3791 for (i = 0; i < config->rx_ring_num; i++) {
3792 rx_intr_handler(&mac_control->rings[i]);
3795 #endif
3797 /* If Intr is because of Tx Traffic */
3798 if (reason & GEN_INTR_TXTRAFFIC) {
3800 * tx_traffic_int reg is an R1 register, writing all 1's
3801 * will ensure that the actual interrupt causing bit get's
3802 * cleared and hence a read can be avoided.
3804 val64 = 0xFFFFFFFFFFFFFFFFULL;
3805 writeq(val64, &bar0->tx_traffic_int);
3807 for (i = 0; i < config->tx_fifo_num; i++)
3808 tx_intr_handler(&mac_control->fifos[i]);
3811 if (reason & GEN_INTR_TXPIC)
3812 s2io_txpic_intr_handle(sp);
3814 * If the Rx buffer count is below the panic threshold then
3815 * reallocate the buffers from the interrupt handler itself,
3816 * else schedule a tasklet to reallocate the buffers.
3818 #ifndef CONFIG_S2IO_NAPI
3819 for (i = 0; i < config->rx_ring_num; i++) {
3820 int ret;
3821 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3822 int level = rx_buffer_level(sp, rxb_size, i);
3824 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3825 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3826 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3827 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3828 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3829 dev->name);
3830 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3831 clear_bit(0, (&sp->tasklet_status));
3832 atomic_dec(&sp->isr_cnt);
3833 return IRQ_HANDLED;
3835 clear_bit(0, (&sp->tasklet_status));
3836 } else if (level == LOW) {
3837 tasklet_schedule(&sp->task);
3840 #endif
3842 atomic_dec(&sp->isr_cnt);
3843 return IRQ_HANDLED;
3847 * s2io_updt_stats -
3849 static void s2io_updt_stats(nic_t *sp)
3851 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3852 u64 val64;
3853 int cnt = 0;
3855 if (atomic_read(&sp->card_state) == CARD_UP) {
3856 /* Apprx 30us on a 133 MHz bus */
3857 val64 = SET_UPDT_CLICKS(10) |
3858 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3859 writeq(val64, &bar0->stat_cfg);
3860 do {
3861 udelay(100);
3862 val64 = readq(&bar0->stat_cfg);
3863 if (!(val64 & BIT(0)))
3864 break;
3865 cnt++;
3866 if (cnt == 5)
3867 break; /* Updt failed */
3868 } while(1);
3873 * s2io_get_stats - Updates the device statistics structure.
3874 * @dev : pointer to the device structure.
3875 * Description:
3876 * This function updates the device statistics structure in the s2io_nic
3877 * structure and returns a pointer to the same.
3878 * Return value:
3879 * pointer to the updated net_device_stats structure.
3882 struct net_device_stats *s2io_get_stats(struct net_device *dev)
3884 nic_t *sp = dev->priv;
3885 mac_info_t *mac_control;
3886 struct config_param *config;
3889 mac_control = &sp->mac_control;
3890 config = &sp->config;
3892 /* Configure Stats for immediate updt */
3893 s2io_updt_stats(sp);
3895 sp->stats.tx_packets =
3896 le32_to_cpu(mac_control->stats_info->tmac_frms);
3897 sp->stats.tx_errors =
3898 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3899 sp->stats.rx_errors =
3900 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3901 sp->stats.multicast =
3902 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3903 sp->stats.rx_length_errors =
3904 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3906 return (&sp->stats);
3910 * s2io_set_multicast - entry point for multicast address enable/disable.
3911 * @dev : pointer to the device structure
3912 * Description:
3913 * This function is a driver entry point which gets called by the kernel
3914 * whenever multicast addresses must be enabled/disabled. This also gets
3915 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3916 * determine, if multicast address must be enabled or if promiscuous mode
3917 * is to be disabled etc.
3918 * Return value:
3919 * void.
3922 static void s2io_set_multicast(struct net_device *dev)
3924 int i, j, prev_cnt;
3925 struct dev_mc_list *mclist;
3926 nic_t *sp = dev->priv;
3927 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3928 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3929 0xfeffffffffffULL;
3930 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3931 void __iomem *add;
3933 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3934 /* Enable all Multicast addresses */
3935 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3936 &bar0->rmac_addr_data0_mem);
3937 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3938 &bar0->rmac_addr_data1_mem);
3939 val64 = RMAC_ADDR_CMD_MEM_WE |
3940 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3941 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3942 writeq(val64, &bar0->rmac_addr_cmd_mem);
3943 /* Wait till command completes */
3944 wait_for_cmd_complete(sp);
3946 sp->m_cast_flg = 1;
3947 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3948 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3949 /* Disable all Multicast addresses */
3950 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3951 &bar0->rmac_addr_data0_mem);
3952 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3953 &bar0->rmac_addr_data1_mem);
3954 val64 = RMAC_ADDR_CMD_MEM_WE |
3955 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3956 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3957 writeq(val64, &bar0->rmac_addr_cmd_mem);
3958 /* Wait till command completes */
3959 wait_for_cmd_complete(sp);
3961 sp->m_cast_flg = 0;
3962 sp->all_multi_pos = 0;
3965 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3966 /* Put the NIC into promiscuous mode */
3967 add = &bar0->mac_cfg;
3968 val64 = readq(&bar0->mac_cfg);
3969 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
3971 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3972 writel((u32) val64, add);
3973 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3974 writel((u32) (val64 >> 32), (add + 4));
3976 val64 = readq(&bar0->mac_cfg);
3977 sp->promisc_flg = 1;
3978 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
3979 dev->name);
3980 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
3981 /* Remove the NIC from promiscuous mode */
3982 add = &bar0->mac_cfg;
3983 val64 = readq(&bar0->mac_cfg);
3984 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
3986 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3987 writel((u32) val64, add);
3988 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3989 writel((u32) (val64 >> 32), (add + 4));
3991 val64 = readq(&bar0->mac_cfg);
3992 sp->promisc_flg = 0;
3993 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
3994 dev->name);
3997 /* Update individual M_CAST address list */
3998 if ((!sp->m_cast_flg) && dev->mc_count) {
3999 if (dev->mc_count >
4000 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4001 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4002 dev->name);
4003 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4004 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4005 return;
4008 prev_cnt = sp->mc_addr_count;
4009 sp->mc_addr_count = dev->mc_count;
4011 /* Clear out the previous list of Mc in the H/W. */
4012 for (i = 0; i < prev_cnt; i++) {
4013 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4014 &bar0->rmac_addr_data0_mem);
4015 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4016 &bar0->rmac_addr_data1_mem);
4017 val64 = RMAC_ADDR_CMD_MEM_WE |
4018 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4019 RMAC_ADDR_CMD_MEM_OFFSET
4020 (MAC_MC_ADDR_START_OFFSET + i);
4021 writeq(val64, &bar0->rmac_addr_cmd_mem);
4023 /* Wait for command completes */
4024 if (wait_for_cmd_complete(sp)) {
4025 DBG_PRINT(ERR_DBG, "%s: Adding ",
4026 dev->name);
4027 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4028 return;
4032 /* Create the new Rx filter list and update the same in H/W. */
4033 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4034 i++, mclist = mclist->next) {
4035 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4036 ETH_ALEN);
4037 for (j = 0; j < ETH_ALEN; j++) {
4038 mac_addr |= mclist->dmi_addr[j];
4039 mac_addr <<= 8;
4041 mac_addr >>= 8;
4042 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4043 &bar0->rmac_addr_data0_mem);
4044 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4045 &bar0->rmac_addr_data1_mem);
4046 val64 = RMAC_ADDR_CMD_MEM_WE |
4047 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4048 RMAC_ADDR_CMD_MEM_OFFSET
4049 (i + MAC_MC_ADDR_START_OFFSET);
4050 writeq(val64, &bar0->rmac_addr_cmd_mem);
4052 /* Wait for command completes */
4053 if (wait_for_cmd_complete(sp)) {
4054 DBG_PRINT(ERR_DBG, "%s: Adding ",
4055 dev->name);
4056 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4057 return;
4064 * s2io_set_mac_addr - Programs the Xframe mac address
4065 * @dev : pointer to the device structure.
4066 * @addr: a uchar pointer to the new mac address which is to be set.
4067 * Description : This procedure will program the Xframe to receive
4068 * frames with new Mac Address
4069 * Return value: SUCCESS on success and an appropriate (-)ve integer
4070 * as defined in errno.h file on failure.
4073 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4075 nic_t *sp = dev->priv;
4076 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4077 register u64 val64, mac_addr = 0;
4078 int i;
4081 * Set the new MAC address as the new unicast filter and reflect this
4082 * change on the device address registered with the OS. It will be
4083 * at offset 0.
4085 for (i = 0; i < ETH_ALEN; i++) {
4086 mac_addr <<= 8;
4087 mac_addr |= addr[i];
4090 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4091 &bar0->rmac_addr_data0_mem);
4093 val64 =
4094 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4095 RMAC_ADDR_CMD_MEM_OFFSET(0);
4096 writeq(val64, &bar0->rmac_addr_cmd_mem);
4097 /* Wait till command completes */
4098 if (wait_for_cmd_complete(sp)) {
4099 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4100 return FAILURE;
4103 return SUCCESS;
4107 * s2io_ethtool_sset - Sets different link parameters.
4108 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4109 * @info: pointer to the structure with parameters given by ethtool to set
4110 * link information.
4111 * Description:
4112 * The function sets different link parameters provided by the user onto
4113 * the NIC.
4114 * Return value:
4115 * 0 on success.
4118 static int s2io_ethtool_sset(struct net_device *dev,
4119 struct ethtool_cmd *info)
4121 nic_t *sp = dev->priv;
4122 if ((info->autoneg == AUTONEG_ENABLE) ||
4123 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4124 return -EINVAL;
4125 else {
4126 s2io_close(sp->dev);
4127 s2io_open(sp->dev);
4130 return 0;
4134 * s2io_ethtol_gset - Return link specific information.
4135 * @sp : private member of the device structure, pointer to the
4136 * s2io_nic structure.
4137 * @info : pointer to the structure with parameters given by ethtool
4138 * to return link information.
4139 * Description:
4140 * Returns link specific information like speed, duplex etc.. to ethtool.
4141 * Return value :
4142 * return 0 on success.
4145 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4147 nic_t *sp = dev->priv;
4148 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4149 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4150 info->port = PORT_FIBRE;
4151 /* info->transceiver?? TODO */
4153 if (netif_carrier_ok(sp->dev)) {
4154 info->speed = 10000;
4155 info->duplex = DUPLEX_FULL;
4156 } else {
4157 info->speed = -1;
4158 info->duplex = -1;
4161 info->autoneg = AUTONEG_DISABLE;
4162 return 0;
4166 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4167 * @sp : private member of the device structure, which is a pointer to the
4168 * s2io_nic structure.
4169 * @info : pointer to the structure with parameters given by ethtool to
4170 * return driver information.
4171 * Description:
4172 * Returns driver specefic information like name, version etc.. to ethtool.
4173 * Return value:
4174 * void
4177 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4178 struct ethtool_drvinfo *info)
4180 nic_t *sp = dev->priv;
4182 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4183 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4184 strncpy(info->fw_version, "", sizeof(info->fw_version));
4185 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4186 info->regdump_len = XENA_REG_SPACE;
4187 info->eedump_len = XENA_EEPROM_SPACE;
4188 info->testinfo_len = S2IO_TEST_LEN;
4189 info->n_stats = S2IO_STAT_LEN;
4193 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4194 * @sp: private member of the device structure, which is a pointer to the
4195 * s2io_nic structure.
4196 * @regs : pointer to the structure with parameters given by ethtool for
4197 * dumping the registers.
4198 * @reg_space: The input argumnet into which all the registers are dumped.
4199 * Description:
4200 * Dumps the entire register space of xFrame NIC into the user given
4201 * buffer area.
4202 * Return value :
4203 * void .
4206 static void s2io_ethtool_gregs(struct net_device *dev,
4207 struct ethtool_regs *regs, void *space)
4209 int i;
4210 u64 reg;
4211 u8 *reg_space = (u8 *) space;
4212 nic_t *sp = dev->priv;
4214 regs->len = XENA_REG_SPACE;
4215 regs->version = sp->pdev->subsystem_device;
4217 for (i = 0; i < regs->len; i += 8) {
4218 reg = readq(sp->bar0 + i);
4219 memcpy((reg_space + i), &reg, 8);
4224 * s2io_phy_id - timer function that alternates adapter LED.
4225 * @data : address of the private member of the device structure, which
4226 * is a pointer to the s2io_nic structure, provided as an u32.
4227 * Description: This is actually the timer function that alternates the
4228 * adapter LED bit of the adapter control bit to set/reset every time on
4229 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4230 * once every second.
4232 static void s2io_phy_id(unsigned long data)
4234 nic_t *sp = (nic_t *) data;
4235 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4236 u64 val64 = 0;
4237 u16 subid;
4239 subid = sp->pdev->subsystem_device;
4240 if ((sp->device_type == XFRAME_II_DEVICE) ||
4241 ((subid & 0xFF) >= 0x07)) {
4242 val64 = readq(&bar0->gpio_control);
4243 val64 ^= GPIO_CTRL_GPIO_0;
4244 writeq(val64, &bar0->gpio_control);
4245 } else {
4246 val64 = readq(&bar0->adapter_control);
4247 val64 ^= ADAPTER_LED_ON;
4248 writeq(val64, &bar0->adapter_control);
4251 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4255 * s2io_ethtool_idnic - To physically identify the nic on the system.
4256 * @sp : private member of the device structure, which is a pointer to the
4257 * s2io_nic structure.
4258 * @id : pointer to the structure with identification parameters given by
4259 * ethtool.
4260 * Description: Used to physically identify the NIC on the system.
4261 * The Link LED will blink for a time specified by the user for
4262 * identification.
4263 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4264 * identification is possible only if it's link is up.
4265 * Return value:
4266 * int , returns 0 on success
4269 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4271 u64 val64 = 0, last_gpio_ctrl_val;
4272 nic_t *sp = dev->priv;
4273 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4274 u16 subid;
4276 subid = sp->pdev->subsystem_device;
4277 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4278 if ((sp->device_type == XFRAME_I_DEVICE) &&
4279 ((subid & 0xFF) < 0x07)) {
4280 val64 = readq(&bar0->adapter_control);
4281 if (!(val64 & ADAPTER_CNTL_EN)) {
4282 printk(KERN_ERR
4283 "Adapter Link down, cannot blink LED\n");
4284 return -EFAULT;
4287 if (sp->id_timer.function == NULL) {
4288 init_timer(&sp->id_timer);
4289 sp->id_timer.function = s2io_phy_id;
4290 sp->id_timer.data = (unsigned long) sp;
4292 mod_timer(&sp->id_timer, jiffies);
4293 if (data)
4294 msleep_interruptible(data * HZ);
4295 else
4296 msleep_interruptible(MAX_FLICKER_TIME);
4297 del_timer_sync(&sp->id_timer);
4299 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4300 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4301 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4304 return 0;
4308 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4309 * @sp : private member of the device structure, which is a pointer to the
4310 * s2io_nic structure.
4311 * @ep : pointer to the structure with pause parameters given by ethtool.
4312 * Description:
4313 * Returns the Pause frame generation and reception capability of the NIC.
4314 * Return value:
4315 * void
4317 static void s2io_ethtool_getpause_data(struct net_device *dev,
4318 struct ethtool_pauseparam *ep)
4320 u64 val64;
4321 nic_t *sp = dev->priv;
4322 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4324 val64 = readq(&bar0->rmac_pause_cfg);
4325 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4326 ep->tx_pause = TRUE;
4327 if (val64 & RMAC_PAUSE_RX_ENABLE)
4328 ep->rx_pause = TRUE;
4329 ep->autoneg = FALSE;
4333 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4334 * @sp : private member of the device structure, which is a pointer to the
4335 * s2io_nic structure.
4336 * @ep : pointer to the structure with pause parameters given by ethtool.
4337 * Description:
4338 * It can be used to set or reset Pause frame generation or reception
4339 * support of the NIC.
4340 * Return value:
4341 * int, returns 0 on Success
4344 static int s2io_ethtool_setpause_data(struct net_device *dev,
4345 struct ethtool_pauseparam *ep)
4347 u64 val64;
4348 nic_t *sp = dev->priv;
4349 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4351 val64 = readq(&bar0->rmac_pause_cfg);
4352 if (ep->tx_pause)
4353 val64 |= RMAC_PAUSE_GEN_ENABLE;
4354 else
4355 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4356 if (ep->rx_pause)
4357 val64 |= RMAC_PAUSE_RX_ENABLE;
4358 else
4359 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4360 writeq(val64, &bar0->rmac_pause_cfg);
4361 return 0;
4365 * read_eeprom - reads 4 bytes of data from user given offset.
4366 * @sp : private member of the device structure, which is a pointer to the
4367 * s2io_nic structure.
4368 * @off : offset at which the data must be written
4369 * @data : Its an output parameter where the data read at the given
4370 * offset is stored.
4371 * Description:
4372 * Will read 4 bytes of data from the user given offset and return the
4373 * read data.
4374 * NOTE: Will allow to read only part of the EEPROM visible through the
4375 * I2C bus.
4376 * Return value:
4377 * -1 on failure and 0 on success.
4380 #define S2IO_DEV_ID 5
4381 static int read_eeprom(nic_t * sp, int off, u64 * data)
4383 int ret = -1;
4384 u32 exit_cnt = 0;
4385 u64 val64;
4386 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4388 if (sp->device_type == XFRAME_I_DEVICE) {
4389 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4390 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4391 I2C_CONTROL_CNTL_START;
4392 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4394 while (exit_cnt < 5) {
4395 val64 = readq(&bar0->i2c_control);
4396 if (I2C_CONTROL_CNTL_END(val64)) {
4397 *data = I2C_CONTROL_GET_DATA(val64);
4398 ret = 0;
4399 break;
4401 msleep(50);
4402 exit_cnt++;
4406 if (sp->device_type == XFRAME_II_DEVICE) {
4407 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4408 SPI_CONTROL_BYTECNT(0x3) |
4409 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4410 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4411 val64 |= SPI_CONTROL_REQ;
4412 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4413 while (exit_cnt < 5) {
4414 val64 = readq(&bar0->spi_control);
4415 if (val64 & SPI_CONTROL_NACK) {
4416 ret = 1;
4417 break;
4418 } else if (val64 & SPI_CONTROL_DONE) {
4419 *data = readq(&bar0->spi_data);
4420 *data &= 0xffffff;
4421 ret = 0;
4422 break;
4424 msleep(50);
4425 exit_cnt++;
4428 return ret;
4432 * write_eeprom - actually writes the relevant part of the data value.
4433 * @sp : private member of the device structure, which is a pointer to the
4434 * s2io_nic structure.
4435 * @off : offset at which the data must be written
4436 * @data : The data that is to be written
4437 * @cnt : Number of bytes of the data that are actually to be written into
4438 * the Eeprom. (max of 3)
4439 * Description:
4440 * Actually writes the relevant part of the data value into the Eeprom
4441 * through the I2C bus.
4442 * Return value:
4443 * 0 on success, -1 on failure.
4446 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4448 int exit_cnt = 0, ret = -1;
4449 u64 val64;
4450 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4452 if (sp->device_type == XFRAME_I_DEVICE) {
4453 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4454 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4455 I2C_CONTROL_CNTL_START;
4456 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4458 while (exit_cnt < 5) {
4459 val64 = readq(&bar0->i2c_control);
4460 if (I2C_CONTROL_CNTL_END(val64)) {
4461 if (!(val64 & I2C_CONTROL_NACK))
4462 ret = 0;
4463 break;
4465 msleep(50);
4466 exit_cnt++;
4470 if (sp->device_type == XFRAME_II_DEVICE) {
4471 int write_cnt = (cnt == 8) ? 0 : cnt;
4472 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4474 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4475 SPI_CONTROL_BYTECNT(write_cnt) |
4476 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4477 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4478 val64 |= SPI_CONTROL_REQ;
4479 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4480 while (exit_cnt < 5) {
4481 val64 = readq(&bar0->spi_control);
4482 if (val64 & SPI_CONTROL_NACK) {
4483 ret = 1;
4484 break;
4485 } else if (val64 & SPI_CONTROL_DONE) {
4486 ret = 0;
4487 break;
4489 msleep(50);
4490 exit_cnt++;
4493 return ret;
4497 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4498 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4499 * @eeprom : pointer to the user level structure provided by ethtool,
4500 * containing all relevant information.
4501 * @data_buf : user defined value to be written into Eeprom.
4502 * Description: Reads the values stored in the Eeprom at given offset
4503 * for a given length. Stores these values int the input argument data
4504 * buffer 'data_buf' and returns these to the caller (ethtool.)
4505 * Return value:
4506 * int 0 on success
4509 static int s2io_ethtool_geeprom(struct net_device *dev,
4510 struct ethtool_eeprom *eeprom, u8 * data_buf)
4512 u32 i, valid;
4513 u64 data;
4514 nic_t *sp = dev->priv;
4516 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4518 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4519 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4521 for (i = 0; i < eeprom->len; i += 4) {
4522 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4523 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4524 return -EFAULT;
4526 valid = INV(data);
4527 memcpy((data_buf + i), &valid, 4);
4529 return 0;
4533 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4534 * @sp : private member of the device structure, which is a pointer to the
4535 * s2io_nic structure.
4536 * @eeprom : pointer to the user level structure provided by ethtool,
4537 * containing all relevant information.
4538 * @data_buf ; user defined value to be written into Eeprom.
4539 * Description:
4540 * Tries to write the user provided value in the Eeprom, at the offset
4541 * given by the user.
4542 * Return value:
4543 * 0 on success, -EFAULT on failure.
4546 static int s2io_ethtool_seeprom(struct net_device *dev,
4547 struct ethtool_eeprom *eeprom,
4548 u8 * data_buf)
4550 int len = eeprom->len, cnt = 0;
4551 u64 valid = 0, data;
4552 nic_t *sp = dev->priv;
4554 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4555 DBG_PRINT(ERR_DBG,
4556 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4557 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4558 eeprom->magic);
4559 return -EFAULT;
4562 while (len) {
4563 data = (u32) data_buf[cnt] & 0x000000FF;
4564 if (data) {
4565 valid = (u32) (data << 24);
4566 } else
4567 valid = data;
4569 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4570 DBG_PRINT(ERR_DBG,
4571 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4572 DBG_PRINT(ERR_DBG,
4573 "write into the specified offset\n");
4574 return -EFAULT;
4576 cnt++;
4577 len--;
4580 return 0;
4584 * s2io_register_test - reads and writes into all clock domains.
4585 * @sp : private member of the device structure, which is a pointer to the
4586 * s2io_nic structure.
4587 * @data : variable that returns the result of each of the test conducted b
4588 * by the driver.
4589 * Description:
4590 * Read and write into all clock domains. The NIC has 3 clock domains,
4591 * see that registers in all the three regions are accessible.
4592 * Return value:
4593 * 0 on success.
4596 static int s2io_register_test(nic_t * sp, uint64_t * data)
4598 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4599 u64 val64 = 0, exp_val;
4600 int fail = 0;
4602 val64 = readq(&bar0->pif_rd_swapper_fb);
4603 if (val64 != 0x123456789abcdefULL) {
4604 fail = 1;
4605 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4608 val64 = readq(&bar0->rmac_pause_cfg);
4609 if (val64 != 0xc000ffff00000000ULL) {
4610 fail = 1;
4611 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4614 val64 = readq(&bar0->rx_queue_cfg);
4615 if (sp->device_type == XFRAME_II_DEVICE)
4616 exp_val = 0x0404040404040404ULL;
4617 else
4618 exp_val = 0x0808080808080808ULL;
4619 if (val64 != exp_val) {
4620 fail = 1;
4621 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4624 val64 = readq(&bar0->xgxs_efifo_cfg);
4625 if (val64 != 0x000000001923141EULL) {
4626 fail = 1;
4627 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4630 val64 = 0x5A5A5A5A5A5A5A5AULL;
4631 writeq(val64, &bar0->xmsi_data);
4632 val64 = readq(&bar0->xmsi_data);
4633 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4634 fail = 1;
4635 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4638 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4639 writeq(val64, &bar0->xmsi_data);
4640 val64 = readq(&bar0->xmsi_data);
4641 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4642 fail = 1;
4643 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4646 *data = fail;
4647 return fail;
4651 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4652 * @sp : private member of the device structure, which is a pointer to the
4653 * s2io_nic structure.
4654 * @data:variable that returns the result of each of the test conducted by
4655 * the driver.
4656 * Description:
4657 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4658 * register.
4659 * Return value:
4660 * 0 on success.
4663 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4665 int fail = 0;
4666 u64 ret_data, org_4F0, org_7F0;
4667 u8 saved_4F0 = 0, saved_7F0 = 0;
4668 struct net_device *dev = sp->dev;
4670 /* Test Write Error at offset 0 */
4671 /* Note that SPI interface allows write access to all areas
4672 * of EEPROM. Hence doing all negative testing only for Xframe I.
4674 if (sp->device_type == XFRAME_I_DEVICE)
4675 if (!write_eeprom(sp, 0, 0, 3))
4676 fail = 1;
4678 /* Save current values at offsets 0x4F0 and 0x7F0 */
4679 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4680 saved_4F0 = 1;
4681 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4682 saved_7F0 = 1;
4684 /* Test Write at offset 4f0 */
4685 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
4686 fail = 1;
4687 if (read_eeprom(sp, 0x4F0, &ret_data))
4688 fail = 1;
4690 if (ret_data != 0x012345) {
4691 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4692 fail = 1;
4695 /* Reset the EEPROM data go FFFF */
4696 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
4698 /* Test Write Request Error at offset 0x7c */
4699 if (sp->device_type == XFRAME_I_DEVICE)
4700 if (!write_eeprom(sp, 0x07C, 0, 3))
4701 fail = 1;
4703 /* Test Write Request at offset 0x7f0 */
4704 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
4705 fail = 1;
4706 if (read_eeprom(sp, 0x7F0, &ret_data))
4707 fail = 1;
4709 if (ret_data != 0x012345) {
4710 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4711 fail = 1;
4714 /* Reset the EEPROM data go FFFF */
4715 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
4717 if (sp->device_type == XFRAME_I_DEVICE) {
4718 /* Test Write Error at offset 0x80 */
4719 if (!write_eeprom(sp, 0x080, 0, 3))
4720 fail = 1;
4722 /* Test Write Error at offset 0xfc */
4723 if (!write_eeprom(sp, 0x0FC, 0, 3))
4724 fail = 1;
4726 /* Test Write Error at offset 0x100 */
4727 if (!write_eeprom(sp, 0x100, 0, 3))
4728 fail = 1;
4730 /* Test Write Error at offset 4ec */
4731 if (!write_eeprom(sp, 0x4EC, 0, 3))
4732 fail = 1;
4735 /* Restore values at offsets 0x4F0 and 0x7F0 */
4736 if (saved_4F0)
4737 write_eeprom(sp, 0x4F0, org_4F0, 3);
4738 if (saved_7F0)
4739 write_eeprom(sp, 0x7F0, org_7F0, 3);
4741 *data = fail;
4742 return fail;
4746 * s2io_bist_test - invokes the MemBist test of the card .
4747 * @sp : private member of the device structure, which is a pointer to the
4748 * s2io_nic structure.
4749 * @data:variable that returns the result of each of the test conducted by
4750 * the driver.
4751 * Description:
4752 * This invokes the MemBist test of the card. We give around
4753 * 2 secs time for the Test to complete. If it's still not complete
4754 * within this peiod, we consider that the test failed.
4755 * Return value:
4756 * 0 on success and -1 on failure.
4759 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4761 u8 bist = 0;
4762 int cnt = 0, ret = -1;
4764 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4765 bist |= PCI_BIST_START;
4766 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4768 while (cnt < 20) {
4769 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4770 if (!(bist & PCI_BIST_START)) {
4771 *data = (bist & PCI_BIST_CODE_MASK);
4772 ret = 0;
4773 break;
4775 msleep(100);
4776 cnt++;
4779 return ret;
4783 * s2io-link_test - verifies the link state of the nic
4784 * @sp ; private member of the device structure, which is a pointer to the
4785 * s2io_nic structure.
4786 * @data: variable that returns the result of each of the test conducted by
4787 * the driver.
4788 * Description:
4789 * The function verifies the link state of the NIC and updates the input
4790 * argument 'data' appropriately.
4791 * Return value:
4792 * 0 on success.
4795 static int s2io_link_test(nic_t * sp, uint64_t * data)
4797 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4798 u64 val64;
4800 val64 = readq(&bar0->adapter_status);
4801 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4802 *data = 1;
4804 return 0;
4808 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4809 * @sp - private member of the device structure, which is a pointer to the
4810 * s2io_nic structure.
4811 * @data - variable that returns the result of each of the test
4812 * conducted by the driver.
4813 * Description:
4814 * This is one of the offline test that tests the read and write
4815 * access to the RldRam chip on the NIC.
4816 * Return value:
4817 * 0 on success.
4820 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4822 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4823 u64 val64;
4824 int cnt, iteration = 0, test_fail = 0;
4826 val64 = readq(&bar0->adapter_control);
4827 val64 &= ~ADAPTER_ECC_EN;
4828 writeq(val64, &bar0->adapter_control);
4830 val64 = readq(&bar0->mc_rldram_test_ctrl);
4831 val64 |= MC_RLDRAM_TEST_MODE;
4832 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4834 val64 = readq(&bar0->mc_rldram_mrs);
4835 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4836 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4838 val64 |= MC_RLDRAM_MRS_ENABLE;
4839 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4841 while (iteration < 2) {
4842 val64 = 0x55555555aaaa0000ULL;
4843 if (iteration == 1) {
4844 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4846 writeq(val64, &bar0->mc_rldram_test_d0);
4848 val64 = 0xaaaa5a5555550000ULL;
4849 if (iteration == 1) {
4850 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4852 writeq(val64, &bar0->mc_rldram_test_d1);
4854 val64 = 0x55aaaaaaaa5a0000ULL;
4855 if (iteration == 1) {
4856 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4858 writeq(val64, &bar0->mc_rldram_test_d2);
4860 val64 = (u64) (0x0000003ffffe0100ULL);
4861 writeq(val64, &bar0->mc_rldram_test_add);
4863 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4864 MC_RLDRAM_TEST_GO;
4865 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4867 for (cnt = 0; cnt < 5; cnt++) {
4868 val64 = readq(&bar0->mc_rldram_test_ctrl);
4869 if (val64 & MC_RLDRAM_TEST_DONE)
4870 break;
4871 msleep(200);
4874 if (cnt == 5)
4875 break;
4877 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4878 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4880 for (cnt = 0; cnt < 5; cnt++) {
4881 val64 = readq(&bar0->mc_rldram_test_ctrl);
4882 if (val64 & MC_RLDRAM_TEST_DONE)
4883 break;
4884 msleep(500);
4887 if (cnt == 5)
4888 break;
4890 val64 = readq(&bar0->mc_rldram_test_ctrl);
4891 if (!(val64 & MC_RLDRAM_TEST_PASS))
4892 test_fail = 1;
4894 iteration++;
4897 *data = test_fail;
4899 /* Bring the adapter out of test mode */
4900 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4902 return test_fail;
4906 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4907 * @sp : private member of the device structure, which is a pointer to the
4908 * s2io_nic structure.
4909 * @ethtest : pointer to a ethtool command specific structure that will be
4910 * returned to the user.
4911 * @data : variable that returns the result of each of the test
4912 * conducted by the driver.
4913 * Description:
4914 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4915 * the health of the card.
4916 * Return value:
4917 * void
4920 static void s2io_ethtool_test(struct net_device *dev,
4921 struct ethtool_test *ethtest,
4922 uint64_t * data)
4924 nic_t *sp = dev->priv;
4925 int orig_state = netif_running(sp->dev);
4927 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4928 /* Offline Tests. */
4929 if (orig_state)
4930 s2io_close(sp->dev);
4932 if (s2io_register_test(sp, &data[0]))
4933 ethtest->flags |= ETH_TEST_FL_FAILED;
4935 s2io_reset(sp);
4937 if (s2io_rldram_test(sp, &data[3]))
4938 ethtest->flags |= ETH_TEST_FL_FAILED;
4940 s2io_reset(sp);
4942 if (s2io_eeprom_test(sp, &data[1]))
4943 ethtest->flags |= ETH_TEST_FL_FAILED;
4945 if (s2io_bist_test(sp, &data[4]))
4946 ethtest->flags |= ETH_TEST_FL_FAILED;
4948 if (orig_state)
4949 s2io_open(sp->dev);
4951 data[2] = 0;
4952 } else {
4953 /* Online Tests. */
4954 if (!orig_state) {
4955 DBG_PRINT(ERR_DBG,
4956 "%s: is not up, cannot run test\n",
4957 dev->name);
4958 data[0] = -1;
4959 data[1] = -1;
4960 data[2] = -1;
4961 data[3] = -1;
4962 data[4] = -1;
4965 if (s2io_link_test(sp, &data[2]))
4966 ethtest->flags |= ETH_TEST_FL_FAILED;
4968 data[0] = 0;
4969 data[1] = 0;
4970 data[3] = 0;
4971 data[4] = 0;
4975 static void s2io_get_ethtool_stats(struct net_device *dev,
4976 struct ethtool_stats *estats,
4977 u64 * tmp_stats)
4979 int i = 0;
4980 nic_t *sp = dev->priv;
4981 StatInfo_t *stat_info = sp->mac_control.stats_info;
4983 s2io_updt_stats(sp);
4984 tmp_stats[i++] =
4985 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
4986 le32_to_cpu(stat_info->tmac_frms);
4987 tmp_stats[i++] =
4988 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
4989 le32_to_cpu(stat_info->tmac_data_octets);
4990 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
4991 tmp_stats[i++] =
4992 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
4993 le32_to_cpu(stat_info->tmac_mcst_frms);
4994 tmp_stats[i++] =
4995 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
4996 le32_to_cpu(stat_info->tmac_bcst_frms);
4997 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
4998 tmp_stats[i++] =
4999 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5000 le32_to_cpu(stat_info->tmac_any_err_frms);
5001 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5002 tmp_stats[i++] =
5003 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5004 le32_to_cpu(stat_info->tmac_vld_ip);
5005 tmp_stats[i++] =
5006 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5007 le32_to_cpu(stat_info->tmac_drop_ip);
5008 tmp_stats[i++] =
5009 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5010 le32_to_cpu(stat_info->tmac_icmp);
5011 tmp_stats[i++] =
5012 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5013 le32_to_cpu(stat_info->tmac_rst_tcp);
5014 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5015 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5016 le32_to_cpu(stat_info->tmac_udp);
5017 tmp_stats[i++] =
5018 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5019 le32_to_cpu(stat_info->rmac_vld_frms);
5020 tmp_stats[i++] =
5021 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5022 le32_to_cpu(stat_info->rmac_data_octets);
5023 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5024 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5025 tmp_stats[i++] =
5026 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5027 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5028 tmp_stats[i++] =
5029 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5030 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5031 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5032 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5033 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5034 tmp_stats[i++] =
5035 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5036 le32_to_cpu(stat_info->rmac_discarded_frms);
5037 tmp_stats[i++] =
5038 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5039 le32_to_cpu(stat_info->rmac_usized_frms);
5040 tmp_stats[i++] =
5041 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5042 le32_to_cpu(stat_info->rmac_osized_frms);
5043 tmp_stats[i++] =
5044 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5045 le32_to_cpu(stat_info->rmac_frag_frms);
5046 tmp_stats[i++] =
5047 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5048 le32_to_cpu(stat_info->rmac_jabber_frms);
5049 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5050 le32_to_cpu(stat_info->rmac_ip);
5051 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5052 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5053 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5054 le32_to_cpu(stat_info->rmac_drop_ip);
5055 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5056 le32_to_cpu(stat_info->rmac_icmp);
5057 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5058 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5059 le32_to_cpu(stat_info->rmac_udp);
5060 tmp_stats[i++] =
5061 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5062 le32_to_cpu(stat_info->rmac_err_drp_udp);
5063 tmp_stats[i++] =
5064 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5065 le32_to_cpu(stat_info->rmac_pause_cnt);
5066 tmp_stats[i++] =
5067 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5068 le32_to_cpu(stat_info->rmac_accepted_ip);
5069 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5070 tmp_stats[i++] = 0;
5071 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5072 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5075 int s2io_ethtool_get_regs_len(struct net_device *dev)
5077 return (XENA_REG_SPACE);
5081 u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5083 nic_t *sp = dev->priv;
5085 return (sp->rx_csum);
5087 int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5089 nic_t *sp = dev->priv;
5091 if (data)
5092 sp->rx_csum = 1;
5093 else
5094 sp->rx_csum = 0;
5096 return 0;
5098 int s2io_get_eeprom_len(struct net_device *dev)
5100 return (XENA_EEPROM_SPACE);
5103 int s2io_ethtool_self_test_count(struct net_device *dev)
5105 return (S2IO_TEST_LEN);
5107 void s2io_ethtool_get_strings(struct net_device *dev,
5108 u32 stringset, u8 * data)
5110 switch (stringset) {
5111 case ETH_SS_TEST:
5112 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5113 break;
5114 case ETH_SS_STATS:
5115 memcpy(data, &ethtool_stats_keys,
5116 sizeof(ethtool_stats_keys));
5119 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5121 return (S2IO_STAT_LEN);
5124 int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5126 if (data)
5127 dev->features |= NETIF_F_IP_CSUM;
5128 else
5129 dev->features &= ~NETIF_F_IP_CSUM;
5131 return 0;
5135 static struct ethtool_ops netdev_ethtool_ops = {
5136 .get_settings = s2io_ethtool_gset,
5137 .set_settings = s2io_ethtool_sset,
5138 .get_drvinfo = s2io_ethtool_gdrvinfo,
5139 .get_regs_len = s2io_ethtool_get_regs_len,
5140 .get_regs = s2io_ethtool_gregs,
5141 .get_link = ethtool_op_get_link,
5142 .get_eeprom_len = s2io_get_eeprom_len,
5143 .get_eeprom = s2io_ethtool_geeprom,
5144 .set_eeprom = s2io_ethtool_seeprom,
5145 .get_pauseparam = s2io_ethtool_getpause_data,
5146 .set_pauseparam = s2io_ethtool_setpause_data,
5147 .get_rx_csum = s2io_ethtool_get_rx_csum,
5148 .set_rx_csum = s2io_ethtool_set_rx_csum,
5149 .get_tx_csum = ethtool_op_get_tx_csum,
5150 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5151 .get_sg = ethtool_op_get_sg,
5152 .set_sg = ethtool_op_set_sg,
5153 #ifdef NETIF_F_TSO
5154 .get_tso = ethtool_op_get_tso,
5155 .set_tso = ethtool_op_set_tso,
5156 #endif
5157 .self_test_count = s2io_ethtool_self_test_count,
5158 .self_test = s2io_ethtool_test,
5159 .get_strings = s2io_ethtool_get_strings,
5160 .phys_id = s2io_ethtool_idnic,
5161 .get_stats_count = s2io_ethtool_get_stats_count,
5162 .get_ethtool_stats = s2io_get_ethtool_stats
5166 * s2io_ioctl - Entry point for the Ioctl
5167 * @dev : Device pointer.
5168 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5169 * a proprietary structure used to pass information to the driver.
5170 * @cmd : This is used to distinguish between the different commands that
5171 * can be passed to the IOCTL functions.
5172 * Description:
5173 * Currently there are no special functionality supported in IOCTL, hence
5174 * function always return EOPNOTSUPPORTED
5177 int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5179 return -EOPNOTSUPP;
5183 * s2io_change_mtu - entry point to change MTU size for the device.
5184 * @dev : device pointer.
5185 * @new_mtu : the new MTU size for the device.
5186 * Description: A driver entry point to change MTU size for the device.
5187 * Before changing the MTU the device must be stopped.
5188 * Return value:
5189 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5190 * file on failure.
5193 int s2io_change_mtu(struct net_device *dev, int new_mtu)
5195 nic_t *sp = dev->priv;
5197 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5198 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5199 dev->name);
5200 return -EPERM;
5203 dev->mtu = new_mtu;
5204 if (netif_running(dev)) {
5205 s2io_card_down(sp);
5206 netif_stop_queue(dev);
5207 if (s2io_card_up(sp)) {
5208 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5209 __FUNCTION__);
5211 if (netif_queue_stopped(dev))
5212 netif_wake_queue(dev);
5213 } else { /* Device is down */
5214 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5215 u64 val64 = new_mtu;
5217 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5220 return 0;
5224 * s2io_tasklet - Bottom half of the ISR.
5225 * @dev_adr : address of the device structure in dma_addr_t format.
5226 * Description:
5227 * This is the tasklet or the bottom half of the ISR. This is
5228 * an extension of the ISR which is scheduled by the scheduler to be run
5229 * when the load on the CPU is low. All low priority tasks of the ISR can
5230 * be pushed into the tasklet. For now the tasklet is used only to
5231 * replenish the Rx buffers in the Rx buffer descriptors.
5232 * Return value:
5233 * void.
5236 static void s2io_tasklet(unsigned long dev_addr)
5238 struct net_device *dev = (struct net_device *) dev_addr;
5239 nic_t *sp = dev->priv;
5240 int i, ret;
5241 mac_info_t *mac_control;
5242 struct config_param *config;
5244 mac_control = &sp->mac_control;
5245 config = &sp->config;
5247 if (!TASKLET_IN_USE) {
5248 for (i = 0; i < config->rx_ring_num; i++) {
5249 ret = fill_rx_buffers(sp, i);
5250 if (ret == -ENOMEM) {
5251 DBG_PRINT(ERR_DBG, "%s: Out of ",
5252 dev->name);
5253 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5254 break;
5255 } else if (ret == -EFILL) {
5256 DBG_PRINT(ERR_DBG,
5257 "%s: Rx Ring %d is full\n",
5258 dev->name, i);
5259 break;
5262 clear_bit(0, (&sp->tasklet_status));
5267 * s2io_set_link - Set the LInk status
5268 * @data: long pointer to device private structue
5269 * Description: Sets the link status for the adapter
5272 static void s2io_set_link(unsigned long data)
5274 nic_t *nic = (nic_t *) data;
5275 struct net_device *dev = nic->dev;
5276 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5277 register u64 val64;
5278 u16 subid;
5280 if (test_and_set_bit(0, &(nic->link_state))) {
5281 /* The card is being reset, no point doing anything */
5282 return;
5285 subid = nic->pdev->subsystem_device;
5286 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5288 * Allow a small delay for the NICs self initiated
5289 * cleanup to complete.
5291 msleep(100);
5294 val64 = readq(&bar0->adapter_status);
5295 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5296 if (LINK_IS_UP(val64)) {
5297 val64 = readq(&bar0->adapter_control);
5298 val64 |= ADAPTER_CNTL_EN;
5299 writeq(val64, &bar0->adapter_control);
5300 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5301 subid)) {
5302 val64 = readq(&bar0->gpio_control);
5303 val64 |= GPIO_CTRL_GPIO_0;
5304 writeq(val64, &bar0->gpio_control);
5305 val64 = readq(&bar0->gpio_control);
5306 } else {
5307 val64 |= ADAPTER_LED_ON;
5308 writeq(val64, &bar0->adapter_control);
5310 if (s2io_link_fault_indication(nic) ==
5311 MAC_RMAC_ERR_TIMER) {
5312 val64 = readq(&bar0->adapter_status);
5313 if (!LINK_IS_UP(val64)) {
5314 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5315 DBG_PRINT(ERR_DBG, " Link down");
5316 DBG_PRINT(ERR_DBG, "after ");
5317 DBG_PRINT(ERR_DBG, "enabling ");
5318 DBG_PRINT(ERR_DBG, "device \n");
5321 if (nic->device_enabled_once == FALSE) {
5322 nic->device_enabled_once = TRUE;
5324 s2io_link(nic, LINK_UP);
5325 } else {
5326 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5327 subid)) {
5328 val64 = readq(&bar0->gpio_control);
5329 val64 &= ~GPIO_CTRL_GPIO_0;
5330 writeq(val64, &bar0->gpio_control);
5331 val64 = readq(&bar0->gpio_control);
5333 s2io_link(nic, LINK_DOWN);
5335 } else { /* NIC is not Quiescent. */
5336 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5337 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5338 netif_stop_queue(dev);
5340 clear_bit(0, &(nic->link_state));
5343 static void s2io_card_down(nic_t * sp)
5345 int cnt = 0;
5346 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5347 unsigned long flags;
5348 register u64 val64 = 0;
5350 del_timer_sync(&sp->alarm_timer);
5351 /* If s2io_set_link task is executing, wait till it completes. */
5352 while (test_and_set_bit(0, &(sp->link_state))) {
5353 msleep(50);
5355 atomic_set(&sp->card_state, CARD_DOWN);
5357 /* disable Tx and Rx traffic on the NIC */
5358 stop_nic(sp);
5360 /* Kill tasklet. */
5361 tasklet_kill(&sp->task);
5363 /* Check if the device is Quiescent and then Reset the NIC */
5364 do {
5365 val64 = readq(&bar0->adapter_status);
5366 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5367 break;
5370 msleep(50);
5371 cnt++;
5372 if (cnt == 10) {
5373 DBG_PRINT(ERR_DBG,
5374 "s2io_close:Device not Quiescent ");
5375 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5376 (unsigned long long) val64);
5377 break;
5379 } while (1);
5380 s2io_reset(sp);
5382 /* Waiting till all Interrupt handlers are complete */
5383 cnt = 0;
5384 do {
5385 msleep(10);
5386 if (!atomic_read(&sp->isr_cnt))
5387 break;
5388 cnt++;
5389 } while(cnt < 5);
5391 spin_lock_irqsave(&sp->tx_lock, flags);
5392 /* Free all Tx buffers */
5393 free_tx_buffers(sp);
5394 spin_unlock_irqrestore(&sp->tx_lock, flags);
5396 /* Free all Rx buffers */
5397 spin_lock_irqsave(&sp->rx_lock, flags);
5398 free_rx_buffers(sp);
5399 spin_unlock_irqrestore(&sp->rx_lock, flags);
5401 clear_bit(0, &(sp->link_state));
5404 static int s2io_card_up(nic_t * sp)
5406 int i, ret = 0;
5407 mac_info_t *mac_control;
5408 struct config_param *config;
5409 struct net_device *dev = (struct net_device *) sp->dev;
5411 /* Initialize the H/W I/O registers */
5412 if (init_nic(sp) != 0) {
5413 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5414 dev->name);
5415 return -ENODEV;
5418 if (sp->intr_type == MSI)
5419 ret = s2io_enable_msi(sp);
5420 else if (sp->intr_type == MSI_X)
5421 ret = s2io_enable_msi_x(sp);
5422 if (ret) {
5423 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5424 sp->intr_type = INTA;
5428 * Initializing the Rx buffers. For now we are considering only 1
5429 * Rx ring and initializing buffers into 30 Rx blocks
5431 mac_control = &sp->mac_control;
5432 config = &sp->config;
5434 for (i = 0; i < config->rx_ring_num; i++) {
5435 if ((ret = fill_rx_buffers(sp, i))) {
5436 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5437 dev->name);
5438 s2io_reset(sp);
5439 free_rx_buffers(sp);
5440 return -ENOMEM;
5442 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5443 atomic_read(&sp->rx_bufs_left[i]));
5446 /* Setting its receive mode */
5447 s2io_set_multicast(dev);
5449 /* Enable tasklet for the device */
5450 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5452 /* Enable Rx Traffic and interrupts on the NIC */
5453 if (start_nic(sp)) {
5454 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5455 tasklet_kill(&sp->task);
5456 s2io_reset(sp);
5457 free_irq(dev->irq, dev);
5458 free_rx_buffers(sp);
5459 return -ENODEV;
5462 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5464 atomic_set(&sp->card_state, CARD_UP);
5465 return 0;
5469 * s2io_restart_nic - Resets the NIC.
5470 * @data : long pointer to the device private structure
5471 * Description:
5472 * This function is scheduled to be run by the s2io_tx_watchdog
5473 * function after 0.5 secs to reset the NIC. The idea is to reduce
5474 * the run time of the watch dog routine which is run holding a
5475 * spin lock.
5478 static void s2io_restart_nic(unsigned long data)
5480 struct net_device *dev = (struct net_device *) data;
5481 nic_t *sp = dev->priv;
5483 s2io_card_down(sp);
5484 if (s2io_card_up(sp)) {
5485 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5486 dev->name);
5488 netif_wake_queue(dev);
5489 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5490 dev->name);
5495 * s2io_tx_watchdog - Watchdog for transmit side.
5496 * @dev : Pointer to net device structure
5497 * Description:
5498 * This function is triggered if the Tx Queue is stopped
5499 * for a pre-defined amount of time when the Interface is still up.
5500 * If the Interface is jammed in such a situation, the hardware is
5501 * reset (by s2io_close) and restarted again (by s2io_open) to
5502 * overcome any problem that might have been caused in the hardware.
5503 * Return value:
5504 * void
5507 static void s2io_tx_watchdog(struct net_device *dev)
5509 nic_t *sp = dev->priv;
5511 if (netif_carrier_ok(dev)) {
5512 schedule_work(&sp->rst_timer_task);
5517 * rx_osm_handler - To perform some OS related operations on SKB.
5518 * @sp: private member of the device structure,pointer to s2io_nic structure.
5519 * @skb : the socket buffer pointer.
5520 * @len : length of the packet
5521 * @cksum : FCS checksum of the frame.
5522 * @ring_no : the ring from which this RxD was extracted.
5523 * Description:
5524 * This function is called by the Tx interrupt serivce routine to perform
5525 * some OS related operations on the SKB before passing it to the upper
5526 * layers. It mainly checks if the checksum is OK, if so adds it to the
5527 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5528 * to the upper layer. If the checksum is wrong, it increments the Rx
5529 * packet error count, frees the SKB and returns error.
5530 * Return value:
5531 * SUCCESS on success and -1 on failure.
5533 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5535 nic_t *sp = ring_data->nic;
5536 struct net_device *dev = (struct net_device *) sp->dev;
5537 struct sk_buff *skb = (struct sk_buff *)
5538 ((unsigned long) rxdp->Host_Control);
5539 int ring_no = ring_data->ring_no;
5540 u16 l3_csum, l4_csum;
5541 #ifdef CONFIG_2BUFF_MODE
5542 int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
5543 int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
5544 int get_block = ring_data->rx_curr_get_info.block_index;
5545 int get_off = ring_data->rx_curr_get_info.offset;
5546 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5547 unsigned char *buff;
5548 #else
5549 u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);;
5550 #endif
5551 skb->dev = dev;
5552 if (rxdp->Control_1 & RXD_T_CODE) {
5553 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5554 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5555 dev->name, err);
5556 dev_kfree_skb(skb);
5557 sp->stats.rx_crc_errors++;
5558 atomic_dec(&sp->rx_bufs_left[ring_no]);
5559 rxdp->Host_Control = 0;
5560 return 0;
5563 /* Updating statistics */
5564 rxdp->Host_Control = 0;
5565 sp->rx_pkt_count++;
5566 sp->stats.rx_packets++;
5567 #ifndef CONFIG_2BUFF_MODE
5568 sp->stats.rx_bytes += len;
5569 #else
5570 sp->stats.rx_bytes += buf0_len + buf2_len;
5571 #endif
5573 #ifndef CONFIG_2BUFF_MODE
5574 skb_put(skb, len);
5575 #else
5576 buff = skb_push(skb, buf0_len);
5577 memcpy(buff, ba->ba_0, buf0_len);
5578 skb_put(skb, buf2_len);
5579 #endif
5581 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5582 (sp->rx_csum)) {
5583 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5584 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5585 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5587 * NIC verifies if the Checksum of the received
5588 * frame is Ok or not and accordingly returns
5589 * a flag in the RxD.
5591 skb->ip_summed = CHECKSUM_UNNECESSARY;
5592 } else {
5594 * Packet with erroneous checksum, let the
5595 * upper layers deal with it.
5597 skb->ip_summed = CHECKSUM_NONE;
5599 } else {
5600 skb->ip_summed = CHECKSUM_NONE;
5603 skb->protocol = eth_type_trans(skb, dev);
5604 #ifdef CONFIG_S2IO_NAPI
5605 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5606 /* Queueing the vlan frame to the upper layer */
5607 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5608 RXD_GET_VLAN_TAG(rxdp->Control_2));
5609 } else {
5610 netif_receive_skb(skb);
5612 #else
5613 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5614 /* Queueing the vlan frame to the upper layer */
5615 vlan_hwaccel_rx(skb, sp->vlgrp,
5616 RXD_GET_VLAN_TAG(rxdp->Control_2));
5617 } else {
5618 netif_rx(skb);
5620 #endif
5621 dev->last_rx = jiffies;
5622 atomic_dec(&sp->rx_bufs_left[ring_no]);
5623 return SUCCESS;
5627 * s2io_link - stops/starts the Tx queue.
5628 * @sp : private member of the device structure, which is a pointer to the
5629 * s2io_nic structure.
5630 * @link : inidicates whether link is UP/DOWN.
5631 * Description:
5632 * This function stops/starts the Tx queue depending on whether the link
5633 * status of the NIC is is down or up. This is called by the Alarm
5634 * interrupt handler whenever a link change interrupt comes up.
5635 * Return value:
5636 * void.
5639 void s2io_link(nic_t * sp, int link)
5641 struct net_device *dev = (struct net_device *) sp->dev;
5643 if (link != sp->last_link_state) {
5644 if (link == LINK_DOWN) {
5645 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5646 netif_carrier_off(dev);
5647 } else {
5648 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5649 netif_carrier_on(dev);
5652 sp->last_link_state = link;
5656 * get_xena_rev_id - to identify revision ID of xena.
5657 * @pdev : PCI Dev structure
5658 * Description:
5659 * Function to identify the Revision ID of xena.
5660 * Return value:
5661 * returns the revision ID of the device.
5664 int get_xena_rev_id(struct pci_dev *pdev)
5666 u8 id = 0;
5667 int ret;
5668 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5669 return id;
5673 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5674 * @sp : private member of the device structure, which is a pointer to the
5675 * s2io_nic structure.
5676 * Description:
5677 * This function initializes a few of the PCI and PCI-X configuration registers
5678 * with recommended values.
5679 * Return value:
5680 * void
5683 static void s2io_init_pci(nic_t * sp)
5685 u16 pci_cmd = 0, pcix_cmd = 0;
5687 /* Enable Data Parity Error Recovery in PCI-X command register. */
5688 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5689 &(pcix_cmd));
5690 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5691 (pcix_cmd | 1));
5692 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5693 &(pcix_cmd));
5695 /* Set the PErr Response bit in PCI command register. */
5696 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5697 pci_write_config_word(sp->pdev, PCI_COMMAND,
5698 (pci_cmd | PCI_COMMAND_PARITY));
5699 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5701 /* Forcibly disabling relaxed ordering capability of the card. */
5702 pcix_cmd &= 0xfffd;
5703 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5704 pcix_cmd);
5705 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5706 &(pcix_cmd));
5709 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5710 MODULE_LICENSE("GPL");
5711 MODULE_VERSION(DRV_VERSION);
5713 module_param(tx_fifo_num, int, 0);
5714 module_param(rx_ring_num, int, 0);
5715 module_param_array(tx_fifo_len, uint, NULL, 0);
5716 module_param_array(rx_ring_sz, uint, NULL, 0);
5717 module_param_array(rts_frm_len, uint, NULL, 0);
5718 module_param(use_continuous_tx_intrs, int, 1);
5719 module_param(rmac_pause_time, int, 0);
5720 module_param(mc_pause_threshold_q0q3, int, 0);
5721 module_param(mc_pause_threshold_q4q7, int, 0);
5722 module_param(shared_splits, int, 0);
5723 module_param(tmac_util_period, int, 0);
5724 module_param(rmac_util_period, int, 0);
5725 module_param(bimodal, bool, 0);
5726 #ifndef CONFIG_S2IO_NAPI
5727 module_param(indicate_max_pkts, int, 0);
5728 #endif
5729 module_param(rxsync_frequency, int, 0);
5730 module_param(intr_type, int, 0);
5733 * s2io_init_nic - Initialization of the adapter .
5734 * @pdev : structure containing the PCI related information of the device.
5735 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5736 * Description:
5737 * The function initializes an adapter identified by the pci_dec structure.
5738 * All OS related initialization including memory and device structure and
5739 * initlaization of the device private variable is done. Also the swapper
5740 * control register is initialized to enable read and write into the I/O
5741 * registers of the device.
5742 * Return value:
5743 * returns 0 on success and negative on failure.
5746 static int __devinit
5747 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5749 nic_t *sp;
5750 struct net_device *dev;
5751 int i, j, ret;
5752 int dma_flag = FALSE;
5753 u32 mac_up, mac_down;
5754 u64 val64 = 0, tmp64 = 0;
5755 XENA_dev_config_t __iomem *bar0 = NULL;
5756 u16 subid;
5757 mac_info_t *mac_control;
5758 struct config_param *config;
5759 int mode;
5760 u8 dev_intr_type = intr_type;
5762 #ifdef CONFIG_S2IO_NAPI
5763 if (dev_intr_type != INTA) {
5764 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5765 is enabled. Defaulting to INTA\n");
5766 dev_intr_type = INTA;
5768 else
5769 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5770 #endif
5772 if ((ret = pci_enable_device(pdev))) {
5773 DBG_PRINT(ERR_DBG,
5774 "s2io_init_nic: pci_enable_device failed\n");
5775 return ret;
5778 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5779 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5780 dma_flag = TRUE;
5781 if (pci_set_consistent_dma_mask
5782 (pdev, DMA_64BIT_MASK)) {
5783 DBG_PRINT(ERR_DBG,
5784 "Unable to obtain 64bit DMA for \
5785 consistent allocations\n");
5786 pci_disable_device(pdev);
5787 return -ENOMEM;
5789 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5790 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5791 } else {
5792 pci_disable_device(pdev);
5793 return -ENOMEM;
5796 if ((dev_intr_type == MSI_X) &&
5797 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5798 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5799 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5800 Defaulting to INTA\n");
5801 dev_intr_type = INTA;
5803 if (dev_intr_type != MSI_X) {
5804 if (pci_request_regions(pdev, s2io_driver_name)) {
5805 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5806 pci_disable_device(pdev);
5807 return -ENODEV;
5810 else {
5811 if (!(request_mem_region(pci_resource_start(pdev, 0),
5812 pci_resource_len(pdev, 0), s2io_driver_name))) {
5813 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5814 pci_disable_device(pdev);
5815 return -ENODEV;
5817 if (!(request_mem_region(pci_resource_start(pdev, 2),
5818 pci_resource_len(pdev, 2), s2io_driver_name))) {
5819 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5820 release_mem_region(pci_resource_start(pdev, 0),
5821 pci_resource_len(pdev, 0));
5822 pci_disable_device(pdev);
5823 return -ENODEV;
5827 dev = alloc_etherdev(sizeof(nic_t));
5828 if (dev == NULL) {
5829 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5830 pci_disable_device(pdev);
5831 pci_release_regions(pdev);
5832 return -ENODEV;
5835 pci_set_master(pdev);
5836 pci_set_drvdata(pdev, dev);
5837 SET_MODULE_OWNER(dev);
5838 SET_NETDEV_DEV(dev, &pdev->dev);
5840 /* Private member variable initialized to s2io NIC structure */
5841 sp = dev->priv;
5842 memset(sp, 0, sizeof(nic_t));
5843 sp->dev = dev;
5844 sp->pdev = pdev;
5845 sp->high_dma_flag = dma_flag;
5846 sp->device_enabled_once = FALSE;
5847 sp->intr_type = dev_intr_type;
5849 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5850 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5851 sp->device_type = XFRAME_II_DEVICE;
5852 else
5853 sp->device_type = XFRAME_I_DEVICE;
5856 /* Initialize some PCI/PCI-X fields of the NIC. */
5857 s2io_init_pci(sp);
5860 * Setting the device configuration parameters.
5861 * Most of these parameters can be specified by the user during
5862 * module insertion as they are module loadable parameters. If
5863 * these parameters are not not specified during load time, they
5864 * are initialized with default values.
5866 mac_control = &sp->mac_control;
5867 config = &sp->config;
5869 /* Tx side parameters. */
5870 if (tx_fifo_len[0] == 0)
5871 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
5872 config->tx_fifo_num = tx_fifo_num;
5873 for (i = 0; i < MAX_TX_FIFOS; i++) {
5874 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5875 config->tx_cfg[i].fifo_priority = i;
5878 /* mapping the QoS priority to the configured fifos */
5879 for (i = 0; i < MAX_TX_FIFOS; i++)
5880 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5882 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5883 for (i = 0; i < config->tx_fifo_num; i++) {
5884 config->tx_cfg[i].f_no_snoop =
5885 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5886 if (config->tx_cfg[i].fifo_len < 65) {
5887 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5888 break;
5891 config->max_txds = MAX_SKB_FRAGS + 1;
5893 /* Rx side parameters. */
5894 if (rx_ring_sz[0] == 0)
5895 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
5896 config->rx_ring_num = rx_ring_num;
5897 for (i = 0; i < MAX_RX_RINGS; i++) {
5898 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5899 (MAX_RXDS_PER_BLOCK + 1);
5900 config->rx_cfg[i].ring_priority = i;
5903 for (i = 0; i < rx_ring_num; i++) {
5904 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5905 config->rx_cfg[i].f_no_snoop =
5906 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5909 /* Setting Mac Control parameters */
5910 mac_control->rmac_pause_time = rmac_pause_time;
5911 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5912 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5915 /* Initialize Ring buffer parameters. */
5916 for (i = 0; i < config->rx_ring_num; i++)
5917 atomic_set(&sp->rx_bufs_left[i], 0);
5919 /* Initialize the number of ISRs currently running */
5920 atomic_set(&sp->isr_cnt, 0);
5922 /* initialize the shared memory used by the NIC and the host */
5923 if (init_shared_mem(sp)) {
5924 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5925 __FUNCTION__);
5926 ret = -ENOMEM;
5927 goto mem_alloc_failed;
5930 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5931 pci_resource_len(pdev, 0));
5932 if (!sp->bar0) {
5933 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5934 dev->name);
5935 ret = -ENOMEM;
5936 goto bar0_remap_failed;
5939 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5940 pci_resource_len(pdev, 2));
5941 if (!sp->bar1) {
5942 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5943 dev->name);
5944 ret = -ENOMEM;
5945 goto bar1_remap_failed;
5948 dev->irq = pdev->irq;
5949 dev->base_addr = (unsigned long) sp->bar0;
5951 /* Initializing the BAR1 address as the start of the FIFO pointer. */
5952 for (j = 0; j < MAX_TX_FIFOS; j++) {
5953 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
5954 (sp->bar1 + (j * 0x00020000));
5957 /* Driver entry points */
5958 dev->open = &s2io_open;
5959 dev->stop = &s2io_close;
5960 dev->hard_start_xmit = &s2io_xmit;
5961 dev->get_stats = &s2io_get_stats;
5962 dev->set_multicast_list = &s2io_set_multicast;
5963 dev->do_ioctl = &s2io_ioctl;
5964 dev->change_mtu = &s2io_change_mtu;
5965 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
5966 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5967 dev->vlan_rx_register = s2io_vlan_rx_register;
5968 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
5971 * will use eth_mac_addr() for dev->set_mac_address
5972 * mac address will be set every time dev->open() is called
5974 #if defined(CONFIG_S2IO_NAPI)
5975 dev->poll = s2io_poll;
5976 dev->weight = 32;
5977 #endif
5979 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5980 if (sp->high_dma_flag == TRUE)
5981 dev->features |= NETIF_F_HIGHDMA;
5982 #ifdef NETIF_F_TSO
5983 dev->features |= NETIF_F_TSO;
5984 #endif
5986 dev->tx_timeout = &s2io_tx_watchdog;
5987 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
5988 INIT_WORK(&sp->rst_timer_task,
5989 (void (*)(void *)) s2io_restart_nic, dev);
5990 INIT_WORK(&sp->set_link_task,
5991 (void (*)(void *)) s2io_set_link, sp);
5993 pci_save_state(sp->pdev);
5995 /* Setting swapper control on the NIC, for proper reset operation */
5996 if (s2io_set_swapper(sp)) {
5997 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
5998 dev->name);
5999 ret = -EAGAIN;
6000 goto set_swap_failed;
6003 /* Verify if the Herc works on the slot its placed into */
6004 if (sp->device_type & XFRAME_II_DEVICE) {
6005 mode = s2io_verify_pci_mode(sp);
6006 if (mode < 0) {
6007 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6008 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6009 ret = -EBADSLT;
6010 goto set_swap_failed;
6014 /* Not needed for Herc */
6015 if (sp->device_type & XFRAME_I_DEVICE) {
6017 * Fix for all "FFs" MAC address problems observed on
6018 * Alpha platforms
6020 fix_mac_address(sp);
6021 s2io_reset(sp);
6025 * MAC address initialization.
6026 * For now only one mac address will be read and used.
6028 bar0 = sp->bar0;
6029 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6030 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6031 writeq(val64, &bar0->rmac_addr_cmd_mem);
6032 wait_for_cmd_complete(sp);
6034 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6035 mac_down = (u32) tmp64;
6036 mac_up = (u32) (tmp64 >> 32);
6038 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6040 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6041 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6042 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6043 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6044 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6045 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6047 /* Set the factory defined MAC address initially */
6048 dev->addr_len = ETH_ALEN;
6049 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6052 * Initialize the tasklet status and link state flags
6053 * and the card state parameter
6055 atomic_set(&(sp->card_state), 0);
6056 sp->tasklet_status = 0;
6057 sp->link_state = 0;
6059 /* Initialize spinlocks */
6060 spin_lock_init(&sp->tx_lock);
6061 #ifndef CONFIG_S2IO_NAPI
6062 spin_lock_init(&sp->put_lock);
6063 #endif
6064 spin_lock_init(&sp->rx_lock);
6067 * SXE-002: Configure link and activity LED to init state
6068 * on driver load.
6070 subid = sp->pdev->subsystem_device;
6071 if ((subid & 0xFF) >= 0x07) {
6072 val64 = readq(&bar0->gpio_control);
6073 val64 |= 0x0000800000000000ULL;
6074 writeq(val64, &bar0->gpio_control);
6075 val64 = 0x0411040400000000ULL;
6076 writeq(val64, (void __iomem *) bar0 + 0x2700);
6077 val64 = readq(&bar0->gpio_control);
6080 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6082 if (register_netdev(dev)) {
6083 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6084 ret = -ENODEV;
6085 goto register_failed;
6088 if (sp->device_type & XFRAME_II_DEVICE) {
6089 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6090 dev->name);
6091 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6092 get_xena_rev_id(sp->pdev),
6093 s2io_driver_version);
6094 #ifdef CONFIG_2BUFF_MODE
6095 DBG_PRINT(ERR_DBG, ", Buffer mode %d",2);
6096 #endif
6097 switch(sp->intr_type) {
6098 case INTA:
6099 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6100 break;
6101 case MSI:
6102 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6103 break;
6104 case MSI_X:
6105 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6106 break;
6109 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6110 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6111 sp->def_mac_addr[0].mac_addr[0],
6112 sp->def_mac_addr[0].mac_addr[1],
6113 sp->def_mac_addr[0].mac_addr[2],
6114 sp->def_mac_addr[0].mac_addr[3],
6115 sp->def_mac_addr[0].mac_addr[4],
6116 sp->def_mac_addr[0].mac_addr[5]);
6117 mode = s2io_print_pci_mode(sp);
6118 if (mode < 0) {
6119 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6120 ret = -EBADSLT;
6121 goto set_swap_failed;
6123 } else {
6124 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6125 dev->name);
6126 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6127 get_xena_rev_id(sp->pdev),
6128 s2io_driver_version);
6129 #ifdef CONFIG_2BUFF_MODE
6130 DBG_PRINT(ERR_DBG, ", Buffer mode %d",2);
6131 #endif
6132 switch(sp->intr_type) {
6133 case INTA:
6134 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6135 break;
6136 case MSI:
6137 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6138 break;
6139 case MSI_X:
6140 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6141 break;
6143 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6144 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6145 sp->def_mac_addr[0].mac_addr[0],
6146 sp->def_mac_addr[0].mac_addr[1],
6147 sp->def_mac_addr[0].mac_addr[2],
6148 sp->def_mac_addr[0].mac_addr[3],
6149 sp->def_mac_addr[0].mac_addr[4],
6150 sp->def_mac_addr[0].mac_addr[5]);
6153 /* Initialize device name */
6154 strcpy(sp->name, dev->name);
6155 if (sp->device_type & XFRAME_II_DEVICE)
6156 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6157 else
6158 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6160 /* Initialize bimodal Interrupts */
6161 sp->config.bimodal = bimodal;
6162 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6163 sp->config.bimodal = 0;
6164 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6165 dev->name);
6169 * Make Link state as off at this point, when the Link change
6170 * interrupt comes the state will be automatically changed to
6171 * the right state.
6173 netif_carrier_off(dev);
6175 return 0;
6177 register_failed:
6178 set_swap_failed:
6179 iounmap(sp->bar1);
6180 bar1_remap_failed:
6181 iounmap(sp->bar0);
6182 bar0_remap_failed:
6183 mem_alloc_failed:
6184 free_shared_mem(sp);
6185 pci_disable_device(pdev);
6186 if (dev_intr_type != MSI_X)
6187 pci_release_regions(pdev);
6188 else {
6189 release_mem_region(pci_resource_start(pdev, 0),
6190 pci_resource_len(pdev, 0));
6191 release_mem_region(pci_resource_start(pdev, 2),
6192 pci_resource_len(pdev, 2));
6194 pci_set_drvdata(pdev, NULL);
6195 free_netdev(dev);
6197 return ret;
6201 * s2io_rem_nic - Free the PCI device
6202 * @pdev: structure containing the PCI related information of the device.
6203 * Description: This function is called by the Pci subsystem to release a
6204 * PCI device and free up all resource held up by the device. This could
6205 * be in response to a Hot plug event or when the driver is to be removed
6206 * from memory.
6209 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6211 struct net_device *dev =
6212 (struct net_device *) pci_get_drvdata(pdev);
6213 nic_t *sp;
6215 if (dev == NULL) {
6216 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6217 return;
6220 sp = dev->priv;
6221 unregister_netdev(dev);
6223 free_shared_mem(sp);
6224 iounmap(sp->bar0);
6225 iounmap(sp->bar1);
6226 pci_disable_device(pdev);
6227 if (sp->intr_type != MSI_X)
6228 pci_release_regions(pdev);
6229 else {
6230 release_mem_region(pci_resource_start(pdev, 0),
6231 pci_resource_len(pdev, 0));
6232 release_mem_region(pci_resource_start(pdev, 2),
6233 pci_resource_len(pdev, 2));
6235 pci_set_drvdata(pdev, NULL);
6236 free_netdev(dev);
6240 * s2io_starter - Entry point for the driver
6241 * Description: This function is the entry point for the driver. It verifies
6242 * the module loadable parameters and initializes PCI configuration space.
6245 int __init s2io_starter(void)
6247 return pci_module_init(&s2io_driver);
6251 * s2io_closer - Cleanup routine for the driver
6252 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6255 void s2io_closer(void)
6257 pci_unregister_driver(&s2io_driver);
6258 DBG_PRINT(INIT_DBG, "cleanup done\n");
6261 module_init(s2io_starter);
6262 module_exit(s2io_closer);