2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(unsigned long _task
)
46 struct sas_task
*task
= (void *) _task
;
49 spin_lock_irqsave(&task
->task_state_lock
, flags
);
50 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
51 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
52 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
54 complete(&task
->slow_task
->completion
);
57 static void smp_task_done(struct sas_task
*task
)
59 if (!del_timer(&task
->slow_task
->timer
))
61 complete(&task
->slow_task
->completion
);
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
67 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
68 void *resp
, int resp_size
)
71 struct sas_task
*task
= NULL
;
72 struct sas_internal
*i
=
73 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
75 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
76 for (retry
= 0; retry
< 3; retry
++) {
77 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
82 task
= sas_alloc_slow_task(GFP_KERNEL
);
88 task
->task_proto
= dev
->tproto
;
89 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
90 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
92 task
->task_done
= smp_task_done
;
94 task
->slow_task
->timer
.data
= (unsigned long) task
;
95 task
->slow_task
->timer
.function
= smp_task_timedout
;
96 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
97 add_timer(&task
->slow_task
->timer
);
99 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
102 del_timer(&task
->slow_task
->timer
);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
107 wait_for_completion(&task
->slow_task
->completion
);
109 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i
->dft
->lldd_abort_task(task
);
112 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
117 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
118 task
->task_status
.stat
== SAM_STAT_GOOD
) {
122 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
123 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
124 /* no error, but return the number of bytes of
126 res
= task
->task_status
.residual
;
129 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
130 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
134 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
135 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__
,
140 SAS_ADDR(dev
->sas_addr
),
141 task
->task_status
.resp
,
142 task
->task_status
.stat
);
147 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
149 BUG_ON(retry
== 3 && task
!= NULL
);
154 /* ---------- Allocations ---------- */
156 static inline void *alloc_smp_req(int size
)
158 u8
*p
= kzalloc(size
, GFP_KERNEL
);
164 static inline void *alloc_smp_resp(int size
)
166 return kzalloc(size
, GFP_KERNEL
);
169 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
171 switch (phy
->routing_attr
) {
173 if (dev
->ex_dev
.t2t_supp
)
179 case SUBTRACTIVE_ROUTING
:
186 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
191 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
192 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
193 return SAS_SATA_PENDING
;
195 return dr
->attached_dev_type
;
198 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
200 enum sas_device_type dev_type
;
201 enum sas_linkrate linkrate
;
202 u8 sas_addr
[SAS_ADDR_SIZE
];
203 struct smp_resp
*resp
= rsp
;
204 struct discover_resp
*dr
= &resp
->disc
;
205 struct sas_ha_struct
*ha
= dev
->port
->ha
;
206 struct expander_device
*ex
= &dev
->ex_dev
;
207 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
208 struct sas_rphy
*rphy
= dev
->rphy
;
209 bool new_phy
= !phy
->phy
;
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
215 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
217 /* FIXME: error_handling */
221 switch (resp
->result
) {
222 case SMP_RESP_PHY_VACANT
:
223 phy
->phy_state
= PHY_VACANT
;
226 phy
->phy_state
= PHY_NOT_PRESENT
;
228 case SMP_RESP_FUNC_ACC
:
229 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
233 /* check if anything important changed to squelch debug */
234 dev_type
= phy
->attached_dev_type
;
235 linkrate
= phy
->linkrate
;
236 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy
->phy_state
== PHY_VACANT
) {
240 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
241 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
243 phy
->phy_id
= phy_id
;
249 phy
->attached_dev_type
= to_dev_type(dr
);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
252 phy
->phy_id
= phy_id
;
253 phy
->linkrate
= dr
->linkrate
;
254 phy
->attached_sata_host
= dr
->attached_sata_host
;
255 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
256 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
257 phy
->attached_iproto
= dr
->iproto
<< 1;
258 phy
->attached_tproto
= dr
->tproto
<< 1;
259 /* help some expanders that fail to zero sas_address in the 'no
262 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
263 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
264 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
266 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
267 phy
->attached_phy_id
= dr
->attached_phy_id
;
268 phy
->phy_change_count
= dr
->change_count
;
269 phy
->routing_attr
= dr
->routing_attr
;
270 phy
->virtual = dr
->virtual;
271 phy
->last_da_index
= -1;
273 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
274 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
275 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
276 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
277 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
278 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
279 phy
->phy
->identify
.phy_identifier
= phy_id
;
280 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
281 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
282 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
283 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
284 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
285 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
289 if (sas_phy_add(phy
->phy
)) {
290 sas_phy_free(phy
->phy
);
295 switch (phy
->attached_dev_type
) {
296 case SAS_SATA_PENDING
:
297 type
= "stp pending";
303 if (phy
->attached_iproto
) {
304 if (phy
->attached_tproto
)
305 type
= "host+target";
309 if (dr
->attached_sata_dev
)
315 case SAS_EDGE_EXPANDER_DEVICE
:
316 case SAS_FANOUT_EXPANDER_DEVICE
:
323 /* this routine is polled by libata error recovery so filter
324 * unimportant messages
326 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
327 phy
->linkrate
!= linkrate
||
328 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
333 /* if the attached device type changed and ata_eh is active,
334 * make sure we run revalidation when eh completes (see:
335 * sas_enable_revalidation)
337 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
338 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
340 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
342 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
343 sas_route_char(dev
, phy
), phy
->linkrate
,
344 SAS_ADDR(phy
->attached_sas_addr
), type
);
347 /* check if we have an existing attached ata device on this expander phy */
348 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
350 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
351 struct domain_device
*dev
;
352 struct sas_rphy
*rphy
;
357 rphy
= ex_phy
->port
->rphy
;
361 dev
= sas_find_dev_by_rphy(rphy
);
363 if (dev
&& dev_is_sata(dev
))
369 #define DISCOVER_REQ_SIZE 16
370 #define DISCOVER_RESP_SIZE 56
372 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
373 u8
*disc_resp
, int single
)
375 struct discover_resp
*dr
;
378 disc_req
[9] = single
;
380 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
381 disc_resp
, DISCOVER_RESP_SIZE
);
384 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
385 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
386 sas_printk("Found loopback topology, just ignore it!\n");
389 sas_set_ex_phy(dev
, single
, disc_resp
);
393 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
395 struct expander_device
*ex
= &dev
->ex_dev
;
400 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
404 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
410 disc_req
[1] = SMP_DISCOVER
;
412 if (0 <= single
&& single
< ex
->num_phys
) {
413 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
417 for (i
= 0; i
< ex
->num_phys
; i
++) {
418 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
430 static int sas_expander_discover(struct domain_device
*dev
)
432 struct expander_device
*ex
= &dev
->ex_dev
;
435 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
439 res
= sas_ex_phy_discover(dev
, -1);
450 #define MAX_EXPANDER_PHYS 128
452 static void ex_assign_report_general(struct domain_device
*dev
,
453 struct smp_resp
*resp
)
455 struct report_general_resp
*rg
= &resp
->rg
;
457 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
458 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
459 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
460 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
461 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
462 dev
->ex_dev
.configuring
= rg
->configuring
;
463 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
466 #define RG_REQ_SIZE 8
467 #define RG_RESP_SIZE 32
469 static int sas_ex_general(struct domain_device
*dev
)
472 struct smp_resp
*rg_resp
;
476 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
480 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
486 rg_req
[1] = SMP_REPORT_GENERAL
;
488 for (i
= 0; i
< 5; i
++) {
489 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
493 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
494 SAS_ADDR(dev
->sas_addr
), res
);
496 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
497 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
498 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
499 res
= rg_resp
->result
;
503 ex_assign_report_general(dev
, rg_resp
);
505 if (dev
->ex_dev
.configuring
) {
506 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
507 SAS_ADDR(dev
->sas_addr
));
508 schedule_timeout_interruptible(5*HZ
);
518 static void ex_assign_manuf_info(struct domain_device
*dev
, void
521 u8
*mi_resp
= _mi_resp
;
522 struct sas_rphy
*rphy
= dev
->rphy
;
523 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
525 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
526 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
527 memcpy(edev
->product_rev
, mi_resp
+ 36,
528 SAS_EXPANDER_PRODUCT_REV_LEN
);
530 if (mi_resp
[8] & 1) {
531 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
532 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
533 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
534 edev
->component_revision_id
= mi_resp
[50];
538 #define MI_REQ_SIZE 8
539 #define MI_RESP_SIZE 64
541 static int sas_ex_manuf_info(struct domain_device
*dev
)
547 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
551 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
557 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
559 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
561 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
562 SAS_ADDR(dev
->sas_addr
), res
);
564 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
565 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
566 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
570 ex_assign_manuf_info(dev
, mi_resp
);
577 #define PC_REQ_SIZE 44
578 #define PC_RESP_SIZE 8
580 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
581 enum phy_func phy_func
,
582 struct sas_phy_linkrates
*rates
)
588 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
592 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
598 pc_req
[1] = SMP_PHY_CONTROL
;
600 pc_req
[10]= phy_func
;
602 pc_req
[32] = rates
->minimum_linkrate
<< 4;
603 pc_req
[33] = rates
->maximum_linkrate
<< 4;
606 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
613 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
615 struct expander_device
*ex
= &dev
->ex_dev
;
616 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
618 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
619 phy
->linkrate
= SAS_PHY_DISABLED
;
622 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
624 struct expander_device
*ex
= &dev
->ex_dev
;
627 for (i
= 0; i
< ex
->num_phys
; i
++) {
628 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
630 if (phy
->phy_state
== PHY_VACANT
||
631 phy
->phy_state
== PHY_NOT_PRESENT
)
634 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
635 sas_ex_disable_phy(dev
, i
);
639 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
642 struct domain_device
*dev
;
644 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
646 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
647 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
653 #define RPEL_REQ_SIZE 16
654 #define RPEL_RESP_SIZE 32
655 int sas_smp_get_phy_events(struct sas_phy
*phy
)
660 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
661 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
663 req
= alloc_smp_req(RPEL_REQ_SIZE
);
667 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
673 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
674 req
[9] = phy
->number
;
676 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
677 resp
, RPEL_RESP_SIZE
);
682 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
683 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
684 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
685 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
694 #ifdef CONFIG_SCSI_SAS_ATA
696 #define RPS_REQ_SIZE 16
697 #define RPS_RESP_SIZE 60
699 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
700 struct smp_resp
*rps_resp
)
703 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
704 u8
*resp
= (u8
*)rps_resp
;
709 rps_req
[1] = SMP_REPORT_PHY_SATA
;
712 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
713 rps_resp
, RPS_RESP_SIZE
);
715 /* 0x34 is the FIS type for the D2H fis. There's a potential
716 * standards cockup here. sas-2 explicitly specifies the FIS
717 * should be encoded so that FIS type is in resp[24].
718 * However, some expanders endian reverse this. Undo the
720 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
723 for (i
= 0; i
< 5; i
++) {
728 resp
[j
+ 0] = resp
[j
+ 3];
729 resp
[j
+ 1] = resp
[j
+ 2];
740 static void sas_ex_get_linkrate(struct domain_device
*parent
,
741 struct domain_device
*child
,
742 struct ex_phy
*parent_phy
)
744 struct expander_device
*parent_ex
= &parent
->ex_dev
;
745 struct sas_port
*port
;
750 port
= parent_phy
->port
;
752 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
753 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
755 if (phy
->phy_state
== PHY_VACANT
||
756 phy
->phy_state
== PHY_NOT_PRESENT
)
759 if (SAS_ADDR(phy
->attached_sas_addr
) ==
760 SAS_ADDR(child
->sas_addr
)) {
762 child
->min_linkrate
= min(parent
->min_linkrate
,
764 child
->max_linkrate
= max(parent
->max_linkrate
,
767 sas_port_add_phy(port
, phy
->phy
);
770 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
771 child
->pathways
= min(child
->pathways
, parent
->pathways
);
774 static struct domain_device
*sas_ex_discover_end_dev(
775 struct domain_device
*parent
, int phy_id
)
777 struct expander_device
*parent_ex
= &parent
->ex_dev
;
778 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
779 struct domain_device
*child
= NULL
;
780 struct sas_rphy
*rphy
;
783 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
786 child
= sas_alloc_device();
790 kref_get(&parent
->kref
);
791 child
->parent
= parent
;
792 child
->port
= parent
->port
;
793 child
->iproto
= phy
->attached_iproto
;
794 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
795 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
797 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
798 if (unlikely(!phy
->port
))
800 if (unlikely(sas_port_add(phy
->port
) != 0)) {
801 sas_port_free(phy
->port
);
805 sas_ex_get_linkrate(parent
, child
, phy
);
806 sas_device_set_phy(child
, phy
->port
);
808 #ifdef CONFIG_SCSI_SAS_ATA
809 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
810 res
= sas_get_ata_info(child
, phy
);
815 res
= sas_ata_init(child
);
818 rphy
= sas_end_device_alloc(phy
->port
);
823 get_device(&rphy
->dev
);
825 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
827 res
= sas_discover_sata(child
);
829 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
830 "%016llx:0x%x returned 0x%x\n",
831 SAS_ADDR(child
->sas_addr
),
832 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
837 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
838 child
->dev_type
= SAS_END_DEVICE
;
839 rphy
= sas_end_device_alloc(phy
->port
);
840 /* FIXME: error handling */
843 child
->tproto
= phy
->attached_tproto
;
847 get_device(&rphy
->dev
);
848 sas_fill_in_rphy(child
, rphy
);
850 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
852 res
= sas_discover_end_dev(child
);
854 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
855 "at %016llx:0x%x returned 0x%x\n",
856 SAS_ADDR(child
->sas_addr
),
857 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
861 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
862 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
867 list_add_tail(&child
->siblings
, &parent_ex
->children
);
871 sas_rphy_free(child
->rphy
);
872 list_del(&child
->disco_list_node
);
873 spin_lock_irq(&parent
->port
->dev_list_lock
);
874 list_del(&child
->dev_list_node
);
875 spin_unlock_irq(&parent
->port
->dev_list_lock
);
877 sas_port_delete(phy
->port
);
880 sas_put_device(child
);
884 /* See if this phy is part of a wide port */
885 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
887 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
890 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
891 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
896 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
897 SAS_ADDR_SIZE
) && ephy
->port
) {
898 sas_port_add_phy(ephy
->port
, phy
->phy
);
899 phy
->port
= ephy
->port
;
900 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
908 static struct domain_device
*sas_ex_discover_expander(
909 struct domain_device
*parent
, int phy_id
)
911 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
912 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
913 struct domain_device
*child
= NULL
;
914 struct sas_rphy
*rphy
;
915 struct sas_expander_device
*edev
;
916 struct asd_sas_port
*port
;
919 if (phy
->routing_attr
== DIRECT_ROUTING
) {
920 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
922 SAS_ADDR(parent
->sas_addr
), phy_id
,
923 SAS_ADDR(phy
->attached_sas_addr
),
924 phy
->attached_phy_id
);
927 child
= sas_alloc_device();
931 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
932 /* FIXME: better error handling */
933 BUG_ON(sas_port_add(phy
->port
) != 0);
936 switch (phy
->attached_dev_type
) {
937 case SAS_EDGE_EXPANDER_DEVICE
:
938 rphy
= sas_expander_alloc(phy
->port
,
939 SAS_EDGE_EXPANDER_DEVICE
);
941 case SAS_FANOUT_EXPANDER_DEVICE
:
942 rphy
= sas_expander_alloc(phy
->port
,
943 SAS_FANOUT_EXPANDER_DEVICE
);
946 rphy
= NULL
; /* shut gcc up */
951 get_device(&rphy
->dev
);
952 edev
= rphy_to_expander_device(rphy
);
953 child
->dev_type
= phy
->attached_dev_type
;
954 kref_get(&parent
->kref
);
955 child
->parent
= parent
;
957 child
->iproto
= phy
->attached_iproto
;
958 child
->tproto
= phy
->attached_tproto
;
959 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
960 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
961 sas_ex_get_linkrate(parent
, child
, phy
);
962 edev
->level
= parent_ex
->level
+ 1;
963 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
966 sas_fill_in_rphy(child
, rphy
);
969 spin_lock_irq(&parent
->port
->dev_list_lock
);
970 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
971 spin_unlock_irq(&parent
->port
->dev_list_lock
);
973 res
= sas_discover_expander(child
);
975 sas_rphy_delete(rphy
);
976 spin_lock_irq(&parent
->port
->dev_list_lock
);
977 list_del(&child
->dev_list_node
);
978 spin_unlock_irq(&parent
->port
->dev_list_lock
);
979 sas_put_device(child
);
982 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
986 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
988 struct expander_device
*ex
= &dev
->ex_dev
;
989 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
990 struct domain_device
*child
= NULL
;
994 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
995 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
996 res
= sas_ex_phy_discover(dev
, phy_id
);
1001 /* Parent and domain coherency */
1002 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1003 SAS_ADDR(dev
->port
->sas_addr
))) {
1004 sas_add_parent_port(dev
, phy_id
);
1007 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1008 SAS_ADDR(dev
->parent
->sas_addr
))) {
1009 sas_add_parent_port(dev
, phy_id
);
1010 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1011 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1015 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1016 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1018 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1019 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1020 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1021 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1024 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1027 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1028 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1029 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1030 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1031 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1032 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1033 SAS_ADDR(dev
->sas_addr
),
1038 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1040 SAS_DPRINTK("configure routing for dev %016llx "
1041 "reported 0x%x. Forgotten\n",
1042 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1043 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1047 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1048 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1049 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1053 switch (ex_phy
->attached_dev_type
) {
1054 case SAS_END_DEVICE
:
1055 case SAS_SATA_PENDING
:
1056 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1058 case SAS_FANOUT_EXPANDER_DEVICE
:
1059 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1060 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1061 "attached to ex %016llx phy 0x%x\n",
1062 SAS_ADDR(ex_phy
->attached_sas_addr
),
1063 ex_phy
->attached_phy_id
,
1064 SAS_ADDR(dev
->sas_addr
),
1066 sas_ex_disable_phy(dev
, phy_id
);
1069 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1070 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1072 case SAS_EDGE_EXPANDER_DEVICE
:
1073 child
= sas_ex_discover_expander(dev
, phy_id
);
1082 for (i
= 0; i
< ex
->num_phys
; i
++) {
1083 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1084 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1087 * Due to races, the phy might not get added to the
1088 * wide port, so we add the phy to the wide port here.
1090 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1091 SAS_ADDR(child
->sas_addr
)) {
1092 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1093 if (sas_ex_join_wide_port(dev
, i
))
1094 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1095 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1104 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1106 struct expander_device
*ex
= &dev
->ex_dev
;
1109 for (i
= 0; i
< ex
->num_phys
; i
++) {
1110 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1112 if (phy
->phy_state
== PHY_VACANT
||
1113 phy
->phy_state
== PHY_NOT_PRESENT
)
1116 if ((phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1117 phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) &&
1118 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1120 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1128 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1130 struct expander_device
*ex
= &dev
->ex_dev
;
1131 struct domain_device
*child
;
1132 u8 sub_addr
[8] = {0, };
1134 list_for_each_entry(child
, &ex
->children
, siblings
) {
1135 if (child
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1136 child
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1138 if (sub_addr
[0] == 0) {
1139 sas_find_sub_addr(child
, sub_addr
);
1144 if (sas_find_sub_addr(child
, s2
) &&
1145 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1147 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1148 "diverges from subtractive "
1149 "boundary %016llx\n",
1150 SAS_ADDR(dev
->sas_addr
),
1151 SAS_ADDR(child
->sas_addr
),
1153 SAS_ADDR(sub_addr
));
1155 sas_ex_disable_port(child
, s2
);
1162 * sas_ex_discover_devices -- discover devices attached to this expander
1163 * dev: pointer to the expander domain device
1164 * single: if you want to do a single phy, else set to -1;
1166 * Configure this expander for use with its devices and register the
1167 * devices of this expander.
1169 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1171 struct expander_device
*ex
= &dev
->ex_dev
;
1172 int i
= 0, end
= ex
->num_phys
;
1175 if (0 <= single
&& single
< end
) {
1180 for ( ; i
< end
; i
++) {
1181 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1183 if (ex_phy
->phy_state
== PHY_VACANT
||
1184 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1185 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1188 switch (ex_phy
->linkrate
) {
1189 case SAS_PHY_DISABLED
:
1190 case SAS_PHY_RESET_PROBLEM
:
1191 case SAS_SATA_PORT_SELECTOR
:
1194 res
= sas_ex_discover_dev(dev
, i
);
1202 sas_check_level_subtractive_boundary(dev
);
1207 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1209 struct expander_device
*ex
= &dev
->ex_dev
;
1211 u8
*sub_sas_addr
= NULL
;
1213 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1216 for (i
= 0; i
< ex
->num_phys
; i
++) {
1217 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1219 if (phy
->phy_state
== PHY_VACANT
||
1220 phy
->phy_state
== PHY_NOT_PRESENT
)
1223 if ((phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
||
1224 phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
) &&
1225 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1228 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1229 else if (SAS_ADDR(sub_sas_addr
) !=
1230 SAS_ADDR(phy
->attached_sas_addr
)) {
1232 SAS_DPRINTK("ex %016llx phy 0x%x "
1233 "diverges(%016llx) on subtractive "
1234 "boundary(%016llx). Disabled\n",
1235 SAS_ADDR(dev
->sas_addr
), i
,
1236 SAS_ADDR(phy
->attached_sas_addr
),
1237 SAS_ADDR(sub_sas_addr
));
1238 sas_ex_disable_phy(dev
, i
);
1245 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1246 struct ex_phy
*parent_phy
,
1247 struct ex_phy
*child_phy
)
1249 static const char *ex_type
[] = {
1250 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1251 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1253 struct domain_device
*parent
= child
->parent
;
1255 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1256 "phy 0x%x has %c:%c routing link!\n",
1258 ex_type
[parent
->dev_type
],
1259 SAS_ADDR(parent
->sas_addr
),
1262 ex_type
[child
->dev_type
],
1263 SAS_ADDR(child
->sas_addr
),
1266 sas_route_char(parent
, parent_phy
),
1267 sas_route_char(child
, child_phy
));
1270 static int sas_check_eeds(struct domain_device
*child
,
1271 struct ex_phy
*parent_phy
,
1272 struct ex_phy
*child_phy
)
1275 struct domain_device
*parent
= child
->parent
;
1277 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1279 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1280 "phy S:0x%x, while there is a fanout ex %016llx\n",
1281 SAS_ADDR(parent
->sas_addr
),
1283 SAS_ADDR(child
->sas_addr
),
1285 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1286 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1287 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1289 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1291 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1292 SAS_ADDR(parent
->sas_addr
)) ||
1293 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1294 SAS_ADDR(child
->sas_addr
)))
1296 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1297 SAS_ADDR(parent
->sas_addr
)) ||
1298 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1299 SAS_ADDR(child
->sas_addr
))))
1303 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1304 "phy 0x%x link forms a third EEDS!\n",
1305 SAS_ADDR(parent
->sas_addr
),
1307 SAS_ADDR(child
->sas_addr
),
1314 /* Here we spill over 80 columns. It is intentional.
1316 static int sas_check_parent_topology(struct domain_device
*child
)
1318 struct expander_device
*child_ex
= &child
->ex_dev
;
1319 struct expander_device
*parent_ex
;
1326 if (child
->parent
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1327 child
->parent
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1330 parent_ex
= &child
->parent
->ex_dev
;
1332 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1333 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1334 struct ex_phy
*child_phy
;
1336 if (parent_phy
->phy_state
== PHY_VACANT
||
1337 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1340 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1343 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1345 switch (child
->parent
->dev_type
) {
1346 case SAS_EDGE_EXPANDER_DEVICE
:
1347 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1348 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1349 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1350 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1353 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1354 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1355 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1356 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1357 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1360 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1361 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1362 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1363 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1366 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1371 case SAS_FANOUT_EXPANDER_DEVICE
:
1372 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1373 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1374 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1386 #define RRI_REQ_SIZE 16
1387 #define RRI_RESP_SIZE 44
1389 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1390 u8
*sas_addr
, int *index
, int *present
)
1393 struct expander_device
*ex
= &dev
->ex_dev
;
1394 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1401 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1405 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1411 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1412 rri_req
[9] = phy_id
;
1414 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1415 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1416 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1421 if (res
== SMP_RESP_NO_INDEX
) {
1422 SAS_DPRINTK("overflow of indexes: dev %016llx "
1423 "phy 0x%x index 0x%x\n",
1424 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1426 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1427 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1428 "result 0x%x\n", __func__
,
1429 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1432 if (SAS_ADDR(sas_addr
) != 0) {
1433 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1435 if ((rri_resp
[12] & 0x80) == 0x80)
1440 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1445 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1446 phy
->last_da_index
< i
) {
1447 phy
->last_da_index
= i
;
1460 #define CRI_REQ_SIZE 44
1461 #define CRI_RESP_SIZE 8
1463 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1464 u8
*sas_addr
, int index
, int include
)
1470 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1474 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1480 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1481 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1482 cri_req
[9] = phy_id
;
1483 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1484 cri_req
[12] |= 0x80;
1485 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1487 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1492 if (res
== SMP_RESP_NO_INDEX
) {
1493 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1495 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1503 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1504 u8
*sas_addr
, int include
)
1510 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1513 if (include
^ present
)
1514 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1520 * sas_configure_parent -- configure routing table of parent
1521 * parent: parent expander
1522 * child: child expander
1523 * sas_addr: SAS port identifier of device directly attached to child
1525 static int sas_configure_parent(struct domain_device
*parent
,
1526 struct domain_device
*child
,
1527 u8
*sas_addr
, int include
)
1529 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1533 if (parent
->parent
) {
1534 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1540 if (ex_parent
->conf_route_table
== 0) {
1541 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1542 SAS_ADDR(parent
->sas_addr
));
1546 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1547 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1549 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1550 (SAS_ADDR(phy
->attached_sas_addr
) ==
1551 SAS_ADDR(child
->sas_addr
))) {
1552 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1562 * sas_configure_routing -- configure routing
1563 * dev: expander device
1564 * sas_addr: port identifier of device directly attached to the expander device
1566 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1569 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1573 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1576 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1581 * sas_discover_expander -- expander discovery
1582 * @ex: pointer to expander domain device
1584 * See comment in sas_discover_sata().
1586 static int sas_discover_expander(struct domain_device
*dev
)
1590 res
= sas_notify_lldd_dev_found(dev
);
1594 res
= sas_ex_general(dev
);
1597 res
= sas_ex_manuf_info(dev
);
1601 res
= sas_expander_discover(dev
);
1603 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1604 SAS_ADDR(dev
->sas_addr
), res
);
1608 sas_check_ex_subtractive_boundary(dev
);
1609 res
= sas_check_parent_topology(dev
);
1614 sas_notify_lldd_dev_gone(dev
);
1618 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1621 struct domain_device
*dev
;
1623 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1624 if (dev
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1625 dev
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1626 struct sas_expander_device
*ex
=
1627 rphy_to_expander_device(dev
->rphy
);
1629 if (level
== ex
->level
)
1630 res
= sas_ex_discover_devices(dev
, -1);
1632 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1640 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1646 level
= port
->disc
.max_level
;
1647 res
= sas_ex_level_discovery(port
, level
);
1649 } while (level
< port
->disc
.max_level
);
1654 int sas_discover_root_expander(struct domain_device
*dev
)
1657 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1659 res
= sas_rphy_add(dev
->rphy
);
1663 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1664 res
= sas_discover_expander(dev
);
1668 sas_ex_bfs_disc(dev
->port
);
1673 sas_rphy_remove(dev
->rphy
);
1678 /* ---------- Domain revalidation ---------- */
1680 static int sas_get_phy_discover(struct domain_device
*dev
,
1681 int phy_id
, struct smp_resp
*disc_resp
)
1686 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1690 disc_req
[1] = SMP_DISCOVER
;
1691 disc_req
[9] = phy_id
;
1693 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1694 disc_resp
, DISCOVER_RESP_SIZE
);
1697 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1698 res
= disc_resp
->result
;
1706 static int sas_get_phy_change_count(struct domain_device
*dev
,
1707 int phy_id
, int *pcc
)
1710 struct smp_resp
*disc_resp
;
1712 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1716 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1718 *pcc
= disc_resp
->disc
.change_count
;
1724 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1725 u8
*sas_addr
, enum sas_device_type
*type
)
1728 struct smp_resp
*disc_resp
;
1729 struct discover_resp
*dr
;
1731 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1734 dr
= &disc_resp
->disc
;
1736 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1738 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1739 *type
= to_dev_type(dr
);
1741 memset(sas_addr
, 0, 8);
1747 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1748 int from_phy
, bool update
)
1750 struct expander_device
*ex
= &dev
->ex_dev
;
1754 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1755 int phy_change_count
= 0;
1757 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1759 case SMP_RESP_PHY_VACANT
:
1760 case SMP_RESP_NO_PHY
:
1762 case SMP_RESP_FUNC_ACC
:
1768 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1770 ex
->ex_phy
[i
].phy_change_count
=
1779 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1783 struct smp_resp
*rg_resp
;
1785 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1789 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1795 rg_req
[1] = SMP_REPORT_GENERAL
;
1797 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1801 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1802 res
= rg_resp
->result
;
1806 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1813 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1814 * @dev:domain device to be detect.
1815 * @src_dev: the device which originated BROADCAST(CHANGE).
1817 * Add self-configuration expander support. Suppose two expander cascading,
1818 * when the first level expander is self-configuring, hotplug the disks in
1819 * second level expander, BROADCAST(CHANGE) will not only be originated
1820 * in the second level expander, but also be originated in the first level
1821 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822 * expander changed count in two level expanders will all increment at least
1823 * once, but the phy which chang count has changed is the source device which
1827 static int sas_find_bcast_dev(struct domain_device
*dev
,
1828 struct domain_device
**src_dev
)
1830 struct expander_device
*ex
= &dev
->ex_dev
;
1831 int ex_change_count
= -1;
1834 struct domain_device
*ch
;
1836 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1839 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1840 /* Just detect if this expander phys phy change count changed,
1841 * in order to determine if this expander originate BROADCAST,
1842 * and do not update phy change count field in our structure.
1844 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1847 ex
->ex_change_count
= ex_change_count
;
1848 SAS_DPRINTK("Expander phy change count has changed\n");
1851 SAS_DPRINTK("Expander phys DID NOT change\n");
1853 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1854 if (ch
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
|| ch
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1855 res
= sas_find_bcast_dev(ch
, src_dev
);
1864 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1866 struct expander_device
*ex
= &dev
->ex_dev
;
1867 struct domain_device
*child
, *n
;
1869 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1870 set_bit(SAS_DEV_GONE
, &child
->state
);
1871 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1872 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1873 sas_unregister_ex_tree(port
, child
);
1875 sas_unregister_dev(port
, child
);
1877 sas_unregister_dev(port
, dev
);
1880 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1881 int phy_id
, bool last
)
1883 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1884 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1885 struct domain_device
*child
, *n
, *found
= NULL
;
1887 list_for_each_entry_safe(child
, n
,
1888 &ex_dev
->children
, siblings
) {
1889 if (SAS_ADDR(child
->sas_addr
) ==
1890 SAS_ADDR(phy
->attached_sas_addr
)) {
1891 set_bit(SAS_DEV_GONE
, &child
->state
);
1892 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1893 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1894 sas_unregister_ex_tree(parent
->port
, child
);
1896 sas_unregister_dev(parent
->port
, child
);
1901 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1903 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1905 sas_port_delete_phy(phy
->port
, phy
->phy
);
1906 sas_device_set_phy(found
, phy
->port
);
1907 if (phy
->port
->num_phys
== 0)
1908 sas_port_delete(phy
->port
);
1913 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1916 struct expander_device
*ex_root
= &root
->ex_dev
;
1917 struct domain_device
*child
;
1920 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1921 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1922 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1923 struct sas_expander_device
*ex
=
1924 rphy_to_expander_device(child
->rphy
);
1926 if (level
> ex
->level
)
1927 res
= sas_discover_bfs_by_root_level(child
,
1929 else if (level
== ex
->level
)
1930 res
= sas_ex_discover_devices(child
, -1);
1936 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1939 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1940 int level
= ex
->level
+1;
1942 res
= sas_ex_discover_devices(dev
, -1);
1946 res
= sas_discover_bfs_by_root_level(dev
, level
);
1949 } while (level
<= dev
->port
->disc
.max_level
);
1954 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1956 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1957 struct domain_device
*child
;
1960 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1961 SAS_ADDR(dev
->sas_addr
), phy_id
);
1962 res
= sas_ex_phy_discover(dev
, phy_id
);
1966 if (sas_ex_join_wide_port(dev
, phy_id
))
1969 res
= sas_ex_discover_devices(dev
, phy_id
);
1972 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1973 if (SAS_ADDR(child
->sas_addr
) ==
1974 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1975 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1976 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1977 res
= sas_discover_bfs_by_root(child
);
1984 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
1989 /* treat device directed resets as flutter, if we went
1990 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1992 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
1993 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
1999 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
2001 struct expander_device
*ex
= &dev
->ex_dev
;
2002 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
2003 enum sas_device_type type
= SAS_PHY_UNUSED
;
2007 memset(sas_addr
, 0, 8);
2008 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2010 case SMP_RESP_NO_PHY
:
2011 phy
->phy_state
= PHY_NOT_PRESENT
;
2012 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2014 case SMP_RESP_PHY_VACANT
:
2015 phy
->phy_state
= PHY_VACANT
;
2016 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2018 case SMP_RESP_FUNC_ACC
:
2026 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2027 phy
->phy_state
= PHY_EMPTY
;
2028 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2030 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2031 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2032 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2035 sas_ex_phy_discover(dev
, phy_id
);
2037 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2038 action
= ", needs recovery";
2039 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2040 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2044 /* delete the old link */
2045 if (SAS_ADDR(phy
->attached_sas_addr
) &&
2046 SAS_ADDR(sas_addr
) != SAS_ADDR(phy
->attached_sas_addr
)) {
2047 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2048 SAS_ADDR(dev
->sas_addr
), phy_id
,
2049 SAS_ADDR(phy
->attached_sas_addr
));
2050 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2053 return sas_discover_new(dev
, phy_id
);
2057 * sas_rediscover - revalidate the domain.
2058 * @dev:domain device to be detect.
2059 * @phy_id: the phy id will be detected.
2061 * NOTE: this process _must_ quit (return) as soon as any connection
2062 * errors are encountered. Connection recovery is done elsewhere.
2063 * Discover process only interrogates devices in order to discover the
2064 * domain.For plugging out, we un-register the device only when it is
2065 * the last phy in the port, for other phys in this port, we just delete it
2066 * from the port.For inserting, we do discovery when it is the
2067 * first phy,for other phys in this port, we add it to the port to
2068 * forming the wide-port.
2070 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2072 struct expander_device
*ex
= &dev
->ex_dev
;
2073 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2076 bool last
= true; /* is this the last phy of the port */
2078 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2079 SAS_ADDR(dev
->sas_addr
), phy_id
);
2081 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2082 for (i
= 0; i
< ex
->num_phys
; i
++) {
2083 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2087 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2088 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2089 SAS_DPRINTK("phy%d part of wide port with "
2090 "phy%d\n", phy_id
, i
);
2095 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2097 res
= sas_discover_new(dev
, phy_id
);
2102 * sas_revalidate_domain -- revalidate the domain
2103 * @port: port to the domain of interest
2105 * NOTE: this process _must_ quit (return) as soon as any connection
2106 * errors are encountered. Connection recovery is done elsewhere.
2107 * Discover process only interrogates devices in order to discover the
2110 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2113 struct domain_device
*dev
= NULL
;
2115 res
= sas_find_bcast_dev(port_dev
, &dev
);
2116 while (res
== 0 && dev
) {
2117 struct expander_device
*ex
= &dev
->ex_dev
;
2122 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2125 res
= sas_rediscover(dev
, phy_id
);
2127 } while (i
< ex
->num_phys
);
2130 res
= sas_find_bcast_dev(port_dev
, &dev
);
2135 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
2136 struct request
*req
)
2138 struct domain_device
*dev
;
2140 struct request
*rsp
= req
->next_rq
;
2143 printk("%s: space for a smp response is missing\n",
2148 /* no rphy means no smp target support (ie aic94xx host) */
2150 return sas_smp_host_handler(shost
, req
, rsp
);
2152 type
= rphy
->identify
.device_type
;
2154 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
2155 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
2156 printk("%s: can we send a smp request to a device?\n",
2161 dev
= sas_find_dev_by_rphy(rphy
);
2163 printk("%s: fail to find a domain_device?\n", __func__
);
2167 /* do we need to support multiple segments? */
2168 if (bio_multiple_segments(req
->bio
) ||
2169 bio_multiple_segments(rsp
->bio
)) {
2170 printk("%s: multiple segments req %u, rsp %u\n",
2171 __func__
, blk_rq_bytes(req
), blk_rq_bytes(rsp
));
2175 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2176 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2178 /* positive number is the untransferred residual */
2179 rsp
->resid_len
= ret
;
2182 } else if (ret
== 0) {