4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/of_device.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
26 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
30 armpmu_map_cache_event(const unsigned (*cache_map
)
31 [PERF_COUNT_HW_CACHE_MAX
]
32 [PERF_COUNT_HW_CACHE_OP_MAX
]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
36 unsigned int cache_type
, cache_op
, cache_result
, ret
;
38 cache_type
= (config
>> 0) & 0xff;
39 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
42 cache_op
= (config
>> 8) & 0xff;
43 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
46 cache_result
= (config
>> 16) & 0xff;
47 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
50 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
52 if (ret
== CACHE_OP_UNSUPPORTED
)
59 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
63 if (config
>= PERF_COUNT_HW_MAX
)
66 mapping
= (*event_map
)[config
];
67 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
71 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
73 return (int)(config
& raw_event_mask
);
77 armpmu_map_event(struct perf_event
*event
,
78 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
79 const unsigned (*cache_map
)
80 [PERF_COUNT_HW_CACHE_MAX
]
81 [PERF_COUNT_HW_CACHE_OP_MAX
]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
85 u64 config
= event
->attr
.config
;
86 int type
= event
->attr
.type
;
88 if (type
== event
->pmu
->type
)
89 return armpmu_map_raw_event(raw_event_mask
, config
);
92 case PERF_TYPE_HARDWARE
:
93 return armpmu_map_hw_event(event_map
, config
);
94 case PERF_TYPE_HW_CACHE
:
95 return armpmu_map_cache_event(cache_map
, config
);
97 return armpmu_map_raw_event(raw_event_mask
, config
);
103 int armpmu_event_set_period(struct perf_event
*event
)
105 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
106 struct hw_perf_event
*hwc
= &event
->hw
;
107 s64 left
= local64_read(&hwc
->period_left
);
108 s64 period
= hwc
->sample_period
;
111 if (unlikely(left
<= -period
)) {
113 local64_set(&hwc
->period_left
, left
);
114 hwc
->last_period
= period
;
118 if (unlikely(left
<= 0)) {
120 local64_set(&hwc
->period_left
, left
);
121 hwc
->last_period
= period
;
126 * Limit the maximum period to prevent the counter value
127 * from overtaking the one we are about to program. In
128 * effect we are reducing max_period to account for
129 * interrupt latency (and we are being very conservative).
131 if (left
> (armpmu
->max_period
>> 1))
132 left
= armpmu
->max_period
>> 1;
134 local64_set(&hwc
->prev_count
, (u64
)-left
);
136 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
138 perf_event_update_userpage(event
);
143 u64
armpmu_event_update(struct perf_event
*event
)
145 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
146 struct hw_perf_event
*hwc
= &event
->hw
;
147 u64 delta
, prev_raw_count
, new_raw_count
;
150 prev_raw_count
= local64_read(&hwc
->prev_count
);
151 new_raw_count
= armpmu
->read_counter(event
);
153 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
154 new_raw_count
) != prev_raw_count
)
157 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
159 local64_add(delta
, &event
->count
);
160 local64_sub(delta
, &hwc
->period_left
);
162 return new_raw_count
;
166 armpmu_read(struct perf_event
*event
)
168 armpmu_event_update(event
);
172 armpmu_stop(struct perf_event
*event
, int flags
)
174 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
175 struct hw_perf_event
*hwc
= &event
->hw
;
178 * ARM pmu always has to update the counter, so ignore
179 * PERF_EF_UPDATE, see comments in armpmu_start().
181 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
182 armpmu
->disable(event
);
183 armpmu_event_update(event
);
184 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
188 static void armpmu_start(struct perf_event
*event
, int flags
)
190 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
191 struct hw_perf_event
*hwc
= &event
->hw
;
194 * ARM pmu always has to reprogram the period, so ignore
195 * PERF_EF_RELOAD, see the comment below.
197 if (flags
& PERF_EF_RELOAD
)
198 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
202 * Set the period again. Some counters can't be stopped, so when we
203 * were stopped we simply disabled the IRQ source and the counter
204 * may have been left counting. If we don't do this step then we may
205 * get an interrupt too soon or *way* too late if the overflow has
206 * happened since disabling.
208 armpmu_event_set_period(event
);
209 armpmu
->enable(event
);
213 armpmu_del(struct perf_event
*event
, int flags
)
215 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
216 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
217 struct hw_perf_event
*hwc
= &event
->hw
;
220 armpmu_stop(event
, PERF_EF_UPDATE
);
221 hw_events
->events
[idx
] = NULL
;
222 clear_bit(idx
, hw_events
->used_mask
);
223 if (armpmu
->clear_event_idx
)
224 armpmu
->clear_event_idx(hw_events
, event
);
226 perf_event_update_userpage(event
);
230 armpmu_add(struct perf_event
*event
, int flags
)
232 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
233 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
234 struct hw_perf_event
*hwc
= &event
->hw
;
238 /* An event following a process won't be stopped earlier */
239 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
242 perf_pmu_disable(event
->pmu
);
244 /* If we don't have a space for the counter then finish early. */
245 idx
= armpmu
->get_event_idx(hw_events
, event
);
252 * If there is an event in the counter we are going to use then make
253 * sure it is disabled.
256 armpmu
->disable(event
);
257 hw_events
->events
[idx
] = event
;
259 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
260 if (flags
& PERF_EF_START
)
261 armpmu_start(event
, PERF_EF_RELOAD
);
263 /* Propagate our changes to the userspace mapping. */
264 perf_event_update_userpage(event
);
267 perf_pmu_enable(event
->pmu
);
272 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
273 struct perf_event
*event
)
275 struct arm_pmu
*armpmu
;
277 if (is_software_event(event
))
281 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282 * core perf code won't check that the pmu->ctx == leader->ctx
283 * until after pmu->event_init(event).
285 if (event
->pmu
!= pmu
)
288 if (event
->state
< PERF_EVENT_STATE_OFF
)
291 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
294 armpmu
= to_arm_pmu(event
->pmu
);
295 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
299 validate_group(struct perf_event
*event
)
301 struct perf_event
*sibling
, *leader
= event
->group_leader
;
302 struct pmu_hw_events fake_pmu
;
305 * Initialise the fake PMU. We only need to populate the
306 * used_mask for the purposes of validation.
308 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
310 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
313 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
314 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
318 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
324 static struct arm_pmu_platdata
*armpmu_get_platdata(struct arm_pmu
*armpmu
)
326 struct platform_device
*pdev
= armpmu
->plat_device
;
328 return pdev
? dev_get_platdata(&pdev
->dev
) : NULL
;
331 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
333 struct arm_pmu
*armpmu
;
334 struct arm_pmu_platdata
*plat
;
336 u64 start_clock
, finish_clock
;
339 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
340 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
341 * do any necessary shifting, we just need to perform the first
344 armpmu
= *(void **)dev
;
346 plat
= armpmu_get_platdata(armpmu
);
348 start_clock
= sched_clock();
349 if (plat
&& plat
->handle_irq
)
350 ret
= plat
->handle_irq(irq
, armpmu
, armpmu
->handle_irq
);
352 ret
= armpmu
->handle_irq(irq
, armpmu
);
353 finish_clock
= sched_clock();
355 perf_sample_event_took(finish_clock
- start_clock
);
360 armpmu_release_hardware(struct arm_pmu
*armpmu
)
362 armpmu
->free_irq(armpmu
);
366 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
368 int err
= armpmu
->request_irq(armpmu
, armpmu_dispatch_irq
);
370 armpmu_release_hardware(armpmu
);
378 hw_perf_event_destroy(struct perf_event
*event
)
380 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
381 atomic_t
*active_events
= &armpmu
->active_events
;
382 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
384 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
385 armpmu_release_hardware(armpmu
);
386 mutex_unlock(pmu_reserve_mutex
);
391 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
393 return attr
->exclude_idle
|| attr
->exclude_user
||
394 attr
->exclude_kernel
|| attr
->exclude_hv
;
398 __hw_perf_event_init(struct perf_event
*event
)
400 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
401 struct hw_perf_event
*hwc
= &event
->hw
;
404 mapping
= armpmu
->map_event(event
);
407 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
413 * We don't assign an index until we actually place the event onto
414 * hardware. Use -1 to signify that we haven't decided where to put it
415 * yet. For SMP systems, each core has it's own PMU so we can't do any
416 * clever allocation or constraints checking at this point.
419 hwc
->config_base
= 0;
424 * Check whether we need to exclude the counter from certain modes.
426 if ((!armpmu
->set_event_filter
||
427 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
428 event_requires_mode_exclusion(&event
->attr
)) {
429 pr_debug("ARM performance counters do not support "
435 * Store the event encoding into the config_base field.
437 hwc
->config_base
|= (unsigned long)mapping
;
439 if (!is_sampling_event(event
)) {
441 * For non-sampling runs, limit the sample_period to half
442 * of the counter width. That way, the new counter value
443 * is far less likely to overtake the previous one unless
444 * you have some serious IRQ latency issues.
446 hwc
->sample_period
= armpmu
->max_period
>> 1;
447 hwc
->last_period
= hwc
->sample_period
;
448 local64_set(&hwc
->period_left
, hwc
->sample_period
);
451 if (event
->group_leader
!= event
) {
452 if (validate_group(event
) != 0)
459 static int armpmu_event_init(struct perf_event
*event
)
461 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
463 atomic_t
*active_events
= &armpmu
->active_events
;
466 * Reject CPU-affine events for CPUs that are of a different class to
467 * that which this PMU handles. Process-following events (where
468 * event->cpu == -1) can be migrated between CPUs, and thus we have to
469 * reject them later (in armpmu_add) if they're scheduled on a
470 * different class of CPU.
472 if (event
->cpu
!= -1 &&
473 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
476 /* does not support taken branch sampling */
477 if (has_branch_stack(event
))
480 if (armpmu
->map_event(event
) == -ENOENT
)
483 event
->destroy
= hw_perf_event_destroy
;
485 if (!atomic_inc_not_zero(active_events
)) {
486 mutex_lock(&armpmu
->reserve_mutex
);
487 if (atomic_read(active_events
) == 0)
488 err
= armpmu_reserve_hardware(armpmu
);
491 atomic_inc(active_events
);
492 mutex_unlock(&armpmu
->reserve_mutex
);
498 err
= __hw_perf_event_init(event
);
500 hw_perf_event_destroy(event
);
505 static void armpmu_enable(struct pmu
*pmu
)
507 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
508 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
509 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
511 /* For task-bound events we may be called on other CPUs */
512 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
516 armpmu
->start(armpmu
);
519 static void armpmu_disable(struct pmu
*pmu
)
521 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
523 /* For task-bound events we may be called on other CPUs */
524 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
527 armpmu
->stop(armpmu
);
531 * In heterogeneous systems, events are specific to a particular
532 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
533 * the same microarchitecture.
535 static int armpmu_filter_match(struct perf_event
*event
)
537 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
538 unsigned int cpu
= smp_processor_id();
539 return cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
542 static void armpmu_init(struct arm_pmu
*armpmu
)
544 atomic_set(&armpmu
->active_events
, 0);
545 mutex_init(&armpmu
->reserve_mutex
);
547 armpmu
->pmu
= (struct pmu
) {
548 .pmu_enable
= armpmu_enable
,
549 .pmu_disable
= armpmu_disable
,
550 .event_init
= armpmu_event_init
,
553 .start
= armpmu_start
,
556 .filter_match
= armpmu_filter_match
,
560 int armpmu_register(struct arm_pmu
*armpmu
, int type
)
563 pr_info("enabled with %s PMU driver, %d counters available\n",
564 armpmu
->name
, armpmu
->num_events
);
565 return perf_pmu_register(&armpmu
->pmu
, armpmu
->name
, type
);
568 /* Set at runtime when we know what CPU type we are. */
569 static struct arm_pmu
*__oprofile_cpu_pmu
;
572 * Despite the names, these two functions are CPU-specific and are used
573 * by the OProfile/perf code.
575 const char *perf_pmu_name(void)
577 if (!__oprofile_cpu_pmu
)
580 return __oprofile_cpu_pmu
->name
;
582 EXPORT_SYMBOL_GPL(perf_pmu_name
);
584 int perf_num_counters(void)
588 if (__oprofile_cpu_pmu
!= NULL
)
589 max_events
= __oprofile_cpu_pmu
->num_events
;
593 EXPORT_SYMBOL_GPL(perf_num_counters
);
595 static void cpu_pmu_enable_percpu_irq(void *data
)
597 int irq
= *(int *)data
;
599 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
602 static void cpu_pmu_disable_percpu_irq(void *data
)
604 int irq
= *(int *)data
;
606 disable_percpu_irq(irq
);
609 static void cpu_pmu_free_irq(struct arm_pmu
*cpu_pmu
)
612 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
613 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
615 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
617 irq
= platform_get_irq(pmu_device
, 0);
618 if (irq
>= 0 && irq_is_percpu(irq
)) {
619 on_each_cpu(cpu_pmu_disable_percpu_irq
, &irq
, 1);
620 free_percpu_irq(irq
, &hw_events
->percpu_pmu
);
622 for (i
= 0; i
< irqs
; ++i
) {
625 if (cpu_pmu
->irq_affinity
)
626 cpu
= cpu_pmu
->irq_affinity
[i
];
628 if (!cpumask_test_and_clear_cpu(cpu
, &cpu_pmu
->active_irqs
))
630 irq
= platform_get_irq(pmu_device
, i
);
632 free_irq(irq
, per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
637 static int cpu_pmu_request_irq(struct arm_pmu
*cpu_pmu
, irq_handler_t handler
)
639 int i
, err
, irq
, irqs
;
640 struct platform_device
*pmu_device
= cpu_pmu
->plat_device
;
641 struct pmu_hw_events __percpu
*hw_events
= cpu_pmu
->hw_events
;
646 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
648 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
652 irq
= platform_get_irq(pmu_device
, 0);
653 if (irq
>= 0 && irq_is_percpu(irq
)) {
654 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
655 &hw_events
->percpu_pmu
);
657 pr_err("unable to request IRQ%d for ARM PMU counters\n",
661 on_each_cpu(cpu_pmu_enable_percpu_irq
, &irq
, 1);
663 for (i
= 0; i
< irqs
; ++i
) {
667 irq
= platform_get_irq(pmu_device
, i
);
671 if (cpu_pmu
->irq_affinity
)
672 cpu
= cpu_pmu
->irq_affinity
[i
];
675 * If we have a single PMU interrupt that we can't shift,
676 * assume that we're running on a uniprocessor machine and
677 * continue. Otherwise, continue without this interrupt.
679 if (irq_set_affinity(irq
, cpumask_of(cpu
)) && irqs
> 1) {
680 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
685 err
= request_irq(irq
, handler
,
686 IRQF_NOBALANCING
| IRQF_NO_THREAD
, "arm-pmu",
687 per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
689 pr_err("unable to request IRQ%d for ARM PMU counters\n",
694 cpumask_set_cpu(cpu
, &cpu_pmu
->active_irqs
);
702 * PMU hardware loses all context when a CPU goes offline.
703 * When a CPU is hotplugged back in, since some hardware registers are
704 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
705 * junk values out of them.
707 static int cpu_pmu_notify(struct notifier_block
*b
, unsigned long action
,
710 int cpu
= (unsigned long)hcpu
;
711 struct arm_pmu
*pmu
= container_of(b
, struct arm_pmu
, hotplug_nb
);
713 if ((action
& ~CPU_TASKS_FROZEN
) != CPU_STARTING
)
716 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
727 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
731 struct pmu_hw_events __percpu
*cpu_hw_events
;
733 cpu_hw_events
= alloc_percpu(struct pmu_hw_events
);
737 cpu_pmu
->hotplug_nb
.notifier_call
= cpu_pmu_notify
;
738 err
= register_cpu_notifier(&cpu_pmu
->hotplug_nb
);
742 for_each_possible_cpu(cpu
) {
743 struct pmu_hw_events
*events
= per_cpu_ptr(cpu_hw_events
, cpu
);
744 raw_spin_lock_init(&events
->pmu_lock
);
745 events
->percpu_pmu
= cpu_pmu
;
748 cpu_pmu
->hw_events
= cpu_hw_events
;
749 cpu_pmu
->request_irq
= cpu_pmu_request_irq
;
750 cpu_pmu
->free_irq
= cpu_pmu_free_irq
;
752 /* Ensure the PMU has sane values out of reset. */
754 on_each_cpu_mask(&cpu_pmu
->supported_cpus
, cpu_pmu
->reset
,
757 /* If no interrupts available, set the corresponding capability flag */
758 if (!platform_get_irq(cpu_pmu
->plat_device
, 0))
759 cpu_pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_INTERRUPT
;
764 free_percpu(cpu_hw_events
);
768 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
770 unregister_cpu_notifier(&cpu_pmu
->hotplug_nb
);
771 free_percpu(cpu_pmu
->hw_events
);
775 * CPU PMU identification and probing.
777 static int probe_current_pmu(struct arm_pmu
*pmu
,
778 const struct pmu_probe_info
*info
)
781 unsigned int cpuid
= read_cpuid_id();
784 pr_info("probing PMU on CPU %d\n", cpu
);
786 for (; info
->init
!= NULL
; info
++) {
787 if ((cpuid
& info
->mask
) != info
->cpuid
)
789 ret
= info
->init(pmu
);
797 static int of_pmu_irq_cfg(struct arm_pmu
*pmu
)
800 bool using_spi
= false;
801 struct platform_device
*pdev
= pmu
->plat_device
;
803 irqs
= kcalloc(pdev
->num_resources
, sizeof(*irqs
), GFP_KERNEL
);
808 struct device_node
*dn
;
811 /* See if we have an affinity entry */
812 dn
= of_parse_phandle(pdev
->dev
.of_node
, "interrupt-affinity", i
);
816 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
817 irq
= platform_get_irq(pdev
, i
);
819 bool spi
= !irq_is_percpu(irq
);
821 if (i
> 0 && spi
!= using_spi
) {
822 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
832 /* Now look up the logical CPU number */
833 for_each_possible_cpu(cpu
) {
834 struct device_node
*cpu_dn
;
836 cpu_dn
= of_cpu_device_node_get(cpu
);
843 if (cpu
>= nr_cpu_ids
) {
844 pr_warn("Failed to find logical CPU for %s\n",
847 cpumask_setall(&pmu
->supported_cpus
);
852 /* For SPIs, we need to track the affinity per IRQ */
854 if (i
>= pdev
->num_resources
) {
862 /* Keep track of the CPUs containing this PMU type */
863 cpumask_set_cpu(cpu
, &pmu
->supported_cpus
);
868 /* If we didn't manage to parse anything, claim to support all CPUs */
869 if (cpumask_weight(&pmu
->supported_cpus
) == 0)
870 cpumask_setall(&pmu
->supported_cpus
);
872 /* If we matched up the IRQ affinities, use them to route the SPIs */
873 if (using_spi
&& i
== pdev
->num_resources
)
874 pmu
->irq_affinity
= irqs
;
881 int arm_pmu_device_probe(struct platform_device
*pdev
,
882 const struct of_device_id
*of_table
,
883 const struct pmu_probe_info
*probe_table
)
885 const struct of_device_id
*of_id
;
886 const int (*init_fn
)(struct arm_pmu
*);
887 struct device_node
*node
= pdev
->dev
.of_node
;
891 pmu
= kzalloc(sizeof(struct arm_pmu
), GFP_KERNEL
);
893 pr_info("failed to allocate PMU device!\n");
897 if (!__oprofile_cpu_pmu
)
898 __oprofile_cpu_pmu
= pmu
;
900 pmu
->plat_device
= pdev
;
902 if (node
&& (of_id
= of_match_node(of_table
, pdev
->dev
.of_node
))) {
903 init_fn
= of_id
->data
;
905 ret
= of_pmu_irq_cfg(pmu
);
909 ret
= probe_current_pmu(pmu
, probe_table
);
910 cpumask_setall(&pmu
->supported_cpus
);
914 pr_info("failed to probe PMU!\n");
918 ret
= cpu_pmu_init(pmu
);
922 ret
= armpmu_register(pmu
, -1);
929 cpu_pmu_destroy(pmu
);
931 pr_info("failed to register PMU devices!\n");