2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
46 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
47 static int xfs_uuid_table_size
;
48 static uuid_t
*xfs_uuid_table
;
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
58 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
61 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
64 if (uuid_is_nil(uuid
)) {
65 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
69 mutex_lock(&xfs_uuid_table_mutex
);
70 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
71 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
75 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
80 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
81 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
82 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
84 hole
= xfs_uuid_table_size
++;
86 xfs_uuid_table
[hole
] = *uuid
;
87 mutex_unlock(&xfs_uuid_table_mutex
);
92 mutex_unlock(&xfs_uuid_table_mutex
);
93 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
101 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
104 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
107 mutex_lock(&xfs_uuid_table_mutex
);
108 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
109 if (uuid_is_nil(&xfs_uuid_table
[i
]))
111 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
113 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
116 ASSERT(i
< xfs_uuid_table_size
);
117 mutex_unlock(&xfs_uuid_table_mutex
);
123 struct rcu_head
*head
)
125 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
127 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
132 * Free up the per-ag resources associated with the mount structure.
139 struct xfs_perag
*pag
;
141 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
142 spin_lock(&mp
->m_perag_lock
);
143 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
144 spin_unlock(&mp
->m_perag_lock
);
146 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
147 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
152 * Check size of device based on the (data/realtime) block count.
153 * Note: this check is used by the growfs code as well as mount.
156 xfs_sb_validate_fsb_count(
160 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
161 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
163 /* Limited by ULONG_MAX of page cache index */
164 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
170 xfs_initialize_perag(
172 xfs_agnumber_t agcount
,
173 xfs_agnumber_t
*maxagi
)
175 xfs_agnumber_t index
;
176 xfs_agnumber_t first_initialised
= 0;
180 xfs_sb_t
*sbp
= &mp
->m_sb
;
184 * Walk the current per-ag tree so we don't try to initialise AGs
185 * that already exist (growfs case). Allocate and insert all the
186 * AGs we don't find ready for initialisation.
188 for (index
= 0; index
< agcount
; index
++) {
189 pag
= xfs_perag_get(mp
, index
);
194 if (!first_initialised
)
195 first_initialised
= index
;
197 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
200 pag
->pag_agno
= index
;
202 spin_lock_init(&pag
->pag_ici_lock
);
203 mutex_init(&pag
->pag_ici_reclaim_lock
);
204 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
205 spin_lock_init(&pag
->pag_buf_lock
);
206 pag
->pag_buf_tree
= RB_ROOT
;
208 if (radix_tree_preload(GFP_NOFS
))
211 spin_lock(&mp
->m_perag_lock
);
212 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
214 spin_unlock(&mp
->m_perag_lock
);
215 radix_tree_preload_end();
219 spin_unlock(&mp
->m_perag_lock
);
220 radix_tree_preload_end();
224 * If we mount with the inode64 option, or no inode overflows
225 * the legacy 32-bit address space clear the inode32 option.
227 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
228 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
230 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
231 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
233 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
235 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
236 index
= xfs_set_inode32(mp
, agcount
);
238 index
= xfs_set_inode64(mp
, agcount
);
246 for (; index
> first_initialised
; index
--) {
247 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
256 * Does the initial read of the superblock.
260 struct xfs_mount
*mp
,
263 unsigned int sector_size
;
265 struct xfs_sb
*sbp
= &mp
->m_sb
;
267 int loud
= !(flags
& XFS_MFSI_QUIET
);
268 const struct xfs_buf_ops
*buf_ops
;
270 ASSERT(mp
->m_sb_bp
== NULL
);
271 ASSERT(mp
->m_ddev_targp
!= NULL
);
274 * For the initial read, we must guess at the sector
275 * size based on the block device. It's enough to
276 * get the sb_sectsize out of the superblock and
277 * then reread with the proper length.
278 * We don't verify it yet, because it may not be complete.
280 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
284 * Allocate a (locked) buffer to hold the superblock.
285 * This will be kept around at all times to optimize
286 * access to the superblock.
289 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
290 BTOBB(sector_size
), 0, &bp
, buf_ops
);
293 xfs_warn(mp
, "SB validate failed with error %d.", error
);
294 /* bad CRC means corrupted metadata */
295 if (error
== -EFSBADCRC
)
296 error
= -EFSCORRUPTED
;
301 * Initialize the mount structure from the superblock.
303 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
306 * If we haven't validated the superblock, do so now before we try
307 * to check the sector size and reread the superblock appropriately.
309 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
311 xfs_warn(mp
, "Invalid superblock magic number");
317 * We must be able to do sector-sized and sector-aligned IO.
319 if (sector_size
> sbp
->sb_sectsize
) {
321 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
322 sector_size
, sbp
->sb_sectsize
);
327 if (buf_ops
== NULL
) {
329 * Re-read the superblock so the buffer is correctly sized,
330 * and properly verified.
333 sector_size
= sbp
->sb_sectsize
;
334 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
338 xfs_reinit_percpu_counters(mp
);
340 /* no need to be quiet anymore, so reset the buf ops */
341 bp
->b_ops
= &xfs_sb_buf_ops
;
353 * Update alignment values based on mount options and sb values
356 xfs_update_alignment(xfs_mount_t
*mp
)
358 xfs_sb_t
*sbp
= &(mp
->m_sb
);
362 * If stripe unit and stripe width are not multiples
363 * of the fs blocksize turn off alignment.
365 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
366 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
368 "alignment check failed: sunit/swidth vs. blocksize(%d)",
373 * Convert the stripe unit and width to FSBs.
375 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
376 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
378 "alignment check failed: sunit/swidth vs. agsize(%d)",
381 } else if (mp
->m_dalign
) {
382 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
385 "alignment check failed: sunit(%d) less than bsize(%d)",
386 mp
->m_dalign
, sbp
->sb_blocksize
);
392 * Update superblock with new values
395 if (xfs_sb_version_hasdalign(sbp
)) {
396 if (sbp
->sb_unit
!= mp
->m_dalign
) {
397 sbp
->sb_unit
= mp
->m_dalign
;
398 mp
->m_update_sb
= true;
400 if (sbp
->sb_width
!= mp
->m_swidth
) {
401 sbp
->sb_width
= mp
->m_swidth
;
402 mp
->m_update_sb
= true;
406 "cannot change alignment: superblock does not support data alignment");
409 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
410 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
411 mp
->m_dalign
= sbp
->sb_unit
;
412 mp
->m_swidth
= sbp
->sb_width
;
419 * Set the maximum inode count for this filesystem
422 xfs_set_maxicount(xfs_mount_t
*mp
)
424 xfs_sb_t
*sbp
= &(mp
->m_sb
);
427 if (sbp
->sb_imax_pct
) {
429 * Make sure the maximum inode count is a multiple
430 * of the units we allocate inodes in.
432 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
434 do_div(icount
, mp
->m_ialloc_blks
);
435 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
443 * Set the default minimum read and write sizes unless
444 * already specified in a mount option.
445 * We use smaller I/O sizes when the file system
446 * is being used for NFS service (wsync mount option).
449 xfs_set_rw_sizes(xfs_mount_t
*mp
)
451 xfs_sb_t
*sbp
= &(mp
->m_sb
);
452 int readio_log
, writeio_log
;
454 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
455 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
456 readio_log
= XFS_WSYNC_READIO_LOG
;
457 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
459 readio_log
= XFS_READIO_LOG_LARGE
;
460 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
463 readio_log
= mp
->m_readio_log
;
464 writeio_log
= mp
->m_writeio_log
;
467 if (sbp
->sb_blocklog
> readio_log
) {
468 mp
->m_readio_log
= sbp
->sb_blocklog
;
470 mp
->m_readio_log
= readio_log
;
472 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
473 if (sbp
->sb_blocklog
> writeio_log
) {
474 mp
->m_writeio_log
= sbp
->sb_blocklog
;
476 mp
->m_writeio_log
= writeio_log
;
478 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
482 * precalculate the low space thresholds for dynamic speculative preallocation.
485 xfs_set_low_space_thresholds(
486 struct xfs_mount
*mp
)
490 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
491 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
494 mp
->m_low_space
[i
] = space
* (i
+ 1);
500 * Set whether we're using inode alignment.
503 xfs_set_inoalignment(xfs_mount_t
*mp
)
505 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
506 mp
->m_sb
.sb_inoalignmt
>=
507 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
508 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
510 mp
->m_inoalign_mask
= 0;
512 * If we are using stripe alignment, check whether
513 * the stripe unit is a multiple of the inode alignment
515 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
516 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
517 mp
->m_sinoalign
= mp
->m_dalign
;
523 * Check that the data (and log if separate) is an ok size.
527 struct xfs_mount
*mp
)
533 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
534 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
535 xfs_warn(mp
, "filesystem size mismatch detected");
538 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
539 d
- XFS_FSS_TO_BB(mp
, 1),
540 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
542 xfs_warn(mp
, "last sector read failed");
547 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
550 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
551 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
552 xfs_warn(mp
, "log size mismatch detected");
555 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
556 d
- XFS_FSB_TO_BB(mp
, 1),
557 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
559 xfs_warn(mp
, "log device read failed");
567 * Clear the quotaflags in memory and in the superblock.
570 xfs_mount_reset_sbqflags(
571 struct xfs_mount
*mp
)
575 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
576 if (mp
->m_sb
.sb_qflags
== 0)
578 spin_lock(&mp
->m_sb_lock
);
579 mp
->m_sb
.sb_qflags
= 0;
580 spin_unlock(&mp
->m_sb_lock
);
582 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
585 return xfs_sync_sb(mp
, false);
589 xfs_default_resblks(xfs_mount_t
*mp
)
594 * We default to 5% or 8192 fsbs of space reserved, whichever is
595 * smaller. This is intended to cover concurrent allocation
596 * transactions when we initially hit enospc. These each require a 4
597 * block reservation. Hence by default we cover roughly 2000 concurrent
598 * allocation reservations.
600 resblks
= mp
->m_sb
.sb_dblocks
;
602 resblks
= min_t(__uint64_t
, resblks
, 8192);
607 * This function does the following on an initial mount of a file system:
608 * - reads the superblock from disk and init the mount struct
609 * - if we're a 32-bit kernel, do a size check on the superblock
610 * so we don't mount terabyte filesystems
611 * - init mount struct realtime fields
612 * - allocate inode hash table for fs
613 * - init directory manager
614 * - perform recovery and init the log manager
620 xfs_sb_t
*sbp
= &(mp
->m_sb
);
627 xfs_sb_mount_common(mp
, sbp
);
630 * Check for a mismatched features2 values. Older kernels read & wrote
631 * into the wrong sb offset for sb_features2 on some platforms due to
632 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
633 * which made older superblock reading/writing routines swap it as a
636 * For backwards compatibility, we make both slots equal.
638 * If we detect a mismatched field, we OR the set bits into the existing
639 * features2 field in case it has already been modified; we don't want
640 * to lose any features. We then update the bad location with the ORed
641 * value so that older kernels will see any features2 flags. The
642 * superblock writeback code ensures the new sb_features2 is copied to
643 * sb_bad_features2 before it is logged or written to disk.
645 if (xfs_sb_has_mismatched_features2(sbp
)) {
646 xfs_warn(mp
, "correcting sb_features alignment problem");
647 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
648 mp
->m_update_sb
= true;
651 * Re-check for ATTR2 in case it was found in bad_features2
654 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
655 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
656 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
659 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
660 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
661 xfs_sb_version_removeattr2(&mp
->m_sb
);
662 mp
->m_update_sb
= true;
664 /* update sb_versionnum for the clearing of the morebits */
665 if (!sbp
->sb_features2
)
666 mp
->m_update_sb
= true;
669 /* always use v2 inodes by default now */
670 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
671 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
672 mp
->m_update_sb
= true;
676 * Check if sb_agblocks is aligned at stripe boundary
677 * If sb_agblocks is NOT aligned turn off m_dalign since
678 * allocator alignment is within an ag, therefore ag has
679 * to be aligned at stripe boundary.
681 error
= xfs_update_alignment(mp
);
685 xfs_alloc_compute_maxlevels(mp
);
686 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
687 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
688 xfs_ialloc_compute_maxlevels(mp
);
690 xfs_set_maxicount(mp
);
692 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
696 error
= xfs_uuid_mount(mp
);
698 goto out_remove_sysfs
;
701 * Set the minimum read and write sizes
703 xfs_set_rw_sizes(mp
);
705 /* set the low space thresholds for dynamic preallocation */
706 xfs_set_low_space_thresholds(mp
);
709 * Set the inode cluster size.
710 * This may still be overridden by the file system
711 * block size if it is larger than the chosen cluster size.
713 * For v5 filesystems, scale the cluster size with the inode size to
714 * keep a constant ratio of inode per cluster buffer, but only if mkfs
715 * has set the inode alignment value appropriately for larger cluster
718 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
719 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
720 int new_size
= mp
->m_inode_cluster_size
;
722 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
723 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
724 mp
->m_inode_cluster_size
= new_size
;
728 * Set inode alignment fields
730 xfs_set_inoalignment(mp
);
733 * Check that the data (and log if separate) is an ok size.
735 error
= xfs_check_sizes(mp
);
737 goto out_remove_uuid
;
740 * Initialize realtime fields in the mount structure
742 error
= xfs_rtmount_init(mp
);
744 xfs_warn(mp
, "RT mount failed");
745 goto out_remove_uuid
;
749 * Copies the low order bits of the timestamp and the randomly
750 * set "sequence" number out of a UUID.
752 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
754 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
756 error
= xfs_da_mount(mp
);
758 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
759 goto out_remove_uuid
;
763 * Initialize the precomputed transaction reservations values.
768 * Allocate and initialize the per-ag data.
770 spin_lock_init(&mp
->m_perag_lock
);
771 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
772 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
774 xfs_warn(mp
, "Failed per-ag init: %d", error
);
778 if (!sbp
->sb_logblocks
) {
779 xfs_warn(mp
, "no log defined");
780 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
781 error
= -EFSCORRUPTED
;
786 * log's mount-time initialization. Perform 1st part recovery if needed
788 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
789 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
790 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
792 xfs_warn(mp
, "log mount failed");
797 * Now the log is mounted, we know if it was an unclean shutdown or
798 * not. If it was, with the first phase of recovery has completed, we
799 * have consistent AG blocks on disk. We have not recovered EFIs yet,
800 * but they are recovered transactionally in the second recovery phase
803 * Hence we can safely re-initialise incore superblock counters from
804 * the per-ag data. These may not be correct if the filesystem was not
805 * cleanly unmounted, so we need to wait for recovery to finish before
808 * If the filesystem was cleanly unmounted, then we can trust the
809 * values in the superblock to be correct and we don't need to do
812 * If we are currently making the filesystem, the initialisation will
813 * fail as the perag data is in an undefined state.
815 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
816 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
817 !mp
->m_sb
.sb_inprogress
) {
818 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
820 goto out_log_dealloc
;
824 * Get and sanity-check the root inode.
825 * Save the pointer to it in the mount structure.
827 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
829 xfs_warn(mp
, "failed to read root inode");
830 goto out_log_dealloc
;
835 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
836 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
837 (unsigned long long)rip
->i_ino
);
838 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
839 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
841 error
= -EFSCORRUPTED
;
844 mp
->m_rootip
= rip
; /* save it */
846 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
849 * Initialize realtime inode pointers in the mount structure
851 error
= xfs_rtmount_inodes(mp
);
854 * Free up the root inode.
856 xfs_warn(mp
, "failed to read RT inodes");
861 * If this is a read-only mount defer the superblock updates until
862 * the next remount into writeable mode. Otherwise we would never
863 * perform the update e.g. for the root filesystem.
865 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
866 error
= xfs_sync_sb(mp
, false);
868 xfs_warn(mp
, "failed to write sb changes");
874 * Initialise the XFS quota management subsystem for this mount
876 if (XFS_IS_QUOTA_RUNNING(mp
)) {
877 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
881 ASSERT(!XFS_IS_QUOTA_ON(mp
));
884 * If a file system had quotas running earlier, but decided to
885 * mount without -o uquota/pquota/gquota options, revoke the
886 * quotachecked license.
888 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
889 xfs_notice(mp
, "resetting quota flags");
890 error
= xfs_mount_reset_sbqflags(mp
);
897 * Finish recovering the file system. This part needed to be
898 * delayed until after the root and real-time bitmap inodes
899 * were consistently read in.
901 error
= xfs_log_mount_finish(mp
);
903 xfs_warn(mp
, "log mount finish failed");
908 * Complete the quota initialisation, post-log-replay component.
911 ASSERT(mp
->m_qflags
== 0);
912 mp
->m_qflags
= quotaflags
;
914 xfs_qm_mount_quotas(mp
);
918 * Now we are mounted, reserve a small amount of unused space for
919 * privileged transactions. This is needed so that transaction
920 * space required for critical operations can dip into this pool
921 * when at ENOSPC. This is needed for operations like create with
922 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
923 * are not allowed to use this reserved space.
925 * This may drive us straight to ENOSPC on mount, but that implies
926 * we were already there on the last unmount. Warn if this occurs.
928 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
929 resblks
= xfs_default_resblks(mp
);
930 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
933 "Unable to allocate reserve blocks. Continuing without reserve pool.");
939 xfs_rtunmount_inodes(mp
);
945 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
946 xfs_wait_buftarg(mp
->m_logdev_targp
);
947 xfs_wait_buftarg(mp
->m_ddev_targp
);
953 xfs_uuid_unmount(mp
);
955 xfs_sysfs_del(&mp
->m_kobj
);
961 * This flushes out the inodes,dquots and the superblock, unmounts the
962 * log and makes sure that incore structures are freed.
966 struct xfs_mount
*mp
)
971 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
973 xfs_qm_unmount_quotas(mp
);
974 xfs_rtunmount_inodes(mp
);
978 * We can potentially deadlock here if we have an inode cluster
979 * that has been freed has its buffer still pinned in memory because
980 * the transaction is still sitting in a iclog. The stale inodes
981 * on that buffer will have their flush locks held until the
982 * transaction hits the disk and the callbacks run. the inode
983 * flush takes the flush lock unconditionally and with nothing to
984 * push out the iclog we will never get that unlocked. hence we
985 * need to force the log first.
987 xfs_log_force(mp
, XFS_LOG_SYNC
);
990 * Flush all pending changes from the AIL.
992 xfs_ail_push_all_sync(mp
->m_ail
);
995 * And reclaim all inodes. At this point there should be no dirty
996 * inodes and none should be pinned or locked, but use synchronous
997 * reclaim just to be sure. We can stop background inode reclaim
998 * here as well if it is still running.
1000 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1001 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1006 * Unreserve any blocks we have so that when we unmount we don't account
1007 * the reserved free space as used. This is really only necessary for
1008 * lazy superblock counting because it trusts the incore superblock
1009 * counters to be absolutely correct on clean unmount.
1011 * We don't bother correcting this elsewhere for lazy superblock
1012 * counting because on mount of an unclean filesystem we reconstruct the
1013 * correct counter value and this is irrelevant.
1015 * For non-lazy counter filesystems, this doesn't matter at all because
1016 * we only every apply deltas to the superblock and hence the incore
1017 * value does not matter....
1020 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1022 xfs_warn(mp
, "Unable to free reserved block pool. "
1023 "Freespace may not be correct on next mount.");
1025 error
= xfs_log_sbcount(mp
);
1027 xfs_warn(mp
, "Unable to update superblock counters. "
1028 "Freespace may not be correct on next mount.");
1030 xfs_log_unmount(mp
);
1032 xfs_uuid_unmount(mp
);
1035 xfs_errortag_clearall(mp
, 0);
1039 xfs_sysfs_del(&mp
->m_kobj
);
1043 * Determine whether modifications can proceed. The caller specifies the minimum
1044 * freeze level for which modifications should not be allowed. This allows
1045 * certain operations to proceed while the freeze sequence is in progress, if
1050 struct xfs_mount
*mp
,
1053 ASSERT(level
> SB_UNFROZEN
);
1054 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1055 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1064 * Sync the superblock counters to disk.
1066 * Note this code can be called during the process of freezing, so we use the
1067 * transaction allocator that does not block when the transaction subsystem is
1068 * in its frozen state.
1071 xfs_log_sbcount(xfs_mount_t
*mp
)
1073 /* allow this to proceed during the freeze sequence... */
1074 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1078 * we don't need to do this if we are updating the superblock
1079 * counters on every modification.
1081 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1084 return xfs_sync_sb(mp
, true);
1088 * Deltas for the inode count are +/-64, hence we use a large batch size
1089 * of 128 so we don't need to take the counter lock on every update.
1091 #define XFS_ICOUNT_BATCH 128
1094 struct xfs_mount
*mp
,
1097 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1098 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1100 percpu_counter_add(&mp
->m_icount
, -delta
);
1108 struct xfs_mount
*mp
,
1111 percpu_counter_add(&mp
->m_ifree
, delta
);
1112 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1114 percpu_counter_add(&mp
->m_ifree
, -delta
);
1121 * Deltas for the block count can vary from 1 to very large, but lock contention
1122 * only occurs on frequent small block count updates such as in the delayed
1123 * allocation path for buffered writes (page a time updates). Hence we set
1124 * a large batch count (1024) to minimise global counter updates except when
1125 * we get near to ENOSPC and we have to be very accurate with our updates.
1127 #define XFS_FDBLOCKS_BATCH 1024
1130 struct xfs_mount
*mp
,
1140 * If the reserve pool is depleted, put blocks back into it
1141 * first. Most of the time the pool is full.
1143 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1144 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1148 spin_lock(&mp
->m_sb_lock
);
1149 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1151 if (res_used
> delta
) {
1152 mp
->m_resblks_avail
+= delta
;
1155 mp
->m_resblks_avail
= mp
->m_resblks
;
1156 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1158 spin_unlock(&mp
->m_sb_lock
);
1163 * Taking blocks away, need to be more accurate the closer we
1166 * If the counter has a value of less than 2 * max batch size,
1167 * then make everything serialise as we are real close to
1170 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1171 XFS_FDBLOCKS_BATCH
) < 0)
1174 batch
= XFS_FDBLOCKS_BATCH
;
1176 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1177 if (__percpu_counter_compare(&mp
->m_fdblocks
, XFS_ALLOC_SET_ASIDE(mp
),
1178 XFS_FDBLOCKS_BATCH
) >= 0) {
1184 * lock up the sb for dipping into reserves before releasing the space
1185 * that took us to ENOSPC.
1187 spin_lock(&mp
->m_sb_lock
);
1188 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1190 goto fdblocks_enospc
;
1192 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1193 if (lcounter
>= 0) {
1194 mp
->m_resblks_avail
= lcounter
;
1195 spin_unlock(&mp
->m_sb_lock
);
1198 printk_once(KERN_WARNING
1199 "Filesystem \"%s\": reserve blocks depleted! "
1200 "Consider increasing reserve pool size.",
1203 spin_unlock(&mp
->m_sb_lock
);
1209 struct xfs_mount
*mp
,
1215 spin_lock(&mp
->m_sb_lock
);
1216 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1220 mp
->m_sb
.sb_frextents
= lcounter
;
1221 spin_unlock(&mp
->m_sb_lock
);
1226 * xfs_getsb() is called to obtain the buffer for the superblock.
1227 * The buffer is returned locked and read in from disk.
1228 * The buffer should be released with a call to xfs_brelse().
1230 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1231 * the superblock buffer if it can be locked without sleeping.
1232 * If it can't then we'll return NULL.
1236 struct xfs_mount
*mp
,
1239 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1241 if (!xfs_buf_trylock(bp
)) {
1242 if (flags
& XBF_TRYLOCK
)
1248 ASSERT(XFS_BUF_ISDONE(bp
));
1253 * Used to free the superblock along various error paths.
1257 struct xfs_mount
*mp
)
1259 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1267 * If the underlying (data/log/rt) device is readonly, there are some
1268 * operations that cannot proceed.
1271 xfs_dev_is_read_only(
1272 struct xfs_mount
*mp
,
1275 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1276 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1277 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1278 xfs_notice(mp
, "%s required on read-only device.", message
);
1279 xfs_notice(mp
, "write access unavailable, cannot proceed.");