Revert "Bluetooth: btusb: Fix quirk for Atheros 1525/QCA6174"
[linux/fpc-iii.git] / mm / vmscan.c
blobf6a1587f9f3196d7664a9984fd51bad54c6ef92f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 /* Allocation order */
72 int order;
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
78 nodemask_t *nodemask;
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness = 60;
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
157 unsigned long vm_total_pages;
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
165 return !sc->target_mem_cgroup;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control *sc)
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
193 #else
194 static bool global_reclaim(struct scan_control *sc)
196 return true;
199 static bool sane_reclaim(struct scan_control *sc)
201 return true;
203 #endif
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone *zone)
212 unsigned long nr;
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220 return nr;
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
226 * @lru: lru to use
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
229 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
231 unsigned long lru_size;
232 int zid;
234 if (!mem_cgroup_disabled())
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 else
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 unsigned long size;
243 if (!managed_zone(zone))
244 continue;
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 else
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
254 return lru_size;
259 * Add a shrinker callback to be called from the vm.
261 int prealloc_shrinker(struct shrinker *shrinker)
263 size_t size = sizeof(*shrinker->nr_deferred);
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 size *= nr_node_ids;
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
270 return -ENOMEM;
271 return 0;
274 void free_prealloced_shrinker(struct shrinker *shrinker)
276 kfree(shrinker->nr_deferred);
277 shrinker->nr_deferred = NULL;
280 void register_shrinker_prepared(struct shrinker *shrinker)
282 down_write(&shrinker_rwsem);
283 list_add_tail(&shrinker->list, &shrinker_list);
284 up_write(&shrinker_rwsem);
287 int register_shrinker(struct shrinker *shrinker)
289 int err = prealloc_shrinker(shrinker);
291 if (err)
292 return err;
293 register_shrinker_prepared(shrinker);
294 return 0;
296 EXPORT_SYMBOL(register_shrinker);
299 * Remove one
301 void unregister_shrinker(struct shrinker *shrinker)
303 if (!shrinker->nr_deferred)
304 return;
305 down_write(&shrinker_rwsem);
306 list_del(&shrinker->list);
307 up_write(&shrinker_rwsem);
308 kfree(shrinker->nr_deferred);
309 shrinker->nr_deferred = NULL;
311 EXPORT_SYMBOL(unregister_shrinker);
313 #define SHRINK_BATCH 128
315 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
316 struct shrinker *shrinker, int priority)
318 unsigned long freed = 0;
319 unsigned long long delta;
320 long total_scan;
321 long freeable;
322 long nr;
323 long new_nr;
324 int nid = shrinkctl->nid;
325 long batch_size = shrinker->batch ? shrinker->batch
326 : SHRINK_BATCH;
327 long scanned = 0, next_deferred;
329 freeable = shrinker->count_objects(shrinker, shrinkctl);
330 if (freeable == 0)
331 return 0;
334 * copy the current shrinker scan count into a local variable
335 * and zero it so that other concurrent shrinker invocations
336 * don't also do this scanning work.
338 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
340 total_scan = nr;
341 delta = freeable >> priority;
342 delta *= 4;
343 do_div(delta, shrinker->seeks);
344 total_scan += delta;
345 if (total_scan < 0) {
346 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 shrinker->scan_objects, total_scan);
348 total_scan = freeable;
349 next_deferred = nr;
350 } else
351 next_deferred = total_scan;
354 * We need to avoid excessive windup on filesystem shrinkers
355 * due to large numbers of GFP_NOFS allocations causing the
356 * shrinkers to return -1 all the time. This results in a large
357 * nr being built up so when a shrink that can do some work
358 * comes along it empties the entire cache due to nr >>>
359 * freeable. This is bad for sustaining a working set in
360 * memory.
362 * Hence only allow the shrinker to scan the entire cache when
363 * a large delta change is calculated directly.
365 if (delta < freeable / 4)
366 total_scan = min(total_scan, freeable / 2);
369 * Avoid risking looping forever due to too large nr value:
370 * never try to free more than twice the estimate number of
371 * freeable entries.
373 if (total_scan > freeable * 2)
374 total_scan = freeable * 2;
376 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
377 freeable, delta, total_scan, priority);
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
386 * batch_size.
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
392 * possible.
394 while (total_scan >= batch_size ||
395 total_scan >= freeable) {
396 unsigned long ret;
397 unsigned long nr_to_scan = min(batch_size, total_scan);
399 shrinkctl->nr_to_scan = nr_to_scan;
400 shrinkctl->nr_scanned = nr_to_scan;
401 ret = shrinker->scan_objects(shrinker, shrinkctl);
402 if (ret == SHRINK_STOP)
403 break;
404 freed += ret;
406 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 total_scan -= shrinkctl->nr_scanned;
408 scanned += shrinkctl->nr_scanned;
410 cond_resched();
413 if (next_deferred >= scanned)
414 next_deferred -= scanned;
415 else
416 next_deferred = 0;
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
422 if (next_deferred > 0)
423 new_nr = atomic_long_add_return(next_deferred,
424 &shrinker->nr_deferred[nid]);
425 else
426 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 return freed;
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @priority: the reclaim priority
439 * Call the shrink functions to age shrinkable caches.
441 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
442 * unaware shrinkers will receive a node id of 0 instead.
444 * @memcg specifies the memory cgroup to target. If it is not NULL,
445 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
446 * objects from the memory cgroup specified. Otherwise, only unaware
447 * shrinkers are called.
449 * @priority is sc->priority, we take the number of objects and >> by priority
450 * in order to get the scan target.
452 * Returns the number of reclaimed slab objects.
454 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
455 struct mem_cgroup *memcg,
456 int priority)
458 struct shrinker *shrinker;
459 unsigned long freed = 0;
461 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
462 return 0;
464 if (!down_read_trylock(&shrinker_rwsem)) {
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
469 * time.
471 freed = 1;
472 goto out;
475 list_for_each_entry(shrinker, &shrinker_list, list) {
476 struct shrink_control sc = {
477 .gfp_mask = gfp_mask,
478 .nid = nid,
479 .memcg = memcg,
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
487 if (memcg_kmem_enabled() &&
488 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
489 continue;
491 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
492 sc.nid = 0;
494 freed += do_shrink_slab(&sc, shrinker, priority);
496 * Bail out if someone want to register a new shrinker to
497 * prevent the regsitration from being stalled for long periods
498 * by parallel ongoing shrinking.
500 if (rwsem_is_contended(&shrinker_rwsem)) {
501 freed = freed ? : 1;
502 break;
506 up_read(&shrinker_rwsem);
507 out:
508 cond_resched();
509 return freed;
512 void drop_slab_node(int nid)
514 unsigned long freed;
516 do {
517 struct mem_cgroup *memcg = NULL;
519 freed = 0;
520 do {
521 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
522 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
523 } while (freed > 10);
526 void drop_slab(void)
528 int nid;
530 for_each_online_node(nid)
531 drop_slab_node(nid);
534 static inline int is_page_cache_freeable(struct page *page)
537 * A freeable page cache page is referenced only by the caller
538 * that isolated the page, the page cache radix tree and
539 * optional buffer heads at page->private.
541 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
542 HPAGE_PMD_NR : 1;
543 return page_count(page) - page_has_private(page) == 1 + radix_pins;
546 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
548 if (current->flags & PF_SWAPWRITE)
549 return 1;
550 if (!inode_write_congested(inode))
551 return 1;
552 if (inode_to_bdi(inode) == current->backing_dev_info)
553 return 1;
554 return 0;
558 * We detected a synchronous write error writing a page out. Probably
559 * -ENOSPC. We need to propagate that into the address_space for a subsequent
560 * fsync(), msync() or close().
562 * The tricky part is that after writepage we cannot touch the mapping: nothing
563 * prevents it from being freed up. But we have a ref on the page and once
564 * that page is locked, the mapping is pinned.
566 * We're allowed to run sleeping lock_page() here because we know the caller has
567 * __GFP_FS.
569 static void handle_write_error(struct address_space *mapping,
570 struct page *page, int error)
572 lock_page(page);
573 if (page_mapping(page) == mapping)
574 mapping_set_error(mapping, error);
575 unlock_page(page);
578 /* possible outcome of pageout() */
579 typedef enum {
580 /* failed to write page out, page is locked */
581 PAGE_KEEP,
582 /* move page to the active list, page is locked */
583 PAGE_ACTIVATE,
584 /* page has been sent to the disk successfully, page is unlocked */
585 PAGE_SUCCESS,
586 /* page is clean and locked */
587 PAGE_CLEAN,
588 } pageout_t;
591 * pageout is called by shrink_page_list() for each dirty page.
592 * Calls ->writepage().
594 static pageout_t pageout(struct page *page, struct address_space *mapping,
595 struct scan_control *sc)
598 * If the page is dirty, only perform writeback if that write
599 * will be non-blocking. To prevent this allocation from being
600 * stalled by pagecache activity. But note that there may be
601 * stalls if we need to run get_block(). We could test
602 * PagePrivate for that.
604 * If this process is currently in __generic_file_write_iter() against
605 * this page's queue, we can perform writeback even if that
606 * will block.
608 * If the page is swapcache, write it back even if that would
609 * block, for some throttling. This happens by accident, because
610 * swap_backing_dev_info is bust: it doesn't reflect the
611 * congestion state of the swapdevs. Easy to fix, if needed.
613 if (!is_page_cache_freeable(page))
614 return PAGE_KEEP;
615 if (!mapping) {
617 * Some data journaling orphaned pages can have
618 * page->mapping == NULL while being dirty with clean buffers.
620 if (page_has_private(page)) {
621 if (try_to_free_buffers(page)) {
622 ClearPageDirty(page);
623 pr_info("%s: orphaned page\n", __func__);
624 return PAGE_CLEAN;
627 return PAGE_KEEP;
629 if (mapping->a_ops->writepage == NULL)
630 return PAGE_ACTIVATE;
631 if (!may_write_to_inode(mapping->host, sc))
632 return PAGE_KEEP;
634 if (clear_page_dirty_for_io(page)) {
635 int res;
636 struct writeback_control wbc = {
637 .sync_mode = WB_SYNC_NONE,
638 .nr_to_write = SWAP_CLUSTER_MAX,
639 .range_start = 0,
640 .range_end = LLONG_MAX,
641 .for_reclaim = 1,
644 SetPageReclaim(page);
645 res = mapping->a_ops->writepage(page, &wbc);
646 if (res < 0)
647 handle_write_error(mapping, page, res);
648 if (res == AOP_WRITEPAGE_ACTIVATE) {
649 ClearPageReclaim(page);
650 return PAGE_ACTIVATE;
653 if (!PageWriteback(page)) {
654 /* synchronous write or broken a_ops? */
655 ClearPageReclaim(page);
657 trace_mm_vmscan_writepage(page);
658 inc_node_page_state(page, NR_VMSCAN_WRITE);
659 return PAGE_SUCCESS;
662 return PAGE_CLEAN;
666 * Same as remove_mapping, but if the page is removed from the mapping, it
667 * gets returned with a refcount of 0.
669 static int __remove_mapping(struct address_space *mapping, struct page *page,
670 bool reclaimed)
672 unsigned long flags;
673 int refcount;
675 BUG_ON(!PageLocked(page));
676 BUG_ON(mapping != page_mapping(page));
678 spin_lock_irqsave(&mapping->tree_lock, flags);
680 * The non racy check for a busy page.
682 * Must be careful with the order of the tests. When someone has
683 * a ref to the page, it may be possible that they dirty it then
684 * drop the reference. So if PageDirty is tested before page_count
685 * here, then the following race may occur:
687 * get_user_pages(&page);
688 * [user mapping goes away]
689 * write_to(page);
690 * !PageDirty(page) [good]
691 * SetPageDirty(page);
692 * put_page(page);
693 * !page_count(page) [good, discard it]
695 * [oops, our write_to data is lost]
697 * Reversing the order of the tests ensures such a situation cannot
698 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
699 * load is not satisfied before that of page->_refcount.
701 * Note that if SetPageDirty is always performed via set_page_dirty,
702 * and thus under tree_lock, then this ordering is not required.
704 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
705 refcount = 1 + HPAGE_PMD_NR;
706 else
707 refcount = 2;
708 if (!page_ref_freeze(page, refcount))
709 goto cannot_free;
710 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
711 if (unlikely(PageDirty(page))) {
712 page_ref_unfreeze(page, refcount);
713 goto cannot_free;
716 if (PageSwapCache(page)) {
717 swp_entry_t swap = { .val = page_private(page) };
718 mem_cgroup_swapout(page, swap);
719 __delete_from_swap_cache(page);
720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
721 put_swap_page(page, swap);
722 } else {
723 void (*freepage)(struct page *);
724 void *shadow = NULL;
726 freepage = mapping->a_ops->freepage;
728 * Remember a shadow entry for reclaimed file cache in
729 * order to detect refaults, thus thrashing, later on.
731 * But don't store shadows in an address space that is
732 * already exiting. This is not just an optizimation,
733 * inode reclaim needs to empty out the radix tree or
734 * the nodes are lost. Don't plant shadows behind its
735 * back.
737 * We also don't store shadows for DAX mappings because the
738 * only page cache pages found in these are zero pages
739 * covering holes, and because we don't want to mix DAX
740 * exceptional entries and shadow exceptional entries in the
741 * same page_tree.
743 if (reclaimed && page_is_file_cache(page) &&
744 !mapping_exiting(mapping) && !dax_mapping(mapping))
745 shadow = workingset_eviction(mapping, page);
746 __delete_from_page_cache(page, shadow);
747 spin_unlock_irqrestore(&mapping->tree_lock, flags);
749 if (freepage != NULL)
750 freepage(page);
753 return 1;
755 cannot_free:
756 spin_unlock_irqrestore(&mapping->tree_lock, flags);
757 return 0;
761 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
762 * someone else has a ref on the page, abort and return 0. If it was
763 * successfully detached, return 1. Assumes the caller has a single ref on
764 * this page.
766 int remove_mapping(struct address_space *mapping, struct page *page)
768 if (__remove_mapping(mapping, page, false)) {
770 * Unfreezing the refcount with 1 rather than 2 effectively
771 * drops the pagecache ref for us without requiring another
772 * atomic operation.
774 page_ref_unfreeze(page, 1);
775 return 1;
777 return 0;
781 * putback_lru_page - put previously isolated page onto appropriate LRU list
782 * @page: page to be put back to appropriate lru list
784 * Add previously isolated @page to appropriate LRU list.
785 * Page may still be unevictable for other reasons.
787 * lru_lock must not be held, interrupts must be enabled.
789 void putback_lru_page(struct page *page)
791 lru_cache_add(page);
792 put_page(page); /* drop ref from isolate */
795 enum page_references {
796 PAGEREF_RECLAIM,
797 PAGEREF_RECLAIM_CLEAN,
798 PAGEREF_KEEP,
799 PAGEREF_ACTIVATE,
802 static enum page_references page_check_references(struct page *page,
803 struct scan_control *sc)
805 int referenced_ptes, referenced_page;
806 unsigned long vm_flags;
808 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
809 &vm_flags);
810 referenced_page = TestClearPageReferenced(page);
813 * Mlock lost the isolation race with us. Let try_to_unmap()
814 * move the page to the unevictable list.
816 if (vm_flags & VM_LOCKED)
817 return PAGEREF_RECLAIM;
819 if (referenced_ptes) {
820 if (PageSwapBacked(page))
821 return PAGEREF_ACTIVATE;
823 * All mapped pages start out with page table
824 * references from the instantiating fault, so we need
825 * to look twice if a mapped file page is used more
826 * than once.
828 * Mark it and spare it for another trip around the
829 * inactive list. Another page table reference will
830 * lead to its activation.
832 * Note: the mark is set for activated pages as well
833 * so that recently deactivated but used pages are
834 * quickly recovered.
836 SetPageReferenced(page);
838 if (referenced_page || referenced_ptes > 1)
839 return PAGEREF_ACTIVATE;
842 * Activate file-backed executable pages after first usage.
844 if (vm_flags & VM_EXEC)
845 return PAGEREF_ACTIVATE;
847 return PAGEREF_KEEP;
850 /* Reclaim if clean, defer dirty pages to writeback */
851 if (referenced_page && !PageSwapBacked(page))
852 return PAGEREF_RECLAIM_CLEAN;
854 return PAGEREF_RECLAIM;
857 /* Check if a page is dirty or under writeback */
858 static void page_check_dirty_writeback(struct page *page,
859 bool *dirty, bool *writeback)
861 struct address_space *mapping;
864 * Anonymous pages are not handled by flushers and must be written
865 * from reclaim context. Do not stall reclaim based on them
867 if (!page_is_file_cache(page) ||
868 (PageAnon(page) && !PageSwapBacked(page))) {
869 *dirty = false;
870 *writeback = false;
871 return;
874 /* By default assume that the page flags are accurate */
875 *dirty = PageDirty(page);
876 *writeback = PageWriteback(page);
878 /* Verify dirty/writeback state if the filesystem supports it */
879 if (!page_has_private(page))
880 return;
882 mapping = page_mapping(page);
883 if (mapping && mapping->a_ops->is_dirty_writeback)
884 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
887 struct reclaim_stat {
888 unsigned nr_dirty;
889 unsigned nr_unqueued_dirty;
890 unsigned nr_congested;
891 unsigned nr_writeback;
892 unsigned nr_immediate;
893 unsigned nr_activate;
894 unsigned nr_ref_keep;
895 unsigned nr_unmap_fail;
899 * shrink_page_list() returns the number of reclaimed pages
901 static unsigned long shrink_page_list(struct list_head *page_list,
902 struct pglist_data *pgdat,
903 struct scan_control *sc,
904 enum ttu_flags ttu_flags,
905 struct reclaim_stat *stat,
906 bool force_reclaim)
908 LIST_HEAD(ret_pages);
909 LIST_HEAD(free_pages);
910 int pgactivate = 0;
911 unsigned nr_unqueued_dirty = 0;
912 unsigned nr_dirty = 0;
913 unsigned nr_congested = 0;
914 unsigned nr_reclaimed = 0;
915 unsigned nr_writeback = 0;
916 unsigned nr_immediate = 0;
917 unsigned nr_ref_keep = 0;
918 unsigned nr_unmap_fail = 0;
920 cond_resched();
922 while (!list_empty(page_list)) {
923 struct address_space *mapping;
924 struct page *page;
925 int may_enter_fs;
926 enum page_references references = PAGEREF_RECLAIM_CLEAN;
927 bool dirty, writeback;
929 cond_resched();
931 page = lru_to_page(page_list);
932 list_del(&page->lru);
934 if (!trylock_page(page))
935 goto keep;
937 VM_BUG_ON_PAGE(PageActive(page), page);
939 sc->nr_scanned++;
941 if (unlikely(!page_evictable(page)))
942 goto activate_locked;
944 if (!sc->may_unmap && page_mapped(page))
945 goto keep_locked;
947 /* Double the slab pressure for mapped and swapcache pages */
948 if ((page_mapped(page) || PageSwapCache(page)) &&
949 !(PageAnon(page) && !PageSwapBacked(page)))
950 sc->nr_scanned++;
952 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
953 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
956 * The number of dirty pages determines if a zone is marked
957 * reclaim_congested which affects wait_iff_congested. kswapd
958 * will stall and start writing pages if the tail of the LRU
959 * is all dirty unqueued pages.
961 page_check_dirty_writeback(page, &dirty, &writeback);
962 if (dirty || writeback)
963 nr_dirty++;
965 if (dirty && !writeback)
966 nr_unqueued_dirty++;
969 * Treat this page as congested if the underlying BDI is or if
970 * pages are cycling through the LRU so quickly that the
971 * pages marked for immediate reclaim are making it to the
972 * end of the LRU a second time.
974 mapping = page_mapping(page);
975 if (((dirty || writeback) && mapping &&
976 inode_write_congested(mapping->host)) ||
977 (writeback && PageReclaim(page)))
978 nr_congested++;
981 * If a page at the tail of the LRU is under writeback, there
982 * are three cases to consider.
984 * 1) If reclaim is encountering an excessive number of pages
985 * under writeback and this page is both under writeback and
986 * PageReclaim then it indicates that pages are being queued
987 * for IO but are being recycled through the LRU before the
988 * IO can complete. Waiting on the page itself risks an
989 * indefinite stall if it is impossible to writeback the
990 * page due to IO error or disconnected storage so instead
991 * note that the LRU is being scanned too quickly and the
992 * caller can stall after page list has been processed.
994 * 2) Global or new memcg reclaim encounters a page that is
995 * not marked for immediate reclaim, or the caller does not
996 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 * not to fs). In this case mark the page for immediate
998 * reclaim and continue scanning.
1000 * Require may_enter_fs because we would wait on fs, which
1001 * may not have submitted IO yet. And the loop driver might
1002 * enter reclaim, and deadlock if it waits on a page for
1003 * which it is needed to do the write (loop masks off
1004 * __GFP_IO|__GFP_FS for this reason); but more thought
1005 * would probably show more reasons.
1007 * 3) Legacy memcg encounters a page that is already marked
1008 * PageReclaim. memcg does not have any dirty pages
1009 * throttling so we could easily OOM just because too many
1010 * pages are in writeback and there is nothing else to
1011 * reclaim. Wait for the writeback to complete.
1013 * In cases 1) and 2) we activate the pages to get them out of
1014 * the way while we continue scanning for clean pages on the
1015 * inactive list and refilling from the active list. The
1016 * observation here is that waiting for disk writes is more
1017 * expensive than potentially causing reloads down the line.
1018 * Since they're marked for immediate reclaim, they won't put
1019 * memory pressure on the cache working set any longer than it
1020 * takes to write them to disk.
1022 if (PageWriteback(page)) {
1023 /* Case 1 above */
1024 if (current_is_kswapd() &&
1025 PageReclaim(page) &&
1026 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1027 nr_immediate++;
1028 goto activate_locked;
1030 /* Case 2 above */
1031 } else if (sane_reclaim(sc) ||
1032 !PageReclaim(page) || !may_enter_fs) {
1034 * This is slightly racy - end_page_writeback()
1035 * might have just cleared PageReclaim, then
1036 * setting PageReclaim here end up interpreted
1037 * as PageReadahead - but that does not matter
1038 * enough to care. What we do want is for this
1039 * page to have PageReclaim set next time memcg
1040 * reclaim reaches the tests above, so it will
1041 * then wait_on_page_writeback() to avoid OOM;
1042 * and it's also appropriate in global reclaim.
1044 SetPageReclaim(page);
1045 nr_writeback++;
1046 goto activate_locked;
1048 /* Case 3 above */
1049 } else {
1050 unlock_page(page);
1051 wait_on_page_writeback(page);
1052 /* then go back and try same page again */
1053 list_add_tail(&page->lru, page_list);
1054 continue;
1058 if (!force_reclaim)
1059 references = page_check_references(page, sc);
1061 switch (references) {
1062 case PAGEREF_ACTIVATE:
1063 goto activate_locked;
1064 case PAGEREF_KEEP:
1065 nr_ref_keep++;
1066 goto keep_locked;
1067 case PAGEREF_RECLAIM:
1068 case PAGEREF_RECLAIM_CLEAN:
1069 ; /* try to reclaim the page below */
1073 * Anonymous process memory has backing store?
1074 * Try to allocate it some swap space here.
1075 * Lazyfree page could be freed directly
1077 if (PageAnon(page) && PageSwapBacked(page)) {
1078 if (!PageSwapCache(page)) {
1079 if (!(sc->gfp_mask & __GFP_IO))
1080 goto keep_locked;
1081 if (PageTransHuge(page)) {
1082 /* cannot split THP, skip it */
1083 if (!can_split_huge_page(page, NULL))
1084 goto activate_locked;
1086 * Split pages without a PMD map right
1087 * away. Chances are some or all of the
1088 * tail pages can be freed without IO.
1090 if (!compound_mapcount(page) &&
1091 split_huge_page_to_list(page,
1092 page_list))
1093 goto activate_locked;
1095 if (!add_to_swap(page)) {
1096 if (!PageTransHuge(page))
1097 goto activate_locked;
1098 /* Fallback to swap normal pages */
1099 if (split_huge_page_to_list(page,
1100 page_list))
1101 goto activate_locked;
1102 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103 count_vm_event(THP_SWPOUT_FALLBACK);
1104 #endif
1105 if (!add_to_swap(page))
1106 goto activate_locked;
1109 may_enter_fs = 1;
1111 /* Adding to swap updated mapping */
1112 mapping = page_mapping(page);
1114 } else if (unlikely(PageTransHuge(page))) {
1115 /* Split file THP */
1116 if (split_huge_page_to_list(page, page_list))
1117 goto keep_locked;
1121 * The page is mapped into the page tables of one or more
1122 * processes. Try to unmap it here.
1124 if (page_mapped(page)) {
1125 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1127 if (unlikely(PageTransHuge(page)))
1128 flags |= TTU_SPLIT_HUGE_PMD;
1129 if (!try_to_unmap(page, flags)) {
1130 nr_unmap_fail++;
1131 goto activate_locked;
1135 if (PageDirty(page)) {
1137 * Only kswapd can writeback filesystem pages
1138 * to avoid risk of stack overflow. But avoid
1139 * injecting inefficient single-page IO into
1140 * flusher writeback as much as possible: only
1141 * write pages when we've encountered many
1142 * dirty pages, and when we've already scanned
1143 * the rest of the LRU for clean pages and see
1144 * the same dirty pages again (PageReclaim).
1146 if (page_is_file_cache(page) &&
1147 (!current_is_kswapd() || !PageReclaim(page) ||
1148 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1150 * Immediately reclaim when written back.
1151 * Similar in principal to deactivate_page()
1152 * except we already have the page isolated
1153 * and know it's dirty
1155 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1156 SetPageReclaim(page);
1158 goto activate_locked;
1161 if (references == PAGEREF_RECLAIM_CLEAN)
1162 goto keep_locked;
1163 if (!may_enter_fs)
1164 goto keep_locked;
1165 if (!sc->may_writepage)
1166 goto keep_locked;
1169 * Page is dirty. Flush the TLB if a writable entry
1170 * potentially exists to avoid CPU writes after IO
1171 * starts and then write it out here.
1173 try_to_unmap_flush_dirty();
1174 switch (pageout(page, mapping, sc)) {
1175 case PAGE_KEEP:
1176 goto keep_locked;
1177 case PAGE_ACTIVATE:
1178 goto activate_locked;
1179 case PAGE_SUCCESS:
1180 if (PageWriteback(page))
1181 goto keep;
1182 if (PageDirty(page))
1183 goto keep;
1186 * A synchronous write - probably a ramdisk. Go
1187 * ahead and try to reclaim the page.
1189 if (!trylock_page(page))
1190 goto keep;
1191 if (PageDirty(page) || PageWriteback(page))
1192 goto keep_locked;
1193 mapping = page_mapping(page);
1194 case PAGE_CLEAN:
1195 ; /* try to free the page below */
1200 * If the page has buffers, try to free the buffer mappings
1201 * associated with this page. If we succeed we try to free
1202 * the page as well.
1204 * We do this even if the page is PageDirty().
1205 * try_to_release_page() does not perform I/O, but it is
1206 * possible for a page to have PageDirty set, but it is actually
1207 * clean (all its buffers are clean). This happens if the
1208 * buffers were written out directly, with submit_bh(). ext3
1209 * will do this, as well as the blockdev mapping.
1210 * try_to_release_page() will discover that cleanness and will
1211 * drop the buffers and mark the page clean - it can be freed.
1213 * Rarely, pages can have buffers and no ->mapping. These are
1214 * the pages which were not successfully invalidated in
1215 * truncate_complete_page(). We try to drop those buffers here
1216 * and if that worked, and the page is no longer mapped into
1217 * process address space (page_count == 1) it can be freed.
1218 * Otherwise, leave the page on the LRU so it is swappable.
1220 if (page_has_private(page)) {
1221 if (!try_to_release_page(page, sc->gfp_mask))
1222 goto activate_locked;
1223 if (!mapping && page_count(page) == 1) {
1224 unlock_page(page);
1225 if (put_page_testzero(page))
1226 goto free_it;
1227 else {
1229 * rare race with speculative reference.
1230 * the speculative reference will free
1231 * this page shortly, so we may
1232 * increment nr_reclaimed here (and
1233 * leave it off the LRU).
1235 nr_reclaimed++;
1236 continue;
1241 if (PageAnon(page) && !PageSwapBacked(page)) {
1242 /* follow __remove_mapping for reference */
1243 if (!page_ref_freeze(page, 1))
1244 goto keep_locked;
1245 if (PageDirty(page)) {
1246 page_ref_unfreeze(page, 1);
1247 goto keep_locked;
1250 count_vm_event(PGLAZYFREED);
1251 count_memcg_page_event(page, PGLAZYFREED);
1252 } else if (!mapping || !__remove_mapping(mapping, page, true))
1253 goto keep_locked;
1255 * At this point, we have no other references and there is
1256 * no way to pick any more up (removed from LRU, removed
1257 * from pagecache). Can use non-atomic bitops now (and
1258 * we obviously don't have to worry about waking up a process
1259 * waiting on the page lock, because there are no references.
1261 __ClearPageLocked(page);
1262 free_it:
1263 nr_reclaimed++;
1266 * Is there need to periodically free_page_list? It would
1267 * appear not as the counts should be low
1269 if (unlikely(PageTransHuge(page))) {
1270 mem_cgroup_uncharge(page);
1271 (*get_compound_page_dtor(page))(page);
1272 } else
1273 list_add(&page->lru, &free_pages);
1274 continue;
1276 activate_locked:
1277 /* Not a candidate for swapping, so reclaim swap space. */
1278 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1279 PageMlocked(page)))
1280 try_to_free_swap(page);
1281 VM_BUG_ON_PAGE(PageActive(page), page);
1282 if (!PageMlocked(page)) {
1283 SetPageActive(page);
1284 pgactivate++;
1285 count_memcg_page_event(page, PGACTIVATE);
1287 keep_locked:
1288 unlock_page(page);
1289 keep:
1290 list_add(&page->lru, &ret_pages);
1291 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1294 mem_cgroup_uncharge_list(&free_pages);
1295 try_to_unmap_flush();
1296 free_unref_page_list(&free_pages);
1298 list_splice(&ret_pages, page_list);
1299 count_vm_events(PGACTIVATE, pgactivate);
1301 if (stat) {
1302 stat->nr_dirty = nr_dirty;
1303 stat->nr_congested = nr_congested;
1304 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1305 stat->nr_writeback = nr_writeback;
1306 stat->nr_immediate = nr_immediate;
1307 stat->nr_activate = pgactivate;
1308 stat->nr_ref_keep = nr_ref_keep;
1309 stat->nr_unmap_fail = nr_unmap_fail;
1311 return nr_reclaimed;
1314 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1315 struct list_head *page_list)
1317 struct scan_control sc = {
1318 .gfp_mask = GFP_KERNEL,
1319 .priority = DEF_PRIORITY,
1320 .may_unmap = 1,
1322 unsigned long ret;
1323 struct page *page, *next;
1324 LIST_HEAD(clean_pages);
1326 list_for_each_entry_safe(page, next, page_list, lru) {
1327 if (page_is_file_cache(page) && !PageDirty(page) &&
1328 !__PageMovable(page)) {
1329 ClearPageActive(page);
1330 list_move(&page->lru, &clean_pages);
1334 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1335 TTU_IGNORE_ACCESS, NULL, true);
1336 list_splice(&clean_pages, page_list);
1337 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1338 return ret;
1342 * Attempt to remove the specified page from its LRU. Only take this page
1343 * if it is of the appropriate PageActive status. Pages which are being
1344 * freed elsewhere are also ignored.
1346 * page: page to consider
1347 * mode: one of the LRU isolation modes defined above
1349 * returns 0 on success, -ve errno on failure.
1351 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1353 int ret = -EINVAL;
1355 /* Only take pages on the LRU. */
1356 if (!PageLRU(page))
1357 return ret;
1359 /* Compaction should not handle unevictable pages but CMA can do so */
1360 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1361 return ret;
1363 ret = -EBUSY;
1366 * To minimise LRU disruption, the caller can indicate that it only
1367 * wants to isolate pages it will be able to operate on without
1368 * blocking - clean pages for the most part.
1370 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1371 * that it is possible to migrate without blocking
1373 if (mode & ISOLATE_ASYNC_MIGRATE) {
1374 /* All the caller can do on PageWriteback is block */
1375 if (PageWriteback(page))
1376 return ret;
1378 if (PageDirty(page)) {
1379 struct address_space *mapping;
1380 bool migrate_dirty;
1383 * Only pages without mappings or that have a
1384 * ->migratepage callback are possible to migrate
1385 * without blocking. However, we can be racing with
1386 * truncation so it's necessary to lock the page
1387 * to stabilise the mapping as truncation holds
1388 * the page lock until after the page is removed
1389 * from the page cache.
1391 if (!trylock_page(page))
1392 return ret;
1394 mapping = page_mapping(page);
1395 migrate_dirty = mapping && mapping->a_ops->migratepage;
1396 unlock_page(page);
1397 if (!migrate_dirty)
1398 return ret;
1402 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1403 return ret;
1405 if (likely(get_page_unless_zero(page))) {
1407 * Be careful not to clear PageLRU until after we're
1408 * sure the page is not being freed elsewhere -- the
1409 * page release code relies on it.
1411 ClearPageLRU(page);
1412 ret = 0;
1415 return ret;
1420 * Update LRU sizes after isolating pages. The LRU size updates must
1421 * be complete before mem_cgroup_update_lru_size due to a santity check.
1423 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1424 enum lru_list lru, unsigned long *nr_zone_taken)
1426 int zid;
1428 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1429 if (!nr_zone_taken[zid])
1430 continue;
1432 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1433 #ifdef CONFIG_MEMCG
1434 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1435 #endif
1441 * zone_lru_lock is heavily contended. Some of the functions that
1442 * shrink the lists perform better by taking out a batch of pages
1443 * and working on them outside the LRU lock.
1445 * For pagecache intensive workloads, this function is the hottest
1446 * spot in the kernel (apart from copy_*_user functions).
1448 * Appropriate locks must be held before calling this function.
1450 * @nr_to_scan: The number of eligible pages to look through on the list.
1451 * @lruvec: The LRU vector to pull pages from.
1452 * @dst: The temp list to put pages on to.
1453 * @nr_scanned: The number of pages that were scanned.
1454 * @sc: The scan_control struct for this reclaim session
1455 * @mode: One of the LRU isolation modes
1456 * @lru: LRU list id for isolating
1458 * returns how many pages were moved onto *@dst.
1460 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1461 struct lruvec *lruvec, struct list_head *dst,
1462 unsigned long *nr_scanned, struct scan_control *sc,
1463 isolate_mode_t mode, enum lru_list lru)
1465 struct list_head *src = &lruvec->lists[lru];
1466 unsigned long nr_taken = 0;
1467 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1468 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1469 unsigned long skipped = 0;
1470 unsigned long scan, total_scan, nr_pages;
1471 LIST_HEAD(pages_skipped);
1473 scan = 0;
1474 for (total_scan = 0;
1475 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1476 total_scan++) {
1477 struct page *page;
1479 page = lru_to_page(src);
1480 prefetchw_prev_lru_page(page, src, flags);
1482 VM_BUG_ON_PAGE(!PageLRU(page), page);
1484 if (page_zonenum(page) > sc->reclaim_idx) {
1485 list_move(&page->lru, &pages_skipped);
1486 nr_skipped[page_zonenum(page)]++;
1487 continue;
1491 * Do not count skipped pages because that makes the function
1492 * return with no isolated pages if the LRU mostly contains
1493 * ineligible pages. This causes the VM to not reclaim any
1494 * pages, triggering a premature OOM.
1496 scan++;
1497 switch (__isolate_lru_page(page, mode)) {
1498 case 0:
1499 nr_pages = hpage_nr_pages(page);
1500 nr_taken += nr_pages;
1501 nr_zone_taken[page_zonenum(page)] += nr_pages;
1502 list_move(&page->lru, dst);
1503 break;
1505 case -EBUSY:
1506 /* else it is being freed elsewhere */
1507 list_move(&page->lru, src);
1508 continue;
1510 default:
1511 BUG();
1516 * Splice any skipped pages to the start of the LRU list. Note that
1517 * this disrupts the LRU order when reclaiming for lower zones but
1518 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1519 * scanning would soon rescan the same pages to skip and put the
1520 * system at risk of premature OOM.
1522 if (!list_empty(&pages_skipped)) {
1523 int zid;
1525 list_splice(&pages_skipped, src);
1526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1527 if (!nr_skipped[zid])
1528 continue;
1530 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1531 skipped += nr_skipped[zid];
1534 *nr_scanned = total_scan;
1535 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1536 total_scan, skipped, nr_taken, mode, lru);
1537 update_lru_sizes(lruvec, lru, nr_zone_taken);
1538 return nr_taken;
1542 * isolate_lru_page - tries to isolate a page from its LRU list
1543 * @page: page to isolate from its LRU list
1545 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1546 * vmstat statistic corresponding to whatever LRU list the page was on.
1548 * Returns 0 if the page was removed from an LRU list.
1549 * Returns -EBUSY if the page was not on an LRU list.
1551 * The returned page will have PageLRU() cleared. If it was found on
1552 * the active list, it will have PageActive set. If it was found on
1553 * the unevictable list, it will have the PageUnevictable bit set. That flag
1554 * may need to be cleared by the caller before letting the page go.
1556 * The vmstat statistic corresponding to the list on which the page was
1557 * found will be decremented.
1559 * Restrictions:
1561 * (1) Must be called with an elevated refcount on the page. This is a
1562 * fundamentnal difference from isolate_lru_pages (which is called
1563 * without a stable reference).
1564 * (2) the lru_lock must not be held.
1565 * (3) interrupts must be enabled.
1567 int isolate_lru_page(struct page *page)
1569 int ret = -EBUSY;
1571 VM_BUG_ON_PAGE(!page_count(page), page);
1572 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1574 if (PageLRU(page)) {
1575 struct zone *zone = page_zone(page);
1576 struct lruvec *lruvec;
1578 spin_lock_irq(zone_lru_lock(zone));
1579 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1580 if (PageLRU(page)) {
1581 int lru = page_lru(page);
1582 get_page(page);
1583 ClearPageLRU(page);
1584 del_page_from_lru_list(page, lruvec, lru);
1585 ret = 0;
1587 spin_unlock_irq(zone_lru_lock(zone));
1589 return ret;
1593 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1594 * then get resheduled. When there are massive number of tasks doing page
1595 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1596 * the LRU list will go small and be scanned faster than necessary, leading to
1597 * unnecessary swapping, thrashing and OOM.
1599 static int too_many_isolated(struct pglist_data *pgdat, int file,
1600 struct scan_control *sc)
1602 unsigned long inactive, isolated;
1604 if (current_is_kswapd())
1605 return 0;
1607 if (!sane_reclaim(sc))
1608 return 0;
1610 if (file) {
1611 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1612 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1613 } else {
1614 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1615 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1619 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1620 * won't get blocked by normal direct-reclaimers, forming a circular
1621 * deadlock.
1623 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1624 inactive >>= 3;
1626 return isolated > inactive;
1629 static noinline_for_stack void
1630 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1632 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1633 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1634 LIST_HEAD(pages_to_free);
1637 * Put back any unfreeable pages.
1639 while (!list_empty(page_list)) {
1640 struct page *page = lru_to_page(page_list);
1641 int lru;
1643 VM_BUG_ON_PAGE(PageLRU(page), page);
1644 list_del(&page->lru);
1645 if (unlikely(!page_evictable(page))) {
1646 spin_unlock_irq(&pgdat->lru_lock);
1647 putback_lru_page(page);
1648 spin_lock_irq(&pgdat->lru_lock);
1649 continue;
1652 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1654 SetPageLRU(page);
1655 lru = page_lru(page);
1656 add_page_to_lru_list(page, lruvec, lru);
1658 if (is_active_lru(lru)) {
1659 int file = is_file_lru(lru);
1660 int numpages = hpage_nr_pages(page);
1661 reclaim_stat->recent_rotated[file] += numpages;
1663 if (put_page_testzero(page)) {
1664 __ClearPageLRU(page);
1665 __ClearPageActive(page);
1666 del_page_from_lru_list(page, lruvec, lru);
1668 if (unlikely(PageCompound(page))) {
1669 spin_unlock_irq(&pgdat->lru_lock);
1670 mem_cgroup_uncharge(page);
1671 (*get_compound_page_dtor(page))(page);
1672 spin_lock_irq(&pgdat->lru_lock);
1673 } else
1674 list_add(&page->lru, &pages_to_free);
1679 * To save our caller's stack, now use input list for pages to free.
1681 list_splice(&pages_to_free, page_list);
1685 * If a kernel thread (such as nfsd for loop-back mounts) services
1686 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1687 * In that case we should only throttle if the backing device it is
1688 * writing to is congested. In other cases it is safe to throttle.
1690 static int current_may_throttle(void)
1692 return !(current->flags & PF_LESS_THROTTLE) ||
1693 current->backing_dev_info == NULL ||
1694 bdi_write_congested(current->backing_dev_info);
1698 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1699 * of reclaimed pages
1701 static noinline_for_stack unsigned long
1702 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1703 struct scan_control *sc, enum lru_list lru)
1705 LIST_HEAD(page_list);
1706 unsigned long nr_scanned;
1707 unsigned long nr_reclaimed = 0;
1708 unsigned long nr_taken;
1709 struct reclaim_stat stat = {};
1710 isolate_mode_t isolate_mode = 0;
1711 int file = is_file_lru(lru);
1712 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1713 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1714 bool stalled = false;
1716 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1717 if (stalled)
1718 return 0;
1720 /* wait a bit for the reclaimer. */
1721 msleep(100);
1722 stalled = true;
1724 /* We are about to die and free our memory. Return now. */
1725 if (fatal_signal_pending(current))
1726 return SWAP_CLUSTER_MAX;
1729 lru_add_drain();
1731 if (!sc->may_unmap)
1732 isolate_mode |= ISOLATE_UNMAPPED;
1734 spin_lock_irq(&pgdat->lru_lock);
1736 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1737 &nr_scanned, sc, isolate_mode, lru);
1739 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1740 reclaim_stat->recent_scanned[file] += nr_taken;
1742 if (current_is_kswapd()) {
1743 if (global_reclaim(sc))
1744 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1745 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1746 nr_scanned);
1747 } else {
1748 if (global_reclaim(sc))
1749 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1750 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1751 nr_scanned);
1753 spin_unlock_irq(&pgdat->lru_lock);
1755 if (nr_taken == 0)
1756 return 0;
1758 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1759 &stat, false);
1761 spin_lock_irq(&pgdat->lru_lock);
1763 if (current_is_kswapd()) {
1764 if (global_reclaim(sc))
1765 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1766 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1767 nr_reclaimed);
1768 } else {
1769 if (global_reclaim(sc))
1770 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1771 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1772 nr_reclaimed);
1775 putback_inactive_pages(lruvec, &page_list);
1777 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1779 spin_unlock_irq(&pgdat->lru_lock);
1781 mem_cgroup_uncharge_list(&page_list);
1782 free_unref_page_list(&page_list);
1785 * If reclaim is isolating dirty pages under writeback, it implies
1786 * that the long-lived page allocation rate is exceeding the page
1787 * laundering rate. Either the global limits are not being effective
1788 * at throttling processes due to the page distribution throughout
1789 * zones or there is heavy usage of a slow backing device. The
1790 * only option is to throttle from reclaim context which is not ideal
1791 * as there is no guarantee the dirtying process is throttled in the
1792 * same way balance_dirty_pages() manages.
1794 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1795 * of pages under pages flagged for immediate reclaim and stall if any
1796 * are encountered in the nr_immediate check below.
1798 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1799 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1802 * If dirty pages are scanned that are not queued for IO, it
1803 * implies that flushers are not doing their job. This can
1804 * happen when memory pressure pushes dirty pages to the end of
1805 * the LRU before the dirty limits are breached and the dirty
1806 * data has expired. It can also happen when the proportion of
1807 * dirty pages grows not through writes but through memory
1808 * pressure reclaiming all the clean cache. And in some cases,
1809 * the flushers simply cannot keep up with the allocation
1810 * rate. Nudge the flusher threads in case they are asleep.
1812 if (stat.nr_unqueued_dirty == nr_taken)
1813 wakeup_flusher_threads(WB_REASON_VMSCAN);
1816 * Legacy memcg will stall in page writeback so avoid forcibly
1817 * stalling here.
1819 if (sane_reclaim(sc)) {
1821 * Tag a zone as congested if all the dirty pages scanned were
1822 * backed by a congested BDI and wait_iff_congested will stall.
1824 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1825 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1827 /* Allow kswapd to start writing pages during reclaim. */
1828 if (stat.nr_unqueued_dirty == nr_taken)
1829 set_bit(PGDAT_DIRTY, &pgdat->flags);
1832 * If kswapd scans pages marked marked for immediate
1833 * reclaim and under writeback (nr_immediate), it implies
1834 * that pages are cycling through the LRU faster than
1835 * they are written so also forcibly stall.
1837 if (stat.nr_immediate && current_may_throttle())
1838 congestion_wait(BLK_RW_ASYNC, HZ/10);
1842 * Stall direct reclaim for IO completions if underlying BDIs or zone
1843 * is congested. Allow kswapd to continue until it starts encountering
1844 * unqueued dirty pages or cycling through the LRU too quickly.
1846 if (!sc->hibernation_mode && !current_is_kswapd() &&
1847 current_may_throttle())
1848 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1850 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1851 nr_scanned, nr_reclaimed,
1852 stat.nr_dirty, stat.nr_writeback,
1853 stat.nr_congested, stat.nr_immediate,
1854 stat.nr_activate, stat.nr_ref_keep,
1855 stat.nr_unmap_fail,
1856 sc->priority, file);
1857 return nr_reclaimed;
1861 * This moves pages from the active list to the inactive list.
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1877 * Returns the number of pages moved to the given lru.
1880 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list,
1882 struct list_head *pages_to_free,
1883 enum lru_list lru)
1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 struct page *page;
1887 int nr_pages;
1888 int nr_moved = 0;
1890 while (!list_empty(list)) {
1891 page = lru_to_page(list);
1892 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1894 VM_BUG_ON_PAGE(PageLRU(page), page);
1895 SetPageLRU(page);
1897 nr_pages = hpage_nr_pages(page);
1898 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 list_move(&page->lru, &lruvec->lists[lru]);
1901 if (put_page_testzero(page)) {
1902 __ClearPageLRU(page);
1903 __ClearPageActive(page);
1904 del_page_from_lru_list(page, lruvec, lru);
1906 if (unlikely(PageCompound(page))) {
1907 spin_unlock_irq(&pgdat->lru_lock);
1908 mem_cgroup_uncharge(page);
1909 (*get_compound_page_dtor(page))(page);
1910 spin_lock_irq(&pgdat->lru_lock);
1911 } else
1912 list_add(&page->lru, pages_to_free);
1913 } else {
1914 nr_moved += nr_pages;
1918 if (!is_active_lru(lru)) {
1919 __count_vm_events(PGDEACTIVATE, nr_moved);
1920 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1921 nr_moved);
1924 return nr_moved;
1927 static void shrink_active_list(unsigned long nr_to_scan,
1928 struct lruvec *lruvec,
1929 struct scan_control *sc,
1930 enum lru_list lru)
1932 unsigned long nr_taken;
1933 unsigned long nr_scanned;
1934 unsigned long vm_flags;
1935 LIST_HEAD(l_hold); /* The pages which were snipped off */
1936 LIST_HEAD(l_active);
1937 LIST_HEAD(l_inactive);
1938 struct page *page;
1939 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1940 unsigned nr_deactivate, nr_activate;
1941 unsigned nr_rotated = 0;
1942 isolate_mode_t isolate_mode = 0;
1943 int file = is_file_lru(lru);
1944 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1946 lru_add_drain();
1948 if (!sc->may_unmap)
1949 isolate_mode |= ISOLATE_UNMAPPED;
1951 spin_lock_irq(&pgdat->lru_lock);
1953 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1954 &nr_scanned, sc, isolate_mode, lru);
1956 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1957 reclaim_stat->recent_scanned[file] += nr_taken;
1959 __count_vm_events(PGREFILL, nr_scanned);
1960 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1962 spin_unlock_irq(&pgdat->lru_lock);
1964 while (!list_empty(&l_hold)) {
1965 cond_resched();
1966 page = lru_to_page(&l_hold);
1967 list_del(&page->lru);
1969 if (unlikely(!page_evictable(page))) {
1970 putback_lru_page(page);
1971 continue;
1974 if (unlikely(buffer_heads_over_limit)) {
1975 if (page_has_private(page) && trylock_page(page)) {
1976 if (page_has_private(page))
1977 try_to_release_page(page, 0);
1978 unlock_page(page);
1982 if (page_referenced(page, 0, sc->target_mem_cgroup,
1983 &vm_flags)) {
1984 nr_rotated += hpage_nr_pages(page);
1986 * Identify referenced, file-backed active pages and
1987 * give them one more trip around the active list. So
1988 * that executable code get better chances to stay in
1989 * memory under moderate memory pressure. Anon pages
1990 * are not likely to be evicted by use-once streaming
1991 * IO, plus JVM can create lots of anon VM_EXEC pages,
1992 * so we ignore them here.
1994 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1995 list_add(&page->lru, &l_active);
1996 continue;
2000 ClearPageActive(page); /* we are de-activating */
2001 list_add(&page->lru, &l_inactive);
2005 * Move pages back to the lru list.
2007 spin_lock_irq(&pgdat->lru_lock);
2009 * Count referenced pages from currently used mappings as rotated,
2010 * even though only some of them are actually re-activated. This
2011 * helps balance scan pressure between file and anonymous pages in
2012 * get_scan_count.
2014 reclaim_stat->recent_rotated[file] += nr_rotated;
2016 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2017 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2018 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2019 spin_unlock_irq(&pgdat->lru_lock);
2021 mem_cgroup_uncharge_list(&l_hold);
2022 free_unref_page_list(&l_hold);
2023 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2024 nr_deactivate, nr_rotated, sc->priority, file);
2028 * The inactive anon list should be small enough that the VM never has
2029 * to do too much work.
2031 * The inactive file list should be small enough to leave most memory
2032 * to the established workingset on the scan-resistant active list,
2033 * but large enough to avoid thrashing the aggregate readahead window.
2035 * Both inactive lists should also be large enough that each inactive
2036 * page has a chance to be referenced again before it is reclaimed.
2038 * If that fails and refaulting is observed, the inactive list grows.
2040 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2041 * on this LRU, maintained by the pageout code. An inactive_ratio
2042 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2044 * total target max
2045 * memory ratio inactive
2046 * -------------------------------------
2047 * 10MB 1 5MB
2048 * 100MB 1 50MB
2049 * 1GB 3 250MB
2050 * 10GB 10 0.9GB
2051 * 100GB 31 3GB
2052 * 1TB 101 10GB
2053 * 10TB 320 32GB
2055 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2056 struct mem_cgroup *memcg,
2057 struct scan_control *sc, bool actual_reclaim)
2059 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2060 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2061 enum lru_list inactive_lru = file * LRU_FILE;
2062 unsigned long inactive, active;
2063 unsigned long inactive_ratio;
2064 unsigned long refaults;
2065 unsigned long gb;
2068 * If we don't have swap space, anonymous page deactivation
2069 * is pointless.
2071 if (!file && !total_swap_pages)
2072 return false;
2074 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2075 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2077 if (memcg)
2078 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2079 else
2080 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2083 * When refaults are being observed, it means a new workingset
2084 * is being established. Disable active list protection to get
2085 * rid of the stale workingset quickly.
2087 if (file && actual_reclaim && lruvec->refaults != refaults) {
2088 inactive_ratio = 0;
2089 } else {
2090 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2091 if (gb)
2092 inactive_ratio = int_sqrt(10 * gb);
2093 else
2094 inactive_ratio = 1;
2097 if (actual_reclaim)
2098 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2099 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2100 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2101 inactive_ratio, file);
2103 return inactive * inactive_ratio < active;
2106 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2107 struct lruvec *lruvec, struct mem_cgroup *memcg,
2108 struct scan_control *sc)
2110 if (is_active_lru(lru)) {
2111 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2112 memcg, sc, true))
2113 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2114 return 0;
2117 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2120 enum scan_balance {
2121 SCAN_EQUAL,
2122 SCAN_FRACT,
2123 SCAN_ANON,
2124 SCAN_FILE,
2128 * Determine how aggressively the anon and file LRU lists should be
2129 * scanned. The relative value of each set of LRU lists is determined
2130 * by looking at the fraction of the pages scanned we did rotate back
2131 * onto the active list instead of evict.
2133 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2134 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2136 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2137 struct scan_control *sc, unsigned long *nr,
2138 unsigned long *lru_pages)
2140 int swappiness = mem_cgroup_swappiness(memcg);
2141 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2142 u64 fraction[2];
2143 u64 denominator = 0; /* gcc */
2144 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2145 unsigned long anon_prio, file_prio;
2146 enum scan_balance scan_balance;
2147 unsigned long anon, file;
2148 unsigned long ap, fp;
2149 enum lru_list lru;
2151 /* If we have no swap space, do not bother scanning anon pages. */
2152 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2153 scan_balance = SCAN_FILE;
2154 goto out;
2158 * Global reclaim will swap to prevent OOM even with no
2159 * swappiness, but memcg users want to use this knob to
2160 * disable swapping for individual groups completely when
2161 * using the memory controller's swap limit feature would be
2162 * too expensive.
2164 if (!global_reclaim(sc) && !swappiness) {
2165 scan_balance = SCAN_FILE;
2166 goto out;
2170 * Do not apply any pressure balancing cleverness when the
2171 * system is close to OOM, scan both anon and file equally
2172 * (unless the swappiness setting disagrees with swapping).
2174 if (!sc->priority && swappiness) {
2175 scan_balance = SCAN_EQUAL;
2176 goto out;
2180 * Prevent the reclaimer from falling into the cache trap: as
2181 * cache pages start out inactive, every cache fault will tip
2182 * the scan balance towards the file LRU. And as the file LRU
2183 * shrinks, so does the window for rotation from references.
2184 * This means we have a runaway feedback loop where a tiny
2185 * thrashing file LRU becomes infinitely more attractive than
2186 * anon pages. Try to detect this based on file LRU size.
2188 if (global_reclaim(sc)) {
2189 unsigned long pgdatfile;
2190 unsigned long pgdatfree;
2191 int z;
2192 unsigned long total_high_wmark = 0;
2194 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2195 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2196 node_page_state(pgdat, NR_INACTIVE_FILE);
2198 for (z = 0; z < MAX_NR_ZONES; z++) {
2199 struct zone *zone = &pgdat->node_zones[z];
2200 if (!managed_zone(zone))
2201 continue;
2203 total_high_wmark += high_wmark_pages(zone);
2206 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2208 * Force SCAN_ANON if there are enough inactive
2209 * anonymous pages on the LRU in eligible zones.
2210 * Otherwise, the small LRU gets thrashed.
2212 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2213 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2214 >> sc->priority) {
2215 scan_balance = SCAN_ANON;
2216 goto out;
2222 * If there is enough inactive page cache, i.e. if the size of the
2223 * inactive list is greater than that of the active list *and* the
2224 * inactive list actually has some pages to scan on this priority, we
2225 * do not reclaim anything from the anonymous working set right now.
2226 * Without the second condition we could end up never scanning an
2227 * lruvec even if it has plenty of old anonymous pages unless the
2228 * system is under heavy pressure.
2230 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2231 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2232 scan_balance = SCAN_FILE;
2233 goto out;
2236 scan_balance = SCAN_FRACT;
2239 * With swappiness at 100, anonymous and file have the same priority.
2240 * This scanning priority is essentially the inverse of IO cost.
2242 anon_prio = swappiness;
2243 file_prio = 200 - anon_prio;
2246 * OK, so we have swap space and a fair amount of page cache
2247 * pages. We use the recently rotated / recently scanned
2248 * ratios to determine how valuable each cache is.
2250 * Because workloads change over time (and to avoid overflow)
2251 * we keep these statistics as a floating average, which ends
2252 * up weighing recent references more than old ones.
2254 * anon in [0], file in [1]
2257 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2258 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2259 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2260 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2262 spin_lock_irq(&pgdat->lru_lock);
2263 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2264 reclaim_stat->recent_scanned[0] /= 2;
2265 reclaim_stat->recent_rotated[0] /= 2;
2268 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2269 reclaim_stat->recent_scanned[1] /= 2;
2270 reclaim_stat->recent_rotated[1] /= 2;
2274 * The amount of pressure on anon vs file pages is inversely
2275 * proportional to the fraction of recently scanned pages on
2276 * each list that were recently referenced and in active use.
2278 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2279 ap /= reclaim_stat->recent_rotated[0] + 1;
2281 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2282 fp /= reclaim_stat->recent_rotated[1] + 1;
2283 spin_unlock_irq(&pgdat->lru_lock);
2285 fraction[0] = ap;
2286 fraction[1] = fp;
2287 denominator = ap + fp + 1;
2288 out:
2289 *lru_pages = 0;
2290 for_each_evictable_lru(lru) {
2291 int file = is_file_lru(lru);
2292 unsigned long size;
2293 unsigned long scan;
2295 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2296 scan = size >> sc->priority;
2298 * If the cgroup's already been deleted, make sure to
2299 * scrape out the remaining cache.
2301 if (!scan && !mem_cgroup_online(memcg))
2302 scan = min(size, SWAP_CLUSTER_MAX);
2304 switch (scan_balance) {
2305 case SCAN_EQUAL:
2306 /* Scan lists relative to size */
2307 break;
2308 case SCAN_FRACT:
2310 * Scan types proportional to swappiness and
2311 * their relative recent reclaim efficiency.
2313 scan = div64_u64(scan * fraction[file],
2314 denominator);
2315 break;
2316 case SCAN_FILE:
2317 case SCAN_ANON:
2318 /* Scan one type exclusively */
2319 if ((scan_balance == SCAN_FILE) != file) {
2320 size = 0;
2321 scan = 0;
2323 break;
2324 default:
2325 /* Look ma, no brain */
2326 BUG();
2329 *lru_pages += size;
2330 nr[lru] = scan;
2335 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2337 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2338 struct scan_control *sc, unsigned long *lru_pages)
2340 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2341 unsigned long nr[NR_LRU_LISTS];
2342 unsigned long targets[NR_LRU_LISTS];
2343 unsigned long nr_to_scan;
2344 enum lru_list lru;
2345 unsigned long nr_reclaimed = 0;
2346 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2347 struct blk_plug plug;
2348 bool scan_adjusted;
2350 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2352 /* Record the original scan target for proportional adjustments later */
2353 memcpy(targets, nr, sizeof(nr));
2356 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2357 * event that can occur when there is little memory pressure e.g.
2358 * multiple streaming readers/writers. Hence, we do not abort scanning
2359 * when the requested number of pages are reclaimed when scanning at
2360 * DEF_PRIORITY on the assumption that the fact we are direct
2361 * reclaiming implies that kswapd is not keeping up and it is best to
2362 * do a batch of work at once. For memcg reclaim one check is made to
2363 * abort proportional reclaim if either the file or anon lru has already
2364 * dropped to zero at the first pass.
2366 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2367 sc->priority == DEF_PRIORITY);
2369 blk_start_plug(&plug);
2370 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2371 nr[LRU_INACTIVE_FILE]) {
2372 unsigned long nr_anon, nr_file, percentage;
2373 unsigned long nr_scanned;
2375 for_each_evictable_lru(lru) {
2376 if (nr[lru]) {
2377 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2378 nr[lru] -= nr_to_scan;
2380 nr_reclaimed += shrink_list(lru, nr_to_scan,
2381 lruvec, memcg, sc);
2385 cond_resched();
2387 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2388 continue;
2391 * For kswapd and memcg, reclaim at least the number of pages
2392 * requested. Ensure that the anon and file LRUs are scanned
2393 * proportionally what was requested by get_scan_count(). We
2394 * stop reclaiming one LRU and reduce the amount scanning
2395 * proportional to the original scan target.
2397 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2398 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2401 * It's just vindictive to attack the larger once the smaller
2402 * has gone to zero. And given the way we stop scanning the
2403 * smaller below, this makes sure that we only make one nudge
2404 * towards proportionality once we've got nr_to_reclaim.
2406 if (!nr_file || !nr_anon)
2407 break;
2409 if (nr_file > nr_anon) {
2410 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2411 targets[LRU_ACTIVE_ANON] + 1;
2412 lru = LRU_BASE;
2413 percentage = nr_anon * 100 / scan_target;
2414 } else {
2415 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2416 targets[LRU_ACTIVE_FILE] + 1;
2417 lru = LRU_FILE;
2418 percentage = nr_file * 100 / scan_target;
2421 /* Stop scanning the smaller of the LRU */
2422 nr[lru] = 0;
2423 nr[lru + LRU_ACTIVE] = 0;
2426 * Recalculate the other LRU scan count based on its original
2427 * scan target and the percentage scanning already complete
2429 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2430 nr_scanned = targets[lru] - nr[lru];
2431 nr[lru] = targets[lru] * (100 - percentage) / 100;
2432 nr[lru] -= min(nr[lru], nr_scanned);
2434 lru += LRU_ACTIVE;
2435 nr_scanned = targets[lru] - nr[lru];
2436 nr[lru] = targets[lru] * (100 - percentage) / 100;
2437 nr[lru] -= min(nr[lru], nr_scanned);
2439 scan_adjusted = true;
2441 blk_finish_plug(&plug);
2442 sc->nr_reclaimed += nr_reclaimed;
2445 * Even if we did not try to evict anon pages at all, we want to
2446 * rebalance the anon lru active/inactive ratio.
2448 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2449 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2450 sc, LRU_ACTIVE_ANON);
2453 /* Use reclaim/compaction for costly allocs or under memory pressure */
2454 static bool in_reclaim_compaction(struct scan_control *sc)
2456 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2457 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2458 sc->priority < DEF_PRIORITY - 2))
2459 return true;
2461 return false;
2465 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2466 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2467 * true if more pages should be reclaimed such that when the page allocator
2468 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2469 * It will give up earlier than that if there is difficulty reclaiming pages.
2471 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2472 unsigned long nr_reclaimed,
2473 unsigned long nr_scanned,
2474 struct scan_control *sc)
2476 unsigned long pages_for_compaction;
2477 unsigned long inactive_lru_pages;
2478 int z;
2480 /* If not in reclaim/compaction mode, stop */
2481 if (!in_reclaim_compaction(sc))
2482 return false;
2484 /* Consider stopping depending on scan and reclaim activity */
2485 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2487 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2488 * full LRU list has been scanned and we are still failing
2489 * to reclaim pages. This full LRU scan is potentially
2490 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2492 if (!nr_reclaimed && !nr_scanned)
2493 return false;
2494 } else {
2496 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2497 * fail without consequence, stop if we failed to reclaim
2498 * any pages from the last SWAP_CLUSTER_MAX number of
2499 * pages that were scanned. This will return to the
2500 * caller faster at the risk reclaim/compaction and
2501 * the resulting allocation attempt fails
2503 if (!nr_reclaimed)
2504 return false;
2508 * If we have not reclaimed enough pages for compaction and the
2509 * inactive lists are large enough, continue reclaiming
2511 pages_for_compaction = compact_gap(sc->order);
2512 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2513 if (get_nr_swap_pages() > 0)
2514 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2515 if (sc->nr_reclaimed < pages_for_compaction &&
2516 inactive_lru_pages > pages_for_compaction)
2517 return true;
2519 /* If compaction would go ahead or the allocation would succeed, stop */
2520 for (z = 0; z <= sc->reclaim_idx; z++) {
2521 struct zone *zone = &pgdat->node_zones[z];
2522 if (!managed_zone(zone))
2523 continue;
2525 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2526 case COMPACT_SUCCESS:
2527 case COMPACT_CONTINUE:
2528 return false;
2529 default:
2530 /* check next zone */
2534 return true;
2537 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2539 struct reclaim_state *reclaim_state = current->reclaim_state;
2540 unsigned long nr_reclaimed, nr_scanned;
2541 bool reclaimable = false;
2543 do {
2544 struct mem_cgroup *root = sc->target_mem_cgroup;
2545 struct mem_cgroup_reclaim_cookie reclaim = {
2546 .pgdat = pgdat,
2547 .priority = sc->priority,
2549 unsigned long node_lru_pages = 0;
2550 struct mem_cgroup *memcg;
2552 nr_reclaimed = sc->nr_reclaimed;
2553 nr_scanned = sc->nr_scanned;
2555 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2556 do {
2557 unsigned long lru_pages;
2558 unsigned long reclaimed;
2559 unsigned long scanned;
2561 if (mem_cgroup_low(root, memcg)) {
2562 if (!sc->memcg_low_reclaim) {
2563 sc->memcg_low_skipped = 1;
2564 continue;
2566 mem_cgroup_event(memcg, MEMCG_LOW);
2569 reclaimed = sc->nr_reclaimed;
2570 scanned = sc->nr_scanned;
2571 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2572 node_lru_pages += lru_pages;
2574 if (memcg)
2575 shrink_slab(sc->gfp_mask, pgdat->node_id,
2576 memcg, sc->priority);
2578 /* Record the group's reclaim efficiency */
2579 vmpressure(sc->gfp_mask, memcg, false,
2580 sc->nr_scanned - scanned,
2581 sc->nr_reclaimed - reclaimed);
2584 * Direct reclaim and kswapd have to scan all memory
2585 * cgroups to fulfill the overall scan target for the
2586 * node.
2588 * Limit reclaim, on the other hand, only cares about
2589 * nr_to_reclaim pages to be reclaimed and it will
2590 * retry with decreasing priority if one round over the
2591 * whole hierarchy is not sufficient.
2593 if (!global_reclaim(sc) &&
2594 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2595 mem_cgroup_iter_break(root, memcg);
2596 break;
2598 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2600 if (global_reclaim(sc))
2601 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2602 sc->priority);
2604 if (reclaim_state) {
2605 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2606 reclaim_state->reclaimed_slab = 0;
2609 /* Record the subtree's reclaim efficiency */
2610 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2611 sc->nr_scanned - nr_scanned,
2612 sc->nr_reclaimed - nr_reclaimed);
2614 if (sc->nr_reclaimed - nr_reclaimed)
2615 reclaimable = true;
2617 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2618 sc->nr_scanned - nr_scanned, sc));
2621 * Kswapd gives up on balancing particular nodes after too
2622 * many failures to reclaim anything from them and goes to
2623 * sleep. On reclaim progress, reset the failure counter. A
2624 * successful direct reclaim run will revive a dormant kswapd.
2626 if (reclaimable)
2627 pgdat->kswapd_failures = 0;
2629 return reclaimable;
2633 * Returns true if compaction should go ahead for a costly-order request, or
2634 * the allocation would already succeed without compaction. Return false if we
2635 * should reclaim first.
2637 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2639 unsigned long watermark;
2640 enum compact_result suitable;
2642 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2643 if (suitable == COMPACT_SUCCESS)
2644 /* Allocation should succeed already. Don't reclaim. */
2645 return true;
2646 if (suitable == COMPACT_SKIPPED)
2647 /* Compaction cannot yet proceed. Do reclaim. */
2648 return false;
2651 * Compaction is already possible, but it takes time to run and there
2652 * are potentially other callers using the pages just freed. So proceed
2653 * with reclaim to make a buffer of free pages available to give
2654 * compaction a reasonable chance of completing and allocating the page.
2655 * Note that we won't actually reclaim the whole buffer in one attempt
2656 * as the target watermark in should_continue_reclaim() is lower. But if
2657 * we are already above the high+gap watermark, don't reclaim at all.
2659 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2661 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2665 * This is the direct reclaim path, for page-allocating processes. We only
2666 * try to reclaim pages from zones which will satisfy the caller's allocation
2667 * request.
2669 * If a zone is deemed to be full of pinned pages then just give it a light
2670 * scan then give up on it.
2672 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2674 struct zoneref *z;
2675 struct zone *zone;
2676 unsigned long nr_soft_reclaimed;
2677 unsigned long nr_soft_scanned;
2678 gfp_t orig_mask;
2679 pg_data_t *last_pgdat = NULL;
2682 * If the number of buffer_heads in the machine exceeds the maximum
2683 * allowed level, force direct reclaim to scan the highmem zone as
2684 * highmem pages could be pinning lowmem pages storing buffer_heads
2686 orig_mask = sc->gfp_mask;
2687 if (buffer_heads_over_limit) {
2688 sc->gfp_mask |= __GFP_HIGHMEM;
2689 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2692 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2693 sc->reclaim_idx, sc->nodemask) {
2695 * Take care memory controller reclaiming has small influence
2696 * to global LRU.
2698 if (global_reclaim(sc)) {
2699 if (!cpuset_zone_allowed(zone,
2700 GFP_KERNEL | __GFP_HARDWALL))
2701 continue;
2704 * If we already have plenty of memory free for
2705 * compaction in this zone, don't free any more.
2706 * Even though compaction is invoked for any
2707 * non-zero order, only frequent costly order
2708 * reclamation is disruptive enough to become a
2709 * noticeable problem, like transparent huge
2710 * page allocations.
2712 if (IS_ENABLED(CONFIG_COMPACTION) &&
2713 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2714 compaction_ready(zone, sc)) {
2715 sc->compaction_ready = true;
2716 continue;
2720 * Shrink each node in the zonelist once. If the
2721 * zonelist is ordered by zone (not the default) then a
2722 * node may be shrunk multiple times but in that case
2723 * the user prefers lower zones being preserved.
2725 if (zone->zone_pgdat == last_pgdat)
2726 continue;
2729 * This steals pages from memory cgroups over softlimit
2730 * and returns the number of reclaimed pages and
2731 * scanned pages. This works for global memory pressure
2732 * and balancing, not for a memcg's limit.
2734 nr_soft_scanned = 0;
2735 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2736 sc->order, sc->gfp_mask,
2737 &nr_soft_scanned);
2738 sc->nr_reclaimed += nr_soft_reclaimed;
2739 sc->nr_scanned += nr_soft_scanned;
2740 /* need some check for avoid more shrink_zone() */
2743 /* See comment about same check for global reclaim above */
2744 if (zone->zone_pgdat == last_pgdat)
2745 continue;
2746 last_pgdat = zone->zone_pgdat;
2747 shrink_node(zone->zone_pgdat, sc);
2751 * Restore to original mask to avoid the impact on the caller if we
2752 * promoted it to __GFP_HIGHMEM.
2754 sc->gfp_mask = orig_mask;
2757 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2759 struct mem_cgroup *memcg;
2761 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2762 do {
2763 unsigned long refaults;
2764 struct lruvec *lruvec;
2766 if (memcg)
2767 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2768 else
2769 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2771 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2772 lruvec->refaults = refaults;
2773 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2777 * This is the main entry point to direct page reclaim.
2779 * If a full scan of the inactive list fails to free enough memory then we
2780 * are "out of memory" and something needs to be killed.
2782 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2783 * high - the zone may be full of dirty or under-writeback pages, which this
2784 * caller can't do much about. We kick the writeback threads and take explicit
2785 * naps in the hope that some of these pages can be written. But if the
2786 * allocating task holds filesystem locks which prevent writeout this might not
2787 * work, and the allocation attempt will fail.
2789 * returns: 0, if no pages reclaimed
2790 * else, the number of pages reclaimed
2792 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2793 struct scan_control *sc)
2795 int initial_priority = sc->priority;
2796 pg_data_t *last_pgdat;
2797 struct zoneref *z;
2798 struct zone *zone;
2799 retry:
2800 delayacct_freepages_start();
2802 if (global_reclaim(sc))
2803 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2805 do {
2806 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2807 sc->priority);
2808 sc->nr_scanned = 0;
2809 shrink_zones(zonelist, sc);
2811 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2812 break;
2814 if (sc->compaction_ready)
2815 break;
2818 * If we're getting trouble reclaiming, start doing
2819 * writepage even in laptop mode.
2821 if (sc->priority < DEF_PRIORITY - 2)
2822 sc->may_writepage = 1;
2823 } while (--sc->priority >= 0);
2825 last_pgdat = NULL;
2826 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2827 sc->nodemask) {
2828 if (zone->zone_pgdat == last_pgdat)
2829 continue;
2830 last_pgdat = zone->zone_pgdat;
2831 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2834 delayacct_freepages_end();
2836 if (sc->nr_reclaimed)
2837 return sc->nr_reclaimed;
2839 /* Aborted reclaim to try compaction? don't OOM, then */
2840 if (sc->compaction_ready)
2841 return 1;
2843 /* Untapped cgroup reserves? Don't OOM, retry. */
2844 if (sc->memcg_low_skipped) {
2845 sc->priority = initial_priority;
2846 sc->memcg_low_reclaim = 1;
2847 sc->memcg_low_skipped = 0;
2848 goto retry;
2851 return 0;
2854 static bool allow_direct_reclaim(pg_data_t *pgdat)
2856 struct zone *zone;
2857 unsigned long pfmemalloc_reserve = 0;
2858 unsigned long free_pages = 0;
2859 int i;
2860 bool wmark_ok;
2862 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2863 return true;
2865 for (i = 0; i <= ZONE_NORMAL; i++) {
2866 zone = &pgdat->node_zones[i];
2867 if (!managed_zone(zone))
2868 continue;
2870 if (!zone_reclaimable_pages(zone))
2871 continue;
2873 pfmemalloc_reserve += min_wmark_pages(zone);
2874 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2877 /* If there are no reserves (unexpected config) then do not throttle */
2878 if (!pfmemalloc_reserve)
2879 return true;
2881 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2883 /* kswapd must be awake if processes are being throttled */
2884 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2885 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2886 (enum zone_type)ZONE_NORMAL);
2887 wake_up_interruptible(&pgdat->kswapd_wait);
2890 return wmark_ok;
2894 * Throttle direct reclaimers if backing storage is backed by the network
2895 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2896 * depleted. kswapd will continue to make progress and wake the processes
2897 * when the low watermark is reached.
2899 * Returns true if a fatal signal was delivered during throttling. If this
2900 * happens, the page allocator should not consider triggering the OOM killer.
2902 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2903 nodemask_t *nodemask)
2905 struct zoneref *z;
2906 struct zone *zone;
2907 pg_data_t *pgdat = NULL;
2910 * Kernel threads should not be throttled as they may be indirectly
2911 * responsible for cleaning pages necessary for reclaim to make forward
2912 * progress. kjournald for example may enter direct reclaim while
2913 * committing a transaction where throttling it could forcing other
2914 * processes to block on log_wait_commit().
2916 if (current->flags & PF_KTHREAD)
2917 goto out;
2920 * If a fatal signal is pending, this process should not throttle.
2921 * It should return quickly so it can exit and free its memory
2923 if (fatal_signal_pending(current))
2924 goto out;
2927 * Check if the pfmemalloc reserves are ok by finding the first node
2928 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2929 * GFP_KERNEL will be required for allocating network buffers when
2930 * swapping over the network so ZONE_HIGHMEM is unusable.
2932 * Throttling is based on the first usable node and throttled processes
2933 * wait on a queue until kswapd makes progress and wakes them. There
2934 * is an affinity then between processes waking up and where reclaim
2935 * progress has been made assuming the process wakes on the same node.
2936 * More importantly, processes running on remote nodes will not compete
2937 * for remote pfmemalloc reserves and processes on different nodes
2938 * should make reasonable progress.
2940 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2941 gfp_zone(gfp_mask), nodemask) {
2942 if (zone_idx(zone) > ZONE_NORMAL)
2943 continue;
2945 /* Throttle based on the first usable node */
2946 pgdat = zone->zone_pgdat;
2947 if (allow_direct_reclaim(pgdat))
2948 goto out;
2949 break;
2952 /* If no zone was usable by the allocation flags then do not throttle */
2953 if (!pgdat)
2954 goto out;
2956 /* Account for the throttling */
2957 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2960 * If the caller cannot enter the filesystem, it's possible that it
2961 * is due to the caller holding an FS lock or performing a journal
2962 * transaction in the case of a filesystem like ext[3|4]. In this case,
2963 * it is not safe to block on pfmemalloc_wait as kswapd could be
2964 * blocked waiting on the same lock. Instead, throttle for up to a
2965 * second before continuing.
2967 if (!(gfp_mask & __GFP_FS)) {
2968 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2969 allow_direct_reclaim(pgdat), HZ);
2971 goto check_pending;
2974 /* Throttle until kswapd wakes the process */
2975 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2976 allow_direct_reclaim(pgdat));
2978 check_pending:
2979 if (fatal_signal_pending(current))
2980 return true;
2982 out:
2983 return false;
2986 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2987 gfp_t gfp_mask, nodemask_t *nodemask)
2989 unsigned long nr_reclaimed;
2990 struct scan_control sc = {
2991 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2992 .gfp_mask = current_gfp_context(gfp_mask),
2993 .reclaim_idx = gfp_zone(gfp_mask),
2994 .order = order,
2995 .nodemask = nodemask,
2996 .priority = DEF_PRIORITY,
2997 .may_writepage = !laptop_mode,
2998 .may_unmap = 1,
2999 .may_swap = 1,
3003 * Do not enter reclaim if fatal signal was delivered while throttled.
3004 * 1 is returned so that the page allocator does not OOM kill at this
3005 * point.
3007 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3008 return 1;
3010 trace_mm_vmscan_direct_reclaim_begin(order,
3011 sc.may_writepage,
3012 sc.gfp_mask,
3013 sc.reclaim_idx);
3015 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3017 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3019 return nr_reclaimed;
3022 #ifdef CONFIG_MEMCG
3024 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3025 gfp_t gfp_mask, bool noswap,
3026 pg_data_t *pgdat,
3027 unsigned long *nr_scanned)
3029 struct scan_control sc = {
3030 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3031 .target_mem_cgroup = memcg,
3032 .may_writepage = !laptop_mode,
3033 .may_unmap = 1,
3034 .reclaim_idx = MAX_NR_ZONES - 1,
3035 .may_swap = !noswap,
3037 unsigned long lru_pages;
3039 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3040 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3042 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3043 sc.may_writepage,
3044 sc.gfp_mask,
3045 sc.reclaim_idx);
3048 * NOTE: Although we can get the priority field, using it
3049 * here is not a good idea, since it limits the pages we can scan.
3050 * if we don't reclaim here, the shrink_node from balance_pgdat
3051 * will pick up pages from other mem cgroup's as well. We hack
3052 * the priority and make it zero.
3054 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3056 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3058 *nr_scanned = sc.nr_scanned;
3059 return sc.nr_reclaimed;
3062 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3063 unsigned long nr_pages,
3064 gfp_t gfp_mask,
3065 bool may_swap)
3067 struct zonelist *zonelist;
3068 unsigned long nr_reclaimed;
3069 int nid;
3070 unsigned int noreclaim_flag;
3071 struct scan_control sc = {
3072 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3073 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3074 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3075 .reclaim_idx = MAX_NR_ZONES - 1,
3076 .target_mem_cgroup = memcg,
3077 .priority = DEF_PRIORITY,
3078 .may_writepage = !laptop_mode,
3079 .may_unmap = 1,
3080 .may_swap = may_swap,
3084 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3085 * take care of from where we get pages. So the node where we start the
3086 * scan does not need to be the current node.
3088 nid = mem_cgroup_select_victim_node(memcg);
3090 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3092 trace_mm_vmscan_memcg_reclaim_begin(0,
3093 sc.may_writepage,
3094 sc.gfp_mask,
3095 sc.reclaim_idx);
3097 noreclaim_flag = memalloc_noreclaim_save();
3098 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3099 memalloc_noreclaim_restore(noreclaim_flag);
3101 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3103 return nr_reclaimed;
3105 #endif
3107 static void age_active_anon(struct pglist_data *pgdat,
3108 struct scan_control *sc)
3110 struct mem_cgroup *memcg;
3112 if (!total_swap_pages)
3113 return;
3115 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3116 do {
3117 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3119 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3120 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3121 sc, LRU_ACTIVE_ANON);
3123 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3124 } while (memcg);
3128 * Returns true if there is an eligible zone balanced for the request order
3129 * and classzone_idx
3131 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3133 int i;
3134 unsigned long mark = -1;
3135 struct zone *zone;
3137 for (i = 0; i <= classzone_idx; i++) {
3138 zone = pgdat->node_zones + i;
3140 if (!managed_zone(zone))
3141 continue;
3143 mark = high_wmark_pages(zone);
3144 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3145 return true;
3149 * If a node has no populated zone within classzone_idx, it does not
3150 * need balancing by definition. This can happen if a zone-restricted
3151 * allocation tries to wake a remote kswapd.
3153 if (mark == -1)
3154 return true;
3156 return false;
3159 /* Clear pgdat state for congested, dirty or under writeback. */
3160 static void clear_pgdat_congested(pg_data_t *pgdat)
3162 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3163 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3164 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3168 * Prepare kswapd for sleeping. This verifies that there are no processes
3169 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3171 * Returns true if kswapd is ready to sleep
3173 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3176 * The throttled processes are normally woken up in balance_pgdat() as
3177 * soon as allow_direct_reclaim() is true. But there is a potential
3178 * race between when kswapd checks the watermarks and a process gets
3179 * throttled. There is also a potential race if processes get
3180 * throttled, kswapd wakes, a large process exits thereby balancing the
3181 * zones, which causes kswapd to exit balance_pgdat() before reaching
3182 * the wake up checks. If kswapd is going to sleep, no process should
3183 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3184 * the wake up is premature, processes will wake kswapd and get
3185 * throttled again. The difference from wake ups in balance_pgdat() is
3186 * that here we are under prepare_to_wait().
3188 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3189 wake_up_all(&pgdat->pfmemalloc_wait);
3191 /* Hopeless node, leave it to direct reclaim */
3192 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3193 return true;
3195 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3196 clear_pgdat_congested(pgdat);
3197 return true;
3200 return false;
3204 * kswapd shrinks a node of pages that are at or below the highest usable
3205 * zone that is currently unbalanced.
3207 * Returns true if kswapd scanned at least the requested number of pages to
3208 * reclaim or if the lack of progress was due to pages under writeback.
3209 * This is used to determine if the scanning priority needs to be raised.
3211 static bool kswapd_shrink_node(pg_data_t *pgdat,
3212 struct scan_control *sc)
3214 struct zone *zone;
3215 int z;
3217 /* Reclaim a number of pages proportional to the number of zones */
3218 sc->nr_to_reclaim = 0;
3219 for (z = 0; z <= sc->reclaim_idx; z++) {
3220 zone = pgdat->node_zones + z;
3221 if (!managed_zone(zone))
3222 continue;
3224 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3228 * Historically care was taken to put equal pressure on all zones but
3229 * now pressure is applied based on node LRU order.
3231 shrink_node(pgdat, sc);
3234 * Fragmentation may mean that the system cannot be rebalanced for
3235 * high-order allocations. If twice the allocation size has been
3236 * reclaimed then recheck watermarks only at order-0 to prevent
3237 * excessive reclaim. Assume that a process requested a high-order
3238 * can direct reclaim/compact.
3240 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3241 sc->order = 0;
3243 return sc->nr_scanned >= sc->nr_to_reclaim;
3247 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3248 * that are eligible for use by the caller until at least one zone is
3249 * balanced.
3251 * Returns the order kswapd finished reclaiming at.
3253 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3254 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3255 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3256 * or lower is eligible for reclaim until at least one usable zone is
3257 * balanced.
3259 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3261 int i;
3262 unsigned long nr_soft_reclaimed;
3263 unsigned long nr_soft_scanned;
3264 struct zone *zone;
3265 struct scan_control sc = {
3266 .gfp_mask = GFP_KERNEL,
3267 .order = order,
3268 .priority = DEF_PRIORITY,
3269 .may_writepage = !laptop_mode,
3270 .may_unmap = 1,
3271 .may_swap = 1,
3273 count_vm_event(PAGEOUTRUN);
3275 do {
3276 unsigned long nr_reclaimed = sc.nr_reclaimed;
3277 bool raise_priority = true;
3279 sc.reclaim_idx = classzone_idx;
3282 * If the number of buffer_heads exceeds the maximum allowed
3283 * then consider reclaiming from all zones. This has a dual
3284 * purpose -- on 64-bit systems it is expected that
3285 * buffer_heads are stripped during active rotation. On 32-bit
3286 * systems, highmem pages can pin lowmem memory and shrinking
3287 * buffers can relieve lowmem pressure. Reclaim may still not
3288 * go ahead if all eligible zones for the original allocation
3289 * request are balanced to avoid excessive reclaim from kswapd.
3291 if (buffer_heads_over_limit) {
3292 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3293 zone = pgdat->node_zones + i;
3294 if (!managed_zone(zone))
3295 continue;
3297 sc.reclaim_idx = i;
3298 break;
3303 * Only reclaim if there are no eligible zones. Note that
3304 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3305 * have adjusted it.
3307 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3308 goto out;
3311 * Do some background aging of the anon list, to give
3312 * pages a chance to be referenced before reclaiming. All
3313 * pages are rotated regardless of classzone as this is
3314 * about consistent aging.
3316 age_active_anon(pgdat, &sc);
3319 * If we're getting trouble reclaiming, start doing writepage
3320 * even in laptop mode.
3322 if (sc.priority < DEF_PRIORITY - 2)
3323 sc.may_writepage = 1;
3325 /* Call soft limit reclaim before calling shrink_node. */
3326 sc.nr_scanned = 0;
3327 nr_soft_scanned = 0;
3328 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3329 sc.gfp_mask, &nr_soft_scanned);
3330 sc.nr_reclaimed += nr_soft_reclaimed;
3333 * There should be no need to raise the scanning priority if
3334 * enough pages are already being scanned that that high
3335 * watermark would be met at 100% efficiency.
3337 if (kswapd_shrink_node(pgdat, &sc))
3338 raise_priority = false;
3341 * If the low watermark is met there is no need for processes
3342 * to be throttled on pfmemalloc_wait as they should not be
3343 * able to safely make forward progress. Wake them
3345 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3346 allow_direct_reclaim(pgdat))
3347 wake_up_all(&pgdat->pfmemalloc_wait);
3349 /* Check if kswapd should be suspending */
3350 if (try_to_freeze() || kthread_should_stop())
3351 break;
3354 * Raise priority if scanning rate is too low or there was no
3355 * progress in reclaiming pages
3357 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3358 if (raise_priority || !nr_reclaimed)
3359 sc.priority--;
3360 } while (sc.priority >= 1);
3362 if (!sc.nr_reclaimed)
3363 pgdat->kswapd_failures++;
3365 out:
3366 snapshot_refaults(NULL, pgdat);
3368 * Return the order kswapd stopped reclaiming at as
3369 * prepare_kswapd_sleep() takes it into account. If another caller
3370 * entered the allocator slow path while kswapd was awake, order will
3371 * remain at the higher level.
3373 return sc.order;
3377 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3378 * allocation request woke kswapd for. When kswapd has not woken recently,
3379 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3380 * given classzone and returns it or the highest classzone index kswapd
3381 * was recently woke for.
3383 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3384 enum zone_type classzone_idx)
3386 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3387 return classzone_idx;
3389 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3392 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3393 unsigned int classzone_idx)
3395 long remaining = 0;
3396 DEFINE_WAIT(wait);
3398 if (freezing(current) || kthread_should_stop())
3399 return;
3401 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3404 * Try to sleep for a short interval. Note that kcompactd will only be
3405 * woken if it is possible to sleep for a short interval. This is
3406 * deliberate on the assumption that if reclaim cannot keep an
3407 * eligible zone balanced that it's also unlikely that compaction will
3408 * succeed.
3410 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3412 * Compaction records what page blocks it recently failed to
3413 * isolate pages from and skips them in the future scanning.
3414 * When kswapd is going to sleep, it is reasonable to assume
3415 * that pages and compaction may succeed so reset the cache.
3417 reset_isolation_suitable(pgdat);
3420 * We have freed the memory, now we should compact it to make
3421 * allocation of the requested order possible.
3423 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3425 remaining = schedule_timeout(HZ/10);
3428 * If woken prematurely then reset kswapd_classzone_idx and
3429 * order. The values will either be from a wakeup request or
3430 * the previous request that slept prematurely.
3432 if (remaining) {
3433 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3434 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3437 finish_wait(&pgdat->kswapd_wait, &wait);
3438 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3442 * After a short sleep, check if it was a premature sleep. If not, then
3443 * go fully to sleep until explicitly woken up.
3445 if (!remaining &&
3446 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3447 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3450 * vmstat counters are not perfectly accurate and the estimated
3451 * value for counters such as NR_FREE_PAGES can deviate from the
3452 * true value by nr_online_cpus * threshold. To avoid the zone
3453 * watermarks being breached while under pressure, we reduce the
3454 * per-cpu vmstat threshold while kswapd is awake and restore
3455 * them before going back to sleep.
3457 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3459 if (!kthread_should_stop())
3460 schedule();
3462 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3463 } else {
3464 if (remaining)
3465 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3466 else
3467 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3469 finish_wait(&pgdat->kswapd_wait, &wait);
3473 * The background pageout daemon, started as a kernel thread
3474 * from the init process.
3476 * This basically trickles out pages so that we have _some_
3477 * free memory available even if there is no other activity
3478 * that frees anything up. This is needed for things like routing
3479 * etc, where we otherwise might have all activity going on in
3480 * asynchronous contexts that cannot page things out.
3482 * If there are applications that are active memory-allocators
3483 * (most normal use), this basically shouldn't matter.
3485 static int kswapd(void *p)
3487 unsigned int alloc_order, reclaim_order;
3488 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3489 pg_data_t *pgdat = (pg_data_t*)p;
3490 struct task_struct *tsk = current;
3492 struct reclaim_state reclaim_state = {
3493 .reclaimed_slab = 0,
3495 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3497 if (!cpumask_empty(cpumask))
3498 set_cpus_allowed_ptr(tsk, cpumask);
3499 current->reclaim_state = &reclaim_state;
3502 * Tell the memory management that we're a "memory allocator",
3503 * and that if we need more memory we should get access to it
3504 * regardless (see "__alloc_pages()"). "kswapd" should
3505 * never get caught in the normal page freeing logic.
3507 * (Kswapd normally doesn't need memory anyway, but sometimes
3508 * you need a small amount of memory in order to be able to
3509 * page out something else, and this flag essentially protects
3510 * us from recursively trying to free more memory as we're
3511 * trying to free the first piece of memory in the first place).
3513 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3514 set_freezable();
3516 pgdat->kswapd_order = 0;
3517 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3518 for ( ; ; ) {
3519 bool ret;
3521 alloc_order = reclaim_order = pgdat->kswapd_order;
3522 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3524 kswapd_try_sleep:
3525 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3526 classzone_idx);
3528 /* Read the new order and classzone_idx */
3529 alloc_order = reclaim_order = pgdat->kswapd_order;
3530 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3531 pgdat->kswapd_order = 0;
3532 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3534 ret = try_to_freeze();
3535 if (kthread_should_stop())
3536 break;
3539 * We can speed up thawing tasks if we don't call balance_pgdat
3540 * after returning from the refrigerator
3542 if (ret)
3543 continue;
3546 * Reclaim begins at the requested order but if a high-order
3547 * reclaim fails then kswapd falls back to reclaiming for
3548 * order-0. If that happens, kswapd will consider sleeping
3549 * for the order it finished reclaiming at (reclaim_order)
3550 * but kcompactd is woken to compact for the original
3551 * request (alloc_order).
3553 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3554 alloc_order);
3555 fs_reclaim_acquire(GFP_KERNEL);
3556 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3557 fs_reclaim_release(GFP_KERNEL);
3558 if (reclaim_order < alloc_order)
3559 goto kswapd_try_sleep;
3562 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3563 current->reclaim_state = NULL;
3565 return 0;
3569 * A zone is low on free memory, so wake its kswapd task to service it.
3571 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3573 pg_data_t *pgdat;
3575 if (!managed_zone(zone))
3576 return;
3578 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3579 return;
3580 pgdat = zone->zone_pgdat;
3581 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3582 classzone_idx);
3583 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3584 if (!waitqueue_active(&pgdat->kswapd_wait))
3585 return;
3587 /* Hopeless node, leave it to direct reclaim */
3588 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3589 return;
3591 if (pgdat_balanced(pgdat, order, classzone_idx))
3592 return;
3594 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3595 wake_up_interruptible(&pgdat->kswapd_wait);
3598 #ifdef CONFIG_HIBERNATION
3600 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3601 * freed pages.
3603 * Rather than trying to age LRUs the aim is to preserve the overall
3604 * LRU order by reclaiming preferentially
3605 * inactive > active > active referenced > active mapped
3607 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3609 struct reclaim_state reclaim_state;
3610 struct scan_control sc = {
3611 .nr_to_reclaim = nr_to_reclaim,
3612 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3613 .reclaim_idx = MAX_NR_ZONES - 1,
3614 .priority = DEF_PRIORITY,
3615 .may_writepage = 1,
3616 .may_unmap = 1,
3617 .may_swap = 1,
3618 .hibernation_mode = 1,
3620 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3621 struct task_struct *p = current;
3622 unsigned long nr_reclaimed;
3623 unsigned int noreclaim_flag;
3625 noreclaim_flag = memalloc_noreclaim_save();
3626 fs_reclaim_acquire(sc.gfp_mask);
3627 reclaim_state.reclaimed_slab = 0;
3628 p->reclaim_state = &reclaim_state;
3630 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3632 p->reclaim_state = NULL;
3633 fs_reclaim_release(sc.gfp_mask);
3634 memalloc_noreclaim_restore(noreclaim_flag);
3636 return nr_reclaimed;
3638 #endif /* CONFIG_HIBERNATION */
3640 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3641 not required for correctness. So if the last cpu in a node goes
3642 away, we get changed to run anywhere: as the first one comes back,
3643 restore their cpu bindings. */
3644 static int kswapd_cpu_online(unsigned int cpu)
3646 int nid;
3648 for_each_node_state(nid, N_MEMORY) {
3649 pg_data_t *pgdat = NODE_DATA(nid);
3650 const struct cpumask *mask;
3652 mask = cpumask_of_node(pgdat->node_id);
3654 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3655 /* One of our CPUs online: restore mask */
3656 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3658 return 0;
3662 * This kswapd start function will be called by init and node-hot-add.
3663 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3665 int kswapd_run(int nid)
3667 pg_data_t *pgdat = NODE_DATA(nid);
3668 int ret = 0;
3670 if (pgdat->kswapd)
3671 return 0;
3673 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3674 if (IS_ERR(pgdat->kswapd)) {
3675 /* failure at boot is fatal */
3676 BUG_ON(system_state < SYSTEM_RUNNING);
3677 pr_err("Failed to start kswapd on node %d\n", nid);
3678 ret = PTR_ERR(pgdat->kswapd);
3679 pgdat->kswapd = NULL;
3681 return ret;
3685 * Called by memory hotplug when all memory in a node is offlined. Caller must
3686 * hold mem_hotplug_begin/end().
3688 void kswapd_stop(int nid)
3690 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3692 if (kswapd) {
3693 kthread_stop(kswapd);
3694 NODE_DATA(nid)->kswapd = NULL;
3698 static int __init kswapd_init(void)
3700 int nid, ret;
3702 swap_setup();
3703 for_each_node_state(nid, N_MEMORY)
3704 kswapd_run(nid);
3705 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3706 "mm/vmscan:online", kswapd_cpu_online,
3707 NULL);
3708 WARN_ON(ret < 0);
3709 return 0;
3712 module_init(kswapd_init)
3714 #ifdef CONFIG_NUMA
3716 * Node reclaim mode
3718 * If non-zero call node_reclaim when the number of free pages falls below
3719 * the watermarks.
3721 int node_reclaim_mode __read_mostly;
3723 #define RECLAIM_OFF 0
3724 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3725 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3726 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3729 * Priority for NODE_RECLAIM. This determines the fraction of pages
3730 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3731 * a zone.
3733 #define NODE_RECLAIM_PRIORITY 4
3736 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3737 * occur.
3739 int sysctl_min_unmapped_ratio = 1;
3742 * If the number of slab pages in a zone grows beyond this percentage then
3743 * slab reclaim needs to occur.
3745 int sysctl_min_slab_ratio = 5;
3747 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3749 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3750 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3751 node_page_state(pgdat, NR_ACTIVE_FILE);
3754 * It's possible for there to be more file mapped pages than
3755 * accounted for by the pages on the file LRU lists because
3756 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3758 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3761 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3762 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3764 unsigned long nr_pagecache_reclaimable;
3765 unsigned long delta = 0;
3768 * If RECLAIM_UNMAP is set, then all file pages are considered
3769 * potentially reclaimable. Otherwise, we have to worry about
3770 * pages like swapcache and node_unmapped_file_pages() provides
3771 * a better estimate
3773 if (node_reclaim_mode & RECLAIM_UNMAP)
3774 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3775 else
3776 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3778 /* If we can't clean pages, remove dirty pages from consideration */
3779 if (!(node_reclaim_mode & RECLAIM_WRITE))
3780 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3782 /* Watch for any possible underflows due to delta */
3783 if (unlikely(delta > nr_pagecache_reclaimable))
3784 delta = nr_pagecache_reclaimable;
3786 return nr_pagecache_reclaimable - delta;
3790 * Try to free up some pages from this node through reclaim.
3792 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3794 /* Minimum pages needed in order to stay on node */
3795 const unsigned long nr_pages = 1 << order;
3796 struct task_struct *p = current;
3797 struct reclaim_state reclaim_state;
3798 unsigned int noreclaim_flag;
3799 struct scan_control sc = {
3800 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3801 .gfp_mask = current_gfp_context(gfp_mask),
3802 .order = order,
3803 .priority = NODE_RECLAIM_PRIORITY,
3804 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3805 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3806 .may_swap = 1,
3807 .reclaim_idx = gfp_zone(gfp_mask),
3810 cond_resched();
3812 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3813 * and we also need to be able to write out pages for RECLAIM_WRITE
3814 * and RECLAIM_UNMAP.
3816 noreclaim_flag = memalloc_noreclaim_save();
3817 p->flags |= PF_SWAPWRITE;
3818 fs_reclaim_acquire(sc.gfp_mask);
3819 reclaim_state.reclaimed_slab = 0;
3820 p->reclaim_state = &reclaim_state;
3822 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3824 * Free memory by calling shrink zone with increasing
3825 * priorities until we have enough memory freed.
3827 do {
3828 shrink_node(pgdat, &sc);
3829 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3832 p->reclaim_state = NULL;
3833 fs_reclaim_release(gfp_mask);
3834 current->flags &= ~PF_SWAPWRITE;
3835 memalloc_noreclaim_restore(noreclaim_flag);
3836 return sc.nr_reclaimed >= nr_pages;
3839 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3841 int ret;
3844 * Node reclaim reclaims unmapped file backed pages and
3845 * slab pages if we are over the defined limits.
3847 * A small portion of unmapped file backed pages is needed for
3848 * file I/O otherwise pages read by file I/O will be immediately
3849 * thrown out if the node is overallocated. So we do not reclaim
3850 * if less than a specified percentage of the node is used by
3851 * unmapped file backed pages.
3853 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3854 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3855 return NODE_RECLAIM_FULL;
3858 * Do not scan if the allocation should not be delayed.
3860 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3861 return NODE_RECLAIM_NOSCAN;
3864 * Only run node reclaim on the local node or on nodes that do not
3865 * have associated processors. This will favor the local processor
3866 * over remote processors and spread off node memory allocations
3867 * as wide as possible.
3869 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3870 return NODE_RECLAIM_NOSCAN;
3872 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3873 return NODE_RECLAIM_NOSCAN;
3875 ret = __node_reclaim(pgdat, gfp_mask, order);
3876 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3878 if (!ret)
3879 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3881 return ret;
3883 #endif
3886 * page_evictable - test whether a page is evictable
3887 * @page: the page to test
3889 * Test whether page is evictable--i.e., should be placed on active/inactive
3890 * lists vs unevictable list.
3892 * Reasons page might not be evictable:
3893 * (1) page's mapping marked unevictable
3894 * (2) page is part of an mlocked VMA
3897 int page_evictable(struct page *page)
3899 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3902 #ifdef CONFIG_SHMEM
3904 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3905 * @pages: array of pages to check
3906 * @nr_pages: number of pages to check
3908 * Checks pages for evictability and moves them to the appropriate lru list.
3910 * This function is only used for SysV IPC SHM_UNLOCK.
3912 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3914 struct lruvec *lruvec;
3915 struct pglist_data *pgdat = NULL;
3916 int pgscanned = 0;
3917 int pgrescued = 0;
3918 int i;
3920 for (i = 0; i < nr_pages; i++) {
3921 struct page *page = pages[i];
3922 struct pglist_data *pagepgdat = page_pgdat(page);
3924 pgscanned++;
3925 if (pagepgdat != pgdat) {
3926 if (pgdat)
3927 spin_unlock_irq(&pgdat->lru_lock);
3928 pgdat = pagepgdat;
3929 spin_lock_irq(&pgdat->lru_lock);
3931 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3933 if (!PageLRU(page) || !PageUnevictable(page))
3934 continue;
3936 if (page_evictable(page)) {
3937 enum lru_list lru = page_lru_base_type(page);
3939 VM_BUG_ON_PAGE(PageActive(page), page);
3940 ClearPageUnevictable(page);
3941 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3942 add_page_to_lru_list(page, lruvec, lru);
3943 pgrescued++;
3947 if (pgdat) {
3948 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3949 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3950 spin_unlock_irq(&pgdat->lru_lock);
3953 #endif /* CONFIG_SHMEM */