1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim
;
68 /* This context's GFP mask */
71 /* Allocation order */
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup
*target_mem_cgroup
;
86 /* Scan (total_size >> priority) pages at once */
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx
;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage
:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap
:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap
:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim
:1;
107 unsigned int memcg_low_skipped
:1;
109 unsigned int hibernation_mode
:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready
:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned
;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed
;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
124 if ((_page)->lru.prev != _base) { \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 if ((_page)->lru.prev != _base) { \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness
= 60;
154 * The total number of pages which are beyond the high watermark within all
157 unsigned long vm_total_pages
;
159 static LIST_HEAD(shrinker_list
);
160 static DECLARE_RWSEM(shrinker_rwsem
);
163 static bool global_reclaim(struct scan_control
*sc
)
165 return !sc
->target_mem_cgroup
;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control
*sc
)
183 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
194 static bool global_reclaim(struct scan_control
*sc
)
199 static bool sane_reclaim(struct scan_control
*sc
)
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone
*zone
)
214 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
215 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
216 if (get_nr_swap_pages() > 0)
217 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
218 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
229 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
231 unsigned long lru_size
;
234 if (!mem_cgroup_disabled())
235 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
237 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
239 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
240 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
243 if (!managed_zone(zone
))
246 if (!mem_cgroup_disabled())
247 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
249 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
250 NR_ZONE_LRU_BASE
+ lru
);
251 lru_size
-= min(size
, lru_size
);
259 * Add a shrinker callback to be called from the vm.
261 int prealloc_shrinker(struct shrinker
*shrinker
)
263 size_t size
= sizeof(*shrinker
->nr_deferred
);
265 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
268 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
269 if (!shrinker
->nr_deferred
)
274 void free_prealloced_shrinker(struct shrinker
*shrinker
)
276 kfree(shrinker
->nr_deferred
);
277 shrinker
->nr_deferred
= NULL
;
280 void register_shrinker_prepared(struct shrinker
*shrinker
)
282 down_write(&shrinker_rwsem
);
283 list_add_tail(&shrinker
->list
, &shrinker_list
);
284 up_write(&shrinker_rwsem
);
287 int register_shrinker(struct shrinker
*shrinker
)
289 int err
= prealloc_shrinker(shrinker
);
293 register_shrinker_prepared(shrinker
);
296 EXPORT_SYMBOL(register_shrinker
);
301 void unregister_shrinker(struct shrinker
*shrinker
)
303 if (!shrinker
->nr_deferred
)
305 down_write(&shrinker_rwsem
);
306 list_del(&shrinker
->list
);
307 up_write(&shrinker_rwsem
);
308 kfree(shrinker
->nr_deferred
);
309 shrinker
->nr_deferred
= NULL
;
311 EXPORT_SYMBOL(unregister_shrinker
);
313 #define SHRINK_BATCH 128
315 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
316 struct shrinker
*shrinker
, int priority
)
318 unsigned long freed
= 0;
319 unsigned long long delta
;
324 int nid
= shrinkctl
->nid
;
325 long batch_size
= shrinker
->batch
? shrinker
->batch
327 long scanned
= 0, next_deferred
;
329 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
334 * copy the current shrinker scan count into a local variable
335 * and zero it so that other concurrent shrinker invocations
336 * don't also do this scanning work.
338 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
341 delta
= freeable
>> priority
;
343 do_div(delta
, shrinker
->seeks
);
345 if (total_scan
< 0) {
346 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 shrinker
->scan_objects
, total_scan
);
348 total_scan
= freeable
;
351 next_deferred
= total_scan
;
354 * We need to avoid excessive windup on filesystem shrinkers
355 * due to large numbers of GFP_NOFS allocations causing the
356 * shrinkers to return -1 all the time. This results in a large
357 * nr being built up so when a shrink that can do some work
358 * comes along it empties the entire cache due to nr >>>
359 * freeable. This is bad for sustaining a working set in
362 * Hence only allow the shrinker to scan the entire cache when
363 * a large delta change is calculated directly.
365 if (delta
< freeable
/ 4)
366 total_scan
= min(total_scan
, freeable
/ 2);
369 * Avoid risking looping forever due to too large nr value:
370 * never try to free more than twice the estimate number of
373 if (total_scan
> freeable
* 2)
374 total_scan
= freeable
* 2;
376 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
377 freeable
, delta
, total_scan
, priority
);
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
394 while (total_scan
>= batch_size
||
395 total_scan
>= freeable
) {
397 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
399 shrinkctl
->nr_to_scan
= nr_to_scan
;
400 shrinkctl
->nr_scanned
= nr_to_scan
;
401 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
402 if (ret
== SHRINK_STOP
)
406 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
407 total_scan
-= shrinkctl
->nr_scanned
;
408 scanned
+= shrinkctl
->nr_scanned
;
413 if (next_deferred
>= scanned
)
414 next_deferred
-= scanned
;
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
422 if (next_deferred
> 0)
423 new_nr
= atomic_long_add_return(next_deferred
,
424 &shrinker
->nr_deferred
[nid
]);
426 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
428 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @priority: the reclaim priority
439 * Call the shrink functions to age shrinkable caches.
441 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
442 * unaware shrinkers will receive a node id of 0 instead.
444 * @memcg specifies the memory cgroup to target. If it is not NULL,
445 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
446 * objects from the memory cgroup specified. Otherwise, only unaware
447 * shrinkers are called.
449 * @priority is sc->priority, we take the number of objects and >> by priority
450 * in order to get the scan target.
452 * Returns the number of reclaimed slab objects.
454 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
455 struct mem_cgroup
*memcg
,
458 struct shrinker
*shrinker
;
459 unsigned long freed
= 0;
461 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
464 if (!down_read_trylock(&shrinker_rwsem
)) {
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
475 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
476 struct shrink_control sc
= {
477 .gfp_mask
= gfp_mask
,
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
487 if (memcg_kmem_enabled() &&
488 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
491 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
494 freed
+= do_shrink_slab(&sc
, shrinker
, priority
);
496 * Bail out if someone want to register a new shrinker to
497 * prevent the regsitration from being stalled for long periods
498 * by parallel ongoing shrinking.
500 if (rwsem_is_contended(&shrinker_rwsem
)) {
506 up_read(&shrinker_rwsem
);
512 void drop_slab_node(int nid
)
517 struct mem_cgroup
*memcg
= NULL
;
521 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
522 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
523 } while (freed
> 10);
530 for_each_online_node(nid
)
534 static inline int is_page_cache_freeable(struct page
*page
)
537 * A freeable page cache page is referenced only by the caller
538 * that isolated the page, the page cache radix tree and
539 * optional buffer heads at page->private.
541 int radix_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
543 return page_count(page
) - page_has_private(page
) == 1 + radix_pins
;
546 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
548 if (current
->flags
& PF_SWAPWRITE
)
550 if (!inode_write_congested(inode
))
552 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
558 * We detected a synchronous write error writing a page out. Probably
559 * -ENOSPC. We need to propagate that into the address_space for a subsequent
560 * fsync(), msync() or close().
562 * The tricky part is that after writepage we cannot touch the mapping: nothing
563 * prevents it from being freed up. But we have a ref on the page and once
564 * that page is locked, the mapping is pinned.
566 * We're allowed to run sleeping lock_page() here because we know the caller has
569 static void handle_write_error(struct address_space
*mapping
,
570 struct page
*page
, int error
)
573 if (page_mapping(page
) == mapping
)
574 mapping_set_error(mapping
, error
);
578 /* possible outcome of pageout() */
580 /* failed to write page out, page is locked */
582 /* move page to the active list, page is locked */
584 /* page has been sent to the disk successfully, page is unlocked */
586 /* page is clean and locked */
591 * pageout is called by shrink_page_list() for each dirty page.
592 * Calls ->writepage().
594 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
595 struct scan_control
*sc
)
598 * If the page is dirty, only perform writeback if that write
599 * will be non-blocking. To prevent this allocation from being
600 * stalled by pagecache activity. But note that there may be
601 * stalls if we need to run get_block(). We could test
602 * PagePrivate for that.
604 * If this process is currently in __generic_file_write_iter() against
605 * this page's queue, we can perform writeback even if that
608 * If the page is swapcache, write it back even if that would
609 * block, for some throttling. This happens by accident, because
610 * swap_backing_dev_info is bust: it doesn't reflect the
611 * congestion state of the swapdevs. Easy to fix, if needed.
613 if (!is_page_cache_freeable(page
))
617 * Some data journaling orphaned pages can have
618 * page->mapping == NULL while being dirty with clean buffers.
620 if (page_has_private(page
)) {
621 if (try_to_free_buffers(page
)) {
622 ClearPageDirty(page
);
623 pr_info("%s: orphaned page\n", __func__
);
629 if (mapping
->a_ops
->writepage
== NULL
)
630 return PAGE_ACTIVATE
;
631 if (!may_write_to_inode(mapping
->host
, sc
))
634 if (clear_page_dirty_for_io(page
)) {
636 struct writeback_control wbc
= {
637 .sync_mode
= WB_SYNC_NONE
,
638 .nr_to_write
= SWAP_CLUSTER_MAX
,
640 .range_end
= LLONG_MAX
,
644 SetPageReclaim(page
);
645 res
= mapping
->a_ops
->writepage(page
, &wbc
);
647 handle_write_error(mapping
, page
, res
);
648 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
649 ClearPageReclaim(page
);
650 return PAGE_ACTIVATE
;
653 if (!PageWriteback(page
)) {
654 /* synchronous write or broken a_ops? */
655 ClearPageReclaim(page
);
657 trace_mm_vmscan_writepage(page
);
658 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
666 * Same as remove_mapping, but if the page is removed from the mapping, it
667 * gets returned with a refcount of 0.
669 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
675 BUG_ON(!PageLocked(page
));
676 BUG_ON(mapping
!= page_mapping(page
));
678 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
680 * The non racy check for a busy page.
682 * Must be careful with the order of the tests. When someone has
683 * a ref to the page, it may be possible that they dirty it then
684 * drop the reference. So if PageDirty is tested before page_count
685 * here, then the following race may occur:
687 * get_user_pages(&page);
688 * [user mapping goes away]
690 * !PageDirty(page) [good]
691 * SetPageDirty(page);
693 * !page_count(page) [good, discard it]
695 * [oops, our write_to data is lost]
697 * Reversing the order of the tests ensures such a situation cannot
698 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
699 * load is not satisfied before that of page->_refcount.
701 * Note that if SetPageDirty is always performed via set_page_dirty,
702 * and thus under tree_lock, then this ordering is not required.
704 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
705 refcount
= 1 + HPAGE_PMD_NR
;
708 if (!page_ref_freeze(page
, refcount
))
710 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
711 if (unlikely(PageDirty(page
))) {
712 page_ref_unfreeze(page
, refcount
);
716 if (PageSwapCache(page
)) {
717 swp_entry_t swap
= { .val
= page_private(page
) };
718 mem_cgroup_swapout(page
, swap
);
719 __delete_from_swap_cache(page
);
720 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
721 put_swap_page(page
, swap
);
723 void (*freepage
)(struct page
*);
726 freepage
= mapping
->a_ops
->freepage
;
728 * Remember a shadow entry for reclaimed file cache in
729 * order to detect refaults, thus thrashing, later on.
731 * But don't store shadows in an address space that is
732 * already exiting. This is not just an optizimation,
733 * inode reclaim needs to empty out the radix tree or
734 * the nodes are lost. Don't plant shadows behind its
737 * We also don't store shadows for DAX mappings because the
738 * only page cache pages found in these are zero pages
739 * covering holes, and because we don't want to mix DAX
740 * exceptional entries and shadow exceptional entries in the
743 if (reclaimed
&& page_is_file_cache(page
) &&
744 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
745 shadow
= workingset_eviction(mapping
, page
);
746 __delete_from_page_cache(page
, shadow
);
747 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
749 if (freepage
!= NULL
)
756 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
761 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
762 * someone else has a ref on the page, abort and return 0. If it was
763 * successfully detached, return 1. Assumes the caller has a single ref on
766 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
768 if (__remove_mapping(mapping
, page
, false)) {
770 * Unfreezing the refcount with 1 rather than 2 effectively
771 * drops the pagecache ref for us without requiring another
774 page_ref_unfreeze(page
, 1);
781 * putback_lru_page - put previously isolated page onto appropriate LRU list
782 * @page: page to be put back to appropriate lru list
784 * Add previously isolated @page to appropriate LRU list.
785 * Page may still be unevictable for other reasons.
787 * lru_lock must not be held, interrupts must be enabled.
789 void putback_lru_page(struct page
*page
)
792 put_page(page
); /* drop ref from isolate */
795 enum page_references
{
797 PAGEREF_RECLAIM_CLEAN
,
802 static enum page_references
page_check_references(struct page
*page
,
803 struct scan_control
*sc
)
805 int referenced_ptes
, referenced_page
;
806 unsigned long vm_flags
;
808 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
810 referenced_page
= TestClearPageReferenced(page
);
813 * Mlock lost the isolation race with us. Let try_to_unmap()
814 * move the page to the unevictable list.
816 if (vm_flags
& VM_LOCKED
)
817 return PAGEREF_RECLAIM
;
819 if (referenced_ptes
) {
820 if (PageSwapBacked(page
))
821 return PAGEREF_ACTIVATE
;
823 * All mapped pages start out with page table
824 * references from the instantiating fault, so we need
825 * to look twice if a mapped file page is used more
828 * Mark it and spare it for another trip around the
829 * inactive list. Another page table reference will
830 * lead to its activation.
832 * Note: the mark is set for activated pages as well
833 * so that recently deactivated but used pages are
836 SetPageReferenced(page
);
838 if (referenced_page
|| referenced_ptes
> 1)
839 return PAGEREF_ACTIVATE
;
842 * Activate file-backed executable pages after first usage.
844 if (vm_flags
& VM_EXEC
)
845 return PAGEREF_ACTIVATE
;
850 /* Reclaim if clean, defer dirty pages to writeback */
851 if (referenced_page
&& !PageSwapBacked(page
))
852 return PAGEREF_RECLAIM_CLEAN
;
854 return PAGEREF_RECLAIM
;
857 /* Check if a page is dirty or under writeback */
858 static void page_check_dirty_writeback(struct page
*page
,
859 bool *dirty
, bool *writeback
)
861 struct address_space
*mapping
;
864 * Anonymous pages are not handled by flushers and must be written
865 * from reclaim context. Do not stall reclaim based on them
867 if (!page_is_file_cache(page
) ||
868 (PageAnon(page
) && !PageSwapBacked(page
))) {
874 /* By default assume that the page flags are accurate */
875 *dirty
= PageDirty(page
);
876 *writeback
= PageWriteback(page
);
878 /* Verify dirty/writeback state if the filesystem supports it */
879 if (!page_has_private(page
))
882 mapping
= page_mapping(page
);
883 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
884 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
887 struct reclaim_stat
{
889 unsigned nr_unqueued_dirty
;
890 unsigned nr_congested
;
891 unsigned nr_writeback
;
892 unsigned nr_immediate
;
893 unsigned nr_activate
;
894 unsigned nr_ref_keep
;
895 unsigned nr_unmap_fail
;
899 * shrink_page_list() returns the number of reclaimed pages
901 static unsigned long shrink_page_list(struct list_head
*page_list
,
902 struct pglist_data
*pgdat
,
903 struct scan_control
*sc
,
904 enum ttu_flags ttu_flags
,
905 struct reclaim_stat
*stat
,
908 LIST_HEAD(ret_pages
);
909 LIST_HEAD(free_pages
);
911 unsigned nr_unqueued_dirty
= 0;
912 unsigned nr_dirty
= 0;
913 unsigned nr_congested
= 0;
914 unsigned nr_reclaimed
= 0;
915 unsigned nr_writeback
= 0;
916 unsigned nr_immediate
= 0;
917 unsigned nr_ref_keep
= 0;
918 unsigned nr_unmap_fail
= 0;
922 while (!list_empty(page_list
)) {
923 struct address_space
*mapping
;
926 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
927 bool dirty
, writeback
;
931 page
= lru_to_page(page_list
);
932 list_del(&page
->lru
);
934 if (!trylock_page(page
))
937 VM_BUG_ON_PAGE(PageActive(page
), page
);
941 if (unlikely(!page_evictable(page
)))
942 goto activate_locked
;
944 if (!sc
->may_unmap
&& page_mapped(page
))
947 /* Double the slab pressure for mapped and swapcache pages */
948 if ((page_mapped(page
) || PageSwapCache(page
)) &&
949 !(PageAnon(page
) && !PageSwapBacked(page
)))
952 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
953 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
956 * The number of dirty pages determines if a zone is marked
957 * reclaim_congested which affects wait_iff_congested. kswapd
958 * will stall and start writing pages if the tail of the LRU
959 * is all dirty unqueued pages.
961 page_check_dirty_writeback(page
, &dirty
, &writeback
);
962 if (dirty
|| writeback
)
965 if (dirty
&& !writeback
)
969 * Treat this page as congested if the underlying BDI is or if
970 * pages are cycling through the LRU so quickly that the
971 * pages marked for immediate reclaim are making it to the
972 * end of the LRU a second time.
974 mapping
= page_mapping(page
);
975 if (((dirty
|| writeback
) && mapping
&&
976 inode_write_congested(mapping
->host
)) ||
977 (writeback
&& PageReclaim(page
)))
981 * If a page at the tail of the LRU is under writeback, there
982 * are three cases to consider.
984 * 1) If reclaim is encountering an excessive number of pages
985 * under writeback and this page is both under writeback and
986 * PageReclaim then it indicates that pages are being queued
987 * for IO but are being recycled through the LRU before the
988 * IO can complete. Waiting on the page itself risks an
989 * indefinite stall if it is impossible to writeback the
990 * page due to IO error or disconnected storage so instead
991 * note that the LRU is being scanned too quickly and the
992 * caller can stall after page list has been processed.
994 * 2) Global or new memcg reclaim encounters a page that is
995 * not marked for immediate reclaim, or the caller does not
996 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 * not to fs). In this case mark the page for immediate
998 * reclaim and continue scanning.
1000 * Require may_enter_fs because we would wait on fs, which
1001 * may not have submitted IO yet. And the loop driver might
1002 * enter reclaim, and deadlock if it waits on a page for
1003 * which it is needed to do the write (loop masks off
1004 * __GFP_IO|__GFP_FS for this reason); but more thought
1005 * would probably show more reasons.
1007 * 3) Legacy memcg encounters a page that is already marked
1008 * PageReclaim. memcg does not have any dirty pages
1009 * throttling so we could easily OOM just because too many
1010 * pages are in writeback and there is nothing else to
1011 * reclaim. Wait for the writeback to complete.
1013 * In cases 1) and 2) we activate the pages to get them out of
1014 * the way while we continue scanning for clean pages on the
1015 * inactive list and refilling from the active list. The
1016 * observation here is that waiting for disk writes is more
1017 * expensive than potentially causing reloads down the line.
1018 * Since they're marked for immediate reclaim, they won't put
1019 * memory pressure on the cache working set any longer than it
1020 * takes to write them to disk.
1022 if (PageWriteback(page
)) {
1024 if (current_is_kswapd() &&
1025 PageReclaim(page
) &&
1026 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1028 goto activate_locked
;
1031 } else if (sane_reclaim(sc
) ||
1032 !PageReclaim(page
) || !may_enter_fs
) {
1034 * This is slightly racy - end_page_writeback()
1035 * might have just cleared PageReclaim, then
1036 * setting PageReclaim here end up interpreted
1037 * as PageReadahead - but that does not matter
1038 * enough to care. What we do want is for this
1039 * page to have PageReclaim set next time memcg
1040 * reclaim reaches the tests above, so it will
1041 * then wait_on_page_writeback() to avoid OOM;
1042 * and it's also appropriate in global reclaim.
1044 SetPageReclaim(page
);
1046 goto activate_locked
;
1051 wait_on_page_writeback(page
);
1052 /* then go back and try same page again */
1053 list_add_tail(&page
->lru
, page_list
);
1059 references
= page_check_references(page
, sc
);
1061 switch (references
) {
1062 case PAGEREF_ACTIVATE
:
1063 goto activate_locked
;
1067 case PAGEREF_RECLAIM
:
1068 case PAGEREF_RECLAIM_CLEAN
:
1069 ; /* try to reclaim the page below */
1073 * Anonymous process memory has backing store?
1074 * Try to allocate it some swap space here.
1075 * Lazyfree page could be freed directly
1077 if (PageAnon(page
) && PageSwapBacked(page
)) {
1078 if (!PageSwapCache(page
)) {
1079 if (!(sc
->gfp_mask
& __GFP_IO
))
1081 if (PageTransHuge(page
)) {
1082 /* cannot split THP, skip it */
1083 if (!can_split_huge_page(page
, NULL
))
1084 goto activate_locked
;
1086 * Split pages without a PMD map right
1087 * away. Chances are some or all of the
1088 * tail pages can be freed without IO.
1090 if (!compound_mapcount(page
) &&
1091 split_huge_page_to_list(page
,
1093 goto activate_locked
;
1095 if (!add_to_swap(page
)) {
1096 if (!PageTransHuge(page
))
1097 goto activate_locked
;
1098 /* Fallback to swap normal pages */
1099 if (split_huge_page_to_list(page
,
1101 goto activate_locked
;
1102 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103 count_vm_event(THP_SWPOUT_FALLBACK
);
1105 if (!add_to_swap(page
))
1106 goto activate_locked
;
1111 /* Adding to swap updated mapping */
1112 mapping
= page_mapping(page
);
1114 } else if (unlikely(PageTransHuge(page
))) {
1115 /* Split file THP */
1116 if (split_huge_page_to_list(page
, page_list
))
1121 * The page is mapped into the page tables of one or more
1122 * processes. Try to unmap it here.
1124 if (page_mapped(page
)) {
1125 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1127 if (unlikely(PageTransHuge(page
)))
1128 flags
|= TTU_SPLIT_HUGE_PMD
;
1129 if (!try_to_unmap(page
, flags
)) {
1131 goto activate_locked
;
1135 if (PageDirty(page
)) {
1137 * Only kswapd can writeback filesystem pages
1138 * to avoid risk of stack overflow. But avoid
1139 * injecting inefficient single-page IO into
1140 * flusher writeback as much as possible: only
1141 * write pages when we've encountered many
1142 * dirty pages, and when we've already scanned
1143 * the rest of the LRU for clean pages and see
1144 * the same dirty pages again (PageReclaim).
1146 if (page_is_file_cache(page
) &&
1147 (!current_is_kswapd() || !PageReclaim(page
) ||
1148 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1150 * Immediately reclaim when written back.
1151 * Similar in principal to deactivate_page()
1152 * except we already have the page isolated
1153 * and know it's dirty
1155 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1156 SetPageReclaim(page
);
1158 goto activate_locked
;
1161 if (references
== PAGEREF_RECLAIM_CLEAN
)
1165 if (!sc
->may_writepage
)
1169 * Page is dirty. Flush the TLB if a writable entry
1170 * potentially exists to avoid CPU writes after IO
1171 * starts and then write it out here.
1173 try_to_unmap_flush_dirty();
1174 switch (pageout(page
, mapping
, sc
)) {
1178 goto activate_locked
;
1180 if (PageWriteback(page
))
1182 if (PageDirty(page
))
1186 * A synchronous write - probably a ramdisk. Go
1187 * ahead and try to reclaim the page.
1189 if (!trylock_page(page
))
1191 if (PageDirty(page
) || PageWriteback(page
))
1193 mapping
= page_mapping(page
);
1195 ; /* try to free the page below */
1200 * If the page has buffers, try to free the buffer mappings
1201 * associated with this page. If we succeed we try to free
1204 * We do this even if the page is PageDirty().
1205 * try_to_release_page() does not perform I/O, but it is
1206 * possible for a page to have PageDirty set, but it is actually
1207 * clean (all its buffers are clean). This happens if the
1208 * buffers were written out directly, with submit_bh(). ext3
1209 * will do this, as well as the blockdev mapping.
1210 * try_to_release_page() will discover that cleanness and will
1211 * drop the buffers and mark the page clean - it can be freed.
1213 * Rarely, pages can have buffers and no ->mapping. These are
1214 * the pages which were not successfully invalidated in
1215 * truncate_complete_page(). We try to drop those buffers here
1216 * and if that worked, and the page is no longer mapped into
1217 * process address space (page_count == 1) it can be freed.
1218 * Otherwise, leave the page on the LRU so it is swappable.
1220 if (page_has_private(page
)) {
1221 if (!try_to_release_page(page
, sc
->gfp_mask
))
1222 goto activate_locked
;
1223 if (!mapping
&& page_count(page
) == 1) {
1225 if (put_page_testzero(page
))
1229 * rare race with speculative reference.
1230 * the speculative reference will free
1231 * this page shortly, so we may
1232 * increment nr_reclaimed here (and
1233 * leave it off the LRU).
1241 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1242 /* follow __remove_mapping for reference */
1243 if (!page_ref_freeze(page
, 1))
1245 if (PageDirty(page
)) {
1246 page_ref_unfreeze(page
, 1);
1250 count_vm_event(PGLAZYFREED
);
1251 count_memcg_page_event(page
, PGLAZYFREED
);
1252 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1255 * At this point, we have no other references and there is
1256 * no way to pick any more up (removed from LRU, removed
1257 * from pagecache). Can use non-atomic bitops now (and
1258 * we obviously don't have to worry about waking up a process
1259 * waiting on the page lock, because there are no references.
1261 __ClearPageLocked(page
);
1266 * Is there need to periodically free_page_list? It would
1267 * appear not as the counts should be low
1269 if (unlikely(PageTransHuge(page
))) {
1270 mem_cgroup_uncharge(page
);
1271 (*get_compound_page_dtor(page
))(page
);
1273 list_add(&page
->lru
, &free_pages
);
1277 /* Not a candidate for swapping, so reclaim swap space. */
1278 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1280 try_to_free_swap(page
);
1281 VM_BUG_ON_PAGE(PageActive(page
), page
);
1282 if (!PageMlocked(page
)) {
1283 SetPageActive(page
);
1285 count_memcg_page_event(page
, PGACTIVATE
);
1290 list_add(&page
->lru
, &ret_pages
);
1291 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1294 mem_cgroup_uncharge_list(&free_pages
);
1295 try_to_unmap_flush();
1296 free_unref_page_list(&free_pages
);
1298 list_splice(&ret_pages
, page_list
);
1299 count_vm_events(PGACTIVATE
, pgactivate
);
1302 stat
->nr_dirty
= nr_dirty
;
1303 stat
->nr_congested
= nr_congested
;
1304 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1305 stat
->nr_writeback
= nr_writeback
;
1306 stat
->nr_immediate
= nr_immediate
;
1307 stat
->nr_activate
= pgactivate
;
1308 stat
->nr_ref_keep
= nr_ref_keep
;
1309 stat
->nr_unmap_fail
= nr_unmap_fail
;
1311 return nr_reclaimed
;
1314 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1315 struct list_head
*page_list
)
1317 struct scan_control sc
= {
1318 .gfp_mask
= GFP_KERNEL
,
1319 .priority
= DEF_PRIORITY
,
1323 struct page
*page
, *next
;
1324 LIST_HEAD(clean_pages
);
1326 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1327 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1328 !__PageMovable(page
)) {
1329 ClearPageActive(page
);
1330 list_move(&page
->lru
, &clean_pages
);
1334 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1335 TTU_IGNORE_ACCESS
, NULL
, true);
1336 list_splice(&clean_pages
, page_list
);
1337 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1342 * Attempt to remove the specified page from its LRU. Only take this page
1343 * if it is of the appropriate PageActive status. Pages which are being
1344 * freed elsewhere are also ignored.
1346 * page: page to consider
1347 * mode: one of the LRU isolation modes defined above
1349 * returns 0 on success, -ve errno on failure.
1351 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1355 /* Only take pages on the LRU. */
1359 /* Compaction should not handle unevictable pages but CMA can do so */
1360 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1366 * To minimise LRU disruption, the caller can indicate that it only
1367 * wants to isolate pages it will be able to operate on without
1368 * blocking - clean pages for the most part.
1370 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1371 * that it is possible to migrate without blocking
1373 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1374 /* All the caller can do on PageWriteback is block */
1375 if (PageWriteback(page
))
1378 if (PageDirty(page
)) {
1379 struct address_space
*mapping
;
1383 * Only pages without mappings or that have a
1384 * ->migratepage callback are possible to migrate
1385 * without blocking. However, we can be racing with
1386 * truncation so it's necessary to lock the page
1387 * to stabilise the mapping as truncation holds
1388 * the page lock until after the page is removed
1389 * from the page cache.
1391 if (!trylock_page(page
))
1394 mapping
= page_mapping(page
);
1395 migrate_dirty
= mapping
&& mapping
->a_ops
->migratepage
;
1402 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1405 if (likely(get_page_unless_zero(page
))) {
1407 * Be careful not to clear PageLRU until after we're
1408 * sure the page is not being freed elsewhere -- the
1409 * page release code relies on it.
1420 * Update LRU sizes after isolating pages. The LRU size updates must
1421 * be complete before mem_cgroup_update_lru_size due to a santity check.
1423 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1424 enum lru_list lru
, unsigned long *nr_zone_taken
)
1428 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1429 if (!nr_zone_taken
[zid
])
1432 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1434 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1441 * zone_lru_lock is heavily contended. Some of the functions that
1442 * shrink the lists perform better by taking out a batch of pages
1443 * and working on them outside the LRU lock.
1445 * For pagecache intensive workloads, this function is the hottest
1446 * spot in the kernel (apart from copy_*_user functions).
1448 * Appropriate locks must be held before calling this function.
1450 * @nr_to_scan: The number of eligible pages to look through on the list.
1451 * @lruvec: The LRU vector to pull pages from.
1452 * @dst: The temp list to put pages on to.
1453 * @nr_scanned: The number of pages that were scanned.
1454 * @sc: The scan_control struct for this reclaim session
1455 * @mode: One of the LRU isolation modes
1456 * @lru: LRU list id for isolating
1458 * returns how many pages were moved onto *@dst.
1460 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1461 struct lruvec
*lruvec
, struct list_head
*dst
,
1462 unsigned long *nr_scanned
, struct scan_control
*sc
,
1463 isolate_mode_t mode
, enum lru_list lru
)
1465 struct list_head
*src
= &lruvec
->lists
[lru
];
1466 unsigned long nr_taken
= 0;
1467 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1468 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1469 unsigned long skipped
= 0;
1470 unsigned long scan
, total_scan
, nr_pages
;
1471 LIST_HEAD(pages_skipped
);
1474 for (total_scan
= 0;
1475 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1479 page
= lru_to_page(src
);
1480 prefetchw_prev_lru_page(page
, src
, flags
);
1482 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1484 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1485 list_move(&page
->lru
, &pages_skipped
);
1486 nr_skipped
[page_zonenum(page
)]++;
1491 * Do not count skipped pages because that makes the function
1492 * return with no isolated pages if the LRU mostly contains
1493 * ineligible pages. This causes the VM to not reclaim any
1494 * pages, triggering a premature OOM.
1497 switch (__isolate_lru_page(page
, mode
)) {
1499 nr_pages
= hpage_nr_pages(page
);
1500 nr_taken
+= nr_pages
;
1501 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1502 list_move(&page
->lru
, dst
);
1506 /* else it is being freed elsewhere */
1507 list_move(&page
->lru
, src
);
1516 * Splice any skipped pages to the start of the LRU list. Note that
1517 * this disrupts the LRU order when reclaiming for lower zones but
1518 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1519 * scanning would soon rescan the same pages to skip and put the
1520 * system at risk of premature OOM.
1522 if (!list_empty(&pages_skipped
)) {
1525 list_splice(&pages_skipped
, src
);
1526 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1527 if (!nr_skipped
[zid
])
1530 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1531 skipped
+= nr_skipped
[zid
];
1534 *nr_scanned
= total_scan
;
1535 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1536 total_scan
, skipped
, nr_taken
, mode
, lru
);
1537 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1542 * isolate_lru_page - tries to isolate a page from its LRU list
1543 * @page: page to isolate from its LRU list
1545 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1546 * vmstat statistic corresponding to whatever LRU list the page was on.
1548 * Returns 0 if the page was removed from an LRU list.
1549 * Returns -EBUSY if the page was not on an LRU list.
1551 * The returned page will have PageLRU() cleared. If it was found on
1552 * the active list, it will have PageActive set. If it was found on
1553 * the unevictable list, it will have the PageUnevictable bit set. That flag
1554 * may need to be cleared by the caller before letting the page go.
1556 * The vmstat statistic corresponding to the list on which the page was
1557 * found will be decremented.
1561 * (1) Must be called with an elevated refcount on the page. This is a
1562 * fundamentnal difference from isolate_lru_pages (which is called
1563 * without a stable reference).
1564 * (2) the lru_lock must not be held.
1565 * (3) interrupts must be enabled.
1567 int isolate_lru_page(struct page
*page
)
1571 VM_BUG_ON_PAGE(!page_count(page
), page
);
1572 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1574 if (PageLRU(page
)) {
1575 struct zone
*zone
= page_zone(page
);
1576 struct lruvec
*lruvec
;
1578 spin_lock_irq(zone_lru_lock(zone
));
1579 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1580 if (PageLRU(page
)) {
1581 int lru
= page_lru(page
);
1584 del_page_from_lru_list(page
, lruvec
, lru
);
1587 spin_unlock_irq(zone_lru_lock(zone
));
1593 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1594 * then get resheduled. When there are massive number of tasks doing page
1595 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1596 * the LRU list will go small and be scanned faster than necessary, leading to
1597 * unnecessary swapping, thrashing and OOM.
1599 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1600 struct scan_control
*sc
)
1602 unsigned long inactive
, isolated
;
1604 if (current_is_kswapd())
1607 if (!sane_reclaim(sc
))
1611 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1612 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1614 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1615 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1619 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1620 * won't get blocked by normal direct-reclaimers, forming a circular
1623 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1626 return isolated
> inactive
;
1629 static noinline_for_stack
void
1630 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1632 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1633 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1634 LIST_HEAD(pages_to_free
);
1637 * Put back any unfreeable pages.
1639 while (!list_empty(page_list
)) {
1640 struct page
*page
= lru_to_page(page_list
);
1643 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1644 list_del(&page
->lru
);
1645 if (unlikely(!page_evictable(page
))) {
1646 spin_unlock_irq(&pgdat
->lru_lock
);
1647 putback_lru_page(page
);
1648 spin_lock_irq(&pgdat
->lru_lock
);
1652 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1655 lru
= page_lru(page
);
1656 add_page_to_lru_list(page
, lruvec
, lru
);
1658 if (is_active_lru(lru
)) {
1659 int file
= is_file_lru(lru
);
1660 int numpages
= hpage_nr_pages(page
);
1661 reclaim_stat
->recent_rotated
[file
] += numpages
;
1663 if (put_page_testzero(page
)) {
1664 __ClearPageLRU(page
);
1665 __ClearPageActive(page
);
1666 del_page_from_lru_list(page
, lruvec
, lru
);
1668 if (unlikely(PageCompound(page
))) {
1669 spin_unlock_irq(&pgdat
->lru_lock
);
1670 mem_cgroup_uncharge(page
);
1671 (*get_compound_page_dtor(page
))(page
);
1672 spin_lock_irq(&pgdat
->lru_lock
);
1674 list_add(&page
->lru
, &pages_to_free
);
1679 * To save our caller's stack, now use input list for pages to free.
1681 list_splice(&pages_to_free
, page_list
);
1685 * If a kernel thread (such as nfsd for loop-back mounts) services
1686 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1687 * In that case we should only throttle if the backing device it is
1688 * writing to is congested. In other cases it is safe to throttle.
1690 static int current_may_throttle(void)
1692 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1693 current
->backing_dev_info
== NULL
||
1694 bdi_write_congested(current
->backing_dev_info
);
1698 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1699 * of reclaimed pages
1701 static noinline_for_stack
unsigned long
1702 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1703 struct scan_control
*sc
, enum lru_list lru
)
1705 LIST_HEAD(page_list
);
1706 unsigned long nr_scanned
;
1707 unsigned long nr_reclaimed
= 0;
1708 unsigned long nr_taken
;
1709 struct reclaim_stat stat
= {};
1710 isolate_mode_t isolate_mode
= 0;
1711 int file
= is_file_lru(lru
);
1712 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1713 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1714 bool stalled
= false;
1716 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1720 /* wait a bit for the reclaimer. */
1724 /* We are about to die and free our memory. Return now. */
1725 if (fatal_signal_pending(current
))
1726 return SWAP_CLUSTER_MAX
;
1732 isolate_mode
|= ISOLATE_UNMAPPED
;
1734 spin_lock_irq(&pgdat
->lru_lock
);
1736 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1737 &nr_scanned
, sc
, isolate_mode
, lru
);
1739 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1740 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1742 if (current_is_kswapd()) {
1743 if (global_reclaim(sc
))
1744 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1745 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1748 if (global_reclaim(sc
))
1749 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1750 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1753 spin_unlock_irq(&pgdat
->lru_lock
);
1758 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1761 spin_lock_irq(&pgdat
->lru_lock
);
1763 if (current_is_kswapd()) {
1764 if (global_reclaim(sc
))
1765 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1766 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1769 if (global_reclaim(sc
))
1770 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1771 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1775 putback_inactive_pages(lruvec
, &page_list
);
1777 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1779 spin_unlock_irq(&pgdat
->lru_lock
);
1781 mem_cgroup_uncharge_list(&page_list
);
1782 free_unref_page_list(&page_list
);
1785 * If reclaim is isolating dirty pages under writeback, it implies
1786 * that the long-lived page allocation rate is exceeding the page
1787 * laundering rate. Either the global limits are not being effective
1788 * at throttling processes due to the page distribution throughout
1789 * zones or there is heavy usage of a slow backing device. The
1790 * only option is to throttle from reclaim context which is not ideal
1791 * as there is no guarantee the dirtying process is throttled in the
1792 * same way balance_dirty_pages() manages.
1794 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1795 * of pages under pages flagged for immediate reclaim and stall if any
1796 * are encountered in the nr_immediate check below.
1798 if (stat
.nr_writeback
&& stat
.nr_writeback
== nr_taken
)
1799 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1802 * If dirty pages are scanned that are not queued for IO, it
1803 * implies that flushers are not doing their job. This can
1804 * happen when memory pressure pushes dirty pages to the end of
1805 * the LRU before the dirty limits are breached and the dirty
1806 * data has expired. It can also happen when the proportion of
1807 * dirty pages grows not through writes but through memory
1808 * pressure reclaiming all the clean cache. And in some cases,
1809 * the flushers simply cannot keep up with the allocation
1810 * rate. Nudge the flusher threads in case they are asleep.
1812 if (stat
.nr_unqueued_dirty
== nr_taken
)
1813 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1816 * Legacy memcg will stall in page writeback so avoid forcibly
1819 if (sane_reclaim(sc
)) {
1821 * Tag a zone as congested if all the dirty pages scanned were
1822 * backed by a congested BDI and wait_iff_congested will stall.
1824 if (stat
.nr_dirty
&& stat
.nr_dirty
== stat
.nr_congested
)
1825 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1827 /* Allow kswapd to start writing pages during reclaim. */
1828 if (stat
.nr_unqueued_dirty
== nr_taken
)
1829 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1832 * If kswapd scans pages marked marked for immediate
1833 * reclaim and under writeback (nr_immediate), it implies
1834 * that pages are cycling through the LRU faster than
1835 * they are written so also forcibly stall.
1837 if (stat
.nr_immediate
&& current_may_throttle())
1838 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1842 * Stall direct reclaim for IO completions if underlying BDIs or zone
1843 * is congested. Allow kswapd to continue until it starts encountering
1844 * unqueued dirty pages or cycling through the LRU too quickly.
1846 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1847 current_may_throttle())
1848 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1850 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1851 nr_scanned
, nr_reclaimed
,
1852 stat
.nr_dirty
, stat
.nr_writeback
,
1853 stat
.nr_congested
, stat
.nr_immediate
,
1854 stat
.nr_activate
, stat
.nr_ref_keep
,
1856 sc
->priority
, file
);
1857 return nr_reclaimed
;
1861 * This moves pages from the active list to the inactive list.
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1877 * Returns the number of pages moved to the given lru.
1880 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
1881 struct list_head
*list
,
1882 struct list_head
*pages_to_free
,
1885 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1890 while (!list_empty(list
)) {
1891 page
= lru_to_page(list
);
1892 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1894 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1897 nr_pages
= hpage_nr_pages(page
);
1898 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1899 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1901 if (put_page_testzero(page
)) {
1902 __ClearPageLRU(page
);
1903 __ClearPageActive(page
);
1904 del_page_from_lru_list(page
, lruvec
, lru
);
1906 if (unlikely(PageCompound(page
))) {
1907 spin_unlock_irq(&pgdat
->lru_lock
);
1908 mem_cgroup_uncharge(page
);
1909 (*get_compound_page_dtor(page
))(page
);
1910 spin_lock_irq(&pgdat
->lru_lock
);
1912 list_add(&page
->lru
, pages_to_free
);
1914 nr_moved
+= nr_pages
;
1918 if (!is_active_lru(lru
)) {
1919 __count_vm_events(PGDEACTIVATE
, nr_moved
);
1920 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
1927 static void shrink_active_list(unsigned long nr_to_scan
,
1928 struct lruvec
*lruvec
,
1929 struct scan_control
*sc
,
1932 unsigned long nr_taken
;
1933 unsigned long nr_scanned
;
1934 unsigned long vm_flags
;
1935 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1936 LIST_HEAD(l_active
);
1937 LIST_HEAD(l_inactive
);
1939 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1940 unsigned nr_deactivate
, nr_activate
;
1941 unsigned nr_rotated
= 0;
1942 isolate_mode_t isolate_mode
= 0;
1943 int file
= is_file_lru(lru
);
1944 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1949 isolate_mode
|= ISOLATE_UNMAPPED
;
1951 spin_lock_irq(&pgdat
->lru_lock
);
1953 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1954 &nr_scanned
, sc
, isolate_mode
, lru
);
1956 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1957 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1959 __count_vm_events(PGREFILL
, nr_scanned
);
1960 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
1962 spin_unlock_irq(&pgdat
->lru_lock
);
1964 while (!list_empty(&l_hold
)) {
1966 page
= lru_to_page(&l_hold
);
1967 list_del(&page
->lru
);
1969 if (unlikely(!page_evictable(page
))) {
1970 putback_lru_page(page
);
1974 if (unlikely(buffer_heads_over_limit
)) {
1975 if (page_has_private(page
) && trylock_page(page
)) {
1976 if (page_has_private(page
))
1977 try_to_release_page(page
, 0);
1982 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1984 nr_rotated
+= hpage_nr_pages(page
);
1986 * Identify referenced, file-backed active pages and
1987 * give them one more trip around the active list. So
1988 * that executable code get better chances to stay in
1989 * memory under moderate memory pressure. Anon pages
1990 * are not likely to be evicted by use-once streaming
1991 * IO, plus JVM can create lots of anon VM_EXEC pages,
1992 * so we ignore them here.
1994 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1995 list_add(&page
->lru
, &l_active
);
2000 ClearPageActive(page
); /* we are de-activating */
2001 list_add(&page
->lru
, &l_inactive
);
2005 * Move pages back to the lru list.
2007 spin_lock_irq(&pgdat
->lru_lock
);
2009 * Count referenced pages from currently used mappings as rotated,
2010 * even though only some of them are actually re-activated. This
2011 * helps balance scan pressure between file and anonymous pages in
2014 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2016 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2017 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2018 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2019 spin_unlock_irq(&pgdat
->lru_lock
);
2021 mem_cgroup_uncharge_list(&l_hold
);
2022 free_unref_page_list(&l_hold
);
2023 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2024 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2028 * The inactive anon list should be small enough that the VM never has
2029 * to do too much work.
2031 * The inactive file list should be small enough to leave most memory
2032 * to the established workingset on the scan-resistant active list,
2033 * but large enough to avoid thrashing the aggregate readahead window.
2035 * Both inactive lists should also be large enough that each inactive
2036 * page has a chance to be referenced again before it is reclaimed.
2038 * If that fails and refaulting is observed, the inactive list grows.
2040 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2041 * on this LRU, maintained by the pageout code. An inactive_ratio
2042 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2045 * memory ratio inactive
2046 * -------------------------------------
2055 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2056 struct mem_cgroup
*memcg
,
2057 struct scan_control
*sc
, bool actual_reclaim
)
2059 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2060 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2061 enum lru_list inactive_lru
= file
* LRU_FILE
;
2062 unsigned long inactive
, active
;
2063 unsigned long inactive_ratio
;
2064 unsigned long refaults
;
2068 * If we don't have swap space, anonymous page deactivation
2071 if (!file
&& !total_swap_pages
)
2074 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2075 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2078 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2080 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2083 * When refaults are being observed, it means a new workingset
2084 * is being established. Disable active list protection to get
2085 * rid of the stale workingset quickly.
2087 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2090 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2092 inactive_ratio
= int_sqrt(10 * gb
);
2098 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2099 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2100 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2101 inactive_ratio
, file
);
2103 return inactive
* inactive_ratio
< active
;
2106 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2107 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2108 struct scan_control
*sc
)
2110 if (is_active_lru(lru
)) {
2111 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2113 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2117 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2128 * Determine how aggressively the anon and file LRU lists should be
2129 * scanned. The relative value of each set of LRU lists is determined
2130 * by looking at the fraction of the pages scanned we did rotate back
2131 * onto the active list instead of evict.
2133 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2134 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2136 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2137 struct scan_control
*sc
, unsigned long *nr
,
2138 unsigned long *lru_pages
)
2140 int swappiness
= mem_cgroup_swappiness(memcg
);
2141 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2143 u64 denominator
= 0; /* gcc */
2144 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2145 unsigned long anon_prio
, file_prio
;
2146 enum scan_balance scan_balance
;
2147 unsigned long anon
, file
;
2148 unsigned long ap
, fp
;
2151 /* If we have no swap space, do not bother scanning anon pages. */
2152 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2153 scan_balance
= SCAN_FILE
;
2158 * Global reclaim will swap to prevent OOM even with no
2159 * swappiness, but memcg users want to use this knob to
2160 * disable swapping for individual groups completely when
2161 * using the memory controller's swap limit feature would be
2164 if (!global_reclaim(sc
) && !swappiness
) {
2165 scan_balance
= SCAN_FILE
;
2170 * Do not apply any pressure balancing cleverness when the
2171 * system is close to OOM, scan both anon and file equally
2172 * (unless the swappiness setting disagrees with swapping).
2174 if (!sc
->priority
&& swappiness
) {
2175 scan_balance
= SCAN_EQUAL
;
2180 * Prevent the reclaimer from falling into the cache trap: as
2181 * cache pages start out inactive, every cache fault will tip
2182 * the scan balance towards the file LRU. And as the file LRU
2183 * shrinks, so does the window for rotation from references.
2184 * This means we have a runaway feedback loop where a tiny
2185 * thrashing file LRU becomes infinitely more attractive than
2186 * anon pages. Try to detect this based on file LRU size.
2188 if (global_reclaim(sc
)) {
2189 unsigned long pgdatfile
;
2190 unsigned long pgdatfree
;
2192 unsigned long total_high_wmark
= 0;
2194 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2195 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2196 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2198 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2199 struct zone
*zone
= &pgdat
->node_zones
[z
];
2200 if (!managed_zone(zone
))
2203 total_high_wmark
+= high_wmark_pages(zone
);
2206 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2208 * Force SCAN_ANON if there are enough inactive
2209 * anonymous pages on the LRU in eligible zones.
2210 * Otherwise, the small LRU gets thrashed.
2212 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2213 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2215 scan_balance
= SCAN_ANON
;
2222 * If there is enough inactive page cache, i.e. if the size of the
2223 * inactive list is greater than that of the active list *and* the
2224 * inactive list actually has some pages to scan on this priority, we
2225 * do not reclaim anything from the anonymous working set right now.
2226 * Without the second condition we could end up never scanning an
2227 * lruvec even if it has plenty of old anonymous pages unless the
2228 * system is under heavy pressure.
2230 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2231 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2232 scan_balance
= SCAN_FILE
;
2236 scan_balance
= SCAN_FRACT
;
2239 * With swappiness at 100, anonymous and file have the same priority.
2240 * This scanning priority is essentially the inverse of IO cost.
2242 anon_prio
= swappiness
;
2243 file_prio
= 200 - anon_prio
;
2246 * OK, so we have swap space and a fair amount of page cache
2247 * pages. We use the recently rotated / recently scanned
2248 * ratios to determine how valuable each cache is.
2250 * Because workloads change over time (and to avoid overflow)
2251 * we keep these statistics as a floating average, which ends
2252 * up weighing recent references more than old ones.
2254 * anon in [0], file in [1]
2257 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2258 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2259 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2260 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2262 spin_lock_irq(&pgdat
->lru_lock
);
2263 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2264 reclaim_stat
->recent_scanned
[0] /= 2;
2265 reclaim_stat
->recent_rotated
[0] /= 2;
2268 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2269 reclaim_stat
->recent_scanned
[1] /= 2;
2270 reclaim_stat
->recent_rotated
[1] /= 2;
2274 * The amount of pressure on anon vs file pages is inversely
2275 * proportional to the fraction of recently scanned pages on
2276 * each list that were recently referenced and in active use.
2278 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2279 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2281 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2282 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2283 spin_unlock_irq(&pgdat
->lru_lock
);
2287 denominator
= ap
+ fp
+ 1;
2290 for_each_evictable_lru(lru
) {
2291 int file
= is_file_lru(lru
);
2295 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2296 scan
= size
>> sc
->priority
;
2298 * If the cgroup's already been deleted, make sure to
2299 * scrape out the remaining cache.
2301 if (!scan
&& !mem_cgroup_online(memcg
))
2302 scan
= min(size
, SWAP_CLUSTER_MAX
);
2304 switch (scan_balance
) {
2306 /* Scan lists relative to size */
2310 * Scan types proportional to swappiness and
2311 * their relative recent reclaim efficiency.
2313 scan
= div64_u64(scan
* fraction
[file
],
2318 /* Scan one type exclusively */
2319 if ((scan_balance
== SCAN_FILE
) != file
) {
2325 /* Look ma, no brain */
2335 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2337 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2338 struct scan_control
*sc
, unsigned long *lru_pages
)
2340 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2341 unsigned long nr
[NR_LRU_LISTS
];
2342 unsigned long targets
[NR_LRU_LISTS
];
2343 unsigned long nr_to_scan
;
2345 unsigned long nr_reclaimed
= 0;
2346 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2347 struct blk_plug plug
;
2350 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2352 /* Record the original scan target for proportional adjustments later */
2353 memcpy(targets
, nr
, sizeof(nr
));
2356 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2357 * event that can occur when there is little memory pressure e.g.
2358 * multiple streaming readers/writers. Hence, we do not abort scanning
2359 * when the requested number of pages are reclaimed when scanning at
2360 * DEF_PRIORITY on the assumption that the fact we are direct
2361 * reclaiming implies that kswapd is not keeping up and it is best to
2362 * do a batch of work at once. For memcg reclaim one check is made to
2363 * abort proportional reclaim if either the file or anon lru has already
2364 * dropped to zero at the first pass.
2366 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2367 sc
->priority
== DEF_PRIORITY
);
2369 blk_start_plug(&plug
);
2370 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2371 nr
[LRU_INACTIVE_FILE
]) {
2372 unsigned long nr_anon
, nr_file
, percentage
;
2373 unsigned long nr_scanned
;
2375 for_each_evictable_lru(lru
) {
2377 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2378 nr
[lru
] -= nr_to_scan
;
2380 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2387 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2391 * For kswapd and memcg, reclaim at least the number of pages
2392 * requested. Ensure that the anon and file LRUs are scanned
2393 * proportionally what was requested by get_scan_count(). We
2394 * stop reclaiming one LRU and reduce the amount scanning
2395 * proportional to the original scan target.
2397 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2398 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2401 * It's just vindictive to attack the larger once the smaller
2402 * has gone to zero. And given the way we stop scanning the
2403 * smaller below, this makes sure that we only make one nudge
2404 * towards proportionality once we've got nr_to_reclaim.
2406 if (!nr_file
|| !nr_anon
)
2409 if (nr_file
> nr_anon
) {
2410 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2411 targets
[LRU_ACTIVE_ANON
] + 1;
2413 percentage
= nr_anon
* 100 / scan_target
;
2415 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2416 targets
[LRU_ACTIVE_FILE
] + 1;
2418 percentage
= nr_file
* 100 / scan_target
;
2421 /* Stop scanning the smaller of the LRU */
2423 nr
[lru
+ LRU_ACTIVE
] = 0;
2426 * Recalculate the other LRU scan count based on its original
2427 * scan target and the percentage scanning already complete
2429 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2430 nr_scanned
= targets
[lru
] - nr
[lru
];
2431 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2432 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2435 nr_scanned
= targets
[lru
] - nr
[lru
];
2436 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2437 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2439 scan_adjusted
= true;
2441 blk_finish_plug(&plug
);
2442 sc
->nr_reclaimed
+= nr_reclaimed
;
2445 * Even if we did not try to evict anon pages at all, we want to
2446 * rebalance the anon lru active/inactive ratio.
2448 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2449 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2450 sc
, LRU_ACTIVE_ANON
);
2453 /* Use reclaim/compaction for costly allocs or under memory pressure */
2454 static bool in_reclaim_compaction(struct scan_control
*sc
)
2456 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2457 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2458 sc
->priority
< DEF_PRIORITY
- 2))
2465 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2466 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2467 * true if more pages should be reclaimed such that when the page allocator
2468 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2469 * It will give up earlier than that if there is difficulty reclaiming pages.
2471 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2472 unsigned long nr_reclaimed
,
2473 unsigned long nr_scanned
,
2474 struct scan_control
*sc
)
2476 unsigned long pages_for_compaction
;
2477 unsigned long inactive_lru_pages
;
2480 /* If not in reclaim/compaction mode, stop */
2481 if (!in_reclaim_compaction(sc
))
2484 /* Consider stopping depending on scan and reclaim activity */
2485 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2487 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2488 * full LRU list has been scanned and we are still failing
2489 * to reclaim pages. This full LRU scan is potentially
2490 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2492 if (!nr_reclaimed
&& !nr_scanned
)
2496 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2497 * fail without consequence, stop if we failed to reclaim
2498 * any pages from the last SWAP_CLUSTER_MAX number of
2499 * pages that were scanned. This will return to the
2500 * caller faster at the risk reclaim/compaction and
2501 * the resulting allocation attempt fails
2508 * If we have not reclaimed enough pages for compaction and the
2509 * inactive lists are large enough, continue reclaiming
2511 pages_for_compaction
= compact_gap(sc
->order
);
2512 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2513 if (get_nr_swap_pages() > 0)
2514 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2515 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2516 inactive_lru_pages
> pages_for_compaction
)
2519 /* If compaction would go ahead or the allocation would succeed, stop */
2520 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2521 struct zone
*zone
= &pgdat
->node_zones
[z
];
2522 if (!managed_zone(zone
))
2525 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2526 case COMPACT_SUCCESS
:
2527 case COMPACT_CONTINUE
:
2530 /* check next zone */
2537 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2539 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2540 unsigned long nr_reclaimed
, nr_scanned
;
2541 bool reclaimable
= false;
2544 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2545 struct mem_cgroup_reclaim_cookie reclaim
= {
2547 .priority
= sc
->priority
,
2549 unsigned long node_lru_pages
= 0;
2550 struct mem_cgroup
*memcg
;
2552 nr_reclaimed
= sc
->nr_reclaimed
;
2553 nr_scanned
= sc
->nr_scanned
;
2555 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2557 unsigned long lru_pages
;
2558 unsigned long reclaimed
;
2559 unsigned long scanned
;
2561 if (mem_cgroup_low(root
, memcg
)) {
2562 if (!sc
->memcg_low_reclaim
) {
2563 sc
->memcg_low_skipped
= 1;
2566 mem_cgroup_event(memcg
, MEMCG_LOW
);
2569 reclaimed
= sc
->nr_reclaimed
;
2570 scanned
= sc
->nr_scanned
;
2571 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2572 node_lru_pages
+= lru_pages
;
2575 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2576 memcg
, sc
->priority
);
2578 /* Record the group's reclaim efficiency */
2579 vmpressure(sc
->gfp_mask
, memcg
, false,
2580 sc
->nr_scanned
- scanned
,
2581 sc
->nr_reclaimed
- reclaimed
);
2584 * Direct reclaim and kswapd have to scan all memory
2585 * cgroups to fulfill the overall scan target for the
2588 * Limit reclaim, on the other hand, only cares about
2589 * nr_to_reclaim pages to be reclaimed and it will
2590 * retry with decreasing priority if one round over the
2591 * whole hierarchy is not sufficient.
2593 if (!global_reclaim(sc
) &&
2594 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2595 mem_cgroup_iter_break(root
, memcg
);
2598 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2600 if (global_reclaim(sc
))
2601 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2604 if (reclaim_state
) {
2605 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2606 reclaim_state
->reclaimed_slab
= 0;
2609 /* Record the subtree's reclaim efficiency */
2610 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2611 sc
->nr_scanned
- nr_scanned
,
2612 sc
->nr_reclaimed
- nr_reclaimed
);
2614 if (sc
->nr_reclaimed
- nr_reclaimed
)
2617 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2618 sc
->nr_scanned
- nr_scanned
, sc
));
2621 * Kswapd gives up on balancing particular nodes after too
2622 * many failures to reclaim anything from them and goes to
2623 * sleep. On reclaim progress, reset the failure counter. A
2624 * successful direct reclaim run will revive a dormant kswapd.
2627 pgdat
->kswapd_failures
= 0;
2633 * Returns true if compaction should go ahead for a costly-order request, or
2634 * the allocation would already succeed without compaction. Return false if we
2635 * should reclaim first.
2637 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2639 unsigned long watermark
;
2640 enum compact_result suitable
;
2642 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2643 if (suitable
== COMPACT_SUCCESS
)
2644 /* Allocation should succeed already. Don't reclaim. */
2646 if (suitable
== COMPACT_SKIPPED
)
2647 /* Compaction cannot yet proceed. Do reclaim. */
2651 * Compaction is already possible, but it takes time to run and there
2652 * are potentially other callers using the pages just freed. So proceed
2653 * with reclaim to make a buffer of free pages available to give
2654 * compaction a reasonable chance of completing and allocating the page.
2655 * Note that we won't actually reclaim the whole buffer in one attempt
2656 * as the target watermark in should_continue_reclaim() is lower. But if
2657 * we are already above the high+gap watermark, don't reclaim at all.
2659 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2661 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2665 * This is the direct reclaim path, for page-allocating processes. We only
2666 * try to reclaim pages from zones which will satisfy the caller's allocation
2669 * If a zone is deemed to be full of pinned pages then just give it a light
2670 * scan then give up on it.
2672 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2676 unsigned long nr_soft_reclaimed
;
2677 unsigned long nr_soft_scanned
;
2679 pg_data_t
*last_pgdat
= NULL
;
2682 * If the number of buffer_heads in the machine exceeds the maximum
2683 * allowed level, force direct reclaim to scan the highmem zone as
2684 * highmem pages could be pinning lowmem pages storing buffer_heads
2686 orig_mask
= sc
->gfp_mask
;
2687 if (buffer_heads_over_limit
) {
2688 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2689 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2692 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2693 sc
->reclaim_idx
, sc
->nodemask
) {
2695 * Take care memory controller reclaiming has small influence
2698 if (global_reclaim(sc
)) {
2699 if (!cpuset_zone_allowed(zone
,
2700 GFP_KERNEL
| __GFP_HARDWALL
))
2704 * If we already have plenty of memory free for
2705 * compaction in this zone, don't free any more.
2706 * Even though compaction is invoked for any
2707 * non-zero order, only frequent costly order
2708 * reclamation is disruptive enough to become a
2709 * noticeable problem, like transparent huge
2712 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2713 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2714 compaction_ready(zone
, sc
)) {
2715 sc
->compaction_ready
= true;
2720 * Shrink each node in the zonelist once. If the
2721 * zonelist is ordered by zone (not the default) then a
2722 * node may be shrunk multiple times but in that case
2723 * the user prefers lower zones being preserved.
2725 if (zone
->zone_pgdat
== last_pgdat
)
2729 * This steals pages from memory cgroups over softlimit
2730 * and returns the number of reclaimed pages and
2731 * scanned pages. This works for global memory pressure
2732 * and balancing, not for a memcg's limit.
2734 nr_soft_scanned
= 0;
2735 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2736 sc
->order
, sc
->gfp_mask
,
2738 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2739 sc
->nr_scanned
+= nr_soft_scanned
;
2740 /* need some check for avoid more shrink_zone() */
2743 /* See comment about same check for global reclaim above */
2744 if (zone
->zone_pgdat
== last_pgdat
)
2746 last_pgdat
= zone
->zone_pgdat
;
2747 shrink_node(zone
->zone_pgdat
, sc
);
2751 * Restore to original mask to avoid the impact on the caller if we
2752 * promoted it to __GFP_HIGHMEM.
2754 sc
->gfp_mask
= orig_mask
;
2757 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2759 struct mem_cgroup
*memcg
;
2761 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2763 unsigned long refaults
;
2764 struct lruvec
*lruvec
;
2767 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2769 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2771 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2772 lruvec
->refaults
= refaults
;
2773 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2777 * This is the main entry point to direct page reclaim.
2779 * If a full scan of the inactive list fails to free enough memory then we
2780 * are "out of memory" and something needs to be killed.
2782 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2783 * high - the zone may be full of dirty or under-writeback pages, which this
2784 * caller can't do much about. We kick the writeback threads and take explicit
2785 * naps in the hope that some of these pages can be written. But if the
2786 * allocating task holds filesystem locks which prevent writeout this might not
2787 * work, and the allocation attempt will fail.
2789 * returns: 0, if no pages reclaimed
2790 * else, the number of pages reclaimed
2792 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2793 struct scan_control
*sc
)
2795 int initial_priority
= sc
->priority
;
2796 pg_data_t
*last_pgdat
;
2800 delayacct_freepages_start();
2802 if (global_reclaim(sc
))
2803 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2806 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2809 shrink_zones(zonelist
, sc
);
2811 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2814 if (sc
->compaction_ready
)
2818 * If we're getting trouble reclaiming, start doing
2819 * writepage even in laptop mode.
2821 if (sc
->priority
< DEF_PRIORITY
- 2)
2822 sc
->may_writepage
= 1;
2823 } while (--sc
->priority
>= 0);
2826 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
2828 if (zone
->zone_pgdat
== last_pgdat
)
2830 last_pgdat
= zone
->zone_pgdat
;
2831 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
2834 delayacct_freepages_end();
2836 if (sc
->nr_reclaimed
)
2837 return sc
->nr_reclaimed
;
2839 /* Aborted reclaim to try compaction? don't OOM, then */
2840 if (sc
->compaction_ready
)
2843 /* Untapped cgroup reserves? Don't OOM, retry. */
2844 if (sc
->memcg_low_skipped
) {
2845 sc
->priority
= initial_priority
;
2846 sc
->memcg_low_reclaim
= 1;
2847 sc
->memcg_low_skipped
= 0;
2854 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
2857 unsigned long pfmemalloc_reserve
= 0;
2858 unsigned long free_pages
= 0;
2862 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
2865 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2866 zone
= &pgdat
->node_zones
[i
];
2867 if (!managed_zone(zone
))
2870 if (!zone_reclaimable_pages(zone
))
2873 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2874 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2877 /* If there are no reserves (unexpected config) then do not throttle */
2878 if (!pfmemalloc_reserve
)
2881 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2883 /* kswapd must be awake if processes are being throttled */
2884 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2885 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2886 (enum zone_type
)ZONE_NORMAL
);
2887 wake_up_interruptible(&pgdat
->kswapd_wait
);
2894 * Throttle direct reclaimers if backing storage is backed by the network
2895 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2896 * depleted. kswapd will continue to make progress and wake the processes
2897 * when the low watermark is reached.
2899 * Returns true if a fatal signal was delivered during throttling. If this
2900 * happens, the page allocator should not consider triggering the OOM killer.
2902 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2903 nodemask_t
*nodemask
)
2907 pg_data_t
*pgdat
= NULL
;
2910 * Kernel threads should not be throttled as they may be indirectly
2911 * responsible for cleaning pages necessary for reclaim to make forward
2912 * progress. kjournald for example may enter direct reclaim while
2913 * committing a transaction where throttling it could forcing other
2914 * processes to block on log_wait_commit().
2916 if (current
->flags
& PF_KTHREAD
)
2920 * If a fatal signal is pending, this process should not throttle.
2921 * It should return quickly so it can exit and free its memory
2923 if (fatal_signal_pending(current
))
2927 * Check if the pfmemalloc reserves are ok by finding the first node
2928 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2929 * GFP_KERNEL will be required for allocating network buffers when
2930 * swapping over the network so ZONE_HIGHMEM is unusable.
2932 * Throttling is based on the first usable node and throttled processes
2933 * wait on a queue until kswapd makes progress and wakes them. There
2934 * is an affinity then between processes waking up and where reclaim
2935 * progress has been made assuming the process wakes on the same node.
2936 * More importantly, processes running on remote nodes will not compete
2937 * for remote pfmemalloc reserves and processes on different nodes
2938 * should make reasonable progress.
2940 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2941 gfp_zone(gfp_mask
), nodemask
) {
2942 if (zone_idx(zone
) > ZONE_NORMAL
)
2945 /* Throttle based on the first usable node */
2946 pgdat
= zone
->zone_pgdat
;
2947 if (allow_direct_reclaim(pgdat
))
2952 /* If no zone was usable by the allocation flags then do not throttle */
2956 /* Account for the throttling */
2957 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2960 * If the caller cannot enter the filesystem, it's possible that it
2961 * is due to the caller holding an FS lock or performing a journal
2962 * transaction in the case of a filesystem like ext[3|4]. In this case,
2963 * it is not safe to block on pfmemalloc_wait as kswapd could be
2964 * blocked waiting on the same lock. Instead, throttle for up to a
2965 * second before continuing.
2967 if (!(gfp_mask
& __GFP_FS
)) {
2968 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2969 allow_direct_reclaim(pgdat
), HZ
);
2974 /* Throttle until kswapd wakes the process */
2975 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2976 allow_direct_reclaim(pgdat
));
2979 if (fatal_signal_pending(current
))
2986 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2987 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2989 unsigned long nr_reclaimed
;
2990 struct scan_control sc
= {
2991 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2992 .gfp_mask
= current_gfp_context(gfp_mask
),
2993 .reclaim_idx
= gfp_zone(gfp_mask
),
2995 .nodemask
= nodemask
,
2996 .priority
= DEF_PRIORITY
,
2997 .may_writepage
= !laptop_mode
,
3003 * Do not enter reclaim if fatal signal was delivered while throttled.
3004 * 1 is returned so that the page allocator does not OOM kill at this
3007 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3010 trace_mm_vmscan_direct_reclaim_begin(order
,
3015 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3017 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3019 return nr_reclaimed
;
3024 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3025 gfp_t gfp_mask
, bool noswap
,
3027 unsigned long *nr_scanned
)
3029 struct scan_control sc
= {
3030 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3031 .target_mem_cgroup
= memcg
,
3032 .may_writepage
= !laptop_mode
,
3034 .reclaim_idx
= MAX_NR_ZONES
- 1,
3035 .may_swap
= !noswap
,
3037 unsigned long lru_pages
;
3039 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3040 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3042 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3048 * NOTE: Although we can get the priority field, using it
3049 * here is not a good idea, since it limits the pages we can scan.
3050 * if we don't reclaim here, the shrink_node from balance_pgdat
3051 * will pick up pages from other mem cgroup's as well. We hack
3052 * the priority and make it zero.
3054 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3056 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3058 *nr_scanned
= sc
.nr_scanned
;
3059 return sc
.nr_reclaimed
;
3062 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3063 unsigned long nr_pages
,
3067 struct zonelist
*zonelist
;
3068 unsigned long nr_reclaimed
;
3070 unsigned int noreclaim_flag
;
3071 struct scan_control sc
= {
3072 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3073 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3074 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3075 .reclaim_idx
= MAX_NR_ZONES
- 1,
3076 .target_mem_cgroup
= memcg
,
3077 .priority
= DEF_PRIORITY
,
3078 .may_writepage
= !laptop_mode
,
3080 .may_swap
= may_swap
,
3084 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3085 * take care of from where we get pages. So the node where we start the
3086 * scan does not need to be the current node.
3088 nid
= mem_cgroup_select_victim_node(memcg
);
3090 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3092 trace_mm_vmscan_memcg_reclaim_begin(0,
3097 noreclaim_flag
= memalloc_noreclaim_save();
3098 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3099 memalloc_noreclaim_restore(noreclaim_flag
);
3101 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3103 return nr_reclaimed
;
3107 static void age_active_anon(struct pglist_data
*pgdat
,
3108 struct scan_control
*sc
)
3110 struct mem_cgroup
*memcg
;
3112 if (!total_swap_pages
)
3115 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3117 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3119 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3120 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3121 sc
, LRU_ACTIVE_ANON
);
3123 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3128 * Returns true if there is an eligible zone balanced for the request order
3131 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3134 unsigned long mark
= -1;
3137 for (i
= 0; i
<= classzone_idx
; i
++) {
3138 zone
= pgdat
->node_zones
+ i
;
3140 if (!managed_zone(zone
))
3143 mark
= high_wmark_pages(zone
);
3144 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3149 * If a node has no populated zone within classzone_idx, it does not
3150 * need balancing by definition. This can happen if a zone-restricted
3151 * allocation tries to wake a remote kswapd.
3159 /* Clear pgdat state for congested, dirty or under writeback. */
3160 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3162 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3163 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3164 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3168 * Prepare kswapd for sleeping. This verifies that there are no processes
3169 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3171 * Returns true if kswapd is ready to sleep
3173 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3176 * The throttled processes are normally woken up in balance_pgdat() as
3177 * soon as allow_direct_reclaim() is true. But there is a potential
3178 * race between when kswapd checks the watermarks and a process gets
3179 * throttled. There is also a potential race if processes get
3180 * throttled, kswapd wakes, a large process exits thereby balancing the
3181 * zones, which causes kswapd to exit balance_pgdat() before reaching
3182 * the wake up checks. If kswapd is going to sleep, no process should
3183 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3184 * the wake up is premature, processes will wake kswapd and get
3185 * throttled again. The difference from wake ups in balance_pgdat() is
3186 * that here we are under prepare_to_wait().
3188 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3189 wake_up_all(&pgdat
->pfmemalloc_wait
);
3191 /* Hopeless node, leave it to direct reclaim */
3192 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3195 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3196 clear_pgdat_congested(pgdat
);
3204 * kswapd shrinks a node of pages that are at or below the highest usable
3205 * zone that is currently unbalanced.
3207 * Returns true if kswapd scanned at least the requested number of pages to
3208 * reclaim or if the lack of progress was due to pages under writeback.
3209 * This is used to determine if the scanning priority needs to be raised.
3211 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3212 struct scan_control
*sc
)
3217 /* Reclaim a number of pages proportional to the number of zones */
3218 sc
->nr_to_reclaim
= 0;
3219 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3220 zone
= pgdat
->node_zones
+ z
;
3221 if (!managed_zone(zone
))
3224 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3228 * Historically care was taken to put equal pressure on all zones but
3229 * now pressure is applied based on node LRU order.
3231 shrink_node(pgdat
, sc
);
3234 * Fragmentation may mean that the system cannot be rebalanced for
3235 * high-order allocations. If twice the allocation size has been
3236 * reclaimed then recheck watermarks only at order-0 to prevent
3237 * excessive reclaim. Assume that a process requested a high-order
3238 * can direct reclaim/compact.
3240 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3243 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3247 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3248 * that are eligible for use by the caller until at least one zone is
3251 * Returns the order kswapd finished reclaiming at.
3253 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3254 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3255 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3256 * or lower is eligible for reclaim until at least one usable zone is
3259 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3262 unsigned long nr_soft_reclaimed
;
3263 unsigned long nr_soft_scanned
;
3265 struct scan_control sc
= {
3266 .gfp_mask
= GFP_KERNEL
,
3268 .priority
= DEF_PRIORITY
,
3269 .may_writepage
= !laptop_mode
,
3273 count_vm_event(PAGEOUTRUN
);
3276 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3277 bool raise_priority
= true;
3279 sc
.reclaim_idx
= classzone_idx
;
3282 * If the number of buffer_heads exceeds the maximum allowed
3283 * then consider reclaiming from all zones. This has a dual
3284 * purpose -- on 64-bit systems it is expected that
3285 * buffer_heads are stripped during active rotation. On 32-bit
3286 * systems, highmem pages can pin lowmem memory and shrinking
3287 * buffers can relieve lowmem pressure. Reclaim may still not
3288 * go ahead if all eligible zones for the original allocation
3289 * request are balanced to avoid excessive reclaim from kswapd.
3291 if (buffer_heads_over_limit
) {
3292 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3293 zone
= pgdat
->node_zones
+ i
;
3294 if (!managed_zone(zone
))
3303 * Only reclaim if there are no eligible zones. Note that
3304 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3307 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3311 * Do some background aging of the anon list, to give
3312 * pages a chance to be referenced before reclaiming. All
3313 * pages are rotated regardless of classzone as this is
3314 * about consistent aging.
3316 age_active_anon(pgdat
, &sc
);
3319 * If we're getting trouble reclaiming, start doing writepage
3320 * even in laptop mode.
3322 if (sc
.priority
< DEF_PRIORITY
- 2)
3323 sc
.may_writepage
= 1;
3325 /* Call soft limit reclaim before calling shrink_node. */
3327 nr_soft_scanned
= 0;
3328 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3329 sc
.gfp_mask
, &nr_soft_scanned
);
3330 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3333 * There should be no need to raise the scanning priority if
3334 * enough pages are already being scanned that that high
3335 * watermark would be met at 100% efficiency.
3337 if (kswapd_shrink_node(pgdat
, &sc
))
3338 raise_priority
= false;
3341 * If the low watermark is met there is no need for processes
3342 * to be throttled on pfmemalloc_wait as they should not be
3343 * able to safely make forward progress. Wake them
3345 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3346 allow_direct_reclaim(pgdat
))
3347 wake_up_all(&pgdat
->pfmemalloc_wait
);
3349 /* Check if kswapd should be suspending */
3350 if (try_to_freeze() || kthread_should_stop())
3354 * Raise priority if scanning rate is too low or there was no
3355 * progress in reclaiming pages
3357 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3358 if (raise_priority
|| !nr_reclaimed
)
3360 } while (sc
.priority
>= 1);
3362 if (!sc
.nr_reclaimed
)
3363 pgdat
->kswapd_failures
++;
3366 snapshot_refaults(NULL
, pgdat
);
3368 * Return the order kswapd stopped reclaiming at as
3369 * prepare_kswapd_sleep() takes it into account. If another caller
3370 * entered the allocator slow path while kswapd was awake, order will
3371 * remain at the higher level.
3377 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3378 * allocation request woke kswapd for. When kswapd has not woken recently,
3379 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3380 * given classzone and returns it or the highest classzone index kswapd
3381 * was recently woke for.
3383 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3384 enum zone_type classzone_idx
)
3386 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3387 return classzone_idx
;
3389 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3392 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3393 unsigned int classzone_idx
)
3398 if (freezing(current
) || kthread_should_stop())
3401 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3404 * Try to sleep for a short interval. Note that kcompactd will only be
3405 * woken if it is possible to sleep for a short interval. This is
3406 * deliberate on the assumption that if reclaim cannot keep an
3407 * eligible zone balanced that it's also unlikely that compaction will
3410 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3412 * Compaction records what page blocks it recently failed to
3413 * isolate pages from and skips them in the future scanning.
3414 * When kswapd is going to sleep, it is reasonable to assume
3415 * that pages and compaction may succeed so reset the cache.
3417 reset_isolation_suitable(pgdat
);
3420 * We have freed the memory, now we should compact it to make
3421 * allocation of the requested order possible.
3423 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3425 remaining
= schedule_timeout(HZ
/10);
3428 * If woken prematurely then reset kswapd_classzone_idx and
3429 * order. The values will either be from a wakeup request or
3430 * the previous request that slept prematurely.
3433 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3434 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3437 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3438 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3442 * After a short sleep, check if it was a premature sleep. If not, then
3443 * go fully to sleep until explicitly woken up.
3446 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3447 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3450 * vmstat counters are not perfectly accurate and the estimated
3451 * value for counters such as NR_FREE_PAGES can deviate from the
3452 * true value by nr_online_cpus * threshold. To avoid the zone
3453 * watermarks being breached while under pressure, we reduce the
3454 * per-cpu vmstat threshold while kswapd is awake and restore
3455 * them before going back to sleep.
3457 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3459 if (!kthread_should_stop())
3462 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3465 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3467 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3469 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3473 * The background pageout daemon, started as a kernel thread
3474 * from the init process.
3476 * This basically trickles out pages so that we have _some_
3477 * free memory available even if there is no other activity
3478 * that frees anything up. This is needed for things like routing
3479 * etc, where we otherwise might have all activity going on in
3480 * asynchronous contexts that cannot page things out.
3482 * If there are applications that are active memory-allocators
3483 * (most normal use), this basically shouldn't matter.
3485 static int kswapd(void *p
)
3487 unsigned int alloc_order
, reclaim_order
;
3488 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3489 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3490 struct task_struct
*tsk
= current
;
3492 struct reclaim_state reclaim_state
= {
3493 .reclaimed_slab
= 0,
3495 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3497 if (!cpumask_empty(cpumask
))
3498 set_cpus_allowed_ptr(tsk
, cpumask
);
3499 current
->reclaim_state
= &reclaim_state
;
3502 * Tell the memory management that we're a "memory allocator",
3503 * and that if we need more memory we should get access to it
3504 * regardless (see "__alloc_pages()"). "kswapd" should
3505 * never get caught in the normal page freeing logic.
3507 * (Kswapd normally doesn't need memory anyway, but sometimes
3508 * you need a small amount of memory in order to be able to
3509 * page out something else, and this flag essentially protects
3510 * us from recursively trying to free more memory as we're
3511 * trying to free the first piece of memory in the first place).
3513 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3516 pgdat
->kswapd_order
= 0;
3517 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3521 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3522 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3525 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3528 /* Read the new order and classzone_idx */
3529 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3530 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3531 pgdat
->kswapd_order
= 0;
3532 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3534 ret
= try_to_freeze();
3535 if (kthread_should_stop())
3539 * We can speed up thawing tasks if we don't call balance_pgdat
3540 * after returning from the refrigerator
3546 * Reclaim begins at the requested order but if a high-order
3547 * reclaim fails then kswapd falls back to reclaiming for
3548 * order-0. If that happens, kswapd will consider sleeping
3549 * for the order it finished reclaiming at (reclaim_order)
3550 * but kcompactd is woken to compact for the original
3551 * request (alloc_order).
3553 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3555 fs_reclaim_acquire(GFP_KERNEL
);
3556 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3557 fs_reclaim_release(GFP_KERNEL
);
3558 if (reclaim_order
< alloc_order
)
3559 goto kswapd_try_sleep
;
3562 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3563 current
->reclaim_state
= NULL
;
3569 * A zone is low on free memory, so wake its kswapd task to service it.
3571 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3575 if (!managed_zone(zone
))
3578 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3580 pgdat
= zone
->zone_pgdat
;
3581 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3583 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3584 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3587 /* Hopeless node, leave it to direct reclaim */
3588 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3591 if (pgdat_balanced(pgdat
, order
, classzone_idx
))
3594 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
);
3595 wake_up_interruptible(&pgdat
->kswapd_wait
);
3598 #ifdef CONFIG_HIBERNATION
3600 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3603 * Rather than trying to age LRUs the aim is to preserve the overall
3604 * LRU order by reclaiming preferentially
3605 * inactive > active > active referenced > active mapped
3607 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3609 struct reclaim_state reclaim_state
;
3610 struct scan_control sc
= {
3611 .nr_to_reclaim
= nr_to_reclaim
,
3612 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3613 .reclaim_idx
= MAX_NR_ZONES
- 1,
3614 .priority
= DEF_PRIORITY
,
3618 .hibernation_mode
= 1,
3620 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3621 struct task_struct
*p
= current
;
3622 unsigned long nr_reclaimed
;
3623 unsigned int noreclaim_flag
;
3625 noreclaim_flag
= memalloc_noreclaim_save();
3626 fs_reclaim_acquire(sc
.gfp_mask
);
3627 reclaim_state
.reclaimed_slab
= 0;
3628 p
->reclaim_state
= &reclaim_state
;
3630 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3632 p
->reclaim_state
= NULL
;
3633 fs_reclaim_release(sc
.gfp_mask
);
3634 memalloc_noreclaim_restore(noreclaim_flag
);
3636 return nr_reclaimed
;
3638 #endif /* CONFIG_HIBERNATION */
3640 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3641 not required for correctness. So if the last cpu in a node goes
3642 away, we get changed to run anywhere: as the first one comes back,
3643 restore their cpu bindings. */
3644 static int kswapd_cpu_online(unsigned int cpu
)
3648 for_each_node_state(nid
, N_MEMORY
) {
3649 pg_data_t
*pgdat
= NODE_DATA(nid
);
3650 const struct cpumask
*mask
;
3652 mask
= cpumask_of_node(pgdat
->node_id
);
3654 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3655 /* One of our CPUs online: restore mask */
3656 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3662 * This kswapd start function will be called by init and node-hot-add.
3663 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3665 int kswapd_run(int nid
)
3667 pg_data_t
*pgdat
= NODE_DATA(nid
);
3673 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3674 if (IS_ERR(pgdat
->kswapd
)) {
3675 /* failure at boot is fatal */
3676 BUG_ON(system_state
< SYSTEM_RUNNING
);
3677 pr_err("Failed to start kswapd on node %d\n", nid
);
3678 ret
= PTR_ERR(pgdat
->kswapd
);
3679 pgdat
->kswapd
= NULL
;
3685 * Called by memory hotplug when all memory in a node is offlined. Caller must
3686 * hold mem_hotplug_begin/end().
3688 void kswapd_stop(int nid
)
3690 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3693 kthread_stop(kswapd
);
3694 NODE_DATA(nid
)->kswapd
= NULL
;
3698 static int __init
kswapd_init(void)
3703 for_each_node_state(nid
, N_MEMORY
)
3705 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3706 "mm/vmscan:online", kswapd_cpu_online
,
3712 module_init(kswapd_init
)
3718 * If non-zero call node_reclaim when the number of free pages falls below
3721 int node_reclaim_mode __read_mostly
;
3723 #define RECLAIM_OFF 0
3724 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3725 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3726 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3729 * Priority for NODE_RECLAIM. This determines the fraction of pages
3730 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3733 #define NODE_RECLAIM_PRIORITY 4
3736 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3739 int sysctl_min_unmapped_ratio
= 1;
3742 * If the number of slab pages in a zone grows beyond this percentage then
3743 * slab reclaim needs to occur.
3745 int sysctl_min_slab_ratio
= 5;
3747 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3749 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3750 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3751 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3754 * It's possible for there to be more file mapped pages than
3755 * accounted for by the pages on the file LRU lists because
3756 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3758 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3761 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3762 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3764 unsigned long nr_pagecache_reclaimable
;
3765 unsigned long delta
= 0;
3768 * If RECLAIM_UNMAP is set, then all file pages are considered
3769 * potentially reclaimable. Otherwise, we have to worry about
3770 * pages like swapcache and node_unmapped_file_pages() provides
3773 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3774 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3776 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3778 /* If we can't clean pages, remove dirty pages from consideration */
3779 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3780 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3782 /* Watch for any possible underflows due to delta */
3783 if (unlikely(delta
> nr_pagecache_reclaimable
))
3784 delta
= nr_pagecache_reclaimable
;
3786 return nr_pagecache_reclaimable
- delta
;
3790 * Try to free up some pages from this node through reclaim.
3792 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3794 /* Minimum pages needed in order to stay on node */
3795 const unsigned long nr_pages
= 1 << order
;
3796 struct task_struct
*p
= current
;
3797 struct reclaim_state reclaim_state
;
3798 unsigned int noreclaim_flag
;
3799 struct scan_control sc
= {
3800 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3801 .gfp_mask
= current_gfp_context(gfp_mask
),
3803 .priority
= NODE_RECLAIM_PRIORITY
,
3804 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3805 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3807 .reclaim_idx
= gfp_zone(gfp_mask
),
3812 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3813 * and we also need to be able to write out pages for RECLAIM_WRITE
3814 * and RECLAIM_UNMAP.
3816 noreclaim_flag
= memalloc_noreclaim_save();
3817 p
->flags
|= PF_SWAPWRITE
;
3818 fs_reclaim_acquire(sc
.gfp_mask
);
3819 reclaim_state
.reclaimed_slab
= 0;
3820 p
->reclaim_state
= &reclaim_state
;
3822 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3824 * Free memory by calling shrink zone with increasing
3825 * priorities until we have enough memory freed.
3828 shrink_node(pgdat
, &sc
);
3829 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3832 p
->reclaim_state
= NULL
;
3833 fs_reclaim_release(gfp_mask
);
3834 current
->flags
&= ~PF_SWAPWRITE
;
3835 memalloc_noreclaim_restore(noreclaim_flag
);
3836 return sc
.nr_reclaimed
>= nr_pages
;
3839 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3844 * Node reclaim reclaims unmapped file backed pages and
3845 * slab pages if we are over the defined limits.
3847 * A small portion of unmapped file backed pages is needed for
3848 * file I/O otherwise pages read by file I/O will be immediately
3849 * thrown out if the node is overallocated. So we do not reclaim
3850 * if less than a specified percentage of the node is used by
3851 * unmapped file backed pages.
3853 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3854 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3855 return NODE_RECLAIM_FULL
;
3858 * Do not scan if the allocation should not be delayed.
3860 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3861 return NODE_RECLAIM_NOSCAN
;
3864 * Only run node reclaim on the local node or on nodes that do not
3865 * have associated processors. This will favor the local processor
3866 * over remote processors and spread off node memory allocations
3867 * as wide as possible.
3869 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3870 return NODE_RECLAIM_NOSCAN
;
3872 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3873 return NODE_RECLAIM_NOSCAN
;
3875 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3876 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3879 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3886 * page_evictable - test whether a page is evictable
3887 * @page: the page to test
3889 * Test whether page is evictable--i.e., should be placed on active/inactive
3890 * lists vs unevictable list.
3892 * Reasons page might not be evictable:
3893 * (1) page's mapping marked unevictable
3894 * (2) page is part of an mlocked VMA
3897 int page_evictable(struct page
*page
)
3899 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3904 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3905 * @pages: array of pages to check
3906 * @nr_pages: number of pages to check
3908 * Checks pages for evictability and moves them to the appropriate lru list.
3910 * This function is only used for SysV IPC SHM_UNLOCK.
3912 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3914 struct lruvec
*lruvec
;
3915 struct pglist_data
*pgdat
= NULL
;
3920 for (i
= 0; i
< nr_pages
; i
++) {
3921 struct page
*page
= pages
[i
];
3922 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3925 if (pagepgdat
!= pgdat
) {
3927 spin_unlock_irq(&pgdat
->lru_lock
);
3929 spin_lock_irq(&pgdat
->lru_lock
);
3931 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3933 if (!PageLRU(page
) || !PageUnevictable(page
))
3936 if (page_evictable(page
)) {
3937 enum lru_list lru
= page_lru_base_type(page
);
3939 VM_BUG_ON_PAGE(PageActive(page
), page
);
3940 ClearPageUnevictable(page
);
3941 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3942 add_page_to_lru_list(page
, lruvec
, lru
);
3948 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3949 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3950 spin_unlock_irq(&pgdat
->lru_lock
);
3953 #endif /* CONFIG_SHMEM */