Revert "Bluetooth: btusb: Fix quirk for Atheros 1525/QCA6174"
[linux/fpc-iii.git] / mm / hugetlb.c
blob976bbc5646fe8c6e386ddb0d42b8ba0ccb3e9777
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 __initdata LIST_HEAD(huge_boot_pages);
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 spin_unlock(&spool->lock);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
94 struct hugepage_subpool *spool;
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
110 spool->rsv_hpages = min_hpages;
112 return spool;
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
134 long ret = delta;
136 if (!spool)
137 return ret;
139 spin_lock(&spool->lock);
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
179 long ret = delta;
181 if (!spool)
182 return delta;
184 spin_lock(&spool->lock);
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool);
207 return ret;
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 return HUGETLBFS_SB(inode->i_sb)->spool;
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 return subpool_inode(file_inode(vma->vm_file));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map *resv, long f, long t)
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
289 add += t - f;
290 goto out_locked;
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map *resv, long f, long t)
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
436 chg -= rg->to - rg->from;
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map *resv, long f, long t)
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map *resv, long f, long t)
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
502 if (rg->from >= t)
503 break;
505 if (f > rg->from && t < rg->to) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
527 del += t - f;
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
534 /* Original entry is trimmed */
535 rg->to = f;
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
572 void hugetlb_fix_reserve_counts(struct inode *inode)
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
581 hugetlb_acct_memory(h, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map *resv, long f, long t)
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
609 chg += seg_to - seg_from;
611 spin_unlock(&resv->lock);
613 return chg;
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 struct hstate *hstate;
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
645 hstate = hstate_vma(vma);
647 return 1UL << huge_page_shift(hstate);
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660 return vma_kernel_pagesize(vma);
662 #endif
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694 return (unsigned long)vma->vm_private_data;
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
700 vma->vm_private_data = (void *)value;
703 struct resv_map *resv_map_alloc(void)
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
711 return NULL;
714 kref_init(&resv_map->refs);
715 spin_lock_init(&resv_map->lock);
716 INIT_LIST_HEAD(&resv_map->regions);
718 resv_map->adds_in_progress = 0;
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
724 return resv_map;
727 void resv_map_release(struct kref *ref)
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map, 0, LONG_MAX);
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
742 VM_BUG_ON(resv_map->adds_in_progress);
744 kfree(resv_map);
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
749 return inode->i_mapping->private_data;
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
759 return inode_resv_map(inode);
761 } else {
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 return (get_vma_private_data(vma) & flag) != 0;
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 if (!(vma->vm_flags & VM_MAYSHARE))
796 vma->vm_private_data = (void *)0;
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
802 if (vma->vm_flags & VM_NORESERVE) {
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 return true;
814 else
815 return false;
818 /* Shared mappings always use reserves */
819 if (vma->vm_flags & VM_MAYSHARE) {
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
827 if (chg)
828 return false;
829 else
830 return true;
834 * Only the process that called mmap() has reserves for
835 * private mappings.
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
853 if (chg)
854 return false;
855 else
856 return true;
859 return false;
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
864 int nid = page_to_nid(page);
865 list_move(&page->lru, &h->hugepage_freelists[nid]);
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
872 struct page *page;
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!PageHWPoison(page))
876 break;
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
881 if (&h->hugepage_freelists[nid] == &page->lru)
882 return NULL;
883 list_move(&page->lru, &h->hugepage_activelist);
884 set_page_refcounted(page);
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 nodemask_t *nmask)
893 unsigned int cpuset_mems_cookie;
894 struct zonelist *zonelist;
895 struct zone *zone;
896 struct zoneref *z;
897 int node = -1;
899 zonelist = node_zonelist(nid, gfp_mask);
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 struct page *page;
906 if (!cpuset_zone_allowed(zone, gfp_mask))
907 continue;
909 * no need to ask again on the same node. Pool is node rather than
910 * zone aware
912 if (zone_to_nid(zone) == node)
913 continue;
914 node = zone_to_nid(zone);
916 page = dequeue_huge_page_node_exact(h, node);
917 if (page)
918 return page;
920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 goto retry_cpuset;
923 return NULL;
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
929 if (hugepage_migration_supported(h))
930 return GFP_HIGHUSER_MOVABLE;
931 else
932 return GFP_HIGHUSER;
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936 struct vm_area_struct *vma,
937 unsigned long address, int avoid_reserve,
938 long chg)
940 struct page *page;
941 struct mempolicy *mpol;
942 gfp_t gfp_mask;
943 nodemask_t *nodemask;
944 int nid;
947 * A child process with MAP_PRIVATE mappings created by their parent
948 * have no page reserves. This check ensures that reservations are
949 * not "stolen". The child may still get SIGKILLed
951 if (!vma_has_reserves(vma, chg) &&
952 h->free_huge_pages - h->resv_huge_pages == 0)
953 goto err;
955 /* If reserves cannot be used, ensure enough pages are in the pool */
956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957 goto err;
959 gfp_mask = htlb_alloc_mask(h);
960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 SetPagePrivate(page);
964 h->resv_huge_pages--;
967 mpol_cond_put(mpol);
968 return page;
970 err:
971 return NULL;
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983 nid = next_node_in(nid, *nodes_allowed);
984 VM_BUG_ON(nid >= MAX_NUMNODES);
986 return nid;
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1005 int nid;
1007 VM_BUG_ON(!nodes_allowed);
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012 return nid;
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023 int nid;
1025 VM_BUG_ON(!nodes_allowed);
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030 return nid;
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 unsigned int order)
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1053 atomic_set(compound_mapcount_ptr(page), 0);
1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 clear_compound_head(p);
1056 set_page_refcounted(p);
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1065 free_contig_range(page_to_pfn(page), 1 << order);
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages, gfp_t gfp_mask)
1071 unsigned long end_pfn = start_pfn + nr_pages;
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 gfp_mask);
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1086 page = pfn_to_page(i);
1088 if (page_zone(page) != z)
1089 return false;
1091 if (PageReserved(page))
1092 return false;
1094 if (page_count(page) > 0)
1095 return false;
1097 if (PageHuge(page))
1098 return false;
1101 return true;
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1111 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1112 int nid, nodemask_t *nodemask)
1114 unsigned int order = huge_page_order(h);
1115 unsigned long nr_pages = 1 << order;
1116 unsigned long ret, pfn, flags;
1117 struct zonelist *zonelist;
1118 struct zone *zone;
1119 struct zoneref *z;
1121 zonelist = node_zonelist(nid, gfp_mask);
1122 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1123 spin_lock_irqsave(&zone->lock, flags);
1125 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1126 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1127 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1129 * We release the zone lock here because
1130 * alloc_contig_range() will also lock the zone
1131 * at some point. If there's an allocation
1132 * spinning on this lock, it may win the race
1133 * and cause alloc_contig_range() to fail...
1135 spin_unlock_irqrestore(&zone->lock, flags);
1136 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1137 if (!ret)
1138 return pfn_to_page(pfn);
1139 spin_lock_irqsave(&zone->lock, flags);
1141 pfn += nr_pages;
1144 spin_unlock_irqrestore(&zone->lock, flags);
1147 return NULL;
1150 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1151 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1153 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1154 static inline bool gigantic_page_supported(void) { return false; }
1155 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1156 int nid, nodemask_t *nodemask) { return NULL; }
1157 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1158 static inline void destroy_compound_gigantic_page(struct page *page,
1159 unsigned int order) { }
1160 #endif
1162 static void update_and_free_page(struct hstate *h, struct page *page)
1164 int i;
1166 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1167 return;
1169 h->nr_huge_pages--;
1170 h->nr_huge_pages_node[page_to_nid(page)]--;
1171 for (i = 0; i < pages_per_huge_page(h); i++) {
1172 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1173 1 << PG_referenced | 1 << PG_dirty |
1174 1 << PG_active | 1 << PG_private |
1175 1 << PG_writeback);
1177 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1178 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1179 set_page_refcounted(page);
1180 if (hstate_is_gigantic(h)) {
1181 destroy_compound_gigantic_page(page, huge_page_order(h));
1182 free_gigantic_page(page, huge_page_order(h));
1183 } else {
1184 __free_pages(page, huge_page_order(h));
1188 struct hstate *size_to_hstate(unsigned long size)
1190 struct hstate *h;
1192 for_each_hstate(h) {
1193 if (huge_page_size(h) == size)
1194 return h;
1196 return NULL;
1200 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1201 * to hstate->hugepage_activelist.)
1203 * This function can be called for tail pages, but never returns true for them.
1205 bool page_huge_active(struct page *page)
1207 VM_BUG_ON_PAGE(!PageHuge(page), page);
1208 return PageHead(page) && PagePrivate(&page[1]);
1211 /* never called for tail page */
1212 static void set_page_huge_active(struct page *page)
1214 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215 SetPagePrivate(&page[1]);
1218 static void clear_page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 ClearPagePrivate(&page[1]);
1225 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1226 * code
1228 static inline bool PageHugeTemporary(struct page *page)
1230 if (!PageHuge(page))
1231 return false;
1233 return (unsigned long)page[2].mapping == -1U;
1236 static inline void SetPageHugeTemporary(struct page *page)
1238 page[2].mapping = (void *)-1U;
1241 static inline void ClearPageHugeTemporary(struct page *page)
1243 page[2].mapping = NULL;
1246 void free_huge_page(struct page *page)
1249 * Can't pass hstate in here because it is called from the
1250 * compound page destructor.
1252 struct hstate *h = page_hstate(page);
1253 int nid = page_to_nid(page);
1254 struct hugepage_subpool *spool =
1255 (struct hugepage_subpool *)page_private(page);
1256 bool restore_reserve;
1258 set_page_private(page, 0);
1259 page->mapping = NULL;
1260 VM_BUG_ON_PAGE(page_count(page), page);
1261 VM_BUG_ON_PAGE(page_mapcount(page), page);
1262 restore_reserve = PagePrivate(page);
1263 ClearPagePrivate(page);
1266 * A return code of zero implies that the subpool will be under its
1267 * minimum size if the reservation is not restored after page is free.
1268 * Therefore, force restore_reserve operation.
1270 if (hugepage_subpool_put_pages(spool, 1) == 0)
1271 restore_reserve = true;
1273 spin_lock(&hugetlb_lock);
1274 clear_page_huge_active(page);
1275 hugetlb_cgroup_uncharge_page(hstate_index(h),
1276 pages_per_huge_page(h), page);
1277 if (restore_reserve)
1278 h->resv_huge_pages++;
1280 if (PageHugeTemporary(page)) {
1281 list_del(&page->lru);
1282 ClearPageHugeTemporary(page);
1283 update_and_free_page(h, page);
1284 } else if (h->surplus_huge_pages_node[nid]) {
1285 /* remove the page from active list */
1286 list_del(&page->lru);
1287 update_and_free_page(h, page);
1288 h->surplus_huge_pages--;
1289 h->surplus_huge_pages_node[nid]--;
1290 } else {
1291 arch_clear_hugepage_flags(page);
1292 enqueue_huge_page(h, page);
1294 spin_unlock(&hugetlb_lock);
1297 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1299 INIT_LIST_HEAD(&page->lru);
1300 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1301 spin_lock(&hugetlb_lock);
1302 set_hugetlb_cgroup(page, NULL);
1303 h->nr_huge_pages++;
1304 h->nr_huge_pages_node[nid]++;
1305 spin_unlock(&hugetlb_lock);
1308 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1310 int i;
1311 int nr_pages = 1 << order;
1312 struct page *p = page + 1;
1314 /* we rely on prep_new_huge_page to set the destructor */
1315 set_compound_order(page, order);
1316 __ClearPageReserved(page);
1317 __SetPageHead(page);
1318 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1320 * For gigantic hugepages allocated through bootmem at
1321 * boot, it's safer to be consistent with the not-gigantic
1322 * hugepages and clear the PG_reserved bit from all tail pages
1323 * too. Otherwse drivers using get_user_pages() to access tail
1324 * pages may get the reference counting wrong if they see
1325 * PG_reserved set on a tail page (despite the head page not
1326 * having PG_reserved set). Enforcing this consistency between
1327 * head and tail pages allows drivers to optimize away a check
1328 * on the head page when they need know if put_page() is needed
1329 * after get_user_pages().
1331 __ClearPageReserved(p);
1332 set_page_count(p, 0);
1333 set_compound_head(p, page);
1335 atomic_set(compound_mapcount_ptr(page), -1);
1339 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1340 * transparent huge pages. See the PageTransHuge() documentation for more
1341 * details.
1343 int PageHuge(struct page *page)
1345 if (!PageCompound(page))
1346 return 0;
1348 page = compound_head(page);
1349 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1351 EXPORT_SYMBOL_GPL(PageHuge);
1354 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1355 * normal or transparent huge pages.
1357 int PageHeadHuge(struct page *page_head)
1359 if (!PageHead(page_head))
1360 return 0;
1362 return get_compound_page_dtor(page_head) == free_huge_page;
1365 pgoff_t __basepage_index(struct page *page)
1367 struct page *page_head = compound_head(page);
1368 pgoff_t index = page_index(page_head);
1369 unsigned long compound_idx;
1371 if (!PageHuge(page_head))
1372 return page_index(page);
1374 if (compound_order(page_head) >= MAX_ORDER)
1375 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376 else
1377 compound_idx = page - page_head;
1379 return (index << compound_order(page_head)) + compound_idx;
1382 static struct page *alloc_buddy_huge_page(struct hstate *h,
1383 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1385 int order = huge_page_order(h);
1386 struct page *page;
1388 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1389 if (nid == NUMA_NO_NODE)
1390 nid = numa_mem_id();
1391 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1392 if (page)
1393 __count_vm_event(HTLB_BUDDY_PGALLOC);
1394 else
1395 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1397 return page;
1401 * Common helper to allocate a fresh hugetlb page. All specific allocators
1402 * should use this function to get new hugetlb pages
1404 static struct page *alloc_fresh_huge_page(struct hstate *h,
1405 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1407 struct page *page;
1409 if (hstate_is_gigantic(h))
1410 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1411 else
1412 page = alloc_buddy_huge_page(h, gfp_mask,
1413 nid, nmask);
1414 if (!page)
1415 return NULL;
1417 if (hstate_is_gigantic(h))
1418 prep_compound_gigantic_page(page, huge_page_order(h));
1419 prep_new_huge_page(h, page, page_to_nid(page));
1421 return page;
1425 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1426 * manner.
1428 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1430 struct page *page;
1431 int nr_nodes, node;
1432 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1434 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1435 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1436 if (page)
1437 break;
1440 if (!page)
1441 return 0;
1443 put_page(page); /* free it into the hugepage allocator */
1445 return 1;
1449 * Free huge page from pool from next node to free.
1450 * Attempt to keep persistent huge pages more or less
1451 * balanced over allowed nodes.
1452 * Called with hugetlb_lock locked.
1454 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1455 bool acct_surplus)
1457 int nr_nodes, node;
1458 int ret = 0;
1460 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462 * If we're returning unused surplus pages, only examine
1463 * nodes with surplus pages.
1465 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1466 !list_empty(&h->hugepage_freelists[node])) {
1467 struct page *page =
1468 list_entry(h->hugepage_freelists[node].next,
1469 struct page, lru);
1470 list_del(&page->lru);
1471 h->free_huge_pages--;
1472 h->free_huge_pages_node[node]--;
1473 if (acct_surplus) {
1474 h->surplus_huge_pages--;
1475 h->surplus_huge_pages_node[node]--;
1477 update_and_free_page(h, page);
1478 ret = 1;
1479 break;
1483 return ret;
1487 * Dissolve a given free hugepage into free buddy pages. This function does
1488 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1489 * number of free hugepages would be reduced below the number of reserved
1490 * hugepages.
1492 int dissolve_free_huge_page(struct page *page)
1494 int rc = 0;
1496 spin_lock(&hugetlb_lock);
1497 if (PageHuge(page) && !page_count(page)) {
1498 struct page *head = compound_head(page);
1499 struct hstate *h = page_hstate(head);
1500 int nid = page_to_nid(head);
1501 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1502 rc = -EBUSY;
1503 goto out;
1506 * Move PageHWPoison flag from head page to the raw error page,
1507 * which makes any subpages rather than the error page reusable.
1509 if (PageHWPoison(head) && page != head) {
1510 SetPageHWPoison(page);
1511 ClearPageHWPoison(head);
1513 list_del(&head->lru);
1514 h->free_huge_pages--;
1515 h->free_huge_pages_node[nid]--;
1516 h->max_huge_pages--;
1517 update_and_free_page(h, head);
1519 out:
1520 spin_unlock(&hugetlb_lock);
1521 return rc;
1525 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1526 * make specified memory blocks removable from the system.
1527 * Note that this will dissolve a free gigantic hugepage completely, if any
1528 * part of it lies within the given range.
1529 * Also note that if dissolve_free_huge_page() returns with an error, all
1530 * free hugepages that were dissolved before that error are lost.
1532 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1534 unsigned long pfn;
1535 struct page *page;
1536 int rc = 0;
1538 if (!hugepages_supported())
1539 return rc;
1541 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1542 page = pfn_to_page(pfn);
1543 if (PageHuge(page) && !page_count(page)) {
1544 rc = dissolve_free_huge_page(page);
1545 if (rc)
1546 break;
1550 return rc;
1554 * Allocates a fresh surplus page from the page allocator.
1556 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1557 int nid, nodemask_t *nmask)
1559 struct page *page = NULL;
1561 if (hstate_is_gigantic(h))
1562 return NULL;
1564 spin_lock(&hugetlb_lock);
1565 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1566 goto out_unlock;
1567 spin_unlock(&hugetlb_lock);
1569 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1570 if (!page)
1571 return NULL;
1573 spin_lock(&hugetlb_lock);
1575 * We could have raced with the pool size change.
1576 * Double check that and simply deallocate the new page
1577 * if we would end up overcommiting the surpluses. Abuse
1578 * temporary page to workaround the nasty free_huge_page
1579 * codeflow
1581 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1582 SetPageHugeTemporary(page);
1583 put_page(page);
1584 page = NULL;
1585 } else {
1586 h->surplus_huge_pages++;
1587 h->surplus_huge_pages_node[page_to_nid(page)]++;
1590 out_unlock:
1591 spin_unlock(&hugetlb_lock);
1593 return page;
1596 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1597 int nid, nodemask_t *nmask)
1599 struct page *page;
1601 if (hstate_is_gigantic(h))
1602 return NULL;
1604 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605 if (!page)
1606 return NULL;
1609 * We do not account these pages as surplus because they are only
1610 * temporary and will be released properly on the last reference
1612 SetPageHugeTemporary(page);
1614 return page;
1618 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1620 static
1621 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1622 struct vm_area_struct *vma, unsigned long addr)
1624 struct page *page;
1625 struct mempolicy *mpol;
1626 gfp_t gfp_mask = htlb_alloc_mask(h);
1627 int nid;
1628 nodemask_t *nodemask;
1630 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1631 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1632 mpol_cond_put(mpol);
1634 return page;
1637 /* page migration callback function */
1638 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1640 gfp_t gfp_mask = htlb_alloc_mask(h);
1641 struct page *page = NULL;
1643 if (nid != NUMA_NO_NODE)
1644 gfp_mask |= __GFP_THISNODE;
1646 spin_lock(&hugetlb_lock);
1647 if (h->free_huge_pages - h->resv_huge_pages > 0)
1648 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1649 spin_unlock(&hugetlb_lock);
1651 if (!page)
1652 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1654 return page;
1657 /* page migration callback function */
1658 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1659 nodemask_t *nmask)
1661 gfp_t gfp_mask = htlb_alloc_mask(h);
1663 spin_lock(&hugetlb_lock);
1664 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1665 struct page *page;
1667 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1668 if (page) {
1669 spin_unlock(&hugetlb_lock);
1670 return page;
1673 spin_unlock(&hugetlb_lock);
1675 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1678 /* mempolicy aware migration callback */
1679 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1680 unsigned long address)
1682 struct mempolicy *mpol;
1683 nodemask_t *nodemask;
1684 struct page *page;
1685 gfp_t gfp_mask;
1686 int node;
1688 gfp_mask = htlb_alloc_mask(h);
1689 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1690 page = alloc_huge_page_nodemask(h, node, nodemask);
1691 mpol_cond_put(mpol);
1693 return page;
1697 * Increase the hugetlb pool such that it can accommodate a reservation
1698 * of size 'delta'.
1700 static int gather_surplus_pages(struct hstate *h, int delta)
1702 struct list_head surplus_list;
1703 struct page *page, *tmp;
1704 int ret, i;
1705 int needed, allocated;
1706 bool alloc_ok = true;
1708 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1709 if (needed <= 0) {
1710 h->resv_huge_pages += delta;
1711 return 0;
1714 allocated = 0;
1715 INIT_LIST_HEAD(&surplus_list);
1717 ret = -ENOMEM;
1718 retry:
1719 spin_unlock(&hugetlb_lock);
1720 for (i = 0; i < needed; i++) {
1721 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1722 NUMA_NO_NODE, NULL);
1723 if (!page) {
1724 alloc_ok = false;
1725 break;
1727 list_add(&page->lru, &surplus_list);
1728 cond_resched();
1730 allocated += i;
1733 * After retaking hugetlb_lock, we need to recalculate 'needed'
1734 * because either resv_huge_pages or free_huge_pages may have changed.
1736 spin_lock(&hugetlb_lock);
1737 needed = (h->resv_huge_pages + delta) -
1738 (h->free_huge_pages + allocated);
1739 if (needed > 0) {
1740 if (alloc_ok)
1741 goto retry;
1743 * We were not able to allocate enough pages to
1744 * satisfy the entire reservation so we free what
1745 * we've allocated so far.
1747 goto free;
1750 * The surplus_list now contains _at_least_ the number of extra pages
1751 * needed to accommodate the reservation. Add the appropriate number
1752 * of pages to the hugetlb pool and free the extras back to the buddy
1753 * allocator. Commit the entire reservation here to prevent another
1754 * process from stealing the pages as they are added to the pool but
1755 * before they are reserved.
1757 needed += allocated;
1758 h->resv_huge_pages += delta;
1759 ret = 0;
1761 /* Free the needed pages to the hugetlb pool */
1762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1763 if ((--needed) < 0)
1764 break;
1766 * This page is now managed by the hugetlb allocator and has
1767 * no users -- drop the buddy allocator's reference.
1769 put_page_testzero(page);
1770 VM_BUG_ON_PAGE(page_count(page), page);
1771 enqueue_huge_page(h, page);
1773 free:
1774 spin_unlock(&hugetlb_lock);
1776 /* Free unnecessary surplus pages to the buddy allocator */
1777 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1778 put_page(page);
1779 spin_lock(&hugetlb_lock);
1781 return ret;
1785 * This routine has two main purposes:
1786 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1787 * in unused_resv_pages. This corresponds to the prior adjustments made
1788 * to the associated reservation map.
1789 * 2) Free any unused surplus pages that may have been allocated to satisfy
1790 * the reservation. As many as unused_resv_pages may be freed.
1792 * Called with hugetlb_lock held. However, the lock could be dropped (and
1793 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1794 * we must make sure nobody else can claim pages we are in the process of
1795 * freeing. Do this by ensuring resv_huge_page always is greater than the
1796 * number of huge pages we plan to free when dropping the lock.
1798 static void return_unused_surplus_pages(struct hstate *h,
1799 unsigned long unused_resv_pages)
1801 unsigned long nr_pages;
1803 /* Cannot return gigantic pages currently */
1804 if (hstate_is_gigantic(h))
1805 goto out;
1808 * Part (or even all) of the reservation could have been backed
1809 * by pre-allocated pages. Only free surplus pages.
1811 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1814 * We want to release as many surplus pages as possible, spread
1815 * evenly across all nodes with memory. Iterate across these nodes
1816 * until we can no longer free unreserved surplus pages. This occurs
1817 * when the nodes with surplus pages have no free pages.
1818 * free_pool_huge_page() will balance the the freed pages across the
1819 * on-line nodes with memory and will handle the hstate accounting.
1821 * Note that we decrement resv_huge_pages as we free the pages. If
1822 * we drop the lock, resv_huge_pages will still be sufficiently large
1823 * to cover subsequent pages we may free.
1825 while (nr_pages--) {
1826 h->resv_huge_pages--;
1827 unused_resv_pages--;
1828 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1829 goto out;
1830 cond_resched_lock(&hugetlb_lock);
1833 out:
1834 /* Fully uncommit the reservation */
1835 h->resv_huge_pages -= unused_resv_pages;
1840 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1841 * are used by the huge page allocation routines to manage reservations.
1843 * vma_needs_reservation is called to determine if the huge page at addr
1844 * within the vma has an associated reservation. If a reservation is
1845 * needed, the value 1 is returned. The caller is then responsible for
1846 * managing the global reservation and subpool usage counts. After
1847 * the huge page has been allocated, vma_commit_reservation is called
1848 * to add the page to the reservation map. If the page allocation fails,
1849 * the reservation must be ended instead of committed. vma_end_reservation
1850 * is called in such cases.
1852 * In the normal case, vma_commit_reservation returns the same value
1853 * as the preceding vma_needs_reservation call. The only time this
1854 * is not the case is if a reserve map was changed between calls. It
1855 * is the responsibility of the caller to notice the difference and
1856 * take appropriate action.
1858 * vma_add_reservation is used in error paths where a reservation must
1859 * be restored when a newly allocated huge page must be freed. It is
1860 * to be called after calling vma_needs_reservation to determine if a
1861 * reservation exists.
1863 enum vma_resv_mode {
1864 VMA_NEEDS_RESV,
1865 VMA_COMMIT_RESV,
1866 VMA_END_RESV,
1867 VMA_ADD_RESV,
1869 static long __vma_reservation_common(struct hstate *h,
1870 struct vm_area_struct *vma, unsigned long addr,
1871 enum vma_resv_mode mode)
1873 struct resv_map *resv;
1874 pgoff_t idx;
1875 long ret;
1877 resv = vma_resv_map(vma);
1878 if (!resv)
1879 return 1;
1881 idx = vma_hugecache_offset(h, vma, addr);
1882 switch (mode) {
1883 case VMA_NEEDS_RESV:
1884 ret = region_chg(resv, idx, idx + 1);
1885 break;
1886 case VMA_COMMIT_RESV:
1887 ret = region_add(resv, idx, idx + 1);
1888 break;
1889 case VMA_END_RESV:
1890 region_abort(resv, idx, idx + 1);
1891 ret = 0;
1892 break;
1893 case VMA_ADD_RESV:
1894 if (vma->vm_flags & VM_MAYSHARE)
1895 ret = region_add(resv, idx, idx + 1);
1896 else {
1897 region_abort(resv, idx, idx + 1);
1898 ret = region_del(resv, idx, idx + 1);
1900 break;
1901 default:
1902 BUG();
1905 if (vma->vm_flags & VM_MAYSHARE)
1906 return ret;
1907 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1909 * In most cases, reserves always exist for private mappings.
1910 * However, a file associated with mapping could have been
1911 * hole punched or truncated after reserves were consumed.
1912 * As subsequent fault on such a range will not use reserves.
1913 * Subtle - The reserve map for private mappings has the
1914 * opposite meaning than that of shared mappings. If NO
1915 * entry is in the reserve map, it means a reservation exists.
1916 * If an entry exists in the reserve map, it means the
1917 * reservation has already been consumed. As a result, the
1918 * return value of this routine is the opposite of the
1919 * value returned from reserve map manipulation routines above.
1921 if (ret)
1922 return 0;
1923 else
1924 return 1;
1926 else
1927 return ret < 0 ? ret : 0;
1930 static long vma_needs_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1933 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1936 static long vma_commit_reservation(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr)
1939 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1942 static void vma_end_reservation(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long addr)
1945 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1948 static long vma_add_reservation(struct hstate *h,
1949 struct vm_area_struct *vma, unsigned long addr)
1951 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1955 * This routine is called to restore a reservation on error paths. In the
1956 * specific error paths, a huge page was allocated (via alloc_huge_page)
1957 * and is about to be freed. If a reservation for the page existed,
1958 * alloc_huge_page would have consumed the reservation and set PagePrivate
1959 * in the newly allocated page. When the page is freed via free_huge_page,
1960 * the global reservation count will be incremented if PagePrivate is set.
1961 * However, free_huge_page can not adjust the reserve map. Adjust the
1962 * reserve map here to be consistent with global reserve count adjustments
1963 * to be made by free_huge_page.
1965 static void restore_reserve_on_error(struct hstate *h,
1966 struct vm_area_struct *vma, unsigned long address,
1967 struct page *page)
1969 if (unlikely(PagePrivate(page))) {
1970 long rc = vma_needs_reservation(h, vma, address);
1972 if (unlikely(rc < 0)) {
1974 * Rare out of memory condition in reserve map
1975 * manipulation. Clear PagePrivate so that
1976 * global reserve count will not be incremented
1977 * by free_huge_page. This will make it appear
1978 * as though the reservation for this page was
1979 * consumed. This may prevent the task from
1980 * faulting in the page at a later time. This
1981 * is better than inconsistent global huge page
1982 * accounting of reserve counts.
1984 ClearPagePrivate(page);
1985 } else if (rc) {
1986 rc = vma_add_reservation(h, vma, address);
1987 if (unlikely(rc < 0))
1989 * See above comment about rare out of
1990 * memory condition.
1992 ClearPagePrivate(page);
1993 } else
1994 vma_end_reservation(h, vma, address);
1998 struct page *alloc_huge_page(struct vm_area_struct *vma,
1999 unsigned long addr, int avoid_reserve)
2001 struct hugepage_subpool *spool = subpool_vma(vma);
2002 struct hstate *h = hstate_vma(vma);
2003 struct page *page;
2004 long map_chg, map_commit;
2005 long gbl_chg;
2006 int ret, idx;
2007 struct hugetlb_cgroup *h_cg;
2009 idx = hstate_index(h);
2011 * Examine the region/reserve map to determine if the process
2012 * has a reservation for the page to be allocated. A return
2013 * code of zero indicates a reservation exists (no change).
2015 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2016 if (map_chg < 0)
2017 return ERR_PTR(-ENOMEM);
2020 * Processes that did not create the mapping will have no
2021 * reserves as indicated by the region/reserve map. Check
2022 * that the allocation will not exceed the subpool limit.
2023 * Allocations for MAP_NORESERVE mappings also need to be
2024 * checked against any subpool limit.
2026 if (map_chg || avoid_reserve) {
2027 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2028 if (gbl_chg < 0) {
2029 vma_end_reservation(h, vma, addr);
2030 return ERR_PTR(-ENOSPC);
2034 * Even though there was no reservation in the region/reserve
2035 * map, there could be reservations associated with the
2036 * subpool that can be used. This would be indicated if the
2037 * return value of hugepage_subpool_get_pages() is zero.
2038 * However, if avoid_reserve is specified we still avoid even
2039 * the subpool reservations.
2041 if (avoid_reserve)
2042 gbl_chg = 1;
2045 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2046 if (ret)
2047 goto out_subpool_put;
2049 spin_lock(&hugetlb_lock);
2051 * glb_chg is passed to indicate whether or not a page must be taken
2052 * from the global free pool (global change). gbl_chg == 0 indicates
2053 * a reservation exists for the allocation.
2055 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2056 if (!page) {
2057 spin_unlock(&hugetlb_lock);
2058 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2059 if (!page)
2060 goto out_uncharge_cgroup;
2061 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2062 SetPagePrivate(page);
2063 h->resv_huge_pages--;
2065 spin_lock(&hugetlb_lock);
2066 list_move(&page->lru, &h->hugepage_activelist);
2067 /* Fall through */
2069 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2070 spin_unlock(&hugetlb_lock);
2072 set_page_private(page, (unsigned long)spool);
2074 map_commit = vma_commit_reservation(h, vma, addr);
2075 if (unlikely(map_chg > map_commit)) {
2077 * The page was added to the reservation map between
2078 * vma_needs_reservation and vma_commit_reservation.
2079 * This indicates a race with hugetlb_reserve_pages.
2080 * Adjust for the subpool count incremented above AND
2081 * in hugetlb_reserve_pages for the same page. Also,
2082 * the reservation count added in hugetlb_reserve_pages
2083 * no longer applies.
2085 long rsv_adjust;
2087 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2088 hugetlb_acct_memory(h, -rsv_adjust);
2090 return page;
2092 out_uncharge_cgroup:
2093 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2094 out_subpool_put:
2095 if (map_chg || avoid_reserve)
2096 hugepage_subpool_put_pages(spool, 1);
2097 vma_end_reservation(h, vma, addr);
2098 return ERR_PTR(-ENOSPC);
2101 int alloc_bootmem_huge_page(struct hstate *h)
2102 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2103 int __alloc_bootmem_huge_page(struct hstate *h)
2105 struct huge_bootmem_page *m;
2106 int nr_nodes, node;
2108 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2109 void *addr;
2111 addr = memblock_virt_alloc_try_nid_nopanic(
2112 huge_page_size(h), huge_page_size(h),
2113 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2114 if (addr) {
2116 * Use the beginning of the huge page to store the
2117 * huge_bootmem_page struct (until gather_bootmem
2118 * puts them into the mem_map).
2120 m = addr;
2121 goto found;
2124 return 0;
2126 found:
2127 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2128 /* Put them into a private list first because mem_map is not up yet */
2129 list_add(&m->list, &huge_boot_pages);
2130 m->hstate = h;
2131 return 1;
2134 static void __init prep_compound_huge_page(struct page *page,
2135 unsigned int order)
2137 if (unlikely(order > (MAX_ORDER - 1)))
2138 prep_compound_gigantic_page(page, order);
2139 else
2140 prep_compound_page(page, order);
2143 /* Put bootmem huge pages into the standard lists after mem_map is up */
2144 static void __init gather_bootmem_prealloc(void)
2146 struct huge_bootmem_page *m;
2148 list_for_each_entry(m, &huge_boot_pages, list) {
2149 struct hstate *h = m->hstate;
2150 struct page *page;
2152 #ifdef CONFIG_HIGHMEM
2153 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2154 memblock_free_late(__pa(m),
2155 sizeof(struct huge_bootmem_page));
2156 #else
2157 page = virt_to_page(m);
2158 #endif
2159 WARN_ON(page_count(page) != 1);
2160 prep_compound_huge_page(page, h->order);
2161 WARN_ON(PageReserved(page));
2162 prep_new_huge_page(h, page, page_to_nid(page));
2163 put_page(page); /* free it into the hugepage allocator */
2166 * If we had gigantic hugepages allocated at boot time, we need
2167 * to restore the 'stolen' pages to totalram_pages in order to
2168 * fix confusing memory reports from free(1) and another
2169 * side-effects, like CommitLimit going negative.
2171 if (hstate_is_gigantic(h))
2172 adjust_managed_page_count(page, 1 << h->order);
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2178 unsigned long i;
2180 for (i = 0; i < h->max_huge_pages; ++i) {
2181 if (hstate_is_gigantic(h)) {
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
2184 } else if (!alloc_pool_huge_page(h,
2185 &node_states[N_MEMORY]))
2186 break;
2187 cond_resched();
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2199 static void __init hugetlb_init_hstates(void)
2201 struct hstate *h;
2203 for_each_hstate(h) {
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2207 /* oversize hugepages were init'ed in early boot */
2208 if (!hstate_is_gigantic(h))
2209 hugetlb_hstate_alloc_pages(h);
2211 VM_BUG_ON(minimum_order == UINT_MAX);
2214 static void __init report_hugepages(void)
2216 struct hstate *h;
2218 for_each_hstate(h) {
2219 char buf[32];
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223 buf, h->free_huge_pages);
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
2231 int i;
2233 if (hstate_is_gigantic(h))
2234 return;
2236 for_each_node_mask(i, *nodes_allowed) {
2237 struct page *page, *next;
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
2241 return;
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
2245 update_and_free_page(h, page);
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
2256 #endif
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
2266 int nr_nodes, node;
2268 VM_BUG_ON(delta != -1 && delta != 1);
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
2282 return 0;
2284 found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
2294 unsigned long min_count, ret;
2296 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297 return h->max_huge_pages;
2300 * Increase the pool size
2301 * First take pages out of surplus state. Then make up the
2302 * remaining difference by allocating fresh huge pages.
2304 * We might race with alloc_surplus_huge_page() here and be unable
2305 * to convert a surplus huge page to a normal huge page. That is
2306 * not critical, though, it just means the overall size of the
2307 * pool might be one hugepage larger than it needs to be, but
2308 * within all the constraints specified by the sysctls.
2310 spin_lock(&hugetlb_lock);
2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313 break;
2316 while (count > persistent_huge_pages(h)) {
2318 * If this allocation races such that we no longer need the
2319 * page, free_huge_page will handle it by freeing the page
2320 * and reducing the surplus.
2322 spin_unlock(&hugetlb_lock);
2324 /* yield cpu to avoid soft lockup */
2325 cond_resched();
2327 ret = alloc_pool_huge_page(h, nodes_allowed);
2328 spin_lock(&hugetlb_lock);
2329 if (!ret)
2330 goto out;
2332 /* Bail for signals. Probably ctrl-c from user */
2333 if (signal_pending(current))
2334 goto out;
2338 * Decrease the pool size
2339 * First return free pages to the buddy allocator (being careful
2340 * to keep enough around to satisfy reservations). Then place
2341 * pages into surplus state as needed so the pool will shrink
2342 * to the desired size as pages become free.
2344 * By placing pages into the surplus state independent of the
2345 * overcommit value, we are allowing the surplus pool size to
2346 * exceed overcommit. There are few sane options here. Since
2347 * alloc_surplus_huge_page() is checking the global counter,
2348 * though, we'll note that we're not allowed to exceed surplus
2349 * and won't grow the pool anywhere else. Not until one of the
2350 * sysctls are changed, or the surplus pages go out of use.
2352 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2353 min_count = max(count, min_count);
2354 try_to_free_low(h, min_count, nodes_allowed);
2355 while (min_count < persistent_huge_pages(h)) {
2356 if (!free_pool_huge_page(h, nodes_allowed, 0))
2357 break;
2358 cond_resched_lock(&hugetlb_lock);
2360 while (count < persistent_huge_pages(h)) {
2361 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2362 break;
2364 out:
2365 ret = persistent_huge_pages(h);
2366 spin_unlock(&hugetlb_lock);
2367 return ret;
2370 #define HSTATE_ATTR_RO(_name) \
2371 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2373 #define HSTATE_ATTR(_name) \
2374 static struct kobj_attribute _name##_attr = \
2375 __ATTR(_name, 0644, _name##_show, _name##_store)
2377 static struct kobject *hugepages_kobj;
2378 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2380 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2382 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2384 int i;
2386 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2387 if (hstate_kobjs[i] == kobj) {
2388 if (nidp)
2389 *nidp = NUMA_NO_NODE;
2390 return &hstates[i];
2393 return kobj_to_node_hstate(kobj, nidp);
2396 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2397 struct kobj_attribute *attr, char *buf)
2399 struct hstate *h;
2400 unsigned long nr_huge_pages;
2401 int nid;
2403 h = kobj_to_hstate(kobj, &nid);
2404 if (nid == NUMA_NO_NODE)
2405 nr_huge_pages = h->nr_huge_pages;
2406 else
2407 nr_huge_pages = h->nr_huge_pages_node[nid];
2409 return sprintf(buf, "%lu\n", nr_huge_pages);
2412 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2413 struct hstate *h, int nid,
2414 unsigned long count, size_t len)
2416 int err;
2417 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2419 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2420 err = -EINVAL;
2421 goto out;
2424 if (nid == NUMA_NO_NODE) {
2426 * global hstate attribute
2428 if (!(obey_mempolicy &&
2429 init_nodemask_of_mempolicy(nodes_allowed))) {
2430 NODEMASK_FREE(nodes_allowed);
2431 nodes_allowed = &node_states[N_MEMORY];
2433 } else if (nodes_allowed) {
2435 * per node hstate attribute: adjust count to global,
2436 * but restrict alloc/free to the specified node.
2438 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439 init_nodemask_of_node(nodes_allowed, nid);
2440 } else
2441 nodes_allowed = &node_states[N_MEMORY];
2443 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2445 if (nodes_allowed != &node_states[N_MEMORY])
2446 NODEMASK_FREE(nodes_allowed);
2448 return len;
2449 out:
2450 NODEMASK_FREE(nodes_allowed);
2451 return err;
2454 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2455 struct kobject *kobj, const char *buf,
2456 size_t len)
2458 struct hstate *h;
2459 unsigned long count;
2460 int nid;
2461 int err;
2463 err = kstrtoul(buf, 10, &count);
2464 if (err)
2465 return err;
2467 h = kobj_to_hstate(kobj, &nid);
2468 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2471 static ssize_t nr_hugepages_show(struct kobject *kobj,
2472 struct kobj_attribute *attr, char *buf)
2474 return nr_hugepages_show_common(kobj, attr, buf);
2477 static ssize_t nr_hugepages_store(struct kobject *kobj,
2478 struct kobj_attribute *attr, const char *buf, size_t len)
2480 return nr_hugepages_store_common(false, kobj, buf, len);
2482 HSTATE_ATTR(nr_hugepages);
2484 #ifdef CONFIG_NUMA
2487 * hstate attribute for optionally mempolicy-based constraint on persistent
2488 * huge page alloc/free.
2490 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2491 struct kobj_attribute *attr, char *buf)
2493 return nr_hugepages_show_common(kobj, attr, buf);
2496 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2497 struct kobj_attribute *attr, const char *buf, size_t len)
2499 return nr_hugepages_store_common(true, kobj, buf, len);
2501 HSTATE_ATTR(nr_hugepages_mempolicy);
2502 #endif
2505 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2506 struct kobj_attribute *attr, char *buf)
2508 struct hstate *h = kobj_to_hstate(kobj, NULL);
2509 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2512 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2513 struct kobj_attribute *attr, const char *buf, size_t count)
2515 int err;
2516 unsigned long input;
2517 struct hstate *h = kobj_to_hstate(kobj, NULL);
2519 if (hstate_is_gigantic(h))
2520 return -EINVAL;
2522 err = kstrtoul(buf, 10, &input);
2523 if (err)
2524 return err;
2526 spin_lock(&hugetlb_lock);
2527 h->nr_overcommit_huge_pages = input;
2528 spin_unlock(&hugetlb_lock);
2530 return count;
2532 HSTATE_ATTR(nr_overcommit_hugepages);
2534 static ssize_t free_hugepages_show(struct kobject *kobj,
2535 struct kobj_attribute *attr, char *buf)
2537 struct hstate *h;
2538 unsigned long free_huge_pages;
2539 int nid;
2541 h = kobj_to_hstate(kobj, &nid);
2542 if (nid == NUMA_NO_NODE)
2543 free_huge_pages = h->free_huge_pages;
2544 else
2545 free_huge_pages = h->free_huge_pages_node[nid];
2547 return sprintf(buf, "%lu\n", free_huge_pages);
2549 HSTATE_ATTR_RO(free_hugepages);
2551 static ssize_t resv_hugepages_show(struct kobject *kobj,
2552 struct kobj_attribute *attr, char *buf)
2554 struct hstate *h = kobj_to_hstate(kobj, NULL);
2555 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2557 HSTATE_ATTR_RO(resv_hugepages);
2559 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2562 struct hstate *h;
2563 unsigned long surplus_huge_pages;
2564 int nid;
2566 h = kobj_to_hstate(kobj, &nid);
2567 if (nid == NUMA_NO_NODE)
2568 surplus_huge_pages = h->surplus_huge_pages;
2569 else
2570 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2572 return sprintf(buf, "%lu\n", surplus_huge_pages);
2574 HSTATE_ATTR_RO(surplus_hugepages);
2576 static struct attribute *hstate_attrs[] = {
2577 &nr_hugepages_attr.attr,
2578 &nr_overcommit_hugepages_attr.attr,
2579 &free_hugepages_attr.attr,
2580 &resv_hugepages_attr.attr,
2581 &surplus_hugepages_attr.attr,
2582 #ifdef CONFIG_NUMA
2583 &nr_hugepages_mempolicy_attr.attr,
2584 #endif
2585 NULL,
2588 static const struct attribute_group hstate_attr_group = {
2589 .attrs = hstate_attrs,
2592 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2593 struct kobject **hstate_kobjs,
2594 const struct attribute_group *hstate_attr_group)
2596 int retval;
2597 int hi = hstate_index(h);
2599 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2600 if (!hstate_kobjs[hi])
2601 return -ENOMEM;
2603 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2604 if (retval)
2605 kobject_put(hstate_kobjs[hi]);
2607 return retval;
2610 static void __init hugetlb_sysfs_init(void)
2612 struct hstate *h;
2613 int err;
2615 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2616 if (!hugepages_kobj)
2617 return;
2619 for_each_hstate(h) {
2620 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2621 hstate_kobjs, &hstate_attr_group);
2622 if (err)
2623 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2627 #ifdef CONFIG_NUMA
2630 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2631 * with node devices in node_devices[] using a parallel array. The array
2632 * index of a node device or _hstate == node id.
2633 * This is here to avoid any static dependency of the node device driver, in
2634 * the base kernel, on the hugetlb module.
2636 struct node_hstate {
2637 struct kobject *hugepages_kobj;
2638 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2640 static struct node_hstate node_hstates[MAX_NUMNODES];
2643 * A subset of global hstate attributes for node devices
2645 static struct attribute *per_node_hstate_attrs[] = {
2646 &nr_hugepages_attr.attr,
2647 &free_hugepages_attr.attr,
2648 &surplus_hugepages_attr.attr,
2649 NULL,
2652 static const struct attribute_group per_node_hstate_attr_group = {
2653 .attrs = per_node_hstate_attrs,
2657 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2658 * Returns node id via non-NULL nidp.
2660 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2662 int nid;
2664 for (nid = 0; nid < nr_node_ids; nid++) {
2665 struct node_hstate *nhs = &node_hstates[nid];
2666 int i;
2667 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2668 if (nhs->hstate_kobjs[i] == kobj) {
2669 if (nidp)
2670 *nidp = nid;
2671 return &hstates[i];
2675 BUG();
2676 return NULL;
2680 * Unregister hstate attributes from a single node device.
2681 * No-op if no hstate attributes attached.
2683 static void hugetlb_unregister_node(struct node *node)
2685 struct hstate *h;
2686 struct node_hstate *nhs = &node_hstates[node->dev.id];
2688 if (!nhs->hugepages_kobj)
2689 return; /* no hstate attributes */
2691 for_each_hstate(h) {
2692 int idx = hstate_index(h);
2693 if (nhs->hstate_kobjs[idx]) {
2694 kobject_put(nhs->hstate_kobjs[idx]);
2695 nhs->hstate_kobjs[idx] = NULL;
2699 kobject_put(nhs->hugepages_kobj);
2700 nhs->hugepages_kobj = NULL;
2705 * Register hstate attributes for a single node device.
2706 * No-op if attributes already registered.
2708 static void hugetlb_register_node(struct node *node)
2710 struct hstate *h;
2711 struct node_hstate *nhs = &node_hstates[node->dev.id];
2712 int err;
2714 if (nhs->hugepages_kobj)
2715 return; /* already allocated */
2717 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2718 &node->dev.kobj);
2719 if (!nhs->hugepages_kobj)
2720 return;
2722 for_each_hstate(h) {
2723 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2724 nhs->hstate_kobjs,
2725 &per_node_hstate_attr_group);
2726 if (err) {
2727 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2728 h->name, node->dev.id);
2729 hugetlb_unregister_node(node);
2730 break;
2736 * hugetlb init time: register hstate attributes for all registered node
2737 * devices of nodes that have memory. All on-line nodes should have
2738 * registered their associated device by this time.
2740 static void __init hugetlb_register_all_nodes(void)
2742 int nid;
2744 for_each_node_state(nid, N_MEMORY) {
2745 struct node *node = node_devices[nid];
2746 if (node->dev.id == nid)
2747 hugetlb_register_node(node);
2751 * Let the node device driver know we're here so it can
2752 * [un]register hstate attributes on node hotplug.
2754 register_hugetlbfs_with_node(hugetlb_register_node,
2755 hugetlb_unregister_node);
2757 #else /* !CONFIG_NUMA */
2759 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2761 BUG();
2762 if (nidp)
2763 *nidp = -1;
2764 return NULL;
2767 static void hugetlb_register_all_nodes(void) { }
2769 #endif
2771 static int __init hugetlb_init(void)
2773 int i;
2775 if (!hugepages_supported())
2776 return 0;
2778 if (!size_to_hstate(default_hstate_size)) {
2779 if (default_hstate_size != 0) {
2780 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2781 default_hstate_size, HPAGE_SIZE);
2784 default_hstate_size = HPAGE_SIZE;
2785 if (!size_to_hstate(default_hstate_size))
2786 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2788 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2789 if (default_hstate_max_huge_pages) {
2790 if (!default_hstate.max_huge_pages)
2791 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2794 hugetlb_init_hstates();
2795 gather_bootmem_prealloc();
2796 report_hugepages();
2798 hugetlb_sysfs_init();
2799 hugetlb_register_all_nodes();
2800 hugetlb_cgroup_file_init();
2802 #ifdef CONFIG_SMP
2803 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2804 #else
2805 num_fault_mutexes = 1;
2806 #endif
2807 hugetlb_fault_mutex_table =
2808 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2809 BUG_ON(!hugetlb_fault_mutex_table);
2811 for (i = 0; i < num_fault_mutexes; i++)
2812 mutex_init(&hugetlb_fault_mutex_table[i]);
2813 return 0;
2815 subsys_initcall(hugetlb_init);
2817 /* Should be called on processing a hugepagesz=... option */
2818 void __init hugetlb_bad_size(void)
2820 parsed_valid_hugepagesz = false;
2823 void __init hugetlb_add_hstate(unsigned int order)
2825 struct hstate *h;
2826 unsigned long i;
2828 if (size_to_hstate(PAGE_SIZE << order)) {
2829 pr_warn("hugepagesz= specified twice, ignoring\n");
2830 return;
2832 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2833 BUG_ON(order == 0);
2834 h = &hstates[hugetlb_max_hstate++];
2835 h->order = order;
2836 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2837 h->nr_huge_pages = 0;
2838 h->free_huge_pages = 0;
2839 for (i = 0; i < MAX_NUMNODES; ++i)
2840 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2841 INIT_LIST_HEAD(&h->hugepage_activelist);
2842 h->next_nid_to_alloc = first_memory_node;
2843 h->next_nid_to_free = first_memory_node;
2844 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2845 huge_page_size(h)/1024);
2847 parsed_hstate = h;
2850 static int __init hugetlb_nrpages_setup(char *s)
2852 unsigned long *mhp;
2853 static unsigned long *last_mhp;
2855 if (!parsed_valid_hugepagesz) {
2856 pr_warn("hugepages = %s preceded by "
2857 "an unsupported hugepagesz, ignoring\n", s);
2858 parsed_valid_hugepagesz = true;
2859 return 1;
2862 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2863 * so this hugepages= parameter goes to the "default hstate".
2865 else if (!hugetlb_max_hstate)
2866 mhp = &default_hstate_max_huge_pages;
2867 else
2868 mhp = &parsed_hstate->max_huge_pages;
2870 if (mhp == last_mhp) {
2871 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2872 return 1;
2875 if (sscanf(s, "%lu", mhp) <= 0)
2876 *mhp = 0;
2879 * Global state is always initialized later in hugetlb_init.
2880 * But we need to allocate >= MAX_ORDER hstates here early to still
2881 * use the bootmem allocator.
2883 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2884 hugetlb_hstate_alloc_pages(parsed_hstate);
2886 last_mhp = mhp;
2888 return 1;
2890 __setup("hugepages=", hugetlb_nrpages_setup);
2892 static int __init hugetlb_default_setup(char *s)
2894 default_hstate_size = memparse(s, &s);
2895 return 1;
2897 __setup("default_hugepagesz=", hugetlb_default_setup);
2899 static unsigned int cpuset_mems_nr(unsigned int *array)
2901 int node;
2902 unsigned int nr = 0;
2904 for_each_node_mask(node, cpuset_current_mems_allowed)
2905 nr += array[node];
2907 return nr;
2910 #ifdef CONFIG_SYSCTL
2911 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2912 struct ctl_table *table, int write,
2913 void __user *buffer, size_t *length, loff_t *ppos)
2915 struct hstate *h = &default_hstate;
2916 unsigned long tmp = h->max_huge_pages;
2917 int ret;
2919 if (!hugepages_supported())
2920 return -EOPNOTSUPP;
2922 table->data = &tmp;
2923 table->maxlen = sizeof(unsigned long);
2924 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2925 if (ret)
2926 goto out;
2928 if (write)
2929 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2930 NUMA_NO_NODE, tmp, *length);
2931 out:
2932 return ret;
2935 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2936 void __user *buffer, size_t *length, loff_t *ppos)
2939 return hugetlb_sysctl_handler_common(false, table, write,
2940 buffer, length, ppos);
2943 #ifdef CONFIG_NUMA
2944 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2945 void __user *buffer, size_t *length, loff_t *ppos)
2947 return hugetlb_sysctl_handler_common(true, table, write,
2948 buffer, length, ppos);
2950 #endif /* CONFIG_NUMA */
2952 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2953 void __user *buffer,
2954 size_t *length, loff_t *ppos)
2956 struct hstate *h = &default_hstate;
2957 unsigned long tmp;
2958 int ret;
2960 if (!hugepages_supported())
2961 return -EOPNOTSUPP;
2963 tmp = h->nr_overcommit_huge_pages;
2965 if (write && hstate_is_gigantic(h))
2966 return -EINVAL;
2968 table->data = &tmp;
2969 table->maxlen = sizeof(unsigned long);
2970 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971 if (ret)
2972 goto out;
2974 if (write) {
2975 spin_lock(&hugetlb_lock);
2976 h->nr_overcommit_huge_pages = tmp;
2977 spin_unlock(&hugetlb_lock);
2979 out:
2980 return ret;
2983 #endif /* CONFIG_SYSCTL */
2985 void hugetlb_report_meminfo(struct seq_file *m)
2987 struct hstate *h;
2988 unsigned long total = 0;
2990 if (!hugepages_supported())
2991 return;
2993 for_each_hstate(h) {
2994 unsigned long count = h->nr_huge_pages;
2996 total += (PAGE_SIZE << huge_page_order(h)) * count;
2998 if (h == &default_hstate)
2999 seq_printf(m,
3000 "HugePages_Total: %5lu\n"
3001 "HugePages_Free: %5lu\n"
3002 "HugePages_Rsvd: %5lu\n"
3003 "HugePages_Surp: %5lu\n"
3004 "Hugepagesize: %8lu kB\n",
3005 count,
3006 h->free_huge_pages,
3007 h->resv_huge_pages,
3008 h->surplus_huge_pages,
3009 (PAGE_SIZE << huge_page_order(h)) / 1024);
3012 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3015 int hugetlb_report_node_meminfo(int nid, char *buf)
3017 struct hstate *h = &default_hstate;
3018 if (!hugepages_supported())
3019 return 0;
3020 return sprintf(buf,
3021 "Node %d HugePages_Total: %5u\n"
3022 "Node %d HugePages_Free: %5u\n"
3023 "Node %d HugePages_Surp: %5u\n",
3024 nid, h->nr_huge_pages_node[nid],
3025 nid, h->free_huge_pages_node[nid],
3026 nid, h->surplus_huge_pages_node[nid]);
3029 void hugetlb_show_meminfo(void)
3031 struct hstate *h;
3032 int nid;
3034 if (!hugepages_supported())
3035 return;
3037 for_each_node_state(nid, N_MEMORY)
3038 for_each_hstate(h)
3039 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040 nid,
3041 h->nr_huge_pages_node[nid],
3042 h->free_huge_pages_node[nid],
3043 h->surplus_huge_pages_node[nid],
3044 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3047 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3049 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3050 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3053 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3054 unsigned long hugetlb_total_pages(void)
3056 struct hstate *h;
3057 unsigned long nr_total_pages = 0;
3059 for_each_hstate(h)
3060 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3061 return nr_total_pages;
3064 static int hugetlb_acct_memory(struct hstate *h, long delta)
3066 int ret = -ENOMEM;
3068 spin_lock(&hugetlb_lock);
3070 * When cpuset is configured, it breaks the strict hugetlb page
3071 * reservation as the accounting is done on a global variable. Such
3072 * reservation is completely rubbish in the presence of cpuset because
3073 * the reservation is not checked against page availability for the
3074 * current cpuset. Application can still potentially OOM'ed by kernel
3075 * with lack of free htlb page in cpuset that the task is in.
3076 * Attempt to enforce strict accounting with cpuset is almost
3077 * impossible (or too ugly) because cpuset is too fluid that
3078 * task or memory node can be dynamically moved between cpusets.
3080 * The change of semantics for shared hugetlb mapping with cpuset is
3081 * undesirable. However, in order to preserve some of the semantics,
3082 * we fall back to check against current free page availability as
3083 * a best attempt and hopefully to minimize the impact of changing
3084 * semantics that cpuset has.
3086 if (delta > 0) {
3087 if (gather_surplus_pages(h, delta) < 0)
3088 goto out;
3090 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3091 return_unused_surplus_pages(h, delta);
3092 goto out;
3096 ret = 0;
3097 if (delta < 0)
3098 return_unused_surplus_pages(h, (unsigned long) -delta);
3100 out:
3101 spin_unlock(&hugetlb_lock);
3102 return ret;
3105 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3107 struct resv_map *resv = vma_resv_map(vma);
3110 * This new VMA should share its siblings reservation map if present.
3111 * The VMA will only ever have a valid reservation map pointer where
3112 * it is being copied for another still existing VMA. As that VMA
3113 * has a reference to the reservation map it cannot disappear until
3114 * after this open call completes. It is therefore safe to take a
3115 * new reference here without additional locking.
3117 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118 kref_get(&resv->refs);
3121 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3123 struct hstate *h = hstate_vma(vma);
3124 struct resv_map *resv = vma_resv_map(vma);
3125 struct hugepage_subpool *spool = subpool_vma(vma);
3126 unsigned long reserve, start, end;
3127 long gbl_reserve;
3129 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3130 return;
3132 start = vma_hugecache_offset(h, vma, vma->vm_start);
3133 end = vma_hugecache_offset(h, vma, vma->vm_end);
3135 reserve = (end - start) - region_count(resv, start, end);
3137 kref_put(&resv->refs, resv_map_release);
3139 if (reserve) {
3141 * Decrement reserve counts. The global reserve count may be
3142 * adjusted if the subpool has a minimum size.
3144 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3145 hugetlb_acct_memory(h, -gbl_reserve);
3149 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3151 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152 return -EINVAL;
3153 return 0;
3157 * We cannot handle pagefaults against hugetlb pages at all. They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3162 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3164 BUG();
3165 return 0;
3168 const struct vm_operations_struct hugetlb_vm_ops = {
3169 .fault = hugetlb_vm_op_fault,
3170 .open = hugetlb_vm_op_open,
3171 .close = hugetlb_vm_op_close,
3172 .split = hugetlb_vm_op_split,
3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176 int writable)
3178 pte_t entry;
3180 if (writable) {
3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182 vma->vm_page_prot)));
3183 } else {
3184 entry = huge_pte_wrprotect(mk_huge_pte(page,
3185 vma->vm_page_prot));
3187 entry = pte_mkyoung(entry);
3188 entry = pte_mkhuge(entry);
3189 entry = arch_make_huge_pte(entry, vma, page, writable);
3191 return entry;
3194 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195 unsigned long address, pte_t *ptep)
3197 pte_t entry;
3199 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201 update_mmu_cache(vma, address, ptep);
3204 bool is_hugetlb_entry_migration(pte_t pte)
3206 swp_entry_t swp;
3208 if (huge_pte_none(pte) || pte_present(pte))
3209 return false;
3210 swp = pte_to_swp_entry(pte);
3211 if (non_swap_entry(swp) && is_migration_entry(swp))
3212 return true;
3213 else
3214 return false;
3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3219 swp_entry_t swp;
3221 if (huge_pte_none(pte) || pte_present(pte))
3222 return 0;
3223 swp = pte_to_swp_entry(pte);
3224 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225 return 1;
3226 else
3227 return 0;
3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231 struct vm_area_struct *vma)
3233 pte_t *src_pte, *dst_pte, entry;
3234 struct page *ptepage;
3235 unsigned long addr;
3236 int cow;
3237 struct hstate *h = hstate_vma(vma);
3238 unsigned long sz = huge_page_size(h);
3239 unsigned long mmun_start; /* For mmu_notifiers */
3240 unsigned long mmun_end; /* For mmu_notifiers */
3241 int ret = 0;
3243 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3245 mmun_start = vma->vm_start;
3246 mmun_end = vma->vm_end;
3247 if (cow)
3248 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3250 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251 spinlock_t *src_ptl, *dst_ptl;
3252 src_pte = huge_pte_offset(src, addr, sz);
3253 if (!src_pte)
3254 continue;
3255 dst_pte = huge_pte_alloc(dst, addr, sz);
3256 if (!dst_pte) {
3257 ret = -ENOMEM;
3258 break;
3261 /* If the pagetables are shared don't copy or take references */
3262 if (dst_pte == src_pte)
3263 continue;
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 entry = huge_ptep_get(src_pte);
3269 if (huge_pte_none(entry)) { /* skip none entry */
3271 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272 is_hugetlb_entry_hwpoisoned(entry))) {
3273 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3275 if (is_write_migration_entry(swp_entry) && cow) {
3277 * COW mappings require pages in both
3278 * parent and child to be set to read.
3280 make_migration_entry_read(&swp_entry);
3281 entry = swp_entry_to_pte(swp_entry);
3282 set_huge_swap_pte_at(src, addr, src_pte,
3283 entry, sz);
3285 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286 } else {
3287 if (cow) {
3289 * No need to notify as we are downgrading page
3290 * table protection not changing it to point
3291 * to a new page.
3293 * See Documentation/vm/mmu_notifier.txt
3295 huge_ptep_set_wrprotect(src, addr, src_pte);
3297 entry = huge_ptep_get(src_pte);
3298 ptepage = pte_page(entry);
3299 get_page(ptepage);
3300 page_dup_rmap(ptepage, true);
3301 set_huge_pte_at(dst, addr, dst_pte, entry);
3302 hugetlb_count_add(pages_per_huge_page(h), dst);
3304 spin_unlock(src_ptl);
3305 spin_unlock(dst_ptl);
3308 if (cow)
3309 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3311 return ret;
3314 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3315 unsigned long start, unsigned long end,
3316 struct page *ref_page)
3318 struct mm_struct *mm = vma->vm_mm;
3319 unsigned long address;
3320 pte_t *ptep;
3321 pte_t pte;
3322 spinlock_t *ptl;
3323 struct page *page;
3324 struct hstate *h = hstate_vma(vma);
3325 unsigned long sz = huge_page_size(h);
3326 const unsigned long mmun_start = start; /* For mmu_notifiers */
3327 const unsigned long mmun_end = end; /* For mmu_notifiers */
3329 WARN_ON(!is_vm_hugetlb_page(vma));
3330 BUG_ON(start & ~huge_page_mask(h));
3331 BUG_ON(end & ~huge_page_mask(h));
3334 * This is a hugetlb vma, all the pte entries should point
3335 * to huge page.
3337 tlb_remove_check_page_size_change(tlb, sz);
3338 tlb_start_vma(tlb, vma);
3339 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3340 address = start;
3341 for (; address < end; address += sz) {
3342 ptep = huge_pte_offset(mm, address, sz);
3343 if (!ptep)
3344 continue;
3346 ptl = huge_pte_lock(h, mm, ptep);
3347 if (huge_pmd_unshare(mm, &address, ptep)) {
3348 spin_unlock(ptl);
3349 continue;
3352 pte = huge_ptep_get(ptep);
3353 if (huge_pte_none(pte)) {
3354 spin_unlock(ptl);
3355 continue;
3359 * Migrating hugepage or HWPoisoned hugepage is already
3360 * unmapped and its refcount is dropped, so just clear pte here.
3362 if (unlikely(!pte_present(pte))) {
3363 huge_pte_clear(mm, address, ptep, sz);
3364 spin_unlock(ptl);
3365 continue;
3368 page = pte_page(pte);
3370 * If a reference page is supplied, it is because a specific
3371 * page is being unmapped, not a range. Ensure the page we
3372 * are about to unmap is the actual page of interest.
3374 if (ref_page) {
3375 if (page != ref_page) {
3376 spin_unlock(ptl);
3377 continue;
3380 * Mark the VMA as having unmapped its page so that
3381 * future faults in this VMA will fail rather than
3382 * looking like data was lost
3384 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3387 pte = huge_ptep_get_and_clear(mm, address, ptep);
3388 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3389 if (huge_pte_dirty(pte))
3390 set_page_dirty(page);
3392 hugetlb_count_sub(pages_per_huge_page(h), mm);
3393 page_remove_rmap(page, true);
3395 spin_unlock(ptl);
3396 tlb_remove_page_size(tlb, page, huge_page_size(h));
3398 * Bail out after unmapping reference page if supplied
3400 if (ref_page)
3401 break;
3403 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3404 tlb_end_vma(tlb, vma);
3407 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3408 struct vm_area_struct *vma, unsigned long start,
3409 unsigned long end, struct page *ref_page)
3411 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3414 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3415 * test will fail on a vma being torn down, and not grab a page table
3416 * on its way out. We're lucky that the flag has such an appropriate
3417 * name, and can in fact be safely cleared here. We could clear it
3418 * before the __unmap_hugepage_range above, but all that's necessary
3419 * is to clear it before releasing the i_mmap_rwsem. This works
3420 * because in the context this is called, the VMA is about to be
3421 * destroyed and the i_mmap_rwsem is held.
3423 vma->vm_flags &= ~VM_MAYSHARE;
3426 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3427 unsigned long end, struct page *ref_page)
3429 struct mm_struct *mm;
3430 struct mmu_gather tlb;
3432 mm = vma->vm_mm;
3434 tlb_gather_mmu(&tlb, mm, start, end);
3435 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3436 tlb_finish_mmu(&tlb, start, end);
3440 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3441 * mappping it owns the reserve page for. The intention is to unmap the page
3442 * from other VMAs and let the children be SIGKILLed if they are faulting the
3443 * same region.
3445 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3446 struct page *page, unsigned long address)
3448 struct hstate *h = hstate_vma(vma);
3449 struct vm_area_struct *iter_vma;
3450 struct address_space *mapping;
3451 pgoff_t pgoff;
3454 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3455 * from page cache lookup which is in HPAGE_SIZE units.
3457 address = address & huge_page_mask(h);
3458 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3459 vma->vm_pgoff;
3460 mapping = vma->vm_file->f_mapping;
3463 * Take the mapping lock for the duration of the table walk. As
3464 * this mapping should be shared between all the VMAs,
3465 * __unmap_hugepage_range() is called as the lock is already held
3467 i_mmap_lock_write(mapping);
3468 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3469 /* Do not unmap the current VMA */
3470 if (iter_vma == vma)
3471 continue;
3474 * Shared VMAs have their own reserves and do not affect
3475 * MAP_PRIVATE accounting but it is possible that a shared
3476 * VMA is using the same page so check and skip such VMAs.
3478 if (iter_vma->vm_flags & VM_MAYSHARE)
3479 continue;
3482 * Unmap the page from other VMAs without their own reserves.
3483 * They get marked to be SIGKILLed if they fault in these
3484 * areas. This is because a future no-page fault on this VMA
3485 * could insert a zeroed page instead of the data existing
3486 * from the time of fork. This would look like data corruption
3488 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3489 unmap_hugepage_range(iter_vma, address,
3490 address + huge_page_size(h), page);
3492 i_mmap_unlock_write(mapping);
3496 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3497 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3498 * cannot race with other handlers or page migration.
3499 * Keep the pte_same checks anyway to make transition from the mutex easier.
3501 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3502 unsigned long address, pte_t *ptep,
3503 struct page *pagecache_page, spinlock_t *ptl)
3505 pte_t pte;
3506 struct hstate *h = hstate_vma(vma);
3507 struct page *old_page, *new_page;
3508 int ret = 0, outside_reserve = 0;
3509 unsigned long mmun_start; /* For mmu_notifiers */
3510 unsigned long mmun_end; /* For mmu_notifiers */
3512 pte = huge_ptep_get(ptep);
3513 old_page = pte_page(pte);
3515 retry_avoidcopy:
3516 /* If no-one else is actually using this page, avoid the copy
3517 * and just make the page writable */
3518 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3519 page_move_anon_rmap(old_page, vma);
3520 set_huge_ptep_writable(vma, address, ptep);
3521 return 0;
3525 * If the process that created a MAP_PRIVATE mapping is about to
3526 * perform a COW due to a shared page count, attempt to satisfy
3527 * the allocation without using the existing reserves. The pagecache
3528 * page is used to determine if the reserve at this address was
3529 * consumed or not. If reserves were used, a partial faulted mapping
3530 * at the time of fork() could consume its reserves on COW instead
3531 * of the full address range.
3533 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3534 old_page != pagecache_page)
3535 outside_reserve = 1;
3537 get_page(old_page);
3540 * Drop page table lock as buddy allocator may be called. It will
3541 * be acquired again before returning to the caller, as expected.
3543 spin_unlock(ptl);
3544 new_page = alloc_huge_page(vma, address, outside_reserve);
3546 if (IS_ERR(new_page)) {
3548 * If a process owning a MAP_PRIVATE mapping fails to COW,
3549 * it is due to references held by a child and an insufficient
3550 * huge page pool. To guarantee the original mappers
3551 * reliability, unmap the page from child processes. The child
3552 * may get SIGKILLed if it later faults.
3554 if (outside_reserve) {
3555 put_page(old_page);
3556 BUG_ON(huge_pte_none(pte));
3557 unmap_ref_private(mm, vma, old_page, address);
3558 BUG_ON(huge_pte_none(pte));
3559 spin_lock(ptl);
3560 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3561 huge_page_size(h));
3562 if (likely(ptep &&
3563 pte_same(huge_ptep_get(ptep), pte)))
3564 goto retry_avoidcopy;
3566 * race occurs while re-acquiring page table
3567 * lock, and our job is done.
3569 return 0;
3572 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3573 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3574 goto out_release_old;
3578 * When the original hugepage is shared one, it does not have
3579 * anon_vma prepared.
3581 if (unlikely(anon_vma_prepare(vma))) {
3582 ret = VM_FAULT_OOM;
3583 goto out_release_all;
3586 copy_user_huge_page(new_page, old_page, address, vma,
3587 pages_per_huge_page(h));
3588 __SetPageUptodate(new_page);
3589 set_page_huge_active(new_page);
3591 mmun_start = address & huge_page_mask(h);
3592 mmun_end = mmun_start + huge_page_size(h);
3593 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3596 * Retake the page table lock to check for racing updates
3597 * before the page tables are altered
3599 spin_lock(ptl);
3600 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601 huge_page_size(h));
3602 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603 ClearPagePrivate(new_page);
3605 /* Break COW */
3606 huge_ptep_clear_flush(vma, address, ptep);
3607 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608 set_huge_pte_at(mm, address, ptep,
3609 make_huge_pte(vma, new_page, 1));
3610 page_remove_rmap(old_page, true);
3611 hugepage_add_new_anon_rmap(new_page, vma, address);
3612 /* Make the old page be freed below */
3613 new_page = old_page;
3615 spin_unlock(ptl);
3616 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3617 out_release_all:
3618 restore_reserve_on_error(h, vma, address, new_page);
3619 put_page(new_page);
3620 out_release_old:
3621 put_page(old_page);
3623 spin_lock(ptl); /* Caller expects lock to be held */
3624 return ret;
3627 /* Return the pagecache page at a given address within a VMA */
3628 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3629 struct vm_area_struct *vma, unsigned long address)
3631 struct address_space *mapping;
3632 pgoff_t idx;
3634 mapping = vma->vm_file->f_mapping;
3635 idx = vma_hugecache_offset(h, vma, address);
3637 return find_lock_page(mapping, idx);
3641 * Return whether there is a pagecache page to back given address within VMA.
3642 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3644 static bool hugetlbfs_pagecache_present(struct hstate *h,
3645 struct vm_area_struct *vma, unsigned long address)
3647 struct address_space *mapping;
3648 pgoff_t idx;
3649 struct page *page;
3651 mapping = vma->vm_file->f_mapping;
3652 idx = vma_hugecache_offset(h, vma, address);
3654 page = find_get_page(mapping, idx);
3655 if (page)
3656 put_page(page);
3657 return page != NULL;
3660 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3661 pgoff_t idx)
3663 struct inode *inode = mapping->host;
3664 struct hstate *h = hstate_inode(inode);
3665 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3667 if (err)
3668 return err;
3669 ClearPagePrivate(page);
3671 spin_lock(&inode->i_lock);
3672 inode->i_blocks += blocks_per_huge_page(h);
3673 spin_unlock(&inode->i_lock);
3674 return 0;
3677 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678 struct address_space *mapping, pgoff_t idx,
3679 unsigned long address, pte_t *ptep, unsigned int flags)
3681 struct hstate *h = hstate_vma(vma);
3682 int ret = VM_FAULT_SIGBUS;
3683 int anon_rmap = 0;
3684 unsigned long size;
3685 struct page *page;
3686 pte_t new_pte;
3687 spinlock_t *ptl;
3690 * Currently, we are forced to kill the process in the event the
3691 * original mapper has unmapped pages from the child due to a failed
3692 * COW. Warn that such a situation has occurred as it may not be obvious
3694 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3695 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696 current->pid);
3697 return ret;
3701 * Use page lock to guard against racing truncation
3702 * before we get page_table_lock.
3704 retry:
3705 page = find_lock_page(mapping, idx);
3706 if (!page) {
3707 size = i_size_read(mapping->host) >> huge_page_shift(h);
3708 if (idx >= size)
3709 goto out;
3712 * Check for page in userfault range
3714 if (userfaultfd_missing(vma)) {
3715 u32 hash;
3716 struct vm_fault vmf = {
3717 .vma = vma,
3718 .address = address,
3719 .flags = flags,
3721 * Hard to debug if it ends up being
3722 * used by a callee that assumes
3723 * something about the other
3724 * uninitialized fields... same as in
3725 * memory.c
3730 * hugetlb_fault_mutex must be dropped before
3731 * handling userfault. Reacquire after handling
3732 * fault to make calling code simpler.
3734 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3735 idx, address);
3736 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3737 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3738 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739 goto out;
3742 page = alloc_huge_page(vma, address, 0);
3743 if (IS_ERR(page)) {
3744 ret = PTR_ERR(page);
3745 if (ret == -ENOMEM)
3746 ret = VM_FAULT_OOM;
3747 else
3748 ret = VM_FAULT_SIGBUS;
3749 goto out;
3751 clear_huge_page(page, address, pages_per_huge_page(h));
3752 __SetPageUptodate(page);
3753 set_page_huge_active(page);
3755 if (vma->vm_flags & VM_MAYSHARE) {
3756 int err = huge_add_to_page_cache(page, mapping, idx);
3757 if (err) {
3758 put_page(page);
3759 if (err == -EEXIST)
3760 goto retry;
3761 goto out;
3763 } else {
3764 lock_page(page);
3765 if (unlikely(anon_vma_prepare(vma))) {
3766 ret = VM_FAULT_OOM;
3767 goto backout_unlocked;
3769 anon_rmap = 1;
3771 } else {
3773 * If memory error occurs between mmap() and fault, some process
3774 * don't have hwpoisoned swap entry for errored virtual address.
3775 * So we need to block hugepage fault by PG_hwpoison bit check.
3777 if (unlikely(PageHWPoison(page))) {
3778 ret = VM_FAULT_HWPOISON |
3779 VM_FAULT_SET_HINDEX(hstate_index(h));
3780 goto backout_unlocked;
3785 * If we are going to COW a private mapping later, we examine the
3786 * pending reservations for this page now. This will ensure that
3787 * any allocations necessary to record that reservation occur outside
3788 * the spinlock.
3790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791 if (vma_needs_reservation(h, vma, address) < 0) {
3792 ret = VM_FAULT_OOM;
3793 goto backout_unlocked;
3795 /* Just decrements count, does not deallocate */
3796 vma_end_reservation(h, vma, address);
3799 ptl = huge_pte_lock(h, mm, ptep);
3800 size = i_size_read(mapping->host) >> huge_page_shift(h);
3801 if (idx >= size)
3802 goto backout;
3804 ret = 0;
3805 if (!huge_pte_none(huge_ptep_get(ptep)))
3806 goto backout;
3808 if (anon_rmap) {
3809 ClearPagePrivate(page);
3810 hugepage_add_new_anon_rmap(page, vma, address);
3811 } else
3812 page_dup_rmap(page, true);
3813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 && (vma->vm_flags & VM_SHARED)));
3815 set_huge_pte_at(mm, address, ptep, new_pte);
3817 hugetlb_count_add(pages_per_huge_page(h), mm);
3818 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819 /* Optimization, do the COW without a second fault */
3820 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3823 spin_unlock(ptl);
3824 unlock_page(page);
3825 out:
3826 return ret;
3828 backout:
3829 spin_unlock(ptl);
3830 backout_unlocked:
3831 unlock_page(page);
3832 restore_reserve_on_error(h, vma, address, page);
3833 put_page(page);
3834 goto out;
3837 #ifdef CONFIG_SMP
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3843 unsigned long key[2];
3844 u32 hash;
3846 if (vma->vm_flags & VM_SHARED) {
3847 key[0] = (unsigned long) mapping;
3848 key[1] = idx;
3849 } else {
3850 key[0] = (unsigned long) mm;
3851 key[1] = address >> huge_page_shift(h);
3854 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3856 return hash & (num_fault_mutexes - 1);
3858 #else
3860 * For uniprocesor systems we always use a single mutex, so just
3861 * return 0 and avoid the hashing overhead.
3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864 struct vm_area_struct *vma,
3865 struct address_space *mapping,
3866 pgoff_t idx, unsigned long address)
3868 return 0;
3870 #endif
3872 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873 unsigned long address, unsigned int flags)
3875 pte_t *ptep, entry;
3876 spinlock_t *ptl;
3877 int ret;
3878 u32 hash;
3879 pgoff_t idx;
3880 struct page *page = NULL;
3881 struct page *pagecache_page = NULL;
3882 struct hstate *h = hstate_vma(vma);
3883 struct address_space *mapping;
3884 int need_wait_lock = 0;
3886 address &= huge_page_mask(h);
3888 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3889 if (ptep) {
3890 entry = huge_ptep_get(ptep);
3891 if (unlikely(is_hugetlb_entry_migration(entry))) {
3892 migration_entry_wait_huge(vma, mm, ptep);
3893 return 0;
3894 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3895 return VM_FAULT_HWPOISON_LARGE |
3896 VM_FAULT_SET_HINDEX(hstate_index(h));
3897 } else {
3898 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3899 if (!ptep)
3900 return VM_FAULT_OOM;
3903 mapping = vma->vm_file->f_mapping;
3904 idx = vma_hugecache_offset(h, vma, address);
3907 * Serialize hugepage allocation and instantiation, so that we don't
3908 * get spurious allocation failures if two CPUs race to instantiate
3909 * the same page in the page cache.
3911 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3912 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3914 entry = huge_ptep_get(ptep);
3915 if (huge_pte_none(entry)) {
3916 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3917 goto out_mutex;
3920 ret = 0;
3923 * entry could be a migration/hwpoison entry at this point, so this
3924 * check prevents the kernel from going below assuming that we have
3925 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3926 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3927 * handle it.
3929 if (!pte_present(entry))
3930 goto out_mutex;
3933 * If we are going to COW the mapping later, we examine the pending
3934 * reservations for this page now. This will ensure that any
3935 * allocations necessary to record that reservation occur outside the
3936 * spinlock. For private mappings, we also lookup the pagecache
3937 * page now as it is used to determine if a reservation has been
3938 * consumed.
3940 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3941 if (vma_needs_reservation(h, vma, address) < 0) {
3942 ret = VM_FAULT_OOM;
3943 goto out_mutex;
3945 /* Just decrements count, does not deallocate */
3946 vma_end_reservation(h, vma, address);
3948 if (!(vma->vm_flags & VM_MAYSHARE))
3949 pagecache_page = hugetlbfs_pagecache_page(h,
3950 vma, address);
3953 ptl = huge_pte_lock(h, mm, ptep);
3955 /* Check for a racing update before calling hugetlb_cow */
3956 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3957 goto out_ptl;
3960 * hugetlb_cow() requires page locks of pte_page(entry) and
3961 * pagecache_page, so here we need take the former one
3962 * when page != pagecache_page or !pagecache_page.
3964 page = pte_page(entry);
3965 if (page != pagecache_page)
3966 if (!trylock_page(page)) {
3967 need_wait_lock = 1;
3968 goto out_ptl;
3971 get_page(page);
3973 if (flags & FAULT_FLAG_WRITE) {
3974 if (!huge_pte_write(entry)) {
3975 ret = hugetlb_cow(mm, vma, address, ptep,
3976 pagecache_page, ptl);
3977 goto out_put_page;
3979 entry = huge_pte_mkdirty(entry);
3981 entry = pte_mkyoung(entry);
3982 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3983 flags & FAULT_FLAG_WRITE))
3984 update_mmu_cache(vma, address, ptep);
3985 out_put_page:
3986 if (page != pagecache_page)
3987 unlock_page(page);
3988 put_page(page);
3989 out_ptl:
3990 spin_unlock(ptl);
3992 if (pagecache_page) {
3993 unlock_page(pagecache_page);
3994 put_page(pagecache_page);
3996 out_mutex:
3997 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3999 * Generally it's safe to hold refcount during waiting page lock. But
4000 * here we just wait to defer the next page fault to avoid busy loop and
4001 * the page is not used after unlocked before returning from the current
4002 * page fault. So we are safe from accessing freed page, even if we wait
4003 * here without taking refcount.
4005 if (need_wait_lock)
4006 wait_on_page_locked(page);
4007 return ret;
4011 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4012 * modifications for huge pages.
4014 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015 pte_t *dst_pte,
4016 struct vm_area_struct *dst_vma,
4017 unsigned long dst_addr,
4018 unsigned long src_addr,
4019 struct page **pagep)
4021 struct address_space *mapping;
4022 pgoff_t idx;
4023 unsigned long size;
4024 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4025 struct hstate *h = hstate_vma(dst_vma);
4026 pte_t _dst_pte;
4027 spinlock_t *ptl;
4028 int ret;
4029 struct page *page;
4031 if (!*pagep) {
4032 ret = -ENOMEM;
4033 page = alloc_huge_page(dst_vma, dst_addr, 0);
4034 if (IS_ERR(page))
4035 goto out;
4037 ret = copy_huge_page_from_user(page,
4038 (const void __user *) src_addr,
4039 pages_per_huge_page(h), false);
4041 /* fallback to copy_from_user outside mmap_sem */
4042 if (unlikely(ret)) {
4043 ret = -EFAULT;
4044 *pagep = page;
4045 /* don't free the page */
4046 goto out;
4048 } else {
4049 page = *pagep;
4050 *pagep = NULL;
4054 * The memory barrier inside __SetPageUptodate makes sure that
4055 * preceding stores to the page contents become visible before
4056 * the set_pte_at() write.
4058 __SetPageUptodate(page);
4059 set_page_huge_active(page);
4061 mapping = dst_vma->vm_file->f_mapping;
4062 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4065 * If shared, add to page cache
4067 if (vm_shared) {
4068 size = i_size_read(mapping->host) >> huge_page_shift(h);
4069 ret = -EFAULT;
4070 if (idx >= size)
4071 goto out_release_nounlock;
4074 * Serialization between remove_inode_hugepages() and
4075 * huge_add_to_page_cache() below happens through the
4076 * hugetlb_fault_mutex_table that here must be hold by
4077 * the caller.
4079 ret = huge_add_to_page_cache(page, mapping, idx);
4080 if (ret)
4081 goto out_release_nounlock;
4084 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085 spin_lock(ptl);
4088 * Recheck the i_size after holding PT lock to make sure not
4089 * to leave any page mapped (as page_mapped()) beyond the end
4090 * of the i_size (remove_inode_hugepages() is strict about
4091 * enforcing that). If we bail out here, we'll also leave a
4092 * page in the radix tree in the vm_shared case beyond the end
4093 * of the i_size, but remove_inode_hugepages() will take care
4094 * of it as soon as we drop the hugetlb_fault_mutex_table.
4096 size = i_size_read(mapping->host) >> huge_page_shift(h);
4097 ret = -EFAULT;
4098 if (idx >= size)
4099 goto out_release_unlock;
4101 ret = -EEXIST;
4102 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4103 goto out_release_unlock;
4105 if (vm_shared) {
4106 page_dup_rmap(page, true);
4107 } else {
4108 ClearPagePrivate(page);
4109 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4112 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4113 if (dst_vma->vm_flags & VM_WRITE)
4114 _dst_pte = huge_pte_mkdirty(_dst_pte);
4115 _dst_pte = pte_mkyoung(_dst_pte);
4117 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4119 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4120 dst_vma->vm_flags & VM_WRITE);
4121 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4123 /* No need to invalidate - it was non-present before */
4124 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4126 spin_unlock(ptl);
4127 if (vm_shared)
4128 unlock_page(page);
4129 ret = 0;
4130 out:
4131 return ret;
4132 out_release_unlock:
4133 spin_unlock(ptl);
4134 if (vm_shared)
4135 unlock_page(page);
4136 out_release_nounlock:
4137 put_page(page);
4138 goto out;
4141 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4142 struct page **pages, struct vm_area_struct **vmas,
4143 unsigned long *position, unsigned long *nr_pages,
4144 long i, unsigned int flags, int *nonblocking)
4146 unsigned long pfn_offset;
4147 unsigned long vaddr = *position;
4148 unsigned long remainder = *nr_pages;
4149 struct hstate *h = hstate_vma(vma);
4150 int err = -EFAULT;
4152 while (vaddr < vma->vm_end && remainder) {
4153 pte_t *pte;
4154 spinlock_t *ptl = NULL;
4155 int absent;
4156 struct page *page;
4159 * If we have a pending SIGKILL, don't keep faulting pages and
4160 * potentially allocating memory.
4162 if (unlikely(fatal_signal_pending(current))) {
4163 remainder = 0;
4164 break;
4168 * Some archs (sparc64, sh*) have multiple pte_ts to
4169 * each hugepage. We have to make sure we get the
4170 * first, for the page indexing below to work.
4172 * Note that page table lock is not held when pte is null.
4174 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4175 huge_page_size(h));
4176 if (pte)
4177 ptl = huge_pte_lock(h, mm, pte);
4178 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4181 * When coredumping, it suits get_dump_page if we just return
4182 * an error where there's an empty slot with no huge pagecache
4183 * to back it. This way, we avoid allocating a hugepage, and
4184 * the sparse dumpfile avoids allocating disk blocks, but its
4185 * huge holes still show up with zeroes where they need to be.
4187 if (absent && (flags & FOLL_DUMP) &&
4188 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4189 if (pte)
4190 spin_unlock(ptl);
4191 remainder = 0;
4192 break;
4196 * We need call hugetlb_fault for both hugepages under migration
4197 * (in which case hugetlb_fault waits for the migration,) and
4198 * hwpoisoned hugepages (in which case we need to prevent the
4199 * caller from accessing to them.) In order to do this, we use
4200 * here is_swap_pte instead of is_hugetlb_entry_migration and
4201 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4202 * both cases, and because we can't follow correct pages
4203 * directly from any kind of swap entries.
4205 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4206 ((flags & FOLL_WRITE) &&
4207 !huge_pte_write(huge_ptep_get(pte)))) {
4208 int ret;
4209 unsigned int fault_flags = 0;
4211 if (pte)
4212 spin_unlock(ptl);
4213 if (flags & FOLL_WRITE)
4214 fault_flags |= FAULT_FLAG_WRITE;
4215 if (nonblocking)
4216 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4217 if (flags & FOLL_NOWAIT)
4218 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4219 FAULT_FLAG_RETRY_NOWAIT;
4220 if (flags & FOLL_TRIED) {
4221 VM_WARN_ON_ONCE(fault_flags &
4222 FAULT_FLAG_ALLOW_RETRY);
4223 fault_flags |= FAULT_FLAG_TRIED;
4225 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4226 if (ret & VM_FAULT_ERROR) {
4227 err = vm_fault_to_errno(ret, flags);
4228 remainder = 0;
4229 break;
4231 if (ret & VM_FAULT_RETRY) {
4232 if (nonblocking)
4233 *nonblocking = 0;
4234 *nr_pages = 0;
4236 * VM_FAULT_RETRY must not return an
4237 * error, it will return zero
4238 * instead.
4240 * No need to update "position" as the
4241 * caller will not check it after
4242 * *nr_pages is set to 0.
4244 return i;
4246 continue;
4249 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4250 page = pte_page(huge_ptep_get(pte));
4251 same_page:
4252 if (pages) {
4253 pages[i] = mem_map_offset(page, pfn_offset);
4254 get_page(pages[i]);
4257 if (vmas)
4258 vmas[i] = vma;
4260 vaddr += PAGE_SIZE;
4261 ++pfn_offset;
4262 --remainder;
4263 ++i;
4264 if (vaddr < vma->vm_end && remainder &&
4265 pfn_offset < pages_per_huge_page(h)) {
4267 * We use pfn_offset to avoid touching the pageframes
4268 * of this compound page.
4270 goto same_page;
4272 spin_unlock(ptl);
4274 *nr_pages = remainder;
4276 * setting position is actually required only if remainder is
4277 * not zero but it's faster not to add a "if (remainder)"
4278 * branch.
4280 *position = vaddr;
4282 return i ? i : err;
4285 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4287 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4288 * implement this.
4290 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4291 #endif
4293 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4294 unsigned long address, unsigned long end, pgprot_t newprot)
4296 struct mm_struct *mm = vma->vm_mm;
4297 unsigned long start = address;
4298 pte_t *ptep;
4299 pte_t pte;
4300 struct hstate *h = hstate_vma(vma);
4301 unsigned long pages = 0;
4303 BUG_ON(address >= end);
4304 flush_cache_range(vma, address, end);
4306 mmu_notifier_invalidate_range_start(mm, start, end);
4307 i_mmap_lock_write(vma->vm_file->f_mapping);
4308 for (; address < end; address += huge_page_size(h)) {
4309 spinlock_t *ptl;
4310 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4311 if (!ptep)
4312 continue;
4313 ptl = huge_pte_lock(h, mm, ptep);
4314 if (huge_pmd_unshare(mm, &address, ptep)) {
4315 pages++;
4316 spin_unlock(ptl);
4317 continue;
4319 pte = huge_ptep_get(ptep);
4320 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4321 spin_unlock(ptl);
4322 continue;
4324 if (unlikely(is_hugetlb_entry_migration(pte))) {
4325 swp_entry_t entry = pte_to_swp_entry(pte);
4327 if (is_write_migration_entry(entry)) {
4328 pte_t newpte;
4330 make_migration_entry_read(&entry);
4331 newpte = swp_entry_to_pte(entry);
4332 set_huge_swap_pte_at(mm, address, ptep,
4333 newpte, huge_page_size(h));
4334 pages++;
4336 spin_unlock(ptl);
4337 continue;
4339 if (!huge_pte_none(pte)) {
4340 pte = huge_ptep_get_and_clear(mm, address, ptep);
4341 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4342 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4343 set_huge_pte_at(mm, address, ptep, pte);
4344 pages++;
4346 spin_unlock(ptl);
4349 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4350 * may have cleared our pud entry and done put_page on the page table:
4351 * once we release i_mmap_rwsem, another task can do the final put_page
4352 * and that page table be reused and filled with junk.
4354 flush_hugetlb_tlb_range(vma, start, end);
4356 * No need to call mmu_notifier_invalidate_range() we are downgrading
4357 * page table protection not changing it to point to a new page.
4359 * See Documentation/vm/mmu_notifier.txt
4361 i_mmap_unlock_write(vma->vm_file->f_mapping);
4362 mmu_notifier_invalidate_range_end(mm, start, end);
4364 return pages << h->order;
4367 int hugetlb_reserve_pages(struct inode *inode,
4368 long from, long to,
4369 struct vm_area_struct *vma,
4370 vm_flags_t vm_flags)
4372 long ret, chg;
4373 struct hstate *h = hstate_inode(inode);
4374 struct hugepage_subpool *spool = subpool_inode(inode);
4375 struct resv_map *resv_map;
4376 long gbl_reserve;
4378 /* This should never happen */
4379 if (from > to) {
4380 VM_WARN(1, "%s called with a negative range\n", __func__);
4381 return -EINVAL;
4385 * Only apply hugepage reservation if asked. At fault time, an
4386 * attempt will be made for VM_NORESERVE to allocate a page
4387 * without using reserves
4389 if (vm_flags & VM_NORESERVE)
4390 return 0;
4393 * Shared mappings base their reservation on the number of pages that
4394 * are already allocated on behalf of the file. Private mappings need
4395 * to reserve the full area even if read-only as mprotect() may be
4396 * called to make the mapping read-write. Assume !vma is a shm mapping
4398 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4399 resv_map = inode_resv_map(inode);
4401 chg = region_chg(resv_map, from, to);
4403 } else {
4404 resv_map = resv_map_alloc();
4405 if (!resv_map)
4406 return -ENOMEM;
4408 chg = to - from;
4410 set_vma_resv_map(vma, resv_map);
4411 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4414 if (chg < 0) {
4415 ret = chg;
4416 goto out_err;
4420 * There must be enough pages in the subpool for the mapping. If
4421 * the subpool has a minimum size, there may be some global
4422 * reservations already in place (gbl_reserve).
4424 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4425 if (gbl_reserve < 0) {
4426 ret = -ENOSPC;
4427 goto out_err;
4431 * Check enough hugepages are available for the reservation.
4432 * Hand the pages back to the subpool if there are not
4434 ret = hugetlb_acct_memory(h, gbl_reserve);
4435 if (ret < 0) {
4436 /* put back original number of pages, chg */
4437 (void)hugepage_subpool_put_pages(spool, chg);
4438 goto out_err;
4442 * Account for the reservations made. Shared mappings record regions
4443 * that have reservations as they are shared by multiple VMAs.
4444 * When the last VMA disappears, the region map says how much
4445 * the reservation was and the page cache tells how much of
4446 * the reservation was consumed. Private mappings are per-VMA and
4447 * only the consumed reservations are tracked. When the VMA
4448 * disappears, the original reservation is the VMA size and the
4449 * consumed reservations are stored in the map. Hence, nothing
4450 * else has to be done for private mappings here
4452 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4453 long add = region_add(resv_map, from, to);
4455 if (unlikely(chg > add)) {
4457 * pages in this range were added to the reserve
4458 * map between region_chg and region_add. This
4459 * indicates a race with alloc_huge_page. Adjust
4460 * the subpool and reserve counts modified above
4461 * based on the difference.
4463 long rsv_adjust;
4465 rsv_adjust = hugepage_subpool_put_pages(spool,
4466 chg - add);
4467 hugetlb_acct_memory(h, -rsv_adjust);
4470 return 0;
4471 out_err:
4472 if (!vma || vma->vm_flags & VM_MAYSHARE)
4473 /* Don't call region_abort if region_chg failed */
4474 if (chg >= 0)
4475 region_abort(resv_map, from, to);
4476 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4477 kref_put(&resv_map->refs, resv_map_release);
4478 return ret;
4481 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4482 long freed)
4484 struct hstate *h = hstate_inode(inode);
4485 struct resv_map *resv_map = inode_resv_map(inode);
4486 long chg = 0;
4487 struct hugepage_subpool *spool = subpool_inode(inode);
4488 long gbl_reserve;
4490 if (resv_map) {
4491 chg = region_del(resv_map, start, end);
4493 * region_del() can fail in the rare case where a region
4494 * must be split and another region descriptor can not be
4495 * allocated. If end == LONG_MAX, it will not fail.
4497 if (chg < 0)
4498 return chg;
4501 spin_lock(&inode->i_lock);
4502 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4503 spin_unlock(&inode->i_lock);
4506 * If the subpool has a minimum size, the number of global
4507 * reservations to be released may be adjusted.
4509 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4510 hugetlb_acct_memory(h, -gbl_reserve);
4512 return 0;
4515 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4516 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4517 struct vm_area_struct *vma,
4518 unsigned long addr, pgoff_t idx)
4520 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4521 svma->vm_start;
4522 unsigned long sbase = saddr & PUD_MASK;
4523 unsigned long s_end = sbase + PUD_SIZE;
4525 /* Allow segments to share if only one is marked locked */
4526 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4527 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4530 * match the virtual addresses, permission and the alignment of the
4531 * page table page.
4533 if (pmd_index(addr) != pmd_index(saddr) ||
4534 vm_flags != svm_flags ||
4535 sbase < svma->vm_start || svma->vm_end < s_end)
4536 return 0;
4538 return saddr;
4541 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4543 unsigned long base = addr & PUD_MASK;
4544 unsigned long end = base + PUD_SIZE;
4547 * check on proper vm_flags and page table alignment
4549 if (vma->vm_flags & VM_MAYSHARE &&
4550 vma->vm_start <= base && end <= vma->vm_end)
4551 return true;
4552 return false;
4556 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4557 * and returns the corresponding pte. While this is not necessary for the
4558 * !shared pmd case because we can allocate the pmd later as well, it makes the
4559 * code much cleaner. pmd allocation is essential for the shared case because
4560 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4561 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4562 * bad pmd for sharing.
4564 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4566 struct vm_area_struct *vma = find_vma(mm, addr);
4567 struct address_space *mapping = vma->vm_file->f_mapping;
4568 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4569 vma->vm_pgoff;
4570 struct vm_area_struct *svma;
4571 unsigned long saddr;
4572 pte_t *spte = NULL;
4573 pte_t *pte;
4574 spinlock_t *ptl;
4576 if (!vma_shareable(vma, addr))
4577 return (pte_t *)pmd_alloc(mm, pud, addr);
4579 i_mmap_lock_write(mapping);
4580 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4581 if (svma == vma)
4582 continue;
4584 saddr = page_table_shareable(svma, vma, addr, idx);
4585 if (saddr) {
4586 spte = huge_pte_offset(svma->vm_mm, saddr,
4587 vma_mmu_pagesize(svma));
4588 if (spte) {
4589 get_page(virt_to_page(spte));
4590 break;
4595 if (!spte)
4596 goto out;
4598 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4599 if (pud_none(*pud)) {
4600 pud_populate(mm, pud,
4601 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4602 mm_inc_nr_pmds(mm);
4603 } else {
4604 put_page(virt_to_page(spte));
4606 spin_unlock(ptl);
4607 out:
4608 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4609 i_mmap_unlock_write(mapping);
4610 return pte;
4614 * unmap huge page backed by shared pte.
4616 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4617 * indicated by page_count > 1, unmap is achieved by clearing pud and
4618 * decrementing the ref count. If count == 1, the pte page is not shared.
4620 * called with page table lock held.
4622 * returns: 1 successfully unmapped a shared pte page
4623 * 0 the underlying pte page is not shared, or it is the last user
4625 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627 pgd_t *pgd = pgd_offset(mm, *addr);
4628 p4d_t *p4d = p4d_offset(pgd, *addr);
4629 pud_t *pud = pud_offset(p4d, *addr);
4631 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4632 if (page_count(virt_to_page(ptep)) == 1)
4633 return 0;
4635 pud_clear(pud);
4636 put_page(virt_to_page(ptep));
4637 mm_dec_nr_pmds(mm);
4638 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4639 return 1;
4641 #define want_pmd_share() (1)
4642 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4643 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4645 return NULL;
4648 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4650 return 0;
4652 #define want_pmd_share() (0)
4653 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4655 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4656 pte_t *huge_pte_alloc(struct mm_struct *mm,
4657 unsigned long addr, unsigned long sz)
4659 pgd_t *pgd;
4660 p4d_t *p4d;
4661 pud_t *pud;
4662 pte_t *pte = NULL;
4664 pgd = pgd_offset(mm, addr);
4665 p4d = p4d_alloc(mm, pgd, addr);
4666 if (!p4d)
4667 return NULL;
4668 pud = pud_alloc(mm, p4d, addr);
4669 if (pud) {
4670 if (sz == PUD_SIZE) {
4671 pte = (pte_t *)pud;
4672 } else {
4673 BUG_ON(sz != PMD_SIZE);
4674 if (want_pmd_share() && pud_none(*pud))
4675 pte = huge_pmd_share(mm, addr, pud);
4676 else
4677 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4680 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4682 return pte;
4686 * huge_pte_offset() - Walk the page table to resolve the hugepage
4687 * entry at address @addr
4689 * Return: Pointer to page table or swap entry (PUD or PMD) for
4690 * address @addr, or NULL if a p*d_none() entry is encountered and the
4691 * size @sz doesn't match the hugepage size at this level of the page
4692 * table.
4694 pte_t *huge_pte_offset(struct mm_struct *mm,
4695 unsigned long addr, unsigned long sz)
4697 pgd_t *pgd;
4698 p4d_t *p4d;
4699 pud_t *pud;
4700 pmd_t *pmd;
4702 pgd = pgd_offset(mm, addr);
4703 if (!pgd_present(*pgd))
4704 return NULL;
4705 p4d = p4d_offset(pgd, addr);
4706 if (!p4d_present(*p4d))
4707 return NULL;
4709 pud = pud_offset(p4d, addr);
4710 if (sz != PUD_SIZE && pud_none(*pud))
4711 return NULL;
4712 /* hugepage or swap? */
4713 if (pud_huge(*pud) || !pud_present(*pud))
4714 return (pte_t *)pud;
4716 pmd = pmd_offset(pud, addr);
4717 if (sz != PMD_SIZE && pmd_none(*pmd))
4718 return NULL;
4719 /* hugepage or swap? */
4720 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4721 return (pte_t *)pmd;
4723 return NULL;
4726 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4729 * These functions are overwritable if your architecture needs its own
4730 * behavior.
4732 struct page * __weak
4733 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4734 int write)
4736 return ERR_PTR(-EINVAL);
4739 struct page * __weak
4740 follow_huge_pd(struct vm_area_struct *vma,
4741 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4743 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4744 return NULL;
4747 struct page * __weak
4748 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4749 pmd_t *pmd, int flags)
4751 struct page *page = NULL;
4752 spinlock_t *ptl;
4753 pte_t pte;
4754 retry:
4755 ptl = pmd_lockptr(mm, pmd);
4756 spin_lock(ptl);
4758 * make sure that the address range covered by this pmd is not
4759 * unmapped from other threads.
4761 if (!pmd_huge(*pmd))
4762 goto out;
4763 pte = huge_ptep_get((pte_t *)pmd);
4764 if (pte_present(pte)) {
4765 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4766 if (flags & FOLL_GET)
4767 get_page(page);
4768 } else {
4769 if (is_hugetlb_entry_migration(pte)) {
4770 spin_unlock(ptl);
4771 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4772 goto retry;
4775 * hwpoisoned entry is treated as no_page_table in
4776 * follow_page_mask().
4779 out:
4780 spin_unlock(ptl);
4781 return page;
4784 struct page * __weak
4785 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4786 pud_t *pud, int flags)
4788 if (flags & FOLL_GET)
4789 return NULL;
4791 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4794 struct page * __weak
4795 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4797 if (flags & FOLL_GET)
4798 return NULL;
4800 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4803 bool isolate_huge_page(struct page *page, struct list_head *list)
4805 bool ret = true;
4807 VM_BUG_ON_PAGE(!PageHead(page), page);
4808 spin_lock(&hugetlb_lock);
4809 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4810 ret = false;
4811 goto unlock;
4813 clear_page_huge_active(page);
4814 list_move_tail(&page->lru, list);
4815 unlock:
4816 spin_unlock(&hugetlb_lock);
4817 return ret;
4820 void putback_active_hugepage(struct page *page)
4822 VM_BUG_ON_PAGE(!PageHead(page), page);
4823 spin_lock(&hugetlb_lock);
4824 set_page_huge_active(page);
4825 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4826 spin_unlock(&hugetlb_lock);
4827 put_page(page);
4830 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4832 struct hstate *h = page_hstate(oldpage);
4834 hugetlb_cgroup_migrate(oldpage, newpage);
4835 set_page_owner_migrate_reason(newpage, reason);
4838 * transfer temporary state of the new huge page. This is
4839 * reverse to other transitions because the newpage is going to
4840 * be final while the old one will be freed so it takes over
4841 * the temporary status.
4843 * Also note that we have to transfer the per-node surplus state
4844 * here as well otherwise the global surplus count will not match
4845 * the per-node's.
4847 if (PageHugeTemporary(newpage)) {
4848 int old_nid = page_to_nid(oldpage);
4849 int new_nid = page_to_nid(newpage);
4851 SetPageHugeTemporary(oldpage);
4852 ClearPageHugeTemporary(newpage);
4854 spin_lock(&hugetlb_lock);
4855 if (h->surplus_huge_pages_node[old_nid]) {
4856 h->surplus_huge_pages_node[old_nid]--;
4857 h->surplus_huge_pages_node[new_nid]++;
4859 spin_unlock(&hugetlb_lock);