ARM: fix put_user() for gcc-8
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob9b5367294116cab8b191fd93e88c9b0118d42527
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
64 #include "mpt3sas_base.h"
66 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH 30000
73 #define MAX_CHAIN_DEPTH 100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89 " max msix vectors");
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 " enable detection of firmware fault and halt firmware - (default=0)");
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
98 /**
99 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
105 int ret = param_set_int(val, kp);
106 struct MPT3SAS_ADAPTER *ioc;
108 if (ret)
109 return ret;
111 /* global ioc spinlock to protect controller list on list operations */
112 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
113 spin_lock(&gioc_lock);
114 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
115 ioc->fwfault_debug = mpt3sas_fwfault_debug;
116 spin_unlock(&gioc_lock);
117 return 0;
119 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
120 param_get_int, &mpt3sas_fwfault_debug, 0644);
123 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
124 * @arg: input argument, used to derive ioc
126 * Return 0 if controller is removed from pci subsystem.
127 * Return -1 for other case.
129 static int mpt3sas_remove_dead_ioc_func(void *arg)
131 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
132 struct pci_dev *pdev;
134 if ((ioc == NULL))
135 return -1;
137 pdev = ioc->pdev;
138 if ((pdev == NULL))
139 return -1;
140 pci_stop_and_remove_bus_device_locked(pdev);
141 return 0;
145 * _base_fault_reset_work - workq handling ioc fault conditions
146 * @work: input argument, used to derive ioc
147 * Context: sleep.
149 * Return nothing.
151 static void
152 _base_fault_reset_work(struct work_struct *work)
154 struct MPT3SAS_ADAPTER *ioc =
155 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
156 unsigned long flags;
157 u32 doorbell;
158 int rc;
159 struct task_struct *p;
162 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
163 if (ioc->shost_recovery || ioc->pci_error_recovery)
164 goto rearm_timer;
165 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
167 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
168 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
169 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
170 ioc->name);
172 /* It may be possible that EEH recovery can resolve some of
173 * pci bus failure issues rather removing the dead ioc function
174 * by considering controller is in a non-operational state. So
175 * here priority is given to the EEH recovery. If it doesn't
176 * not resolve this issue, mpt3sas driver will consider this
177 * controller to non-operational state and remove the dead ioc
178 * function.
180 if (ioc->non_operational_loop++ < 5) {
181 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
182 flags);
183 goto rearm_timer;
187 * Call _scsih_flush_pending_cmds callback so that we flush all
188 * pending commands back to OS. This call is required to aovid
189 * deadlock at block layer. Dead IOC will fail to do diag reset,
190 * and this call is safe since dead ioc will never return any
191 * command back from HW.
193 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
195 * Set remove_host flag early since kernel thread will
196 * take some time to execute.
198 ioc->remove_host = 1;
199 /*Remove the Dead Host */
200 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
201 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
202 if (IS_ERR(p))
203 pr_err(MPT3SAS_FMT
204 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
205 ioc->name, __func__);
206 else
207 pr_err(MPT3SAS_FMT
208 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
209 ioc->name, __func__);
210 return; /* don't rearm timer */
213 ioc->non_operational_loop = 0;
215 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
216 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
217 FORCE_BIG_HAMMER);
218 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
219 __func__, (rc == 0) ? "success" : "failed");
220 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
221 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
222 mpt3sas_base_fault_info(ioc, doorbell &
223 MPI2_DOORBELL_DATA_MASK);
224 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
225 MPI2_IOC_STATE_OPERATIONAL)
226 return; /* don't rearm timer */
229 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230 rearm_timer:
231 if (ioc->fault_reset_work_q)
232 queue_delayed_work(ioc->fault_reset_work_q,
233 &ioc->fault_reset_work,
234 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
239 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
240 * @ioc: per adapter object
241 * Context: sleep.
243 * Return nothing.
245 void
246 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
248 unsigned long flags;
250 if (ioc->fault_reset_work_q)
251 return;
253 /* initialize fault polling */
255 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
256 snprintf(ioc->fault_reset_work_q_name,
257 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
258 ioc->driver_name, ioc->id);
259 ioc->fault_reset_work_q =
260 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
261 if (!ioc->fault_reset_work_q) {
262 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
263 ioc->name, __func__, __LINE__);
264 return;
266 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
267 if (ioc->fault_reset_work_q)
268 queue_delayed_work(ioc->fault_reset_work_q,
269 &ioc->fault_reset_work,
270 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
271 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
275 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
276 * @ioc: per adapter object
277 * Context: sleep.
279 * Return nothing.
281 void
282 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
284 unsigned long flags;
285 struct workqueue_struct *wq;
287 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
288 wq = ioc->fault_reset_work_q;
289 ioc->fault_reset_work_q = NULL;
290 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
291 if (wq) {
292 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
293 flush_workqueue(wq);
294 destroy_workqueue(wq);
299 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
300 * @ioc: per adapter object
301 * @fault_code: fault code
303 * Return nothing.
305 void
306 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
308 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
309 ioc->name, fault_code);
313 * mpt3sas_halt_firmware - halt's mpt controller firmware
314 * @ioc: per adapter object
316 * For debugging timeout related issues. Writing 0xCOFFEE00
317 * to the doorbell register will halt controller firmware. With
318 * the purpose to stop both driver and firmware, the enduser can
319 * obtain a ring buffer from controller UART.
321 void
322 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
324 u32 doorbell;
326 if (!ioc->fwfault_debug)
327 return;
329 dump_stack();
331 doorbell = readl(&ioc->chip->Doorbell);
332 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
333 mpt3sas_base_fault_info(ioc , doorbell);
334 else {
335 writel(0xC0FFEE00, &ioc->chip->Doorbell);
336 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
337 ioc->name);
340 if (ioc->fwfault_debug == 2)
341 for (;;)
343 else
344 panic("panic in %s\n", __func__);
348 * _base_sas_ioc_info - verbose translation of the ioc status
349 * @ioc: per adapter object
350 * @mpi_reply: reply mf payload returned from firmware
351 * @request_hdr: request mf
353 * Return nothing.
355 static void
356 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
357 MPI2RequestHeader_t *request_hdr)
359 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
360 MPI2_IOCSTATUS_MASK;
361 char *desc = NULL;
362 u16 frame_sz;
363 char *func_str = NULL;
365 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
366 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
367 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
368 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
369 return;
371 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
372 return;
374 switch (ioc_status) {
376 /****************************************************************************
377 * Common IOCStatus values for all replies
378 ****************************************************************************/
380 case MPI2_IOCSTATUS_INVALID_FUNCTION:
381 desc = "invalid function";
382 break;
383 case MPI2_IOCSTATUS_BUSY:
384 desc = "busy";
385 break;
386 case MPI2_IOCSTATUS_INVALID_SGL:
387 desc = "invalid sgl";
388 break;
389 case MPI2_IOCSTATUS_INTERNAL_ERROR:
390 desc = "internal error";
391 break;
392 case MPI2_IOCSTATUS_INVALID_VPID:
393 desc = "invalid vpid";
394 break;
395 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
396 desc = "insufficient resources";
397 break;
398 case MPI2_IOCSTATUS_INVALID_FIELD:
399 desc = "invalid field";
400 break;
401 case MPI2_IOCSTATUS_INVALID_STATE:
402 desc = "invalid state";
403 break;
404 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
405 desc = "op state not supported";
406 break;
408 /****************************************************************************
409 * Config IOCStatus values
410 ****************************************************************************/
412 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
413 desc = "config invalid action";
414 break;
415 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
416 desc = "config invalid type";
417 break;
418 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
419 desc = "config invalid page";
420 break;
421 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
422 desc = "config invalid data";
423 break;
424 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
425 desc = "config no defaults";
426 break;
427 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
428 desc = "config cant commit";
429 break;
431 /****************************************************************************
432 * SCSI IO Reply
433 ****************************************************************************/
435 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
436 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
437 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
438 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
439 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
440 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
441 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
442 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
443 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
444 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
445 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
446 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
447 break;
449 /****************************************************************************
450 * For use by SCSI Initiator and SCSI Target end-to-end data protection
451 ****************************************************************************/
453 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
454 desc = "eedp guard error";
455 break;
456 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
457 desc = "eedp ref tag error";
458 break;
459 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
460 desc = "eedp app tag error";
461 break;
463 /****************************************************************************
464 * SCSI Target values
465 ****************************************************************************/
467 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
468 desc = "target invalid io index";
469 break;
470 case MPI2_IOCSTATUS_TARGET_ABORTED:
471 desc = "target aborted";
472 break;
473 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
474 desc = "target no conn retryable";
475 break;
476 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
477 desc = "target no connection";
478 break;
479 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
480 desc = "target xfer count mismatch";
481 break;
482 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
483 desc = "target data offset error";
484 break;
485 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
486 desc = "target too much write data";
487 break;
488 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
489 desc = "target iu too short";
490 break;
491 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
492 desc = "target ack nak timeout";
493 break;
494 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
495 desc = "target nak received";
496 break;
498 /****************************************************************************
499 * Serial Attached SCSI values
500 ****************************************************************************/
502 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
503 desc = "smp request failed";
504 break;
505 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
506 desc = "smp data overrun";
507 break;
509 /****************************************************************************
510 * Diagnostic Buffer Post / Diagnostic Release values
511 ****************************************************************************/
513 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
514 desc = "diagnostic released";
515 break;
516 default:
517 break;
520 if (!desc)
521 return;
523 switch (request_hdr->Function) {
524 case MPI2_FUNCTION_CONFIG:
525 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
526 func_str = "config_page";
527 break;
528 case MPI2_FUNCTION_SCSI_TASK_MGMT:
529 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
530 func_str = "task_mgmt";
531 break;
532 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
533 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
534 func_str = "sas_iounit_ctl";
535 break;
536 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
537 frame_sz = sizeof(Mpi2SepRequest_t);
538 func_str = "enclosure";
539 break;
540 case MPI2_FUNCTION_IOC_INIT:
541 frame_sz = sizeof(Mpi2IOCInitRequest_t);
542 func_str = "ioc_init";
543 break;
544 case MPI2_FUNCTION_PORT_ENABLE:
545 frame_sz = sizeof(Mpi2PortEnableRequest_t);
546 func_str = "port_enable";
547 break;
548 case MPI2_FUNCTION_SMP_PASSTHROUGH:
549 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
550 func_str = "smp_passthru";
551 break;
552 default:
553 frame_sz = 32;
554 func_str = "unknown";
555 break;
558 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
559 ioc->name, desc, ioc_status, request_hdr, func_str);
561 _debug_dump_mf(request_hdr, frame_sz/4);
565 * _base_display_event_data - verbose translation of firmware asyn events
566 * @ioc: per adapter object
567 * @mpi_reply: reply mf payload returned from firmware
569 * Return nothing.
571 static void
572 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
573 Mpi2EventNotificationReply_t *mpi_reply)
575 char *desc = NULL;
576 u16 event;
578 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
579 return;
581 event = le16_to_cpu(mpi_reply->Event);
583 switch (event) {
584 case MPI2_EVENT_LOG_DATA:
585 desc = "Log Data";
586 break;
587 case MPI2_EVENT_STATE_CHANGE:
588 desc = "Status Change";
589 break;
590 case MPI2_EVENT_HARD_RESET_RECEIVED:
591 desc = "Hard Reset Received";
592 break;
593 case MPI2_EVENT_EVENT_CHANGE:
594 desc = "Event Change";
595 break;
596 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
597 desc = "Device Status Change";
598 break;
599 case MPI2_EVENT_IR_OPERATION_STATUS:
600 if (!ioc->hide_ir_msg)
601 desc = "IR Operation Status";
602 break;
603 case MPI2_EVENT_SAS_DISCOVERY:
605 Mpi2EventDataSasDiscovery_t *event_data =
606 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
607 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
608 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
609 "start" : "stop");
610 if (event_data->DiscoveryStatus)
611 pr_info("discovery_status(0x%08x)",
612 le32_to_cpu(event_data->DiscoveryStatus));
613 pr_info("\n");
614 return;
616 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
617 desc = "SAS Broadcast Primitive";
618 break;
619 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
620 desc = "SAS Init Device Status Change";
621 break;
622 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
623 desc = "SAS Init Table Overflow";
624 break;
625 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
626 desc = "SAS Topology Change List";
627 break;
628 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
629 desc = "SAS Enclosure Device Status Change";
630 break;
631 case MPI2_EVENT_IR_VOLUME:
632 if (!ioc->hide_ir_msg)
633 desc = "IR Volume";
634 break;
635 case MPI2_EVENT_IR_PHYSICAL_DISK:
636 if (!ioc->hide_ir_msg)
637 desc = "IR Physical Disk";
638 break;
639 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
640 if (!ioc->hide_ir_msg)
641 desc = "IR Configuration Change List";
642 break;
643 case MPI2_EVENT_LOG_ENTRY_ADDED:
644 if (!ioc->hide_ir_msg)
645 desc = "Log Entry Added";
646 break;
647 case MPI2_EVENT_TEMP_THRESHOLD:
648 desc = "Temperature Threshold";
649 break;
652 if (!desc)
653 return;
655 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
659 * _base_sas_log_info - verbose translation of firmware log info
660 * @ioc: per adapter object
661 * @log_info: log info
663 * Return nothing.
665 static void
666 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
668 union loginfo_type {
669 u32 loginfo;
670 struct {
671 u32 subcode:16;
672 u32 code:8;
673 u32 originator:4;
674 u32 bus_type:4;
675 } dw;
677 union loginfo_type sas_loginfo;
678 char *originator_str = NULL;
680 sas_loginfo.loginfo = log_info;
681 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
682 return;
684 /* each nexus loss loginfo */
685 if (log_info == 0x31170000)
686 return;
688 /* eat the loginfos associated with task aborts */
689 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
690 0x31140000 || log_info == 0x31130000))
691 return;
693 switch (sas_loginfo.dw.originator) {
694 case 0:
695 originator_str = "IOP";
696 break;
697 case 1:
698 originator_str = "PL";
699 break;
700 case 2:
701 if (!ioc->hide_ir_msg)
702 originator_str = "IR";
703 else
704 originator_str = "WarpDrive";
705 break;
708 pr_warn(MPT3SAS_FMT
709 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
710 ioc->name, log_info,
711 originator_str, sas_loginfo.dw.code,
712 sas_loginfo.dw.subcode);
716 * _base_display_reply_info -
717 * @ioc: per adapter object
718 * @smid: system request message index
719 * @msix_index: MSIX table index supplied by the OS
720 * @reply: reply message frame(lower 32bit addr)
722 * Return nothing.
724 static void
725 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
726 u32 reply)
728 MPI2DefaultReply_t *mpi_reply;
729 u16 ioc_status;
730 u32 loginfo = 0;
732 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
733 if (unlikely(!mpi_reply)) {
734 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
735 ioc->name, __FILE__, __LINE__, __func__);
736 return;
738 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
740 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
741 (ioc->logging_level & MPT_DEBUG_REPLY)) {
742 _base_sas_ioc_info(ioc , mpi_reply,
743 mpt3sas_base_get_msg_frame(ioc, smid));
746 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
747 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
748 _base_sas_log_info(ioc, loginfo);
751 if (ioc_status || loginfo) {
752 ioc_status &= MPI2_IOCSTATUS_MASK;
753 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
758 * mpt3sas_base_done - base internal command completion routine
759 * @ioc: per adapter object
760 * @smid: system request message index
761 * @msix_index: MSIX table index supplied by the OS
762 * @reply: reply message frame(lower 32bit addr)
764 * Return 1 meaning mf should be freed from _base_interrupt
765 * 0 means the mf is freed from this function.
768 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
769 u32 reply)
771 MPI2DefaultReply_t *mpi_reply;
773 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
774 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
775 return 1;
777 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
778 return 1;
780 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
781 if (mpi_reply) {
782 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
783 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
785 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
787 complete(&ioc->base_cmds.done);
788 return 1;
792 * _base_async_event - main callback handler for firmware asyn events
793 * @ioc: per adapter object
794 * @msix_index: MSIX table index supplied by the OS
795 * @reply: reply message frame(lower 32bit addr)
797 * Return 1 meaning mf should be freed from _base_interrupt
798 * 0 means the mf is freed from this function.
800 static u8
801 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
803 Mpi2EventNotificationReply_t *mpi_reply;
804 Mpi2EventAckRequest_t *ack_request;
805 u16 smid;
807 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
808 if (!mpi_reply)
809 return 1;
810 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
811 return 1;
813 _base_display_event_data(ioc, mpi_reply);
815 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
816 goto out;
817 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
818 if (!smid) {
819 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
820 ioc->name, __func__);
821 goto out;
824 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
825 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
826 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
827 ack_request->Event = mpi_reply->Event;
828 ack_request->EventContext = mpi_reply->EventContext;
829 ack_request->VF_ID = 0; /* TODO */
830 ack_request->VP_ID = 0;
831 mpt3sas_base_put_smid_default(ioc, smid);
833 out:
835 /* scsih callback handler */
836 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
838 /* ctl callback handler */
839 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
841 return 1;
845 * _base_get_cb_idx - obtain the callback index
846 * @ioc: per adapter object
847 * @smid: system request message index
849 * Return callback index.
851 static u8
852 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
854 int i;
855 u8 cb_idx;
857 if (smid < ioc->hi_priority_smid) {
858 i = smid - 1;
859 cb_idx = ioc->scsi_lookup[i].cb_idx;
860 } else if (smid < ioc->internal_smid) {
861 i = smid - ioc->hi_priority_smid;
862 cb_idx = ioc->hpr_lookup[i].cb_idx;
863 } else if (smid <= ioc->hba_queue_depth) {
864 i = smid - ioc->internal_smid;
865 cb_idx = ioc->internal_lookup[i].cb_idx;
866 } else
867 cb_idx = 0xFF;
868 return cb_idx;
872 * _base_mask_interrupts - disable interrupts
873 * @ioc: per adapter object
875 * Disabling ResetIRQ, Reply and Doorbell Interrupts
877 * Return nothing.
879 static void
880 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
882 u32 him_register;
884 ioc->mask_interrupts = 1;
885 him_register = readl(&ioc->chip->HostInterruptMask);
886 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
887 writel(him_register, &ioc->chip->HostInterruptMask);
888 readl(&ioc->chip->HostInterruptMask);
892 * _base_unmask_interrupts - enable interrupts
893 * @ioc: per adapter object
895 * Enabling only Reply Interrupts
897 * Return nothing.
899 static void
900 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 u32 him_register;
904 him_register = readl(&ioc->chip->HostInterruptMask);
905 him_register &= ~MPI2_HIM_RIM;
906 writel(him_register, &ioc->chip->HostInterruptMask);
907 ioc->mask_interrupts = 0;
910 union reply_descriptor {
911 u64 word;
912 struct {
913 u32 low;
914 u32 high;
915 } u;
919 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
920 * @irq: irq number (not used)
921 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
922 * @r: pt_regs pointer (not used)
924 * Return IRQ_HANDLE if processed, else IRQ_NONE.
926 static irqreturn_t
927 _base_interrupt(int irq, void *bus_id)
929 struct adapter_reply_queue *reply_q = bus_id;
930 union reply_descriptor rd;
931 u32 completed_cmds;
932 u8 request_desript_type;
933 u16 smid;
934 u8 cb_idx;
935 u32 reply;
936 u8 msix_index = reply_q->msix_index;
937 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
938 Mpi2ReplyDescriptorsUnion_t *rpf;
939 u8 rc;
941 if (ioc->mask_interrupts)
942 return IRQ_NONE;
944 if (!atomic_add_unless(&reply_q->busy, 1, 1))
945 return IRQ_NONE;
947 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
948 request_desript_type = rpf->Default.ReplyFlags
949 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
950 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
951 atomic_dec(&reply_q->busy);
952 return IRQ_NONE;
955 completed_cmds = 0;
956 cb_idx = 0xFF;
957 do {
958 rd.word = le64_to_cpu(rpf->Words);
959 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
960 goto out;
961 reply = 0;
962 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
963 if (request_desript_type ==
964 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
965 request_desript_type ==
966 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
967 cb_idx = _base_get_cb_idx(ioc, smid);
968 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
969 (likely(mpt_callbacks[cb_idx] != NULL))) {
970 rc = mpt_callbacks[cb_idx](ioc, smid,
971 msix_index, 0);
972 if (rc)
973 mpt3sas_base_free_smid(ioc, smid);
975 } else if (request_desript_type ==
976 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
977 reply = le32_to_cpu(
978 rpf->AddressReply.ReplyFrameAddress);
979 if (reply > ioc->reply_dma_max_address ||
980 reply < ioc->reply_dma_min_address)
981 reply = 0;
982 if (smid) {
983 cb_idx = _base_get_cb_idx(ioc, smid);
984 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
985 (likely(mpt_callbacks[cb_idx] != NULL))) {
986 rc = mpt_callbacks[cb_idx](ioc, smid,
987 msix_index, reply);
988 if (reply)
989 _base_display_reply_info(ioc,
990 smid, msix_index, reply);
991 if (rc)
992 mpt3sas_base_free_smid(ioc,
993 smid);
995 } else {
996 _base_async_event(ioc, msix_index, reply);
999 /* reply free queue handling */
1000 if (reply) {
1001 ioc->reply_free_host_index =
1002 (ioc->reply_free_host_index ==
1003 (ioc->reply_free_queue_depth - 1)) ?
1004 0 : ioc->reply_free_host_index + 1;
1005 ioc->reply_free[ioc->reply_free_host_index] =
1006 cpu_to_le32(reply);
1007 wmb();
1008 writel(ioc->reply_free_host_index,
1009 &ioc->chip->ReplyFreeHostIndex);
1013 rpf->Words = cpu_to_le64(ULLONG_MAX);
1014 reply_q->reply_post_host_index =
1015 (reply_q->reply_post_host_index ==
1016 (ioc->reply_post_queue_depth - 1)) ? 0 :
1017 reply_q->reply_post_host_index + 1;
1018 request_desript_type =
1019 reply_q->reply_post_free[reply_q->reply_post_host_index].
1020 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1021 completed_cmds++;
1022 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1023 goto out;
1024 if (!reply_q->reply_post_host_index)
1025 rpf = reply_q->reply_post_free;
1026 else
1027 rpf++;
1028 } while (1);
1030 out:
1032 if (!completed_cmds) {
1033 atomic_dec(&reply_q->busy);
1034 return IRQ_NONE;
1037 wmb();
1038 if (ioc->is_warpdrive) {
1039 writel(reply_q->reply_post_host_index,
1040 ioc->reply_post_host_index[msix_index]);
1041 atomic_dec(&reply_q->busy);
1042 return IRQ_HANDLED;
1045 /* Update Reply Post Host Index.
1046 * For those HBA's which support combined reply queue feature
1047 * 1. Get the correct Supplemental Reply Post Host Index Register.
1048 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1049 * Index Register address bank i.e replyPostRegisterIndex[],
1050 * 2. Then update this register with new reply host index value
1051 * in ReplyPostIndex field and the MSIxIndex field with
1052 * msix_index value reduced to a value between 0 and 7,
1053 * using a modulo 8 operation. Since each Supplemental Reply Post
1054 * Host Index Register supports 8 MSI-X vectors.
1056 * For other HBA's just update the Reply Post Host Index register with
1057 * new reply host index value in ReplyPostIndex Field and msix_index
1058 * value in MSIxIndex field.
1060 if (ioc->msix96_vector)
1061 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1062 MPI2_RPHI_MSIX_INDEX_SHIFT),
1063 ioc->replyPostRegisterIndex[msix_index/8]);
1064 else
1065 writel(reply_q->reply_post_host_index | (msix_index <<
1066 MPI2_RPHI_MSIX_INDEX_SHIFT),
1067 &ioc->chip->ReplyPostHostIndex);
1068 atomic_dec(&reply_q->busy);
1069 return IRQ_HANDLED;
1073 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1074 * @ioc: per adapter object
1077 static inline int
1078 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1080 return (ioc->facts.IOCCapabilities &
1081 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1085 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1086 * @ioc: per adapter object
1087 * Context: ISR conext
1089 * Called when a Task Management request has completed. We want
1090 * to flush the other reply queues so all the outstanding IO has been
1091 * completed back to OS before we process the TM completetion.
1093 * Return nothing.
1095 void
1096 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1098 struct adapter_reply_queue *reply_q;
1100 /* If MSIX capability is turned off
1101 * then multi-queues are not enabled
1103 if (!_base_is_controller_msix_enabled(ioc))
1104 return;
1106 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1107 if (ioc->shost_recovery)
1108 return;
1109 /* TMs are on msix_index == 0 */
1110 if (reply_q->msix_index == 0)
1111 continue;
1112 _base_interrupt(reply_q->vector, (void *)reply_q);
1117 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1118 * @cb_idx: callback index
1120 * Return nothing.
1122 void
1123 mpt3sas_base_release_callback_handler(u8 cb_idx)
1125 mpt_callbacks[cb_idx] = NULL;
1129 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1130 * @cb_func: callback function
1132 * Returns cb_func.
1135 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1137 u8 cb_idx;
1139 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1140 if (mpt_callbacks[cb_idx] == NULL)
1141 break;
1143 mpt_callbacks[cb_idx] = cb_func;
1144 return cb_idx;
1148 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1150 * Return nothing.
1152 void
1153 mpt3sas_base_initialize_callback_handler(void)
1155 u8 cb_idx;
1157 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1158 mpt3sas_base_release_callback_handler(cb_idx);
1163 * _base_build_zero_len_sge - build zero length sg entry
1164 * @ioc: per adapter object
1165 * @paddr: virtual address for SGE
1167 * Create a zero length scatter gather entry to insure the IOCs hardware has
1168 * something to use if the target device goes brain dead and tries
1169 * to send data even when none is asked for.
1171 * Return nothing.
1173 static void
1174 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1176 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1177 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1178 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1179 MPI2_SGE_FLAGS_SHIFT);
1180 ioc->base_add_sg_single(paddr, flags_length, -1);
1184 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1185 * @paddr: virtual address for SGE
1186 * @flags_length: SGE flags and data transfer length
1187 * @dma_addr: Physical address
1189 * Return nothing.
1191 static void
1192 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1194 Mpi2SGESimple32_t *sgel = paddr;
1196 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1197 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1198 sgel->FlagsLength = cpu_to_le32(flags_length);
1199 sgel->Address = cpu_to_le32(dma_addr);
1204 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1205 * @paddr: virtual address for SGE
1206 * @flags_length: SGE flags and data transfer length
1207 * @dma_addr: Physical address
1209 * Return nothing.
1211 static void
1212 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 Mpi2SGESimple64_t *sgel = paddr;
1216 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1217 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 sgel->FlagsLength = cpu_to_le32(flags_length);
1219 sgel->Address = cpu_to_le64(dma_addr);
1223 * _base_get_chain_buffer_tracker - obtain chain tracker
1224 * @ioc: per adapter object
1225 * @smid: smid associated to an IO request
1227 * Returns chain tracker(from ioc->free_chain_list)
1229 static struct chain_tracker *
1230 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1232 struct chain_tracker *chain_req;
1233 unsigned long flags;
1235 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1236 if (list_empty(&ioc->free_chain_list)) {
1237 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1238 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1239 "chain buffers not available\n", ioc->name));
1240 return NULL;
1242 chain_req = list_entry(ioc->free_chain_list.next,
1243 struct chain_tracker, tracker_list);
1244 list_del_init(&chain_req->tracker_list);
1245 list_add_tail(&chain_req->tracker_list,
1246 &ioc->scsi_lookup[smid - 1].chain_list);
1247 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1248 return chain_req;
1253 * _base_build_sg - build generic sg
1254 * @ioc: per adapter object
1255 * @psge: virtual address for SGE
1256 * @data_out_dma: physical address for WRITES
1257 * @data_out_sz: data xfer size for WRITES
1258 * @data_in_dma: physical address for READS
1259 * @data_in_sz: data xfer size for READS
1261 * Return nothing.
1263 static void
1264 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1265 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1266 size_t data_in_sz)
1268 u32 sgl_flags;
1270 if (!data_out_sz && !data_in_sz) {
1271 _base_build_zero_len_sge(ioc, psge);
1272 return;
1275 if (data_out_sz && data_in_sz) {
1276 /* WRITE sgel first */
1277 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1278 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1279 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1280 ioc->base_add_sg_single(psge, sgl_flags |
1281 data_out_sz, data_out_dma);
1283 /* incr sgel */
1284 psge += ioc->sge_size;
1286 /* READ sgel last */
1287 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1288 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1289 MPI2_SGE_FLAGS_END_OF_LIST);
1290 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1291 ioc->base_add_sg_single(psge, sgl_flags |
1292 data_in_sz, data_in_dma);
1293 } else if (data_out_sz) /* WRITE */ {
1294 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1295 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1296 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 ioc->base_add_sg_single(psge, sgl_flags |
1299 data_out_sz, data_out_dma);
1300 } else if (data_in_sz) /* READ */ {
1301 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1302 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1303 MPI2_SGE_FLAGS_END_OF_LIST);
1304 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1305 ioc->base_add_sg_single(psge, sgl_flags |
1306 data_in_sz, data_in_dma);
1310 /* IEEE format sgls */
1313 * _base_add_sg_single_ieee - add sg element for IEEE format
1314 * @paddr: virtual address for SGE
1315 * @flags: SGE flags
1316 * @chain_offset: number of 128 byte elements from start of segment
1317 * @length: data transfer length
1318 * @dma_addr: Physical address
1320 * Return nothing.
1322 static void
1323 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1324 dma_addr_t dma_addr)
1326 Mpi25IeeeSgeChain64_t *sgel = paddr;
1328 sgel->Flags = flags;
1329 sgel->NextChainOffset = chain_offset;
1330 sgel->Length = cpu_to_le32(length);
1331 sgel->Address = cpu_to_le64(dma_addr);
1335 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1336 * @ioc: per adapter object
1337 * @paddr: virtual address for SGE
1339 * Create a zero length scatter gather entry to insure the IOCs hardware has
1340 * something to use if the target device goes brain dead and tries
1341 * to send data even when none is asked for.
1343 * Return nothing.
1345 static void
1346 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1348 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1349 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1350 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1351 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1355 * _base_build_sg_scmd - main sg creation routine
1356 * @ioc: per adapter object
1357 * @scmd: scsi command
1358 * @smid: system request message index
1359 * Context: none.
1361 * The main routine that builds scatter gather table from a given
1362 * scsi request sent via the .queuecommand main handler.
1364 * Returns 0 success, anything else error
1366 static int
1367 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1368 struct scsi_cmnd *scmd, u16 smid)
1370 Mpi2SCSIIORequest_t *mpi_request;
1371 dma_addr_t chain_dma;
1372 struct scatterlist *sg_scmd;
1373 void *sg_local, *chain;
1374 u32 chain_offset;
1375 u32 chain_length;
1376 u32 chain_flags;
1377 int sges_left;
1378 u32 sges_in_segment;
1379 u32 sgl_flags;
1380 u32 sgl_flags_last_element;
1381 u32 sgl_flags_end_buffer;
1382 struct chain_tracker *chain_req;
1384 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1386 /* init scatter gather flags */
1387 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1388 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1389 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1390 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1391 << MPI2_SGE_FLAGS_SHIFT;
1392 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1393 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1394 << MPI2_SGE_FLAGS_SHIFT;
1395 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1397 sg_scmd = scsi_sglist(scmd);
1398 sges_left = scsi_dma_map(scmd);
1399 if (sges_left < 0) {
1400 sdev_printk(KERN_ERR, scmd->device,
1401 "pci_map_sg failed: request for %d bytes!\n",
1402 scsi_bufflen(scmd));
1403 return -ENOMEM;
1406 sg_local = &mpi_request->SGL;
1407 sges_in_segment = ioc->max_sges_in_main_message;
1408 if (sges_left <= sges_in_segment)
1409 goto fill_in_last_segment;
1411 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1412 (sges_in_segment * ioc->sge_size))/4;
1414 /* fill in main message segment when there is a chain following */
1415 while (sges_in_segment) {
1416 if (sges_in_segment == 1)
1417 ioc->base_add_sg_single(sg_local,
1418 sgl_flags_last_element | sg_dma_len(sg_scmd),
1419 sg_dma_address(sg_scmd));
1420 else
1421 ioc->base_add_sg_single(sg_local, sgl_flags |
1422 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1423 sg_scmd = sg_next(sg_scmd);
1424 sg_local += ioc->sge_size;
1425 sges_left--;
1426 sges_in_segment--;
1429 /* initializing the chain flags and pointers */
1430 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1431 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1432 if (!chain_req)
1433 return -1;
1434 chain = chain_req->chain_buffer;
1435 chain_dma = chain_req->chain_buffer_dma;
1436 do {
1437 sges_in_segment = (sges_left <=
1438 ioc->max_sges_in_chain_message) ? sges_left :
1439 ioc->max_sges_in_chain_message;
1440 chain_offset = (sges_left == sges_in_segment) ?
1441 0 : (sges_in_segment * ioc->sge_size)/4;
1442 chain_length = sges_in_segment * ioc->sge_size;
1443 if (chain_offset) {
1444 chain_offset = chain_offset <<
1445 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1446 chain_length += ioc->sge_size;
1448 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1449 chain_length, chain_dma);
1450 sg_local = chain;
1451 if (!chain_offset)
1452 goto fill_in_last_segment;
1454 /* fill in chain segments */
1455 while (sges_in_segment) {
1456 if (sges_in_segment == 1)
1457 ioc->base_add_sg_single(sg_local,
1458 sgl_flags_last_element |
1459 sg_dma_len(sg_scmd),
1460 sg_dma_address(sg_scmd));
1461 else
1462 ioc->base_add_sg_single(sg_local, sgl_flags |
1463 sg_dma_len(sg_scmd),
1464 sg_dma_address(sg_scmd));
1465 sg_scmd = sg_next(sg_scmd);
1466 sg_local += ioc->sge_size;
1467 sges_left--;
1468 sges_in_segment--;
1471 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 if (!chain_req)
1473 return -1;
1474 chain = chain_req->chain_buffer;
1475 chain_dma = chain_req->chain_buffer_dma;
1476 } while (1);
1479 fill_in_last_segment:
1481 /* fill the last segment */
1482 while (sges_left) {
1483 if (sges_left == 1)
1484 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1485 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1486 else
1487 ioc->base_add_sg_single(sg_local, sgl_flags |
1488 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1489 sg_scmd = sg_next(sg_scmd);
1490 sg_local += ioc->sge_size;
1491 sges_left--;
1494 return 0;
1498 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1499 * @ioc: per adapter object
1500 * @scmd: scsi command
1501 * @smid: system request message index
1502 * Context: none.
1504 * The main routine that builds scatter gather table from a given
1505 * scsi request sent via the .queuecommand main handler.
1507 * Returns 0 success, anything else error
1509 static int
1510 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1511 struct scsi_cmnd *scmd, u16 smid)
1513 Mpi2SCSIIORequest_t *mpi_request;
1514 dma_addr_t chain_dma;
1515 struct scatterlist *sg_scmd;
1516 void *sg_local, *chain;
1517 u32 chain_offset;
1518 u32 chain_length;
1519 int sges_left;
1520 u32 sges_in_segment;
1521 u8 simple_sgl_flags;
1522 u8 simple_sgl_flags_last;
1523 u8 chain_sgl_flags;
1524 struct chain_tracker *chain_req;
1526 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1528 /* init scatter gather flags */
1529 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1530 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1531 simple_sgl_flags_last = simple_sgl_flags |
1532 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1533 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1534 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1536 sg_scmd = scsi_sglist(scmd);
1537 sges_left = scsi_dma_map(scmd);
1538 if (sges_left < 0) {
1539 sdev_printk(KERN_ERR, scmd->device,
1540 "pci_map_sg failed: request for %d bytes!\n",
1541 scsi_bufflen(scmd));
1542 return -ENOMEM;
1545 sg_local = &mpi_request->SGL;
1546 sges_in_segment = (ioc->request_sz -
1547 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1548 if (sges_left <= sges_in_segment)
1549 goto fill_in_last_segment;
1551 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1552 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1554 /* fill in main message segment when there is a chain following */
1555 while (sges_in_segment > 1) {
1556 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1557 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1558 sg_scmd = sg_next(sg_scmd);
1559 sg_local += ioc->sge_size_ieee;
1560 sges_left--;
1561 sges_in_segment--;
1564 /* initializing the pointers */
1565 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1566 if (!chain_req)
1567 return -1;
1568 chain = chain_req->chain_buffer;
1569 chain_dma = chain_req->chain_buffer_dma;
1570 do {
1571 sges_in_segment = (sges_left <=
1572 ioc->max_sges_in_chain_message) ? sges_left :
1573 ioc->max_sges_in_chain_message;
1574 chain_offset = (sges_left == sges_in_segment) ?
1575 0 : sges_in_segment;
1576 chain_length = sges_in_segment * ioc->sge_size_ieee;
1577 if (chain_offset)
1578 chain_length += ioc->sge_size_ieee;
1579 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1580 chain_offset, chain_length, chain_dma);
1582 sg_local = chain;
1583 if (!chain_offset)
1584 goto fill_in_last_segment;
1586 /* fill in chain segments */
1587 while (sges_in_segment) {
1588 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1589 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1590 sg_scmd = sg_next(sg_scmd);
1591 sg_local += ioc->sge_size_ieee;
1592 sges_left--;
1593 sges_in_segment--;
1596 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1597 if (!chain_req)
1598 return -1;
1599 chain = chain_req->chain_buffer;
1600 chain_dma = chain_req->chain_buffer_dma;
1601 } while (1);
1604 fill_in_last_segment:
1606 /* fill the last segment */
1607 while (sges_left > 0) {
1608 if (sges_left == 1)
1609 _base_add_sg_single_ieee(sg_local,
1610 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1611 sg_dma_address(sg_scmd));
1612 else
1613 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1614 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1615 sg_scmd = sg_next(sg_scmd);
1616 sg_local += ioc->sge_size_ieee;
1617 sges_left--;
1620 return 0;
1624 * _base_build_sg_ieee - build generic sg for IEEE format
1625 * @ioc: per adapter object
1626 * @psge: virtual address for SGE
1627 * @data_out_dma: physical address for WRITES
1628 * @data_out_sz: data xfer size for WRITES
1629 * @data_in_dma: physical address for READS
1630 * @data_in_sz: data xfer size for READS
1632 * Return nothing.
1634 static void
1635 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1636 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1637 size_t data_in_sz)
1639 u8 sgl_flags;
1641 if (!data_out_sz && !data_in_sz) {
1642 _base_build_zero_len_sge_ieee(ioc, psge);
1643 return;
1646 if (data_out_sz && data_in_sz) {
1647 /* WRITE sgel first */
1648 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1649 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1650 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1651 data_out_dma);
1653 /* incr sgel */
1654 psge += ioc->sge_size_ieee;
1656 /* READ sgel last */
1657 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1658 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1659 data_in_dma);
1660 } else if (data_out_sz) /* WRITE */ {
1661 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1662 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1663 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1664 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1665 data_out_dma);
1666 } else if (data_in_sz) /* READ */ {
1667 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1669 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1670 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1671 data_in_dma);
1675 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1678 * _base_config_dma_addressing - set dma addressing
1679 * @ioc: per adapter object
1680 * @pdev: PCI device struct
1682 * Returns 0 for success, non-zero for failure.
1684 static int
1685 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1687 struct sysinfo s;
1688 u64 consistent_dma_mask;
1690 if (ioc->dma_mask)
1691 consistent_dma_mask = DMA_BIT_MASK(64);
1692 else
1693 consistent_dma_mask = DMA_BIT_MASK(32);
1695 if (sizeof(dma_addr_t) > 4) {
1696 const uint64_t required_mask =
1697 dma_get_required_mask(&pdev->dev);
1698 if ((required_mask > DMA_BIT_MASK(32)) &&
1699 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1700 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1701 ioc->base_add_sg_single = &_base_add_sg_single_64;
1702 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1703 ioc->dma_mask = 64;
1704 goto out;
1708 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1709 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1710 ioc->base_add_sg_single = &_base_add_sg_single_32;
1711 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1712 ioc->dma_mask = 32;
1713 } else
1714 return -ENODEV;
1716 out:
1717 si_meminfo(&s);
1718 pr_info(MPT3SAS_FMT
1719 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1720 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1722 return 0;
1725 static int
1726 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1727 struct pci_dev *pdev)
1729 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1730 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1731 return -ENODEV;
1733 return 0;
1737 * _base_check_enable_msix - checks MSIX capabable.
1738 * @ioc: per adapter object
1740 * Check to see if card is capable of MSIX, and set number
1741 * of available msix vectors
1743 static int
1744 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1746 int base;
1747 u16 message_control;
1749 /* Check whether controller SAS2008 B0 controller,
1750 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1752 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1753 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1754 return -EINVAL;
1757 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1758 if (!base) {
1759 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1760 ioc->name));
1761 return -EINVAL;
1764 /* get msix vector count */
1765 /* NUMA_IO not supported for older controllers */
1766 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1767 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1768 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1769 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1770 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1771 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1772 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1773 ioc->msix_vector_count = 1;
1774 else {
1775 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1776 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1778 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1779 "msix is supported, vector_count(%d)\n",
1780 ioc->name, ioc->msix_vector_count));
1781 return 0;
1785 * _base_free_irq - free irq
1786 * @ioc: per adapter object
1788 * Freeing respective reply_queue from the list.
1790 static void
1791 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1793 struct adapter_reply_queue *reply_q, *next;
1795 if (list_empty(&ioc->reply_queue_list))
1796 return;
1798 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1799 list_del(&reply_q->list);
1800 irq_set_affinity_hint(reply_q->vector, NULL);
1801 free_cpumask_var(reply_q->affinity_hint);
1802 synchronize_irq(reply_q->vector);
1803 free_irq(reply_q->vector, reply_q);
1804 kfree(reply_q);
1809 * _base_request_irq - request irq
1810 * @ioc: per adapter object
1811 * @index: msix index into vector table
1812 * @vector: irq vector
1814 * Inserting respective reply_queue into the list.
1816 static int
1817 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1819 struct adapter_reply_queue *reply_q;
1820 int r;
1822 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1823 if (!reply_q) {
1824 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1825 ioc->name, (int)sizeof(struct adapter_reply_queue));
1826 return -ENOMEM;
1828 reply_q->ioc = ioc;
1829 reply_q->msix_index = index;
1830 reply_q->vector = vector;
1832 if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1833 return -ENOMEM;
1834 cpumask_clear(reply_q->affinity_hint);
1836 atomic_set(&reply_q->busy, 0);
1837 if (ioc->msix_enable)
1838 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1839 ioc->driver_name, ioc->id, index);
1840 else
1841 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1842 ioc->driver_name, ioc->id);
1843 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1844 reply_q);
1845 if (r) {
1846 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1847 reply_q->name, vector);
1848 kfree(reply_q);
1849 return -EBUSY;
1852 INIT_LIST_HEAD(&reply_q->list);
1853 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1854 return 0;
1858 * _base_assign_reply_queues - assigning msix index for each cpu
1859 * @ioc: per adapter object
1861 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1863 * It would nice if we could call irq_set_affinity, however it is not
1864 * an exported symbol
1866 static void
1867 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1869 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1870 struct adapter_reply_queue *reply_q;
1872 if (!_base_is_controller_msix_enabled(ioc))
1873 return;
1875 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1877 nr_cpus = num_online_cpus();
1878 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1879 ioc->facts.MaxMSIxVectors);
1880 if (!nr_msix)
1881 return;
1883 cpu = cpumask_first(cpu_online_mask);
1885 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1887 unsigned int i, group = nr_cpus / nr_msix;
1889 if (cpu >= nr_cpus)
1890 break;
1892 if (index < nr_cpus % nr_msix)
1893 group++;
1895 for (i = 0 ; i < group ; i++) {
1896 ioc->cpu_msix_table[cpu] = index;
1897 cpumask_or(reply_q->affinity_hint,
1898 reply_q->affinity_hint, get_cpu_mask(cpu));
1899 cpu = cpumask_next(cpu, cpu_online_mask);
1902 if (irq_set_affinity_hint(reply_q->vector,
1903 reply_q->affinity_hint))
1904 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1905 "error setting affinity hint for irq vector %d\n",
1906 ioc->name, reply_q->vector));
1907 index++;
1912 * _base_disable_msix - disables msix
1913 * @ioc: per adapter object
1916 static void
1917 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1919 if (!ioc->msix_enable)
1920 return;
1921 pci_disable_msix(ioc->pdev);
1922 ioc->msix_enable = 0;
1926 * _base_enable_msix - enables msix, failback to io_apic
1927 * @ioc: per adapter object
1930 static int
1931 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1933 struct msix_entry *entries, *a;
1934 int r;
1935 int i;
1936 u8 try_msix = 0;
1938 if (msix_disable == -1 || msix_disable == 0)
1939 try_msix = 1;
1941 if (!try_msix)
1942 goto try_ioapic;
1944 if (_base_check_enable_msix(ioc) != 0)
1945 goto try_ioapic;
1947 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1948 ioc->msix_vector_count);
1950 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1951 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1952 ioc->cpu_count, max_msix_vectors);
1954 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1955 max_msix_vectors = 8;
1957 if (max_msix_vectors > 0) {
1958 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1959 ioc->reply_queue_count);
1960 ioc->msix_vector_count = ioc->reply_queue_count;
1961 } else if (max_msix_vectors == 0)
1962 goto try_ioapic;
1964 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1965 GFP_KERNEL);
1966 if (!entries) {
1967 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1968 "kcalloc failed @ at %s:%d/%s() !!!\n",
1969 ioc->name, __FILE__, __LINE__, __func__));
1970 goto try_ioapic;
1973 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1974 a->entry = i;
1976 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1977 if (r) {
1978 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1979 "pci_enable_msix_exact failed (r=%d) !!!\n",
1980 ioc->name, r));
1981 kfree(entries);
1982 goto try_ioapic;
1985 ioc->msix_enable = 1;
1986 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1987 r = _base_request_irq(ioc, i, a->vector);
1988 if (r) {
1989 _base_free_irq(ioc);
1990 _base_disable_msix(ioc);
1991 kfree(entries);
1992 goto try_ioapic;
1996 kfree(entries);
1997 return 0;
1999 /* failback to io_apic interrupt routing */
2000 try_ioapic:
2002 ioc->reply_queue_count = 1;
2003 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2005 return r;
2009 * mpt3sas_base_unmap_resources - free controller resources
2010 * @ioc: per adapter object
2012 void
2013 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2015 struct pci_dev *pdev = ioc->pdev;
2017 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2018 ioc->name, __func__));
2020 _base_free_irq(ioc);
2021 _base_disable_msix(ioc);
2023 if (ioc->msix96_vector) {
2024 kfree(ioc->replyPostRegisterIndex);
2025 ioc->replyPostRegisterIndex = NULL;
2028 if (ioc->chip_phys) {
2029 iounmap(ioc->chip);
2030 ioc->chip_phys = 0;
2033 if (pci_is_enabled(pdev)) {
2034 pci_release_selected_regions(ioc->pdev, ioc->bars);
2035 pci_disable_pcie_error_reporting(pdev);
2036 pci_disable_device(pdev);
2041 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2042 * @ioc: per adapter object
2044 * Returns 0 for success, non-zero for failure.
2047 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2049 struct pci_dev *pdev = ioc->pdev;
2050 u32 memap_sz;
2051 u32 pio_sz;
2052 int i, r = 0;
2053 u64 pio_chip = 0;
2054 u64 chip_phys = 0;
2055 struct adapter_reply_queue *reply_q;
2057 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2058 ioc->name, __func__));
2060 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2061 if (pci_enable_device_mem(pdev)) {
2062 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2063 ioc->name);
2064 ioc->bars = 0;
2065 return -ENODEV;
2069 if (pci_request_selected_regions(pdev, ioc->bars,
2070 ioc->driver_name)) {
2071 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2072 ioc->name);
2073 ioc->bars = 0;
2074 r = -ENODEV;
2075 goto out_fail;
2078 /* AER (Advanced Error Reporting) hooks */
2079 pci_enable_pcie_error_reporting(pdev);
2081 pci_set_master(pdev);
2084 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2085 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2086 ioc->name, pci_name(pdev));
2087 r = -ENODEV;
2088 goto out_fail;
2091 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2092 (!memap_sz || !pio_sz); i++) {
2093 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2094 if (pio_sz)
2095 continue;
2096 pio_chip = (u64)pci_resource_start(pdev, i);
2097 pio_sz = pci_resource_len(pdev, i);
2098 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2099 if (memap_sz)
2100 continue;
2101 ioc->chip_phys = pci_resource_start(pdev, i);
2102 chip_phys = (u64)ioc->chip_phys;
2103 memap_sz = pci_resource_len(pdev, i);
2104 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2108 if (ioc->chip == NULL) {
2109 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2110 " or resource not found\n", ioc->name);
2111 r = -EINVAL;
2112 goto out_fail;
2115 _base_mask_interrupts(ioc);
2117 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2118 if (r)
2119 goto out_fail;
2121 if (!ioc->rdpq_array_enable_assigned) {
2122 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2123 ioc->rdpq_array_enable_assigned = 1;
2126 r = _base_enable_msix(ioc);
2127 if (r)
2128 goto out_fail;
2130 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2131 * revision HBAs and also only when reply queue count is greater than 8
2133 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2134 /* Determine the Supplemental Reply Post Host Index Registers
2135 * Addresse. Supplemental Reply Post Host Index Registers
2136 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2137 * each register is at offset bytes of
2138 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2140 ioc->replyPostRegisterIndex = kcalloc(
2141 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2142 sizeof(resource_size_t *), GFP_KERNEL);
2143 if (!ioc->replyPostRegisterIndex) {
2144 dfailprintk(ioc, printk(MPT3SAS_FMT
2145 "allocation for reply Post Register Index failed!!!\n",
2146 ioc->name));
2147 r = -ENOMEM;
2148 goto out_fail;
2151 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2152 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2153 ((u8 *)&ioc->chip->Doorbell +
2154 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2155 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2157 } else
2158 ioc->msix96_vector = 0;
2160 if (ioc->is_warpdrive) {
2161 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2162 &ioc->chip->ReplyPostHostIndex;
2164 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2165 ioc->reply_post_host_index[i] =
2166 (resource_size_t __iomem *)
2167 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2168 * 4)));
2171 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2172 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2173 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2174 "IO-APIC enabled"), reply_q->vector);
2176 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2177 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2178 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2179 ioc->name, (unsigned long long)pio_chip, pio_sz);
2181 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2182 pci_save_state(pdev);
2183 return 0;
2185 out_fail:
2186 mpt3sas_base_unmap_resources(ioc);
2187 return r;
2191 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2192 * @ioc: per adapter object
2193 * @smid: system request message index(smid zero is invalid)
2195 * Returns virt pointer to message frame.
2197 void *
2198 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2200 return (void *)(ioc->request + (smid * ioc->request_sz));
2204 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2205 * @ioc: per adapter object
2206 * @smid: system request message index
2208 * Returns virt pointer to sense buffer.
2210 void *
2211 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2213 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2217 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2218 * @ioc: per adapter object
2219 * @smid: system request message index
2221 * Returns phys pointer to the low 32bit address of the sense buffer.
2223 __le32
2224 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2226 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2227 SCSI_SENSE_BUFFERSIZE));
2231 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2232 * @ioc: per adapter object
2233 * @phys_addr: lower 32 physical addr of the reply
2235 * Converts 32bit lower physical addr into a virt address.
2237 void *
2238 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2240 if (!phys_addr)
2241 return NULL;
2242 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2245 static inline u8
2246 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2248 return ioc->cpu_msix_table[raw_smp_processor_id()];
2252 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2253 * @ioc: per adapter object
2254 * @cb_idx: callback index
2256 * Returns smid (zero is invalid)
2259 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2261 unsigned long flags;
2262 struct request_tracker *request;
2263 u16 smid;
2265 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2266 if (list_empty(&ioc->internal_free_list)) {
2267 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2268 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2269 ioc->name, __func__);
2270 return 0;
2273 request = list_entry(ioc->internal_free_list.next,
2274 struct request_tracker, tracker_list);
2275 request->cb_idx = cb_idx;
2276 smid = request->smid;
2277 list_del(&request->tracker_list);
2278 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2279 return smid;
2283 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2284 * @ioc: per adapter object
2285 * @cb_idx: callback index
2286 * @scmd: pointer to scsi command object
2288 * Returns smid (zero is invalid)
2291 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2292 struct scsi_cmnd *scmd)
2294 unsigned long flags;
2295 struct scsiio_tracker *request;
2296 u16 smid;
2298 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2299 if (list_empty(&ioc->free_list)) {
2300 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2301 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2302 ioc->name, __func__);
2303 return 0;
2306 request = list_entry(ioc->free_list.next,
2307 struct scsiio_tracker, tracker_list);
2308 request->scmd = scmd;
2309 request->cb_idx = cb_idx;
2310 smid = request->smid;
2311 request->msix_io = _base_get_msix_index(ioc);
2312 list_del(&request->tracker_list);
2313 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2314 return smid;
2318 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2319 * @ioc: per adapter object
2320 * @cb_idx: callback index
2322 * Returns smid (zero is invalid)
2325 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2327 unsigned long flags;
2328 struct request_tracker *request;
2329 u16 smid;
2331 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2332 if (list_empty(&ioc->hpr_free_list)) {
2333 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2334 return 0;
2337 request = list_entry(ioc->hpr_free_list.next,
2338 struct request_tracker, tracker_list);
2339 request->cb_idx = cb_idx;
2340 smid = request->smid;
2341 list_del(&request->tracker_list);
2342 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2343 return smid;
2347 * mpt3sas_base_free_smid - put smid back on free_list
2348 * @ioc: per adapter object
2349 * @smid: system request message index
2351 * Return nothing.
2353 void
2354 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2356 unsigned long flags;
2357 int i;
2358 struct chain_tracker *chain_req, *next;
2360 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2361 if (smid < ioc->hi_priority_smid) {
2362 /* scsiio queue */
2363 i = smid - 1;
2364 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2365 list_for_each_entry_safe(chain_req, next,
2366 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2367 list_del_init(&chain_req->tracker_list);
2368 list_add(&chain_req->tracker_list,
2369 &ioc->free_chain_list);
2372 ioc->scsi_lookup[i].cb_idx = 0xFF;
2373 ioc->scsi_lookup[i].scmd = NULL;
2374 ioc->scsi_lookup[i].direct_io = 0;
2375 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2376 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2379 * See _wait_for_commands_to_complete() call with regards
2380 * to this code.
2382 if (ioc->shost_recovery && ioc->pending_io_count) {
2383 if (ioc->pending_io_count == 1)
2384 wake_up(&ioc->reset_wq);
2385 ioc->pending_io_count--;
2387 return;
2388 } else if (smid < ioc->internal_smid) {
2389 /* hi-priority */
2390 i = smid - ioc->hi_priority_smid;
2391 ioc->hpr_lookup[i].cb_idx = 0xFF;
2392 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2393 } else if (smid <= ioc->hba_queue_depth) {
2394 /* internal queue */
2395 i = smid - ioc->internal_smid;
2396 ioc->internal_lookup[i].cb_idx = 0xFF;
2397 list_add(&ioc->internal_lookup[i].tracker_list,
2398 &ioc->internal_free_list);
2400 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2404 * _base_writeq - 64 bit write to MMIO
2405 * @ioc: per adapter object
2406 * @b: data payload
2407 * @addr: address in MMIO space
2408 * @writeq_lock: spin lock
2410 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2411 * care of 32 bit environment where its not quarenteed to send the entire word
2412 * in one transfer.
2414 #if defined(writeq) && defined(CONFIG_64BIT)
2415 static inline void
2416 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2418 writeq(cpu_to_le64(b), addr);
2420 #else
2421 static inline void
2422 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2424 unsigned long flags;
2425 __u64 data_out = cpu_to_le64(b);
2427 spin_lock_irqsave(writeq_lock, flags);
2428 writel((u32)(data_out), addr);
2429 writel((u32)(data_out >> 32), (addr + 4));
2430 spin_unlock_irqrestore(writeq_lock, flags);
2432 #endif
2435 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2436 * @ioc: per adapter object
2437 * @smid: system request message index
2438 * @handle: device handle
2440 * Return nothing.
2442 void
2443 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2445 Mpi2RequestDescriptorUnion_t descriptor;
2446 u64 *request = (u64 *)&descriptor;
2449 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2450 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2451 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2452 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2453 descriptor.SCSIIO.LMID = 0;
2454 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2455 &ioc->scsi_lookup_lock);
2459 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2460 * @ioc: per adapter object
2461 * @smid: system request message index
2462 * @handle: device handle
2464 * Return nothing.
2466 void
2467 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2468 u16 handle)
2470 Mpi2RequestDescriptorUnion_t descriptor;
2471 u64 *request = (u64 *)&descriptor;
2473 descriptor.SCSIIO.RequestFlags =
2474 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2475 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2476 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2477 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2478 descriptor.SCSIIO.LMID = 0;
2479 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2480 &ioc->scsi_lookup_lock);
2484 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2485 * @ioc: per adapter object
2486 * @smid: system request message index
2487 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2488 * Return nothing.
2490 void
2491 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2492 u16 msix_task)
2494 Mpi2RequestDescriptorUnion_t descriptor;
2495 u64 *request = (u64 *)&descriptor;
2497 descriptor.HighPriority.RequestFlags =
2498 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2499 descriptor.HighPriority.MSIxIndex = msix_task;
2500 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2501 descriptor.HighPriority.LMID = 0;
2502 descriptor.HighPriority.Reserved1 = 0;
2503 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2504 &ioc->scsi_lookup_lock);
2508 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2509 * @ioc: per adapter object
2510 * @smid: system request message index
2512 * Return nothing.
2514 void
2515 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2517 Mpi2RequestDescriptorUnion_t descriptor;
2518 u64 *request = (u64 *)&descriptor;
2520 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2521 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2522 descriptor.Default.SMID = cpu_to_le16(smid);
2523 descriptor.Default.LMID = 0;
2524 descriptor.Default.DescriptorTypeDependent = 0;
2525 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2526 &ioc->scsi_lookup_lock);
2530 * _base_display_OEMs_branding - Display branding string
2531 * @ioc: per adapter object
2533 * Return nothing.
2535 static void
2536 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2538 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2539 return;
2541 switch (ioc->pdev->subsystem_vendor) {
2542 case PCI_VENDOR_ID_INTEL:
2543 switch (ioc->pdev->device) {
2544 case MPI2_MFGPAGE_DEVID_SAS2008:
2545 switch (ioc->pdev->subsystem_device) {
2546 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2547 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2548 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2549 break;
2550 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2551 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2552 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2553 break;
2554 case MPT2SAS_INTEL_SSD910_SSDID:
2555 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2556 MPT2SAS_INTEL_SSD910_BRANDING);
2557 break;
2558 default:
2559 pr_info(MPT3SAS_FMT
2560 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2561 ioc->name, ioc->pdev->subsystem_device);
2562 break;
2564 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2565 switch (ioc->pdev->subsystem_device) {
2566 case MPT2SAS_INTEL_RS25GB008_SSDID:
2567 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2568 MPT2SAS_INTEL_RS25GB008_BRANDING);
2569 break;
2570 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2571 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2572 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2573 break;
2574 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2575 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2576 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2577 break;
2578 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2579 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2580 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2581 break;
2582 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2583 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2584 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2585 break;
2586 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2587 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2588 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2589 break;
2590 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2591 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2592 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2593 break;
2594 default:
2595 pr_info(MPT3SAS_FMT
2596 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2597 ioc->name, ioc->pdev->subsystem_device);
2598 break;
2600 case MPI25_MFGPAGE_DEVID_SAS3008:
2601 switch (ioc->pdev->subsystem_device) {
2602 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2603 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2604 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2605 break;
2607 case MPT3SAS_INTEL_RS3GC008_SSDID:
2608 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2609 MPT3SAS_INTEL_RS3GC008_BRANDING);
2610 break;
2611 case MPT3SAS_INTEL_RS3FC044_SSDID:
2612 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2613 MPT3SAS_INTEL_RS3FC044_BRANDING);
2614 break;
2615 case MPT3SAS_INTEL_RS3UC080_SSDID:
2616 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2617 MPT3SAS_INTEL_RS3UC080_BRANDING);
2618 break;
2619 default:
2620 pr_info(MPT3SAS_FMT
2621 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2622 ioc->name, ioc->pdev->subsystem_device);
2623 break;
2625 break;
2626 default:
2627 pr_info(MPT3SAS_FMT
2628 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2629 ioc->name, ioc->pdev->subsystem_device);
2630 break;
2632 break;
2633 case PCI_VENDOR_ID_DELL:
2634 switch (ioc->pdev->device) {
2635 case MPI2_MFGPAGE_DEVID_SAS2008:
2636 switch (ioc->pdev->subsystem_device) {
2637 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2638 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2639 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2640 break;
2641 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2642 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2643 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2644 break;
2645 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2646 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2647 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2648 break;
2649 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2650 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2651 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2652 break;
2653 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2654 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2655 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2656 break;
2657 case MPT2SAS_DELL_PERC_H200_SSDID:
2658 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2659 MPT2SAS_DELL_PERC_H200_BRANDING);
2660 break;
2661 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2662 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2663 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2664 break;
2665 default:
2666 pr_info(MPT3SAS_FMT
2667 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2668 ioc->name, ioc->pdev->subsystem_device);
2669 break;
2671 break;
2672 case MPI25_MFGPAGE_DEVID_SAS3008:
2673 switch (ioc->pdev->subsystem_device) {
2674 case MPT3SAS_DELL_12G_HBA_SSDID:
2675 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676 MPT3SAS_DELL_12G_HBA_BRANDING);
2677 break;
2678 default:
2679 pr_info(MPT3SAS_FMT
2680 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2681 ioc->name, ioc->pdev->subsystem_device);
2682 break;
2684 break;
2685 default:
2686 pr_info(MPT3SAS_FMT
2687 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2688 ioc->pdev->subsystem_device);
2689 break;
2691 break;
2692 case PCI_VENDOR_ID_CISCO:
2693 switch (ioc->pdev->device) {
2694 case MPI25_MFGPAGE_DEVID_SAS3008:
2695 switch (ioc->pdev->subsystem_device) {
2696 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2697 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2698 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2699 break;
2700 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2701 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2702 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2703 break;
2704 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2705 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2706 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2707 break;
2708 default:
2709 pr_info(MPT3SAS_FMT
2710 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2711 ioc->name, ioc->pdev->subsystem_device);
2712 break;
2714 break;
2715 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2716 switch (ioc->pdev->subsystem_device) {
2717 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2718 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2719 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2720 break;
2721 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2722 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2723 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2725 break;
2726 default:
2727 pr_info(MPT3SAS_FMT
2728 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2729 ioc->name, ioc->pdev->subsystem_device);
2730 break;
2732 break;
2733 default:
2734 pr_info(MPT3SAS_FMT
2735 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2736 ioc->name, ioc->pdev->subsystem_device);
2737 break;
2739 break;
2740 case MPT2SAS_HP_3PAR_SSVID:
2741 switch (ioc->pdev->device) {
2742 case MPI2_MFGPAGE_DEVID_SAS2004:
2743 switch (ioc->pdev->subsystem_device) {
2744 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2745 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2746 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2747 break;
2748 default:
2749 pr_info(MPT3SAS_FMT
2750 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2751 ioc->name, ioc->pdev->subsystem_device);
2752 break;
2754 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2755 switch (ioc->pdev->subsystem_device) {
2756 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2757 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2758 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2759 break;
2760 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2761 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2762 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2763 break;
2764 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2765 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2766 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2767 break;
2768 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2769 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2770 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2771 break;
2772 default:
2773 pr_info(MPT3SAS_FMT
2774 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2775 ioc->name, ioc->pdev->subsystem_device);
2776 break;
2778 default:
2779 pr_info(MPT3SAS_FMT
2780 "HP SAS HBA: Subsystem ID: 0x%X\n",
2781 ioc->name, ioc->pdev->subsystem_device);
2782 break;
2784 default:
2785 break;
2790 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2791 * @ioc: per adapter object
2793 * Return nothing.
2795 static void
2796 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2798 int i = 0;
2799 char desc[16];
2800 u32 iounit_pg1_flags;
2801 u32 bios_version;
2803 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2804 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2805 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2806 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2807 ioc->name, desc,
2808 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2809 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2810 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2811 ioc->facts.FWVersion.Word & 0x000000FF,
2812 ioc->pdev->revision,
2813 (bios_version & 0xFF000000) >> 24,
2814 (bios_version & 0x00FF0000) >> 16,
2815 (bios_version & 0x0000FF00) >> 8,
2816 bios_version & 0x000000FF);
2818 _base_display_OEMs_branding(ioc);
2820 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2822 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2823 pr_info("Initiator");
2824 i++;
2827 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2828 pr_info("%sTarget", i ? "," : "");
2829 i++;
2832 i = 0;
2833 pr_info("), ");
2834 pr_info("Capabilities=(");
2836 if (!ioc->hide_ir_msg) {
2837 if (ioc->facts.IOCCapabilities &
2838 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2839 pr_info("Raid");
2840 i++;
2844 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2845 pr_info("%sTLR", i ? "," : "");
2846 i++;
2849 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2850 pr_info("%sMulticast", i ? "," : "");
2851 i++;
2854 if (ioc->facts.IOCCapabilities &
2855 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2856 pr_info("%sBIDI Target", i ? "," : "");
2857 i++;
2860 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2861 pr_info("%sEEDP", i ? "," : "");
2862 i++;
2865 if (ioc->facts.IOCCapabilities &
2866 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2867 pr_info("%sSnapshot Buffer", i ? "," : "");
2868 i++;
2871 if (ioc->facts.IOCCapabilities &
2872 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2873 pr_info("%sDiag Trace Buffer", i ? "," : "");
2874 i++;
2877 if (ioc->facts.IOCCapabilities &
2878 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2879 pr_info("%sDiag Extended Buffer", i ? "," : "");
2880 i++;
2883 if (ioc->facts.IOCCapabilities &
2884 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2885 pr_info("%sTask Set Full", i ? "," : "");
2886 i++;
2889 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2890 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2891 pr_info("%sNCQ", i ? "," : "");
2892 i++;
2895 pr_info(")\n");
2899 * mpt3sas_base_update_missing_delay - change the missing delay timers
2900 * @ioc: per adapter object
2901 * @device_missing_delay: amount of time till device is reported missing
2902 * @io_missing_delay: interval IO is returned when there is a missing device
2904 * Return nothing.
2906 * Passed on the command line, this function will modify the device missing
2907 * delay, as well as the io missing delay. This should be called at driver
2908 * load time.
2910 void
2911 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2912 u16 device_missing_delay, u8 io_missing_delay)
2914 u16 dmd, dmd_new, dmd_orignal;
2915 u8 io_missing_delay_original;
2916 u16 sz;
2917 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2918 Mpi2ConfigReply_t mpi_reply;
2919 u8 num_phys = 0;
2920 u16 ioc_status;
2922 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2923 if (!num_phys)
2924 return;
2926 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2927 sizeof(Mpi2SasIOUnit1PhyData_t));
2928 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2929 if (!sas_iounit_pg1) {
2930 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2931 ioc->name, __FILE__, __LINE__, __func__);
2932 goto out;
2934 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2935 sas_iounit_pg1, sz))) {
2936 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2937 ioc->name, __FILE__, __LINE__, __func__);
2938 goto out;
2940 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2941 MPI2_IOCSTATUS_MASK;
2942 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2943 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2944 ioc->name, __FILE__, __LINE__, __func__);
2945 goto out;
2948 /* device missing delay */
2949 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2950 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2951 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2952 else
2953 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2954 dmd_orignal = dmd;
2955 if (device_missing_delay > 0x7F) {
2956 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2957 device_missing_delay;
2958 dmd = dmd / 16;
2959 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2960 } else
2961 dmd = device_missing_delay;
2962 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2964 /* io missing delay */
2965 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2966 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2968 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2969 sz)) {
2970 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2971 dmd_new = (dmd &
2972 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2973 else
2974 dmd_new =
2975 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2976 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2977 ioc->name, dmd_orignal, dmd_new);
2978 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2979 ioc->name, io_missing_delay_original,
2980 io_missing_delay);
2981 ioc->device_missing_delay = dmd_new;
2982 ioc->io_missing_delay = io_missing_delay;
2985 out:
2986 kfree(sas_iounit_pg1);
2989 * _base_static_config_pages - static start of day config pages
2990 * @ioc: per adapter object
2992 * Return nothing.
2994 static void
2995 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2997 Mpi2ConfigReply_t mpi_reply;
2998 u32 iounit_pg1_flags;
3000 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3001 if (ioc->ir_firmware)
3002 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3003 &ioc->manu_pg10);
3006 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3007 * flag unset in NVDATA.
3009 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3010 if (ioc->manu_pg11.EEDPTagMode == 0) {
3011 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3012 ioc->name);
3013 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3014 ioc->manu_pg11.EEDPTagMode |= 0x1;
3015 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3016 &ioc->manu_pg11);
3019 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3020 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3021 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3022 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3023 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3024 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3025 _base_display_ioc_capabilities(ioc);
3028 * Enable task_set_full handling in iounit_pg1 when the
3029 * facts capabilities indicate that its supported.
3031 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3032 if ((ioc->facts.IOCCapabilities &
3033 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3034 iounit_pg1_flags &=
3035 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3036 else
3037 iounit_pg1_flags |=
3038 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3039 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3040 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3042 if (ioc->iounit_pg8.NumSensors)
3043 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3047 * _base_release_memory_pools - release memory
3048 * @ioc: per adapter object
3050 * Free memory allocated from _base_allocate_memory_pools.
3052 * Return nothing.
3054 static void
3055 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3057 int i = 0;
3058 struct reply_post_struct *rps;
3060 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3061 __func__));
3063 if (ioc->request) {
3064 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3065 ioc->request, ioc->request_dma);
3066 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3067 "request_pool(0x%p): free\n",
3068 ioc->name, ioc->request));
3069 ioc->request = NULL;
3072 if (ioc->sense) {
3073 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3074 if (ioc->sense_dma_pool)
3075 pci_pool_destroy(ioc->sense_dma_pool);
3076 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3077 "sense_pool(0x%p): free\n",
3078 ioc->name, ioc->sense));
3079 ioc->sense = NULL;
3082 if (ioc->reply) {
3083 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3084 if (ioc->reply_dma_pool)
3085 pci_pool_destroy(ioc->reply_dma_pool);
3086 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3087 "reply_pool(0x%p): free\n",
3088 ioc->name, ioc->reply));
3089 ioc->reply = NULL;
3092 if (ioc->reply_free) {
3093 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3094 ioc->reply_free_dma);
3095 if (ioc->reply_free_dma_pool)
3096 pci_pool_destroy(ioc->reply_free_dma_pool);
3097 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3098 "reply_free_pool(0x%p): free\n",
3099 ioc->name, ioc->reply_free));
3100 ioc->reply_free = NULL;
3103 if (ioc->reply_post) {
3104 do {
3105 rps = &ioc->reply_post[i];
3106 if (rps->reply_post_free) {
3107 pci_pool_free(
3108 ioc->reply_post_free_dma_pool,
3109 rps->reply_post_free,
3110 rps->reply_post_free_dma);
3111 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3112 "reply_post_free_pool(0x%p): free\n",
3113 ioc->name, rps->reply_post_free));
3114 rps->reply_post_free = NULL;
3116 } while (ioc->rdpq_array_enable &&
3117 (++i < ioc->reply_queue_count));
3119 if (ioc->reply_post_free_dma_pool)
3120 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3121 kfree(ioc->reply_post);
3124 if (ioc->config_page) {
3125 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3126 "config_page(0x%p): free\n", ioc->name,
3127 ioc->config_page));
3128 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3129 ioc->config_page, ioc->config_page_dma);
3132 if (ioc->scsi_lookup) {
3133 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3134 ioc->scsi_lookup = NULL;
3136 kfree(ioc->hpr_lookup);
3137 kfree(ioc->internal_lookup);
3138 if (ioc->chain_lookup) {
3139 for (i = 0; i < ioc->chain_depth; i++) {
3140 if (ioc->chain_lookup[i].chain_buffer)
3141 pci_pool_free(ioc->chain_dma_pool,
3142 ioc->chain_lookup[i].chain_buffer,
3143 ioc->chain_lookup[i].chain_buffer_dma);
3145 if (ioc->chain_dma_pool)
3146 pci_pool_destroy(ioc->chain_dma_pool);
3147 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3148 ioc->chain_lookup = NULL;
3153 * _base_allocate_memory_pools - allocate start of day memory pools
3154 * @ioc: per adapter object
3155 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3157 * Returns 0 success, anything else error
3159 static int
3160 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3162 struct mpt3sas_facts *facts;
3163 u16 max_sge_elements;
3164 u16 chains_needed_per_io;
3165 u32 sz, total_sz, reply_post_free_sz;
3166 u32 retry_sz;
3167 u16 max_request_credit;
3168 unsigned short sg_tablesize;
3169 u16 sge_size;
3170 int i;
3172 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3173 __func__));
3176 retry_sz = 0;
3177 facts = &ioc->facts;
3179 /* command line tunables for max sgl entries */
3180 if (max_sgl_entries != -1)
3181 sg_tablesize = max_sgl_entries;
3182 else {
3183 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3184 sg_tablesize = MPT2SAS_SG_DEPTH;
3185 else
3186 sg_tablesize = MPT3SAS_SG_DEPTH;
3189 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3190 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3191 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3192 sg_tablesize = min_t(unsigned short, sg_tablesize,
3193 SCSI_MAX_SG_CHAIN_SEGMENTS);
3194 pr_warn(MPT3SAS_FMT
3195 "sg_tablesize(%u) is bigger than kernel"
3196 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3197 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3199 ioc->shost->sg_tablesize = sg_tablesize;
3201 ioc->hi_priority_depth = facts->HighPriorityCredit;
3202 ioc->internal_depth = ioc->hi_priority_depth + (5);
3203 /* command line tunables for max controller queue depth */
3204 if (max_queue_depth != -1 && max_queue_depth != 0) {
3205 max_request_credit = min_t(u16, max_queue_depth +
3206 ioc->hi_priority_depth + ioc->internal_depth,
3207 facts->RequestCredit);
3208 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3209 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3210 } else
3211 max_request_credit = min_t(u16, facts->RequestCredit,
3212 MAX_HBA_QUEUE_DEPTH);
3214 ioc->hba_queue_depth = max_request_credit;
3216 /* request frame size */
3217 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3219 /* reply frame size */
3220 ioc->reply_sz = facts->ReplyFrameSize * 4;
3222 /* calculate the max scatter element size */
3223 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3225 retry_allocation:
3226 total_sz = 0;
3227 /* calculate number of sg elements left over in the 1st frame */
3228 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3229 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3230 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3232 /* now do the same for a chain buffer */
3233 max_sge_elements = ioc->request_sz - sge_size;
3234 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3237 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3239 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3240 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3241 + 1;
3242 if (chains_needed_per_io > facts->MaxChainDepth) {
3243 chains_needed_per_io = facts->MaxChainDepth;
3244 ioc->shost->sg_tablesize = min_t(u16,
3245 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3246 * chains_needed_per_io), ioc->shost->sg_tablesize);
3248 ioc->chains_needed_per_io = chains_needed_per_io;
3250 /* reply free queue sizing - taking into account for 64 FW events */
3251 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3253 /* calculate reply descriptor post queue depth */
3254 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3255 ioc->reply_free_queue_depth + 1 ;
3256 /* align the reply post queue on the next 16 count boundary */
3257 if (ioc->reply_post_queue_depth % 16)
3258 ioc->reply_post_queue_depth += 16 -
3259 (ioc->reply_post_queue_depth % 16);
3262 if (ioc->reply_post_queue_depth >
3263 facts->MaxReplyDescriptorPostQueueDepth) {
3264 ioc->reply_post_queue_depth =
3265 facts->MaxReplyDescriptorPostQueueDepth -
3266 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3267 ioc->hba_queue_depth =
3268 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3269 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3272 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3273 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3274 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3275 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3276 ioc->chains_needed_per_io));
3278 /* reply post queue, 16 byte align */
3279 reply_post_free_sz = ioc->reply_post_queue_depth *
3280 sizeof(Mpi2DefaultReplyDescriptor_t);
3282 sz = reply_post_free_sz;
3283 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3284 sz *= ioc->reply_queue_count;
3286 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3287 (ioc->reply_queue_count):1,
3288 sizeof(struct reply_post_struct), GFP_KERNEL);
3290 if (!ioc->reply_post) {
3291 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3292 ioc->name);
3293 goto out;
3295 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3296 ioc->pdev, sz, 16, 0);
3297 if (!ioc->reply_post_free_dma_pool) {
3298 pr_err(MPT3SAS_FMT
3299 "reply_post_free pool: pci_pool_create failed\n",
3300 ioc->name);
3301 goto out;
3303 i = 0;
3304 do {
3305 ioc->reply_post[i].reply_post_free =
3306 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3307 GFP_KERNEL,
3308 &ioc->reply_post[i].reply_post_free_dma);
3309 if (!ioc->reply_post[i].reply_post_free) {
3310 pr_err(MPT3SAS_FMT
3311 "reply_post_free pool: pci_pool_alloc failed\n",
3312 ioc->name);
3313 goto out;
3315 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3316 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3317 "reply post free pool (0x%p): depth(%d),"
3318 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3319 ioc->reply_post[i].reply_post_free,
3320 ioc->reply_post_queue_depth, 8, sz/1024));
3321 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3322 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3323 (unsigned long long)
3324 ioc->reply_post[i].reply_post_free_dma));
3325 total_sz += sz;
3326 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3328 if (ioc->dma_mask == 64) {
3329 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3330 pr_warn(MPT3SAS_FMT
3331 "no suitable consistent DMA mask for %s\n",
3332 ioc->name, pci_name(ioc->pdev));
3333 goto out;
3337 ioc->scsiio_depth = ioc->hba_queue_depth -
3338 ioc->hi_priority_depth - ioc->internal_depth;
3340 /* set the scsi host can_queue depth
3341 * with some internal commands that could be outstanding
3343 ioc->shost->can_queue = ioc->scsiio_depth;
3344 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3345 "scsi host: can_queue depth (%d)\n",
3346 ioc->name, ioc->shost->can_queue));
3349 /* contiguous pool for request and chains, 16 byte align, one extra "
3350 * "frame for smid=0
3352 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3353 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3355 /* hi-priority queue */
3356 sz += (ioc->hi_priority_depth * ioc->request_sz);
3358 /* internal queue */
3359 sz += (ioc->internal_depth * ioc->request_sz);
3361 ioc->request_dma_sz = sz;
3362 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3363 if (!ioc->request) {
3364 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3365 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3366 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3367 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3368 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3369 goto out;
3370 retry_sz += 64;
3371 ioc->hba_queue_depth = max_request_credit - retry_sz;
3372 goto retry_allocation;
3375 if (retry_sz)
3376 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3377 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3378 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3379 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3381 /* hi-priority queue */
3382 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3383 ioc->request_sz);
3384 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3385 ioc->request_sz);
3387 /* internal queue */
3388 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3389 ioc->request_sz);
3390 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3391 ioc->request_sz);
3393 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3394 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3395 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3396 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3398 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3399 ioc->name, (unsigned long long) ioc->request_dma));
3400 total_sz += sz;
3402 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3403 ioc->scsi_lookup_pages = get_order(sz);
3404 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3405 GFP_KERNEL, ioc->scsi_lookup_pages);
3406 if (!ioc->scsi_lookup) {
3407 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3408 ioc->name, (int)sz);
3409 goto out;
3412 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3413 ioc->name, ioc->request, ioc->scsiio_depth));
3415 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3416 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3417 ioc->chain_pages = get_order(sz);
3418 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3419 GFP_KERNEL, ioc->chain_pages);
3420 if (!ioc->chain_lookup) {
3421 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3422 ioc->name);
3423 goto out;
3425 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3426 ioc->request_sz, 16, 0);
3427 if (!ioc->chain_dma_pool) {
3428 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3429 ioc->name);
3430 goto out;
3432 for (i = 0; i < ioc->chain_depth; i++) {
3433 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3434 ioc->chain_dma_pool , GFP_KERNEL,
3435 &ioc->chain_lookup[i].chain_buffer_dma);
3436 if (!ioc->chain_lookup[i].chain_buffer) {
3437 ioc->chain_depth = i;
3438 goto chain_done;
3440 total_sz += ioc->request_sz;
3442 chain_done:
3443 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3444 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3445 ioc->name, ioc->chain_depth, ioc->request_sz,
3446 ((ioc->chain_depth * ioc->request_sz))/1024));
3448 /* initialize hi-priority queue smid's */
3449 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3450 sizeof(struct request_tracker), GFP_KERNEL);
3451 if (!ioc->hpr_lookup) {
3452 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3453 ioc->name);
3454 goto out;
3456 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3457 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3458 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3459 ioc->name, ioc->hi_priority,
3460 ioc->hi_priority_depth, ioc->hi_priority_smid));
3462 /* initialize internal queue smid's */
3463 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3464 sizeof(struct request_tracker), GFP_KERNEL);
3465 if (!ioc->internal_lookup) {
3466 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3467 ioc->name);
3468 goto out;
3470 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3471 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3472 "internal(0x%p): depth(%d), start smid(%d)\n",
3473 ioc->name, ioc->internal,
3474 ioc->internal_depth, ioc->internal_smid));
3476 /* sense buffers, 4 byte align */
3477 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3478 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3480 if (!ioc->sense_dma_pool) {
3481 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3482 ioc->name);
3483 goto out;
3485 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3486 &ioc->sense_dma);
3487 if (!ioc->sense) {
3488 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3489 ioc->name);
3490 goto out;
3492 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3493 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3494 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3495 SCSI_SENSE_BUFFERSIZE, sz/1024));
3496 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3497 ioc->name, (unsigned long long)ioc->sense_dma));
3498 total_sz += sz;
3500 /* reply pool, 4 byte align */
3501 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3502 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3504 if (!ioc->reply_dma_pool) {
3505 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3506 ioc->name);
3507 goto out;
3509 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3510 &ioc->reply_dma);
3511 if (!ioc->reply) {
3512 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3513 ioc->name);
3514 goto out;
3516 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3517 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3518 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3519 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3520 ioc->name, ioc->reply,
3521 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3522 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3523 ioc->name, (unsigned long long)ioc->reply_dma));
3524 total_sz += sz;
3526 /* reply free queue, 16 byte align */
3527 sz = ioc->reply_free_queue_depth * 4;
3528 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3529 ioc->pdev, sz, 16, 0);
3530 if (!ioc->reply_free_dma_pool) {
3531 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3532 ioc->name);
3533 goto out;
3535 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3536 &ioc->reply_free_dma);
3537 if (!ioc->reply_free) {
3538 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3539 ioc->name);
3540 goto out;
3542 memset(ioc->reply_free, 0, sz);
3543 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3544 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3545 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3546 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3547 "reply_free_dma (0x%llx)\n",
3548 ioc->name, (unsigned long long)ioc->reply_free_dma));
3549 total_sz += sz;
3551 ioc->config_page_sz = 512;
3552 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3553 ioc->config_page_sz, &ioc->config_page_dma);
3554 if (!ioc->config_page) {
3555 pr_err(MPT3SAS_FMT
3556 "config page: pci_pool_alloc failed\n",
3557 ioc->name);
3558 goto out;
3560 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3561 "config page(0x%p): size(%d)\n",
3562 ioc->name, ioc->config_page, ioc->config_page_sz));
3563 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3564 ioc->name, (unsigned long long)ioc->config_page_dma));
3565 total_sz += ioc->config_page_sz;
3567 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3568 ioc->name, total_sz/1024);
3569 pr_info(MPT3SAS_FMT
3570 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3571 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3572 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3573 ioc->name, ioc->shost->sg_tablesize);
3574 return 0;
3576 out:
3577 return -ENOMEM;
3581 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3582 * @ioc: Pointer to MPT_ADAPTER structure
3583 * @cooked: Request raw or cooked IOC state
3585 * Returns all IOC Doorbell register bits if cooked==0, else just the
3586 * Doorbell bits in MPI_IOC_STATE_MASK.
3589 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3591 u32 s, sc;
3593 s = readl(&ioc->chip->Doorbell);
3594 sc = s & MPI2_IOC_STATE_MASK;
3595 return cooked ? sc : s;
3599 * _base_wait_on_iocstate - waiting on a particular ioc state
3600 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3601 * @timeout: timeout in second
3602 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3604 * Returns 0 for success, non-zero for failure.
3606 static int
3607 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3608 int sleep_flag)
3610 u32 count, cntdn;
3611 u32 current_state;
3613 count = 0;
3614 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3615 do {
3616 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3617 if (current_state == ioc_state)
3618 return 0;
3619 if (count && current_state == MPI2_IOC_STATE_FAULT)
3620 break;
3621 if (sleep_flag == CAN_SLEEP)
3622 usleep_range(1000, 1500);
3623 else
3624 udelay(500);
3625 count++;
3626 } while (--cntdn);
3628 return current_state;
3632 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3633 * a write to the doorbell)
3634 * @ioc: per adapter object
3635 * @timeout: timeout in second
3636 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3638 * Returns 0 for success, non-zero for failure.
3640 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3642 static int
3643 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3645 static int
3646 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3647 int sleep_flag)
3649 u32 cntdn, count;
3650 u32 int_status;
3652 count = 0;
3653 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3654 do {
3655 int_status = readl(&ioc->chip->HostInterruptStatus);
3656 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3657 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3658 "%s: successful count(%d), timeout(%d)\n",
3659 ioc->name, __func__, count, timeout));
3660 return 0;
3662 if (sleep_flag == CAN_SLEEP)
3663 usleep_range(1000, 1500);
3664 else
3665 udelay(500);
3666 count++;
3667 } while (--cntdn);
3669 pr_err(MPT3SAS_FMT
3670 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3671 ioc->name, __func__, count, int_status);
3672 return -EFAULT;
3676 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3677 * @ioc: per adapter object
3678 * @timeout: timeout in second
3679 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3681 * Returns 0 for success, non-zero for failure.
3683 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3684 * doorbell.
3686 static int
3687 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3688 int sleep_flag)
3690 u32 cntdn, count;
3691 u32 int_status;
3692 u32 doorbell;
3694 count = 0;
3695 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3696 do {
3697 int_status = readl(&ioc->chip->HostInterruptStatus);
3698 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3699 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3700 "%s: successful count(%d), timeout(%d)\n",
3701 ioc->name, __func__, count, timeout));
3702 return 0;
3703 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3704 doorbell = readl(&ioc->chip->Doorbell);
3705 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3706 MPI2_IOC_STATE_FAULT) {
3707 mpt3sas_base_fault_info(ioc , doorbell);
3708 return -EFAULT;
3710 } else if (int_status == 0xFFFFFFFF)
3711 goto out;
3713 if (sleep_flag == CAN_SLEEP)
3714 usleep_range(1000, 1500);
3715 else
3716 udelay(500);
3717 count++;
3718 } while (--cntdn);
3720 out:
3721 pr_err(MPT3SAS_FMT
3722 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3723 ioc->name, __func__, count, int_status);
3724 return -EFAULT;
3728 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3729 * @ioc: per adapter object
3730 * @timeout: timeout in second
3731 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3733 * Returns 0 for success, non-zero for failure.
3736 static int
3737 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3738 int sleep_flag)
3740 u32 cntdn, count;
3741 u32 doorbell_reg;
3743 count = 0;
3744 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3745 do {
3746 doorbell_reg = readl(&ioc->chip->Doorbell);
3747 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3748 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3749 "%s: successful count(%d), timeout(%d)\n",
3750 ioc->name, __func__, count, timeout));
3751 return 0;
3753 if (sleep_flag == CAN_SLEEP)
3754 usleep_range(1000, 1500);
3755 else
3756 udelay(500);
3757 count++;
3758 } while (--cntdn);
3760 pr_err(MPT3SAS_FMT
3761 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3762 ioc->name, __func__, count, doorbell_reg);
3763 return -EFAULT;
3767 * _base_send_ioc_reset - send doorbell reset
3768 * @ioc: per adapter object
3769 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3770 * @timeout: timeout in second
3771 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3773 * Returns 0 for success, non-zero for failure.
3775 static int
3776 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3777 int sleep_flag)
3779 u32 ioc_state;
3780 int r = 0;
3782 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3783 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3784 ioc->name, __func__);
3785 return -EFAULT;
3788 if (!(ioc->facts.IOCCapabilities &
3789 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3790 return -EFAULT;
3792 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3794 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3795 &ioc->chip->Doorbell);
3796 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3797 r = -EFAULT;
3798 goto out;
3800 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3801 timeout, sleep_flag);
3802 if (ioc_state) {
3803 pr_err(MPT3SAS_FMT
3804 "%s: failed going to ready state (ioc_state=0x%x)\n",
3805 ioc->name, __func__, ioc_state);
3806 r = -EFAULT;
3807 goto out;
3809 out:
3810 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3811 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3812 return r;
3816 * _base_handshake_req_reply_wait - send request thru doorbell interface
3817 * @ioc: per adapter object
3818 * @request_bytes: request length
3819 * @request: pointer having request payload
3820 * @reply_bytes: reply length
3821 * @reply: pointer to reply payload
3822 * @timeout: timeout in second
3823 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3825 * Returns 0 for success, non-zero for failure.
3827 static int
3828 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3829 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3831 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3832 int i;
3833 u8 failed;
3834 u16 dummy;
3835 __le32 *mfp;
3837 /* make sure doorbell is not in use */
3838 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3839 pr_err(MPT3SAS_FMT
3840 "doorbell is in use (line=%d)\n",
3841 ioc->name, __LINE__);
3842 return -EFAULT;
3845 /* clear pending doorbell interrupts from previous state changes */
3846 if (readl(&ioc->chip->HostInterruptStatus) &
3847 MPI2_HIS_IOC2SYS_DB_STATUS)
3848 writel(0, &ioc->chip->HostInterruptStatus);
3850 /* send message to ioc */
3851 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3852 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3853 &ioc->chip->Doorbell);
3855 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3856 pr_err(MPT3SAS_FMT
3857 "doorbell handshake int failed (line=%d)\n",
3858 ioc->name, __LINE__);
3859 return -EFAULT;
3861 writel(0, &ioc->chip->HostInterruptStatus);
3863 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3864 pr_err(MPT3SAS_FMT
3865 "doorbell handshake ack failed (line=%d)\n",
3866 ioc->name, __LINE__);
3867 return -EFAULT;
3870 /* send message 32-bits at a time */
3871 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3872 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3873 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3874 failed = 1;
3877 if (failed) {
3878 pr_err(MPT3SAS_FMT
3879 "doorbell handshake sending request failed (line=%d)\n",
3880 ioc->name, __LINE__);
3881 return -EFAULT;
3884 /* now wait for the reply */
3885 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3886 pr_err(MPT3SAS_FMT
3887 "doorbell handshake int failed (line=%d)\n",
3888 ioc->name, __LINE__);
3889 return -EFAULT;
3892 /* read the first two 16-bits, it gives the total length of the reply */
3893 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3894 & MPI2_DOORBELL_DATA_MASK);
3895 writel(0, &ioc->chip->HostInterruptStatus);
3896 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3897 pr_err(MPT3SAS_FMT
3898 "doorbell handshake int failed (line=%d)\n",
3899 ioc->name, __LINE__);
3900 return -EFAULT;
3902 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3903 & MPI2_DOORBELL_DATA_MASK);
3904 writel(0, &ioc->chip->HostInterruptStatus);
3906 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3907 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3908 pr_err(MPT3SAS_FMT
3909 "doorbell handshake int failed (line=%d)\n",
3910 ioc->name, __LINE__);
3911 return -EFAULT;
3913 if (i >= reply_bytes/2) /* overflow case */
3914 dummy = readl(&ioc->chip->Doorbell);
3915 else
3916 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3917 & MPI2_DOORBELL_DATA_MASK);
3918 writel(0, &ioc->chip->HostInterruptStatus);
3921 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3922 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3923 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3924 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3926 writel(0, &ioc->chip->HostInterruptStatus);
3928 if (ioc->logging_level & MPT_DEBUG_INIT) {
3929 mfp = (__le32 *)reply;
3930 pr_info("\toffset:data\n");
3931 for (i = 0; i < reply_bytes/4; i++)
3932 pr_info("\t[0x%02x]:%08x\n", i*4,
3933 le32_to_cpu(mfp[i]));
3935 return 0;
3939 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3940 * @ioc: per adapter object
3941 * @mpi_reply: the reply payload from FW
3942 * @mpi_request: the request payload sent to FW
3944 * The SAS IO Unit Control Request message allows the host to perform low-level
3945 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3946 * to obtain the IOC assigned device handles for a device if it has other
3947 * identifying information about the device, in addition allows the host to
3948 * remove IOC resources associated with the device.
3950 * Returns 0 for success, non-zero for failure.
3953 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3954 Mpi2SasIoUnitControlReply_t *mpi_reply,
3955 Mpi2SasIoUnitControlRequest_t *mpi_request)
3957 u16 smid;
3958 u32 ioc_state;
3959 unsigned long timeleft;
3960 bool issue_reset = false;
3961 int rc;
3962 void *request;
3963 u16 wait_state_count;
3965 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3966 __func__));
3968 mutex_lock(&ioc->base_cmds.mutex);
3970 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3971 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3972 ioc->name, __func__);
3973 rc = -EAGAIN;
3974 goto out;
3977 wait_state_count = 0;
3978 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3979 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3980 if (wait_state_count++ == 10) {
3981 pr_err(MPT3SAS_FMT
3982 "%s: failed due to ioc not operational\n",
3983 ioc->name, __func__);
3984 rc = -EFAULT;
3985 goto out;
3987 ssleep(1);
3988 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3989 pr_info(MPT3SAS_FMT
3990 "%s: waiting for operational state(count=%d)\n",
3991 ioc->name, __func__, wait_state_count);
3994 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3995 if (!smid) {
3996 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3997 ioc->name, __func__);
3998 rc = -EAGAIN;
3999 goto out;
4002 rc = 0;
4003 ioc->base_cmds.status = MPT3_CMD_PENDING;
4004 request = mpt3sas_base_get_msg_frame(ioc, smid);
4005 ioc->base_cmds.smid = smid;
4006 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4007 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4008 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4009 ioc->ioc_link_reset_in_progress = 1;
4010 init_completion(&ioc->base_cmds.done);
4011 mpt3sas_base_put_smid_default(ioc, smid);
4012 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4013 msecs_to_jiffies(10000));
4014 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4015 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4016 ioc->ioc_link_reset_in_progress)
4017 ioc->ioc_link_reset_in_progress = 0;
4018 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4019 pr_err(MPT3SAS_FMT "%s: timeout\n",
4020 ioc->name, __func__);
4021 _debug_dump_mf(mpi_request,
4022 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4023 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4024 issue_reset = true;
4025 goto issue_host_reset;
4027 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4028 memcpy(mpi_reply, ioc->base_cmds.reply,
4029 sizeof(Mpi2SasIoUnitControlReply_t));
4030 else
4031 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4032 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4033 goto out;
4035 issue_host_reset:
4036 if (issue_reset)
4037 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4038 FORCE_BIG_HAMMER);
4039 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4040 rc = -EFAULT;
4041 out:
4042 mutex_unlock(&ioc->base_cmds.mutex);
4043 return rc;
4047 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4048 * @ioc: per adapter object
4049 * @mpi_reply: the reply payload from FW
4050 * @mpi_request: the request payload sent to FW
4052 * The SCSI Enclosure Processor request message causes the IOC to
4053 * communicate with SES devices to control LED status signals.
4055 * Returns 0 for success, non-zero for failure.
4058 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4059 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4061 u16 smid;
4062 u32 ioc_state;
4063 unsigned long timeleft;
4064 bool issue_reset = false;
4065 int rc;
4066 void *request;
4067 u16 wait_state_count;
4069 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4070 __func__));
4072 mutex_lock(&ioc->base_cmds.mutex);
4074 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4075 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4076 ioc->name, __func__);
4077 rc = -EAGAIN;
4078 goto out;
4081 wait_state_count = 0;
4082 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4083 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4084 if (wait_state_count++ == 10) {
4085 pr_err(MPT3SAS_FMT
4086 "%s: failed due to ioc not operational\n",
4087 ioc->name, __func__);
4088 rc = -EFAULT;
4089 goto out;
4091 ssleep(1);
4092 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4093 pr_info(MPT3SAS_FMT
4094 "%s: waiting for operational state(count=%d)\n",
4095 ioc->name,
4096 __func__, wait_state_count);
4099 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4100 if (!smid) {
4101 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4102 ioc->name, __func__);
4103 rc = -EAGAIN;
4104 goto out;
4107 rc = 0;
4108 ioc->base_cmds.status = MPT3_CMD_PENDING;
4109 request = mpt3sas_base_get_msg_frame(ioc, smid);
4110 ioc->base_cmds.smid = smid;
4111 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4112 init_completion(&ioc->base_cmds.done);
4113 mpt3sas_base_put_smid_default(ioc, smid);
4114 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4115 msecs_to_jiffies(10000));
4116 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4117 pr_err(MPT3SAS_FMT "%s: timeout\n",
4118 ioc->name, __func__);
4119 _debug_dump_mf(mpi_request,
4120 sizeof(Mpi2SepRequest_t)/4);
4121 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4122 issue_reset = false;
4123 goto issue_host_reset;
4125 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4126 memcpy(mpi_reply, ioc->base_cmds.reply,
4127 sizeof(Mpi2SepReply_t));
4128 else
4129 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4130 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4131 goto out;
4133 issue_host_reset:
4134 if (issue_reset)
4135 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4136 FORCE_BIG_HAMMER);
4137 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4138 rc = -EFAULT;
4139 out:
4140 mutex_unlock(&ioc->base_cmds.mutex);
4141 return rc;
4145 * _base_get_port_facts - obtain port facts reply and save in ioc
4146 * @ioc: per adapter object
4147 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4149 * Returns 0 for success, non-zero for failure.
4151 static int
4152 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4154 Mpi2PortFactsRequest_t mpi_request;
4155 Mpi2PortFactsReply_t mpi_reply;
4156 struct mpt3sas_port_facts *pfacts;
4157 int mpi_reply_sz, mpi_request_sz, r;
4159 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4160 __func__));
4162 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4163 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4164 memset(&mpi_request, 0, mpi_request_sz);
4165 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4166 mpi_request.PortNumber = port;
4167 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4168 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4170 if (r != 0) {
4171 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4172 ioc->name, __func__, r);
4173 return r;
4176 pfacts = &ioc->pfacts[port];
4177 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4178 pfacts->PortNumber = mpi_reply.PortNumber;
4179 pfacts->VP_ID = mpi_reply.VP_ID;
4180 pfacts->VF_ID = mpi_reply.VF_ID;
4181 pfacts->MaxPostedCmdBuffers =
4182 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4184 return 0;
4188 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4189 * @ioc: per adapter object
4190 * @timeout:
4191 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4193 * Returns 0 for success, non-zero for failure.
4195 static int
4196 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4197 int sleep_flag)
4199 u32 ioc_state;
4200 int rc;
4202 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4203 __func__));
4205 if (ioc->pci_error_recovery) {
4206 dfailprintk(ioc, printk(MPT3SAS_FMT
4207 "%s: host in pci error recovery\n", ioc->name, __func__));
4208 return -EFAULT;
4211 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4212 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4213 ioc->name, __func__, ioc_state));
4215 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4216 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4217 return 0;
4219 if (ioc_state & MPI2_DOORBELL_USED) {
4220 dhsprintk(ioc, printk(MPT3SAS_FMT
4221 "unexpected doorbell active!\n", ioc->name));
4222 goto issue_diag_reset;
4225 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4226 mpt3sas_base_fault_info(ioc, ioc_state &
4227 MPI2_DOORBELL_DATA_MASK);
4228 goto issue_diag_reset;
4231 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4232 timeout, sleep_flag);
4233 if (ioc_state) {
4234 dfailprintk(ioc, printk(MPT3SAS_FMT
4235 "%s: failed going to ready state (ioc_state=0x%x)\n",
4236 ioc->name, __func__, ioc_state));
4237 return -EFAULT;
4240 issue_diag_reset:
4241 rc = _base_diag_reset(ioc, sleep_flag);
4242 return rc;
4246 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4247 * @ioc: per adapter object
4248 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4250 * Returns 0 for success, non-zero for failure.
4252 static int
4253 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4255 Mpi2IOCFactsRequest_t mpi_request;
4256 Mpi2IOCFactsReply_t mpi_reply;
4257 struct mpt3sas_facts *facts;
4258 int mpi_reply_sz, mpi_request_sz, r;
4260 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4261 __func__));
4263 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4264 if (r) {
4265 dfailprintk(ioc, printk(MPT3SAS_FMT
4266 "%s: failed getting to correct state\n",
4267 ioc->name, __func__));
4268 return r;
4270 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4271 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4272 memset(&mpi_request, 0, mpi_request_sz);
4273 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4274 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4275 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4277 if (r != 0) {
4278 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4279 ioc->name, __func__, r);
4280 return r;
4283 facts = &ioc->facts;
4284 memset(facts, 0, sizeof(struct mpt3sas_facts));
4285 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4286 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4287 facts->VP_ID = mpi_reply.VP_ID;
4288 facts->VF_ID = mpi_reply.VF_ID;
4289 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4290 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4291 facts->WhoInit = mpi_reply.WhoInit;
4292 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4293 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4294 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4295 facts->MaxReplyDescriptorPostQueueDepth =
4296 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4297 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4298 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4299 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4300 ioc->ir_firmware = 1;
4301 if ((facts->IOCCapabilities &
4302 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4303 ioc->rdpq_array_capable = 1;
4304 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4305 facts->IOCRequestFrameSize =
4306 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4307 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4308 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4309 ioc->shost->max_id = -1;
4310 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4311 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4312 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4313 facts->HighPriorityCredit =
4314 le16_to_cpu(mpi_reply.HighPriorityCredit);
4315 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4316 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4318 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4319 "hba queue depth(%d), max chains per io(%d)\n",
4320 ioc->name, facts->RequestCredit,
4321 facts->MaxChainDepth));
4322 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4323 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4324 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4325 return 0;
4329 * _base_send_ioc_init - send ioc_init to firmware
4330 * @ioc: per adapter object
4331 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4333 * Returns 0 for success, non-zero for failure.
4335 static int
4336 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4338 Mpi2IOCInitRequest_t mpi_request;
4339 Mpi2IOCInitReply_t mpi_reply;
4340 int i, r = 0;
4341 struct timeval current_time;
4342 u16 ioc_status;
4343 u32 reply_post_free_array_sz = 0;
4344 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4345 dma_addr_t reply_post_free_array_dma;
4347 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4348 __func__));
4350 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4351 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4352 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4353 mpi_request.VF_ID = 0; /* TODO */
4354 mpi_request.VP_ID = 0;
4355 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4356 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4358 if (_base_is_controller_msix_enabled(ioc))
4359 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4360 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4361 mpi_request.ReplyDescriptorPostQueueDepth =
4362 cpu_to_le16(ioc->reply_post_queue_depth);
4363 mpi_request.ReplyFreeQueueDepth =
4364 cpu_to_le16(ioc->reply_free_queue_depth);
4366 mpi_request.SenseBufferAddressHigh =
4367 cpu_to_le32((u64)ioc->sense_dma >> 32);
4368 mpi_request.SystemReplyAddressHigh =
4369 cpu_to_le32((u64)ioc->reply_dma >> 32);
4370 mpi_request.SystemRequestFrameBaseAddress =
4371 cpu_to_le64((u64)ioc->request_dma);
4372 mpi_request.ReplyFreeQueueAddress =
4373 cpu_to_le64((u64)ioc->reply_free_dma);
4375 if (ioc->rdpq_array_enable) {
4376 reply_post_free_array_sz = ioc->reply_queue_count *
4377 sizeof(Mpi2IOCInitRDPQArrayEntry);
4378 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4379 reply_post_free_array_sz, &reply_post_free_array_dma);
4380 if (!reply_post_free_array) {
4381 pr_err(MPT3SAS_FMT
4382 "reply_post_free_array: pci_alloc_consistent failed\n",
4383 ioc->name);
4384 r = -ENOMEM;
4385 goto out;
4387 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4388 for (i = 0; i < ioc->reply_queue_count; i++)
4389 reply_post_free_array[i].RDPQBaseAddress =
4390 cpu_to_le64(
4391 (u64)ioc->reply_post[i].reply_post_free_dma);
4392 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4393 mpi_request.ReplyDescriptorPostQueueAddress =
4394 cpu_to_le64((u64)reply_post_free_array_dma);
4395 } else {
4396 mpi_request.ReplyDescriptorPostQueueAddress =
4397 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4400 /* This time stamp specifies number of milliseconds
4401 * since epoch ~ midnight January 1, 1970.
4403 do_gettimeofday(&current_time);
4404 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4405 (current_time.tv_usec / 1000));
4407 if (ioc->logging_level & MPT_DEBUG_INIT) {
4408 __le32 *mfp;
4409 int i;
4411 mfp = (__le32 *)&mpi_request;
4412 pr_info("\toffset:data\n");
4413 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4414 pr_info("\t[0x%02x]:%08x\n", i*4,
4415 le32_to_cpu(mfp[i]));
4418 r = _base_handshake_req_reply_wait(ioc,
4419 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4420 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4421 sleep_flag);
4423 if (r != 0) {
4424 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4425 ioc->name, __func__, r);
4426 goto out;
4429 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4430 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4431 mpi_reply.IOCLogInfo) {
4432 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4433 r = -EIO;
4436 out:
4437 if (reply_post_free_array)
4438 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4439 reply_post_free_array,
4440 reply_post_free_array_dma);
4441 return r;
4445 * mpt3sas_port_enable_done - command completion routine for port enable
4446 * @ioc: per adapter object
4447 * @smid: system request message index
4448 * @msix_index: MSIX table index supplied by the OS
4449 * @reply: reply message frame(lower 32bit addr)
4451 * Return 1 meaning mf should be freed from _base_interrupt
4452 * 0 means the mf is freed from this function.
4455 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4456 u32 reply)
4458 MPI2DefaultReply_t *mpi_reply;
4459 u16 ioc_status;
4461 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4462 return 1;
4464 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4465 if (!mpi_reply)
4466 return 1;
4468 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4469 return 1;
4471 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4472 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4473 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4474 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4475 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4476 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4477 ioc->port_enable_failed = 1;
4479 if (ioc->is_driver_loading) {
4480 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4481 mpt3sas_port_enable_complete(ioc);
4482 return 1;
4483 } else {
4484 ioc->start_scan_failed = ioc_status;
4485 ioc->start_scan = 0;
4486 return 1;
4489 complete(&ioc->port_enable_cmds.done);
4490 return 1;
4494 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4495 * @ioc: per adapter object
4496 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4498 * Returns 0 for success, non-zero for failure.
4500 static int
4501 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4503 Mpi2PortEnableRequest_t *mpi_request;
4504 Mpi2PortEnableReply_t *mpi_reply;
4505 unsigned long timeleft;
4506 int r = 0;
4507 u16 smid;
4508 u16 ioc_status;
4510 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4512 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4513 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4514 ioc->name, __func__);
4515 return -EAGAIN;
4518 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4519 if (!smid) {
4520 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4521 ioc->name, __func__);
4522 return -EAGAIN;
4525 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4526 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4527 ioc->port_enable_cmds.smid = smid;
4528 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4529 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4531 init_completion(&ioc->port_enable_cmds.done);
4532 mpt3sas_base_put_smid_default(ioc, smid);
4533 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4534 300*HZ);
4535 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4536 pr_err(MPT3SAS_FMT "%s: timeout\n",
4537 ioc->name, __func__);
4538 _debug_dump_mf(mpi_request,
4539 sizeof(Mpi2PortEnableRequest_t)/4);
4540 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4541 r = -EFAULT;
4542 else
4543 r = -ETIME;
4544 goto out;
4547 mpi_reply = ioc->port_enable_cmds.reply;
4548 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4549 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4550 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4551 ioc->name, __func__, ioc_status);
4552 r = -EFAULT;
4553 goto out;
4556 out:
4557 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4558 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4559 "SUCCESS" : "FAILED"));
4560 return r;
4564 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4565 * @ioc: per adapter object
4567 * Returns 0 for success, non-zero for failure.
4570 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4572 Mpi2PortEnableRequest_t *mpi_request;
4573 u16 smid;
4575 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4577 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4578 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4579 ioc->name, __func__);
4580 return -EAGAIN;
4583 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4584 if (!smid) {
4585 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4586 ioc->name, __func__);
4587 return -EAGAIN;
4590 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4591 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4592 ioc->port_enable_cmds.smid = smid;
4593 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4594 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4596 mpt3sas_base_put_smid_default(ioc, smid);
4597 return 0;
4601 * _base_determine_wait_on_discovery - desposition
4602 * @ioc: per adapter object
4604 * Decide whether to wait on discovery to complete. Used to either
4605 * locate boot device, or report volumes ahead of physical devices.
4607 * Returns 1 for wait, 0 for don't wait
4609 static int
4610 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4612 /* We wait for discovery to complete if IR firmware is loaded.
4613 * The sas topology events arrive before PD events, so we need time to
4614 * turn on the bit in ioc->pd_handles to indicate PD
4615 * Also, it maybe required to report Volumes ahead of physical
4616 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4618 if (ioc->ir_firmware)
4619 return 1;
4621 /* if no Bios, then we don't need to wait */
4622 if (!ioc->bios_pg3.BiosVersion)
4623 return 0;
4625 /* Bios is present, then we drop down here.
4627 * If there any entries in the Bios Page 2, then we wait
4628 * for discovery to complete.
4631 /* Current Boot Device */
4632 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4633 MPI2_BIOSPAGE2_FORM_MASK) ==
4634 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4635 /* Request Boot Device */
4636 (ioc->bios_pg2.ReqBootDeviceForm &
4637 MPI2_BIOSPAGE2_FORM_MASK) ==
4638 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4639 /* Alternate Request Boot Device */
4640 (ioc->bios_pg2.ReqAltBootDeviceForm &
4641 MPI2_BIOSPAGE2_FORM_MASK) ==
4642 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4643 return 0;
4645 return 1;
4649 * _base_unmask_events - turn on notification for this event
4650 * @ioc: per adapter object
4651 * @event: firmware event
4653 * The mask is stored in ioc->event_masks.
4655 static void
4656 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4658 u32 desired_event;
4660 if (event >= 128)
4661 return;
4663 desired_event = (1 << (event % 32));
4665 if (event < 32)
4666 ioc->event_masks[0] &= ~desired_event;
4667 else if (event < 64)
4668 ioc->event_masks[1] &= ~desired_event;
4669 else if (event < 96)
4670 ioc->event_masks[2] &= ~desired_event;
4671 else if (event < 128)
4672 ioc->event_masks[3] &= ~desired_event;
4676 * _base_event_notification - send event notification
4677 * @ioc: per adapter object
4678 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4680 * Returns 0 for success, non-zero for failure.
4682 static int
4683 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4685 Mpi2EventNotificationRequest_t *mpi_request;
4686 unsigned long timeleft;
4687 u16 smid;
4688 int r = 0;
4689 int i;
4691 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4692 __func__));
4694 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4695 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4696 ioc->name, __func__);
4697 return -EAGAIN;
4700 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4701 if (!smid) {
4702 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4703 ioc->name, __func__);
4704 return -EAGAIN;
4706 ioc->base_cmds.status = MPT3_CMD_PENDING;
4707 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4708 ioc->base_cmds.smid = smid;
4709 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4710 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4711 mpi_request->VF_ID = 0; /* TODO */
4712 mpi_request->VP_ID = 0;
4713 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4714 mpi_request->EventMasks[i] =
4715 cpu_to_le32(ioc->event_masks[i]);
4716 init_completion(&ioc->base_cmds.done);
4717 mpt3sas_base_put_smid_default(ioc, smid);
4718 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4719 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4720 pr_err(MPT3SAS_FMT "%s: timeout\n",
4721 ioc->name, __func__);
4722 _debug_dump_mf(mpi_request,
4723 sizeof(Mpi2EventNotificationRequest_t)/4);
4724 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4725 r = -EFAULT;
4726 else
4727 r = -ETIME;
4728 } else
4729 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4730 ioc->name, __func__));
4731 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4732 return r;
4736 * mpt3sas_base_validate_event_type - validating event types
4737 * @ioc: per adapter object
4738 * @event: firmware event
4740 * This will turn on firmware event notification when application
4741 * ask for that event. We don't mask events that are already enabled.
4743 void
4744 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4746 int i, j;
4747 u32 event_mask, desired_event;
4748 u8 send_update_to_fw;
4750 for (i = 0, send_update_to_fw = 0; i <
4751 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4752 event_mask = ~event_type[i];
4753 desired_event = 1;
4754 for (j = 0; j < 32; j++) {
4755 if (!(event_mask & desired_event) &&
4756 (ioc->event_masks[i] & desired_event)) {
4757 ioc->event_masks[i] &= ~desired_event;
4758 send_update_to_fw = 1;
4760 desired_event = (desired_event << 1);
4764 if (!send_update_to_fw)
4765 return;
4767 mutex_lock(&ioc->base_cmds.mutex);
4768 _base_event_notification(ioc, CAN_SLEEP);
4769 mutex_unlock(&ioc->base_cmds.mutex);
4773 * _base_diag_reset - the "big hammer" start of day reset
4774 * @ioc: per adapter object
4775 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4777 * Returns 0 for success, non-zero for failure.
4779 static int
4780 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4782 u32 host_diagnostic;
4783 u32 ioc_state;
4784 u32 count;
4785 u32 hcb_size;
4787 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4789 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4790 ioc->name));
4792 count = 0;
4793 do {
4794 /* Write magic sequence to WriteSequence register
4795 * Loop until in diagnostic mode
4797 drsprintk(ioc, pr_info(MPT3SAS_FMT
4798 "write magic sequence\n", ioc->name));
4799 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4800 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4801 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4802 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4803 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4804 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4805 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4807 /* wait 100 msec */
4808 if (sleep_flag == CAN_SLEEP)
4809 msleep(100);
4810 else
4811 mdelay(100);
4813 if (count++ > 20)
4814 goto out;
4816 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4817 drsprintk(ioc, pr_info(MPT3SAS_FMT
4818 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4819 ioc->name, count, host_diagnostic));
4821 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4823 hcb_size = readl(&ioc->chip->HCBSize);
4825 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4826 ioc->name));
4827 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4828 &ioc->chip->HostDiagnostic);
4830 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4831 if (sleep_flag == CAN_SLEEP)
4832 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4833 else
4834 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4836 /* Approximately 300 second max wait */
4837 for (count = 0; count < (300000000 /
4838 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4840 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4842 if (host_diagnostic == 0xFFFFFFFF)
4843 goto out;
4844 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4845 break;
4847 /* Wait to pass the second read delay window */
4848 if (sleep_flag == CAN_SLEEP)
4849 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4850 / 1000);
4851 else
4852 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4853 / 1000);
4856 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4858 drsprintk(ioc, pr_info(MPT3SAS_FMT
4859 "restart the adapter assuming the HCB Address points to good F/W\n",
4860 ioc->name));
4861 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4862 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4863 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4865 drsprintk(ioc, pr_info(MPT3SAS_FMT
4866 "re-enable the HCDW\n", ioc->name));
4867 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4868 &ioc->chip->HCBSize);
4871 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4872 ioc->name));
4873 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4874 &ioc->chip->HostDiagnostic);
4876 drsprintk(ioc, pr_info(MPT3SAS_FMT
4877 "disable writes to the diagnostic register\n", ioc->name));
4878 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4880 drsprintk(ioc, pr_info(MPT3SAS_FMT
4881 "Wait for FW to go to the READY state\n", ioc->name));
4882 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4883 sleep_flag);
4884 if (ioc_state) {
4885 pr_err(MPT3SAS_FMT
4886 "%s: failed going to ready state (ioc_state=0x%x)\n",
4887 ioc->name, __func__, ioc_state);
4888 goto out;
4891 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4892 return 0;
4894 out:
4895 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4896 return -EFAULT;
4900 * _base_make_ioc_ready - put controller in READY state
4901 * @ioc: per adapter object
4902 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4903 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4905 * Returns 0 for success, non-zero for failure.
4907 static int
4908 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4909 enum reset_type type)
4911 u32 ioc_state;
4912 int rc;
4913 int count;
4915 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4916 __func__));
4918 if (ioc->pci_error_recovery)
4919 return 0;
4921 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4922 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4923 ioc->name, __func__, ioc_state));
4925 /* if in RESET state, it should move to READY state shortly */
4926 count = 0;
4927 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4928 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4929 MPI2_IOC_STATE_READY) {
4930 if (count++ == 10) {
4931 pr_err(MPT3SAS_FMT
4932 "%s: failed going to ready state (ioc_state=0x%x)\n",
4933 ioc->name, __func__, ioc_state);
4934 return -EFAULT;
4936 if (sleep_flag == CAN_SLEEP)
4937 ssleep(1);
4938 else
4939 mdelay(1000);
4940 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4944 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4945 return 0;
4947 if (ioc_state & MPI2_DOORBELL_USED) {
4948 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4949 "unexpected doorbell active!\n",
4950 ioc->name));
4951 goto issue_diag_reset;
4954 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4955 mpt3sas_base_fault_info(ioc, ioc_state &
4956 MPI2_DOORBELL_DATA_MASK);
4957 goto issue_diag_reset;
4960 if (type == FORCE_BIG_HAMMER)
4961 goto issue_diag_reset;
4963 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4964 if (!(_base_send_ioc_reset(ioc,
4965 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4966 return 0;
4969 issue_diag_reset:
4970 rc = _base_diag_reset(ioc, CAN_SLEEP);
4971 return rc;
4975 * _base_make_ioc_operational - put controller in OPERATIONAL state
4976 * @ioc: per adapter object
4977 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4979 * Returns 0 for success, non-zero for failure.
4981 static int
4982 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4984 int r, i, index;
4985 unsigned long flags;
4986 u32 reply_address;
4987 u16 smid;
4988 struct _tr_list *delayed_tr, *delayed_tr_next;
4989 u8 hide_flag;
4990 struct adapter_reply_queue *reply_q;
4991 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
4993 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4994 __func__));
4996 /* clean the delayed target reset list */
4997 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4998 &ioc->delayed_tr_list, list) {
4999 list_del(&delayed_tr->list);
5000 kfree(delayed_tr);
5004 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5005 &ioc->delayed_tr_volume_list, list) {
5006 list_del(&delayed_tr->list);
5007 kfree(delayed_tr);
5010 /* initialize the scsi lookup free list */
5011 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5012 INIT_LIST_HEAD(&ioc->free_list);
5013 smid = 1;
5014 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5015 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5016 ioc->scsi_lookup[i].cb_idx = 0xFF;
5017 ioc->scsi_lookup[i].smid = smid;
5018 ioc->scsi_lookup[i].scmd = NULL;
5019 ioc->scsi_lookup[i].direct_io = 0;
5020 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5021 &ioc->free_list);
5024 /* hi-priority queue */
5025 INIT_LIST_HEAD(&ioc->hpr_free_list);
5026 smid = ioc->hi_priority_smid;
5027 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5028 ioc->hpr_lookup[i].cb_idx = 0xFF;
5029 ioc->hpr_lookup[i].smid = smid;
5030 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5031 &ioc->hpr_free_list);
5034 /* internal queue */
5035 INIT_LIST_HEAD(&ioc->internal_free_list);
5036 smid = ioc->internal_smid;
5037 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5038 ioc->internal_lookup[i].cb_idx = 0xFF;
5039 ioc->internal_lookup[i].smid = smid;
5040 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5041 &ioc->internal_free_list);
5044 /* chain pool */
5045 INIT_LIST_HEAD(&ioc->free_chain_list);
5046 for (i = 0; i < ioc->chain_depth; i++)
5047 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5048 &ioc->free_chain_list);
5050 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5052 /* initialize Reply Free Queue */
5053 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5054 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5055 ioc->reply_sz)
5056 ioc->reply_free[i] = cpu_to_le32(reply_address);
5058 /* initialize reply queues */
5059 if (ioc->is_driver_loading)
5060 _base_assign_reply_queues(ioc);
5062 /* initialize Reply Post Free Queue */
5063 index = 0;
5064 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5065 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5067 * If RDPQ is enabled, switch to the next allocation.
5068 * Otherwise advance within the contiguous region.
5070 if (ioc->rdpq_array_enable) {
5071 reply_q->reply_post_free =
5072 ioc->reply_post[index++].reply_post_free;
5073 } else {
5074 reply_q->reply_post_free = reply_post_free_contig;
5075 reply_post_free_contig += ioc->reply_post_queue_depth;
5078 reply_q->reply_post_host_index = 0;
5079 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5080 reply_q->reply_post_free[i].Words =
5081 cpu_to_le64(ULLONG_MAX);
5082 if (!_base_is_controller_msix_enabled(ioc))
5083 goto skip_init_reply_post_free_queue;
5085 skip_init_reply_post_free_queue:
5087 r = _base_send_ioc_init(ioc, sleep_flag);
5088 if (r)
5089 return r;
5091 /* initialize reply free host index */
5092 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5093 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5095 /* initialize reply post host index */
5096 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5097 if (ioc->msix96_vector)
5098 writel((reply_q->msix_index & 7)<<
5099 MPI2_RPHI_MSIX_INDEX_SHIFT,
5100 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5101 else
5102 writel(reply_q->msix_index <<
5103 MPI2_RPHI_MSIX_INDEX_SHIFT,
5104 &ioc->chip->ReplyPostHostIndex);
5106 if (!_base_is_controller_msix_enabled(ioc))
5107 goto skip_init_reply_post_host_index;
5110 skip_init_reply_post_host_index:
5112 _base_unmask_interrupts(ioc);
5113 r = _base_event_notification(ioc, sleep_flag);
5114 if (r)
5115 return r;
5117 if (sleep_flag == CAN_SLEEP)
5118 _base_static_config_pages(ioc);
5121 if (ioc->is_driver_loading) {
5123 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5124 == 0x80) {
5125 hide_flag = (u8) (
5126 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5127 MFG_PAGE10_HIDE_SSDS_MASK);
5128 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5129 ioc->mfg_pg10_hide_flag = hide_flag;
5132 ioc->wait_for_discovery_to_complete =
5133 _base_determine_wait_on_discovery(ioc);
5135 return r; /* scan_start and scan_finished support */
5138 r = _base_send_port_enable(ioc, sleep_flag);
5139 if (r)
5140 return r;
5142 return r;
5146 * mpt3sas_base_free_resources - free resources controller resources
5147 * @ioc: per adapter object
5149 * Return nothing.
5151 void
5152 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5154 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5155 __func__));
5157 /* synchronizing freeing resource with pci_access_mutex lock */
5158 mutex_lock(&ioc->pci_access_mutex);
5159 if (ioc->chip_phys && ioc->chip) {
5160 _base_mask_interrupts(ioc);
5161 ioc->shost_recovery = 1;
5162 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5163 ioc->shost_recovery = 0;
5166 mpt3sas_base_unmap_resources(ioc);
5167 mutex_unlock(&ioc->pci_access_mutex);
5168 return;
5172 * mpt3sas_base_attach - attach controller instance
5173 * @ioc: per adapter object
5175 * Returns 0 for success, non-zero for failure.
5178 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5180 int r, i;
5181 int cpu_id, last_cpu_id = 0;
5183 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5184 __func__));
5186 /* setup cpu_msix_table */
5187 ioc->cpu_count = num_online_cpus();
5188 for_each_online_cpu(cpu_id)
5189 last_cpu_id = cpu_id;
5190 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5191 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5192 ioc->reply_queue_count = 1;
5193 if (!ioc->cpu_msix_table) {
5194 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5195 "allocation for cpu_msix_table failed!!!\n",
5196 ioc->name));
5197 r = -ENOMEM;
5198 goto out_free_resources;
5201 if (ioc->is_warpdrive) {
5202 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5203 sizeof(resource_size_t *), GFP_KERNEL);
5204 if (!ioc->reply_post_host_index) {
5205 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5206 "for cpu_msix_table failed!!!\n", ioc->name));
5207 r = -ENOMEM;
5208 goto out_free_resources;
5212 ioc->rdpq_array_enable_assigned = 0;
5213 ioc->dma_mask = 0;
5214 r = mpt3sas_base_map_resources(ioc);
5215 if (r)
5216 goto out_free_resources;
5218 pci_set_drvdata(ioc->pdev, ioc->shost);
5219 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5220 if (r)
5221 goto out_free_resources;
5223 switch (ioc->hba_mpi_version_belonged) {
5224 case MPI2_VERSION:
5225 ioc->build_sg_scmd = &_base_build_sg_scmd;
5226 ioc->build_sg = &_base_build_sg;
5227 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5228 break;
5229 case MPI25_VERSION:
5231 * In SAS3.0,
5232 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5233 * Target Status - all require the IEEE formated scatter gather
5234 * elements.
5236 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5237 ioc->build_sg = &_base_build_sg_ieee;
5238 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5239 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5240 break;
5244 * These function pointers for other requests that don't
5245 * the require IEEE scatter gather elements.
5247 * For example Configuration Pages and SAS IOUNIT Control don't.
5249 ioc->build_sg_mpi = &_base_build_sg;
5250 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5252 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5253 if (r)
5254 goto out_free_resources;
5256 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5257 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5258 if (!ioc->pfacts) {
5259 r = -ENOMEM;
5260 goto out_free_resources;
5263 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5264 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5265 if (r)
5266 goto out_free_resources;
5269 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5270 if (r)
5271 goto out_free_resources;
5273 init_waitqueue_head(&ioc->reset_wq);
5275 /* allocate memory pd handle bitmask list */
5276 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5277 if (ioc->facts.MaxDevHandle % 8)
5278 ioc->pd_handles_sz++;
5279 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5280 GFP_KERNEL);
5281 if (!ioc->pd_handles) {
5282 r = -ENOMEM;
5283 goto out_free_resources;
5285 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5286 GFP_KERNEL);
5287 if (!ioc->blocking_handles) {
5288 r = -ENOMEM;
5289 goto out_free_resources;
5292 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5294 /* base internal command bits */
5295 mutex_init(&ioc->base_cmds.mutex);
5296 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5297 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5299 /* port_enable command bits */
5300 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5301 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5303 /* transport internal command bits */
5304 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5305 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5306 mutex_init(&ioc->transport_cmds.mutex);
5308 /* scsih internal command bits */
5309 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5310 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5311 mutex_init(&ioc->scsih_cmds.mutex);
5313 /* task management internal command bits */
5314 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5315 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5316 mutex_init(&ioc->tm_cmds.mutex);
5318 /* config page internal command bits */
5319 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5320 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5321 mutex_init(&ioc->config_cmds.mutex);
5323 /* ctl module internal command bits */
5324 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5325 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5326 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5327 mutex_init(&ioc->ctl_cmds.mutex);
5329 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5330 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5331 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5332 !ioc->ctl_cmds.sense) {
5333 r = -ENOMEM;
5334 goto out_free_resources;
5337 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5338 ioc->event_masks[i] = -1;
5340 /* here we enable the events we care about */
5341 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5342 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5343 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5344 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5345 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5346 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5347 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5348 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5349 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5350 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5351 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5353 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5354 if (r)
5355 goto out_free_resources;
5357 ioc->non_operational_loop = 0;
5358 return 0;
5360 out_free_resources:
5362 ioc->remove_host = 1;
5364 mpt3sas_base_free_resources(ioc);
5365 _base_release_memory_pools(ioc);
5366 pci_set_drvdata(ioc->pdev, NULL);
5367 kfree(ioc->cpu_msix_table);
5368 if (ioc->is_warpdrive)
5369 kfree(ioc->reply_post_host_index);
5370 kfree(ioc->pd_handles);
5371 kfree(ioc->blocking_handles);
5372 kfree(ioc->tm_cmds.reply);
5373 kfree(ioc->transport_cmds.reply);
5374 kfree(ioc->scsih_cmds.reply);
5375 kfree(ioc->config_cmds.reply);
5376 kfree(ioc->base_cmds.reply);
5377 kfree(ioc->port_enable_cmds.reply);
5378 kfree(ioc->ctl_cmds.reply);
5379 kfree(ioc->ctl_cmds.sense);
5380 kfree(ioc->pfacts);
5381 ioc->ctl_cmds.reply = NULL;
5382 ioc->base_cmds.reply = NULL;
5383 ioc->tm_cmds.reply = NULL;
5384 ioc->scsih_cmds.reply = NULL;
5385 ioc->transport_cmds.reply = NULL;
5386 ioc->config_cmds.reply = NULL;
5387 ioc->pfacts = NULL;
5388 return r;
5393 * mpt3sas_base_detach - remove controller instance
5394 * @ioc: per adapter object
5396 * Return nothing.
5398 void
5399 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5401 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5402 __func__));
5404 mpt3sas_base_stop_watchdog(ioc);
5405 mpt3sas_base_free_resources(ioc);
5406 _base_release_memory_pools(ioc);
5407 pci_set_drvdata(ioc->pdev, NULL);
5408 kfree(ioc->cpu_msix_table);
5409 if (ioc->is_warpdrive)
5410 kfree(ioc->reply_post_host_index);
5411 kfree(ioc->pd_handles);
5412 kfree(ioc->blocking_handles);
5413 kfree(ioc->pfacts);
5414 kfree(ioc->ctl_cmds.reply);
5415 kfree(ioc->ctl_cmds.sense);
5416 kfree(ioc->base_cmds.reply);
5417 kfree(ioc->port_enable_cmds.reply);
5418 kfree(ioc->tm_cmds.reply);
5419 kfree(ioc->transport_cmds.reply);
5420 kfree(ioc->scsih_cmds.reply);
5421 kfree(ioc->config_cmds.reply);
5425 * _base_reset_handler - reset callback handler (for base)
5426 * @ioc: per adapter object
5427 * @reset_phase: phase
5429 * The handler for doing any required cleanup or initialization.
5431 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5432 * MPT3_IOC_DONE_RESET
5434 * Return nothing.
5436 static void
5437 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5439 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5440 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5441 switch (reset_phase) {
5442 case MPT3_IOC_PRE_RESET:
5443 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5444 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5445 break;
5446 case MPT3_IOC_AFTER_RESET:
5447 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5448 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5449 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5450 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5451 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5452 complete(&ioc->transport_cmds.done);
5454 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5455 ioc->base_cmds.status |= MPT3_CMD_RESET;
5456 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5457 complete(&ioc->base_cmds.done);
5459 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5460 ioc->port_enable_failed = 1;
5461 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5462 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5463 if (ioc->is_driver_loading) {
5464 ioc->start_scan_failed =
5465 MPI2_IOCSTATUS_INTERNAL_ERROR;
5466 ioc->start_scan = 0;
5467 ioc->port_enable_cmds.status =
5468 MPT3_CMD_NOT_USED;
5469 } else
5470 complete(&ioc->port_enable_cmds.done);
5472 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5473 ioc->config_cmds.status |= MPT3_CMD_RESET;
5474 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5475 ioc->config_cmds.smid = USHRT_MAX;
5476 complete(&ioc->config_cmds.done);
5478 break;
5479 case MPT3_IOC_DONE_RESET:
5480 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5481 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5482 break;
5487 * _wait_for_commands_to_complete - reset controller
5488 * @ioc: Pointer to MPT_ADAPTER structure
5489 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5491 * This function waiting(3s) for all pending commands to complete
5492 * prior to putting controller in reset.
5494 static void
5495 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5497 u32 ioc_state;
5498 unsigned long flags;
5499 u16 i;
5501 ioc->pending_io_count = 0;
5502 if (sleep_flag != CAN_SLEEP)
5503 return;
5505 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5506 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5507 return;
5509 /* pending command count */
5510 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5511 for (i = 0; i < ioc->scsiio_depth; i++)
5512 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5513 ioc->pending_io_count++;
5514 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5516 if (!ioc->pending_io_count)
5517 return;
5519 /* wait for pending commands to complete */
5520 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5524 * mpt3sas_base_hard_reset_handler - reset controller
5525 * @ioc: Pointer to MPT_ADAPTER structure
5526 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5527 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5529 * Returns 0 for success, non-zero for failure.
5532 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5533 enum reset_type type)
5535 int r;
5536 unsigned long flags;
5537 u32 ioc_state;
5538 u8 is_fault = 0, is_trigger = 0;
5540 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5541 __func__));
5543 if (ioc->pci_error_recovery) {
5544 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5545 ioc->name, __func__);
5546 r = 0;
5547 goto out_unlocked;
5550 if (mpt3sas_fwfault_debug)
5551 mpt3sas_halt_firmware(ioc);
5553 /* TODO - What we really should be doing is pulling
5554 * out all the code associated with NO_SLEEP; its never used.
5555 * That is legacy code from mpt fusion driver, ported over.
5556 * I will leave this BUG_ON here for now till its been resolved.
5558 BUG_ON(sleep_flag == NO_SLEEP);
5560 /* wait for an active reset in progress to complete */
5561 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5562 do {
5563 ssleep(1);
5564 } while (ioc->shost_recovery == 1);
5565 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5566 __func__));
5567 return ioc->ioc_reset_in_progress_status;
5570 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5571 ioc->shost_recovery = 1;
5572 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5574 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5575 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5576 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5577 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5578 is_trigger = 1;
5579 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5580 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5581 is_fault = 1;
5583 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5584 _wait_for_commands_to_complete(ioc, sleep_flag);
5585 _base_mask_interrupts(ioc);
5586 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5587 if (r)
5588 goto out;
5589 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5591 /* If this hard reset is called while port enable is active, then
5592 * there is no reason to call make_ioc_operational
5594 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5595 ioc->remove_host = 1;
5596 r = -EFAULT;
5597 goto out;
5599 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5600 if (r)
5601 goto out;
5603 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5604 panic("%s: Issue occurred with flashing controller firmware."
5605 "Please reboot the system and ensure that the correct"
5606 " firmware version is running\n", ioc->name);
5608 r = _base_make_ioc_operational(ioc, sleep_flag);
5609 if (!r)
5610 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5612 out:
5613 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5614 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5617 ioc->ioc_reset_in_progress_status = r;
5618 ioc->shost_recovery = 0;
5619 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5620 ioc->ioc_reset_count++;
5621 mutex_unlock(&ioc->reset_in_progress_mutex);
5623 out_unlocked:
5624 if ((r == 0) && is_trigger) {
5625 if (is_fault)
5626 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5627 else
5628 mpt3sas_trigger_master(ioc,
5629 MASTER_TRIGGER_ADAPTER_RESET);
5631 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5632 __func__));
5633 return r;