Linux 4.9.146
[linux/fpc-iii.git] / drivers / rapidio / rio.c
blob37042858c2db56b1e44287d9eaefb630adec454c
1 /*
2 * RapidIO interconnect services
3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
5 * Copyright 2005 MontaVista Software, Inc.
6 * Matt Porter <mporter@kernel.crashing.org>
8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9 * Alex Bounine <alexandre.bounine@idt.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
17 #include <linux/types.h>
18 #include <linux/kernel.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
31 #include "rio.h"
34 * struct rio_pwrite - RIO portwrite event
35 * @node: Node in list of doorbell events
36 * @pwcback: Doorbell event callback
37 * @context: Handler specific context to pass on event
39 struct rio_pwrite {
40 struct list_head node;
42 int (*pwcback)(struct rio_mport *mport, void *context,
43 union rio_pw_msg *msg, int step);
44 void *context;
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 "Destination ID assignment to local RapidIO controllers");
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
68 /**
69 * rio_local_get_device_id - Get the base/extended device id for a port
70 * @port: RIO master port from which to get the deviceid
72 * Reads the base/extended device id from the local device
73 * implementing the master port. Returns the 8/16-bit device
74 * id.
76 u16 rio_local_get_device_id(struct rio_mport *port)
78 u32 result;
80 rio_local_read_config_32(port, RIO_DID_CSR, &result);
82 return (RIO_GET_DID(port->sys_size, result));
85 /**
86 * rio_query_mport - Query mport device attributes
87 * @port: mport device to query
88 * @mport_attr: mport attributes data structure
90 * Returns attributes of specified mport through the
91 * pointer to attributes data structure.
93 int rio_query_mport(struct rio_mport *port,
94 struct rio_mport_attr *mport_attr)
96 if (!port->ops->query_mport)
97 return -ENODATA;
98 return port->ops->query_mport(port, mport_attr);
100 EXPORT_SYMBOL(rio_query_mport);
103 * rio_alloc_net- Allocate and initialize a new RIO network data structure
104 * @mport: Master port associated with the RIO network
106 * Allocates a RIO network structure, initializes per-network
107 * list heads, and adds the associated master port to the
108 * network list of associated master ports. Returns a
109 * RIO network pointer on success or %NULL on failure.
111 struct rio_net *rio_alloc_net(struct rio_mport *mport)
113 struct rio_net *net;
115 net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
116 if (net) {
117 INIT_LIST_HEAD(&net->node);
118 INIT_LIST_HEAD(&net->devices);
119 INIT_LIST_HEAD(&net->switches);
120 INIT_LIST_HEAD(&net->mports);
121 mport->net = net;
123 return net;
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
127 int rio_add_net(struct rio_net *net)
129 int err;
131 err = device_register(&net->dev);
132 if (err)
133 return err;
134 spin_lock(&rio_global_list_lock);
135 list_add_tail(&net->node, &rio_nets);
136 spin_unlock(&rio_global_list_lock);
138 return 0;
140 EXPORT_SYMBOL_GPL(rio_add_net);
142 void rio_free_net(struct rio_net *net)
144 spin_lock(&rio_global_list_lock);
145 if (!list_empty(&net->node))
146 list_del(&net->node);
147 spin_unlock(&rio_global_list_lock);
148 if (net->release)
149 net->release(net);
150 device_unregister(&net->dev);
152 EXPORT_SYMBOL_GPL(rio_free_net);
155 * rio_local_set_device_id - Set the base/extended device id for a port
156 * @port: RIO master port
157 * @did: Device ID value to be written
159 * Writes the base/extended device id from a device.
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
163 rio_local_write_config_32(port, RIO_DID_CSR,
164 RIO_SET_DID(port->sys_size, did));
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
169 * rio_add_device- Adds a RIO device to the device model
170 * @rdev: RIO device
172 * Adds the RIO device to the global device list and adds the RIO
173 * device to the RIO device list. Creates the generic sysfs nodes
174 * for an RIO device.
176 int rio_add_device(struct rio_dev *rdev)
178 int err;
180 atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 err = device_register(&rdev->dev);
182 if (err)
183 return err;
185 spin_lock(&rio_global_list_lock);
186 list_add_tail(&rdev->global_list, &rio_devices);
187 if (rdev->net) {
188 list_add_tail(&rdev->net_list, &rdev->net->devices);
189 if (rdev->pef & RIO_PEF_SWITCH)
190 list_add_tail(&rdev->rswitch->node,
191 &rdev->net->switches);
193 spin_unlock(&rio_global_list_lock);
195 rio_create_sysfs_dev_files(rdev);
197 return 0;
199 EXPORT_SYMBOL_GPL(rio_add_device);
202 * rio_del_device - removes a RIO device from the device model
203 * @rdev: RIO device
204 * @state: device state to set during removal process
206 * Removes the RIO device to the kernel device list and subsystem's device list.
207 * Clears sysfs entries for the removed device.
209 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
211 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
212 atomic_set(&rdev->state, state);
213 spin_lock(&rio_global_list_lock);
214 list_del(&rdev->global_list);
215 if (rdev->net) {
216 list_del(&rdev->net_list);
217 if (rdev->pef & RIO_PEF_SWITCH) {
218 list_del(&rdev->rswitch->node);
219 kfree(rdev->rswitch->route_table);
222 spin_unlock(&rio_global_list_lock);
223 rio_remove_sysfs_dev_files(rdev);
224 device_unregister(&rdev->dev);
226 EXPORT_SYMBOL_GPL(rio_del_device);
229 * rio_request_inb_mbox - request inbound mailbox service
230 * @mport: RIO master port from which to allocate the mailbox resource
231 * @dev_id: Device specific pointer to pass on event
232 * @mbox: Mailbox number to claim
233 * @entries: Number of entries in inbound mailbox queue
234 * @minb: Callback to execute when inbound message is received
236 * Requests ownership of an inbound mailbox resource and binds
237 * a callback function to the resource. Returns %0 on success.
239 int rio_request_inb_mbox(struct rio_mport *mport,
240 void *dev_id,
241 int mbox,
242 int entries,
243 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
244 int slot))
246 int rc = -ENOSYS;
247 struct resource *res;
249 if (mport->ops->open_inb_mbox == NULL)
250 goto out;
252 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
254 if (res) {
255 rio_init_mbox_res(res, mbox, mbox);
257 /* Make sure this mailbox isn't in use */
258 if ((rc =
259 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
260 res)) < 0) {
261 kfree(res);
262 goto out;
265 mport->inb_msg[mbox].res = res;
267 /* Hook the inbound message callback */
268 mport->inb_msg[mbox].mcback = minb;
270 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
271 if (rc) {
272 mport->inb_msg[mbox].mcback = NULL;
273 mport->inb_msg[mbox].res = NULL;
274 release_resource(res);
275 kfree(res);
277 } else
278 rc = -ENOMEM;
280 out:
281 return rc;
285 * rio_release_inb_mbox - release inbound mailbox message service
286 * @mport: RIO master port from which to release the mailbox resource
287 * @mbox: Mailbox number to release
289 * Releases ownership of an inbound mailbox resource. Returns 0
290 * if the request has been satisfied.
292 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
294 int rc;
296 if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
297 return -EINVAL;
299 mport->ops->close_inb_mbox(mport, mbox);
300 mport->inb_msg[mbox].mcback = NULL;
302 rc = release_resource(mport->inb_msg[mbox].res);
303 if (rc)
304 return rc;
306 kfree(mport->inb_msg[mbox].res);
307 mport->inb_msg[mbox].res = NULL;
309 return 0;
313 * rio_request_outb_mbox - request outbound mailbox service
314 * @mport: RIO master port from which to allocate the mailbox resource
315 * @dev_id: Device specific pointer to pass on event
316 * @mbox: Mailbox number to claim
317 * @entries: Number of entries in outbound mailbox queue
318 * @moutb: Callback to execute when outbound message is sent
320 * Requests ownership of an outbound mailbox resource and binds
321 * a callback function to the resource. Returns 0 on success.
323 int rio_request_outb_mbox(struct rio_mport *mport,
324 void *dev_id,
325 int mbox,
326 int entries,
327 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
329 int rc = -ENOSYS;
330 struct resource *res;
332 if (mport->ops->open_outb_mbox == NULL)
333 goto out;
335 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
337 if (res) {
338 rio_init_mbox_res(res, mbox, mbox);
340 /* Make sure this outbound mailbox isn't in use */
341 if ((rc =
342 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
343 res)) < 0) {
344 kfree(res);
345 goto out;
348 mport->outb_msg[mbox].res = res;
350 /* Hook the inbound message callback */
351 mport->outb_msg[mbox].mcback = moutb;
353 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
354 if (rc) {
355 mport->outb_msg[mbox].mcback = NULL;
356 mport->outb_msg[mbox].res = NULL;
357 release_resource(res);
358 kfree(res);
360 } else
361 rc = -ENOMEM;
363 out:
364 return rc;
368 * rio_release_outb_mbox - release outbound mailbox message service
369 * @mport: RIO master port from which to release the mailbox resource
370 * @mbox: Mailbox number to release
372 * Releases ownership of an inbound mailbox resource. Returns 0
373 * if the request has been satisfied.
375 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
377 int rc;
379 if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
380 return -EINVAL;
382 mport->ops->close_outb_mbox(mport, mbox);
383 mport->outb_msg[mbox].mcback = NULL;
385 rc = release_resource(mport->outb_msg[mbox].res);
386 if (rc)
387 return rc;
389 kfree(mport->outb_msg[mbox].res);
390 mport->outb_msg[mbox].res = NULL;
392 return 0;
396 * rio_setup_inb_dbell - bind inbound doorbell callback
397 * @mport: RIO master port to bind the doorbell callback
398 * @dev_id: Device specific pointer to pass on event
399 * @res: Doorbell message resource
400 * @dinb: Callback to execute when doorbell is received
402 * Adds a doorbell resource/callback pair into a port's
403 * doorbell event list. Returns 0 if the request has been
404 * satisfied.
406 static int
407 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
408 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
409 u16 info))
411 int rc = 0;
412 struct rio_dbell *dbell;
414 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
415 rc = -ENOMEM;
416 goto out;
419 dbell->res = res;
420 dbell->dinb = dinb;
421 dbell->dev_id = dev_id;
423 mutex_lock(&mport->lock);
424 list_add_tail(&dbell->node, &mport->dbells);
425 mutex_unlock(&mport->lock);
427 out:
428 return rc;
432 * rio_request_inb_dbell - request inbound doorbell message service
433 * @mport: RIO master port from which to allocate the doorbell resource
434 * @dev_id: Device specific pointer to pass on event
435 * @start: Doorbell info range start
436 * @end: Doorbell info range end
437 * @dinb: Callback to execute when doorbell is received
439 * Requests ownership of an inbound doorbell resource and binds
440 * a callback function to the resource. Returns 0 if the request
441 * has been satisfied.
443 int rio_request_inb_dbell(struct rio_mport *mport,
444 void *dev_id,
445 u16 start,
446 u16 end,
447 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
448 u16 dst, u16 info))
450 int rc = 0;
452 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
454 if (res) {
455 rio_init_dbell_res(res, start, end);
457 /* Make sure these doorbells aren't in use */
458 if ((rc =
459 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
460 res)) < 0) {
461 kfree(res);
462 goto out;
465 /* Hook the doorbell callback */
466 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
467 } else
468 rc = -ENOMEM;
470 out:
471 return rc;
475 * rio_release_inb_dbell - release inbound doorbell message service
476 * @mport: RIO master port from which to release the doorbell resource
477 * @start: Doorbell info range start
478 * @end: Doorbell info range end
480 * Releases ownership of an inbound doorbell resource and removes
481 * callback from the doorbell event list. Returns 0 if the request
482 * has been satisfied.
484 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
486 int rc = 0, found = 0;
487 struct rio_dbell *dbell;
489 mutex_lock(&mport->lock);
490 list_for_each_entry(dbell, &mport->dbells, node) {
491 if ((dbell->res->start == start) && (dbell->res->end == end)) {
492 list_del(&dbell->node);
493 found = 1;
494 break;
497 mutex_unlock(&mport->lock);
499 /* If we can't find an exact match, fail */
500 if (!found) {
501 rc = -EINVAL;
502 goto out;
505 /* Release the doorbell resource */
506 rc = release_resource(dbell->res);
508 /* Free the doorbell event */
509 kfree(dbell);
511 out:
512 return rc;
516 * rio_request_outb_dbell - request outbound doorbell message range
517 * @rdev: RIO device from which to allocate the doorbell resource
518 * @start: Doorbell message range start
519 * @end: Doorbell message range end
521 * Requests ownership of a doorbell message range. Returns a resource
522 * if the request has been satisfied or %NULL on failure.
524 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
525 u16 end)
527 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
529 if (res) {
530 rio_init_dbell_res(res, start, end);
532 /* Make sure these doorbells aren't in use */
533 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
534 < 0) {
535 kfree(res);
536 res = NULL;
540 return res;
544 * rio_release_outb_dbell - release outbound doorbell message range
545 * @rdev: RIO device from which to release the doorbell resource
546 * @res: Doorbell resource to be freed
548 * Releases ownership of a doorbell message range. Returns 0 if the
549 * request has been satisfied.
551 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
553 int rc = release_resource(res);
555 kfree(res);
557 return rc;
561 * rio_add_mport_pw_handler - add port-write message handler into the list
562 * of mport specific pw handlers
563 * @mport: RIO master port to bind the portwrite callback
564 * @context: Handler specific context to pass on event
565 * @pwcback: Callback to execute when portwrite is received
567 * Returns 0 if the request has been satisfied.
569 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
570 int (*pwcback)(struct rio_mport *mport,
571 void *context, union rio_pw_msg *msg, int step))
573 int rc = 0;
574 struct rio_pwrite *pwrite;
576 pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
577 if (!pwrite) {
578 rc = -ENOMEM;
579 goto out;
582 pwrite->pwcback = pwcback;
583 pwrite->context = context;
584 mutex_lock(&mport->lock);
585 list_add_tail(&pwrite->node, &mport->pwrites);
586 mutex_unlock(&mport->lock);
587 out:
588 return rc;
590 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
593 * rio_del_mport_pw_handler - remove port-write message handler from the list
594 * of mport specific pw handlers
595 * @mport: RIO master port to bind the portwrite callback
596 * @context: Registered handler specific context to pass on event
597 * @pwcback: Registered callback function
599 * Returns 0 if the request has been satisfied.
601 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
602 int (*pwcback)(struct rio_mport *mport,
603 void *context, union rio_pw_msg *msg, int step))
605 int rc = -EINVAL;
606 struct rio_pwrite *pwrite;
608 mutex_lock(&mport->lock);
609 list_for_each_entry(pwrite, &mport->pwrites, node) {
610 if (pwrite->pwcback == pwcback && pwrite->context == context) {
611 list_del(&pwrite->node);
612 kfree(pwrite);
613 rc = 0;
614 break;
617 mutex_unlock(&mport->lock);
619 return rc;
621 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
624 * rio_request_inb_pwrite - request inbound port-write message service for
625 * specific RapidIO device
626 * @rdev: RIO device to which register inbound port-write callback routine
627 * @pwcback: Callback routine to execute when port-write is received
629 * Binds a port-write callback function to the RapidIO device.
630 * Returns 0 if the request has been satisfied.
632 int rio_request_inb_pwrite(struct rio_dev *rdev,
633 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
635 int rc = 0;
637 spin_lock(&rio_global_list_lock);
638 if (rdev->pwcback != NULL)
639 rc = -ENOMEM;
640 else
641 rdev->pwcback = pwcback;
643 spin_unlock(&rio_global_list_lock);
644 return rc;
646 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
649 * rio_release_inb_pwrite - release inbound port-write message service
650 * associated with specific RapidIO device
651 * @rdev: RIO device which registered for inbound port-write callback
653 * Removes callback from the rio_dev structure. Returns 0 if the request
654 * has been satisfied.
656 int rio_release_inb_pwrite(struct rio_dev *rdev)
658 int rc = -ENOMEM;
660 spin_lock(&rio_global_list_lock);
661 if (rdev->pwcback) {
662 rdev->pwcback = NULL;
663 rc = 0;
666 spin_unlock(&rio_global_list_lock);
667 return rc;
669 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
672 * rio_pw_enable - Enables/disables port-write handling by a master port
673 * @mport: Master port associated with port-write handling
674 * @enable: 1=enable, 0=disable
676 void rio_pw_enable(struct rio_mport *mport, int enable)
678 if (mport->ops->pwenable) {
679 mutex_lock(&mport->lock);
681 if ((enable && ++mport->pwe_refcnt == 1) ||
682 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
683 mport->ops->pwenable(mport, enable);
684 mutex_unlock(&mport->lock);
687 EXPORT_SYMBOL_GPL(rio_pw_enable);
690 * rio_map_inb_region -- Map inbound memory region.
691 * @mport: Master port.
692 * @local: physical address of memory region to be mapped
693 * @rbase: RIO base address assigned to this window
694 * @size: Size of the memory region
695 * @rflags: Flags for mapping.
697 * Return: 0 -- Success.
699 * This function will create the mapping from RIO space to local memory.
701 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
702 u64 rbase, u32 size, u32 rflags)
704 int rc = 0;
705 unsigned long flags;
707 if (!mport->ops->map_inb)
708 return -1;
709 spin_lock_irqsave(&rio_mmap_lock, flags);
710 rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
711 spin_unlock_irqrestore(&rio_mmap_lock, flags);
712 return rc;
714 EXPORT_SYMBOL_GPL(rio_map_inb_region);
717 * rio_unmap_inb_region -- Unmap the inbound memory region
718 * @mport: Master port
719 * @lstart: physical address of memory region to be unmapped
721 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
723 unsigned long flags;
724 if (!mport->ops->unmap_inb)
725 return;
726 spin_lock_irqsave(&rio_mmap_lock, flags);
727 mport->ops->unmap_inb(mport, lstart);
728 spin_unlock_irqrestore(&rio_mmap_lock, flags);
730 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
733 * rio_map_outb_region -- Map outbound memory region.
734 * @mport: Master port.
735 * @destid: destination id window points to
736 * @rbase: RIO base address window translates to
737 * @size: Size of the memory region
738 * @rflags: Flags for mapping.
739 * @local: physical address of memory region mapped
741 * Return: 0 -- Success.
743 * This function will create the mapping from RIO space to local memory.
745 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
746 u32 size, u32 rflags, dma_addr_t *local)
748 int rc = 0;
749 unsigned long flags;
751 if (!mport->ops->map_outb)
752 return -ENODEV;
754 spin_lock_irqsave(&rio_mmap_lock, flags);
755 rc = mport->ops->map_outb(mport, destid, rbase, size,
756 rflags, local);
757 spin_unlock_irqrestore(&rio_mmap_lock, flags);
759 return rc;
761 EXPORT_SYMBOL_GPL(rio_map_outb_region);
764 * rio_unmap_inb_region -- Unmap the inbound memory region
765 * @mport: Master port
766 * @destid: destination id mapping points to
767 * @rstart: RIO base address window translates to
769 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
771 unsigned long flags;
773 if (!mport->ops->unmap_outb)
774 return;
776 spin_lock_irqsave(&rio_mmap_lock, flags);
777 mport->ops->unmap_outb(mport, destid, rstart);
778 spin_unlock_irqrestore(&rio_mmap_lock, flags);
780 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
783 * rio_mport_get_physefb - Helper function that returns register offset
784 * for Physical Layer Extended Features Block.
785 * @port: Master port to issue transaction
786 * @local: Indicate a local master port or remote device access
787 * @destid: Destination ID of the device
788 * @hopcount: Number of switch hops to the device
789 * @rmap: pointer to location to store register map type info
792 rio_mport_get_physefb(struct rio_mport *port, int local,
793 u16 destid, u8 hopcount, u32 *rmap)
795 u32 ext_ftr_ptr;
796 u32 ftr_header;
798 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
800 while (ext_ftr_ptr) {
801 if (local)
802 rio_local_read_config_32(port, ext_ftr_ptr,
803 &ftr_header);
804 else
805 rio_mport_read_config_32(port, destid, hopcount,
806 ext_ftr_ptr, &ftr_header);
808 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
809 switch (ftr_header) {
811 case RIO_EFB_SER_EP_ID:
812 case RIO_EFB_SER_EP_REC_ID:
813 case RIO_EFB_SER_EP_FREE_ID:
814 case RIO_EFB_SER_EP_M1_ID:
815 case RIO_EFB_SER_EP_SW_M1_ID:
816 case RIO_EFB_SER_EPF_M1_ID:
817 case RIO_EFB_SER_EPF_SW_M1_ID:
818 *rmap = 1;
819 return ext_ftr_ptr;
821 case RIO_EFB_SER_EP_M2_ID:
822 case RIO_EFB_SER_EP_SW_M2_ID:
823 case RIO_EFB_SER_EPF_M2_ID:
824 case RIO_EFB_SER_EPF_SW_M2_ID:
825 *rmap = 2;
826 return ext_ftr_ptr;
828 default:
829 break;
832 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
833 hopcount, ext_ftr_ptr);
836 return ext_ftr_ptr;
838 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
841 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
842 * @comp_tag: RIO component tag to match
843 * @from: Previous RIO device found in search, or %NULL for new search
845 * Iterates through the list of known RIO devices. If a RIO device is
846 * found with a matching @comp_tag, a pointer to its device
847 * structure is returned. Otherwise, %NULL is returned. A new search
848 * is initiated by passing %NULL to the @from argument. Otherwise, if
849 * @from is not %NULL, searches continue from next device on the global
850 * list.
852 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
854 struct list_head *n;
855 struct rio_dev *rdev;
857 spin_lock(&rio_global_list_lock);
858 n = from ? from->global_list.next : rio_devices.next;
860 while (n && (n != &rio_devices)) {
861 rdev = rio_dev_g(n);
862 if (rdev->comp_tag == comp_tag)
863 goto exit;
864 n = n->next;
866 rdev = NULL;
867 exit:
868 spin_unlock(&rio_global_list_lock);
869 return rdev;
871 EXPORT_SYMBOL_GPL(rio_get_comptag);
874 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
875 * @rdev: Pointer to RIO device control structure
876 * @pnum: Switch port number to set LOCKOUT bit
877 * @lock: Operation : set (=1) or clear (=0)
879 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
881 u32 regval;
883 rio_read_config_32(rdev,
884 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
885 &regval);
886 if (lock)
887 regval |= RIO_PORT_N_CTL_LOCKOUT;
888 else
889 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
891 rio_write_config_32(rdev,
892 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
893 regval);
894 return 0;
896 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
899 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
900 * given port
901 * @port: Master port associated with the RIO network
902 * @local: local=1 select local port otherwise a far device is reached
903 * @destid: Destination ID of the device to check host bit
904 * @hopcount: Number of hops to reach the target
905 * @port_num: Port (-number on switch) to enable on a far end device
907 * Returns 0 or 1 from on General Control Command and Status Register
908 * (EXT_PTR+0x3C)
910 int rio_enable_rx_tx_port(struct rio_mport *port,
911 int local, u16 destid,
912 u8 hopcount, u8 port_num)
914 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
915 u32 regval;
916 u32 ext_ftr_ptr;
917 u32 rmap;
920 * enable rx input tx output port
922 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
923 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
925 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
926 hopcount, &rmap);
928 if (local) {
929 rio_local_read_config_32(port,
930 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
931 &regval);
932 } else {
933 if (rio_mport_read_config_32(port, destid, hopcount,
934 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
935 &regval) < 0)
936 return -EIO;
939 regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
941 if (local) {
942 rio_local_write_config_32(port,
943 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
944 } else {
945 if (rio_mport_write_config_32(port, destid, hopcount,
946 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
947 regval) < 0)
948 return -EIO;
950 #endif
951 return 0;
953 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
957 * rio_chk_dev_route - Validate route to the specified device.
958 * @rdev: RIO device failed to respond
959 * @nrdev: Last active device on the route to rdev
960 * @npnum: nrdev's port number on the route to rdev
962 * Follows a route to the specified RIO device to determine the last available
963 * device (and corresponding RIO port) on the route.
965 static int
966 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
968 u32 result;
969 int p_port, rc = -EIO;
970 struct rio_dev *prev = NULL;
972 /* Find switch with failed RIO link */
973 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
974 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
975 prev = rdev->prev;
976 break;
978 rdev = rdev->prev;
981 if (prev == NULL)
982 goto err_out;
984 p_port = prev->rswitch->route_table[rdev->destid];
986 if (p_port != RIO_INVALID_ROUTE) {
987 pr_debug("RIO: link failed on [%s]-P%d\n",
988 rio_name(prev), p_port);
989 *nrdev = prev;
990 *npnum = p_port;
991 rc = 0;
992 } else
993 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
994 err_out:
995 return rc;
999 * rio_mport_chk_dev_access - Validate access to the specified device.
1000 * @mport: Master port to send transactions
1001 * @destid: Device destination ID in network
1002 * @hopcount: Number of hops into the network
1005 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
1007 int i = 0;
1008 u32 tmp;
1010 while (rio_mport_read_config_32(mport, destid, hopcount,
1011 RIO_DEV_ID_CAR, &tmp)) {
1012 i++;
1013 if (i == RIO_MAX_CHK_RETRY)
1014 return -EIO;
1015 mdelay(1);
1018 return 0;
1020 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1023 * rio_chk_dev_access - Validate access to the specified device.
1024 * @rdev: Pointer to RIO device control structure
1026 static int rio_chk_dev_access(struct rio_dev *rdev)
1028 return rio_mport_chk_dev_access(rdev->net->hport,
1029 rdev->destid, rdev->hopcount);
1033 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1034 * returns link-response (if requested).
1035 * @rdev: RIO devive to issue Input-status command
1036 * @pnum: Device port number to issue the command
1037 * @lnkresp: Response from a link partner
1039 static int
1040 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1042 u32 regval;
1043 int checkcount;
1045 if (lnkresp) {
1046 /* Read from link maintenance response register
1047 * to clear valid bit */
1048 rio_read_config_32(rdev,
1049 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1050 &regval);
1051 udelay(50);
1054 /* Issue Input-status command */
1055 rio_write_config_32(rdev,
1056 RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1057 RIO_MNT_REQ_CMD_IS);
1059 /* Exit if the response is not expected */
1060 if (lnkresp == NULL)
1061 return 0;
1063 checkcount = 3;
1064 while (checkcount--) {
1065 udelay(50);
1066 rio_read_config_32(rdev,
1067 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1068 &regval);
1069 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1070 *lnkresp = regval;
1071 return 0;
1075 return -EIO;
1079 * rio_clr_err_stopped - Clears port Error-stopped states.
1080 * @rdev: Pointer to RIO device control structure
1081 * @pnum: Switch port number to clear errors
1082 * @err_status: port error status (if 0 reads register from device)
1084 * TODO: Currently this routine is not compatible with recovery process
1085 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1086 * to implement universal recovery process that is compatible full range
1087 * off available devices.
1088 * IDT gen3 switch driver now implements HW-specific error handler that
1089 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1091 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1093 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1094 u32 regval;
1095 u32 far_ackid, far_linkstat, near_ackid;
1097 if (err_status == 0)
1098 rio_read_config_32(rdev,
1099 RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1100 &err_status);
1102 if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1103 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1105 * Send a Link-Request/Input-Status control symbol
1107 if (rio_get_input_status(rdev, pnum, &regval)) {
1108 pr_debug("RIO_EM: Input-status response timeout\n");
1109 goto rd_err;
1112 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1113 pnum, regval);
1114 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1115 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1116 rio_read_config_32(rdev,
1117 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1118 &regval);
1119 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1120 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1121 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1122 " near_ackID=0x%02x\n",
1123 pnum, far_ackid, far_linkstat, near_ackid);
1126 * If required, synchronize ackIDs of near and
1127 * far sides.
1129 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1130 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1131 /* Align near outstanding/outbound ackIDs with
1132 * far inbound.
1134 rio_write_config_32(rdev,
1135 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1136 (near_ackid << 24) |
1137 (far_ackid << 8) | far_ackid);
1138 /* Align far outstanding/outbound ackIDs with
1139 * near inbound.
1141 far_ackid++;
1142 if (!nextdev) {
1143 pr_debug("RIO_EM: nextdev pointer == NULL\n");
1144 goto rd_err;
1147 rio_write_config_32(nextdev,
1148 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1149 RIO_GET_PORT_NUM(nextdev->swpinfo)),
1150 (far_ackid << 24) |
1151 (near_ackid << 8) | near_ackid);
1153 rd_err:
1154 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1155 &err_status);
1156 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1159 if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1160 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1161 rio_get_input_status(nextdev,
1162 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1163 udelay(50);
1165 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1166 &err_status);
1167 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1170 return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1171 RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1175 * rio_inb_pwrite_handler - inbound port-write message handler
1176 * @mport: mport device associated with port-write
1177 * @pw_msg: pointer to inbound port-write message
1179 * Processes an inbound port-write message. Returns 0 if the request
1180 * has been satisfied.
1182 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1184 struct rio_dev *rdev;
1185 u32 err_status, em_perrdet, em_ltlerrdet;
1186 int rc, portnum;
1187 struct rio_pwrite *pwrite;
1189 #ifdef DEBUG_PW
1191 u32 i;
1193 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1194 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1195 pr_debug("0x%02x: %08x %08x %08x %08x\n",
1196 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1197 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1200 #endif
1202 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1203 if (rdev) {
1204 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1205 } else {
1206 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1207 __func__, pw_msg->em.comptag);
1210 /* Call a device-specific handler (if it is registered for the device).
1211 * This may be the service for endpoints that send device-specific
1212 * port-write messages. End-point messages expected to be handled
1213 * completely by EP specific device driver.
1214 * For switches rc==0 signals that no standard processing required.
1216 if (rdev && rdev->pwcback) {
1217 rc = rdev->pwcback(rdev, pw_msg, 0);
1218 if (rc == 0)
1219 return 0;
1222 mutex_lock(&mport->lock);
1223 list_for_each_entry(pwrite, &mport->pwrites, node)
1224 pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1225 mutex_unlock(&mport->lock);
1227 if (!rdev)
1228 return 0;
1231 * FIXME: The code below stays as it was before for now until we decide
1232 * how to do default PW handling in combination with per-mport callbacks
1235 portnum = pw_msg->em.is_port & 0xFF;
1237 /* Check if device and route to it are functional:
1238 * Sometimes devices may send PW message(s) just before being
1239 * powered down (or link being lost).
1241 if (rio_chk_dev_access(rdev)) {
1242 pr_debug("RIO: device access failed - get link partner\n");
1243 /* Scan route to the device and identify failed link.
1244 * This will replace device and port reported in PW message.
1245 * PW message should not be used after this point.
1247 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1248 pr_err("RIO: Route trace for %s failed\n",
1249 rio_name(rdev));
1250 return -EIO;
1252 pw_msg = NULL;
1255 /* For End-point devices processing stops here */
1256 if (!(rdev->pef & RIO_PEF_SWITCH))
1257 return 0;
1259 if (rdev->phys_efptr == 0) {
1260 pr_err("RIO_PW: Bad switch initialization for %s\n",
1261 rio_name(rdev));
1262 return 0;
1266 * Process the port-write notification from switch
1268 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1269 rdev->rswitch->ops->em_handle(rdev, portnum);
1271 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1272 &err_status);
1273 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1275 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1277 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1278 rdev->rswitch->port_ok |= (1 << portnum);
1279 rio_set_port_lockout(rdev, portnum, 0);
1280 /* Schedule Insertion Service */
1281 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1282 rio_name(rdev), portnum);
1285 /* Clear error-stopped states (if reported).
1286 * Depending on the link partner state, two attempts
1287 * may be needed for successful recovery.
1289 if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1290 RIO_PORT_N_ERR_STS_INP_ES)) {
1291 if (rio_clr_err_stopped(rdev, portnum, err_status))
1292 rio_clr_err_stopped(rdev, portnum, 0);
1294 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1296 if (rdev->rswitch->port_ok & (1 << portnum)) {
1297 rdev->rswitch->port_ok &= ~(1 << portnum);
1298 rio_set_port_lockout(rdev, portnum, 1);
1300 if (rdev->phys_rmap == 1) {
1301 rio_write_config_32(rdev,
1302 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1303 RIO_PORT_N_ACK_CLEAR);
1304 } else {
1305 rio_write_config_32(rdev,
1306 RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1307 RIO_PORT_N_OB_ACK_CLEAR);
1308 rio_write_config_32(rdev,
1309 RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1313 /* Schedule Extraction Service */
1314 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1315 rio_name(rdev), portnum);
1319 rio_read_config_32(rdev,
1320 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1321 if (em_perrdet) {
1322 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1323 portnum, em_perrdet);
1324 /* Clear EM Port N Error Detect CSR */
1325 rio_write_config_32(rdev,
1326 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1329 rio_read_config_32(rdev,
1330 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1331 if (em_ltlerrdet) {
1332 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1333 em_ltlerrdet);
1334 /* Clear EM L/T Layer Error Detect CSR */
1335 rio_write_config_32(rdev,
1336 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1339 /* Clear remaining error bits and Port-Write Pending bit */
1340 rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1341 err_status);
1343 return 0;
1345 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1348 * rio_mport_get_efb - get pointer to next extended features block
1349 * @port: Master port to issue transaction
1350 * @local: Indicate a local master port or remote device access
1351 * @destid: Destination ID of the device
1352 * @hopcount: Number of switch hops to the device
1353 * @from: Offset of current Extended Feature block header (if 0 starts
1354 * from ExtFeaturePtr)
1357 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1358 u8 hopcount, u32 from)
1360 u32 reg_val;
1362 if (from == 0) {
1363 if (local)
1364 rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1365 &reg_val);
1366 else
1367 rio_mport_read_config_32(port, destid, hopcount,
1368 RIO_ASM_INFO_CAR, &reg_val);
1369 return reg_val & RIO_EXT_FTR_PTR_MASK;
1370 } else {
1371 if (local)
1372 rio_local_read_config_32(port, from, &reg_val);
1373 else
1374 rio_mport_read_config_32(port, destid, hopcount,
1375 from, &reg_val);
1376 return RIO_GET_BLOCK_ID(reg_val);
1379 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1382 * rio_mport_get_feature - query for devices' extended features
1383 * @port: Master port to issue transaction
1384 * @local: Indicate a local master port or remote device access
1385 * @destid: Destination ID of the device
1386 * @hopcount: Number of switch hops to the device
1387 * @ftr: Extended feature code
1389 * Tell if a device supports a given RapidIO capability.
1390 * Returns the offset of the requested extended feature
1391 * block within the device's RIO configuration space or
1392 * 0 in case the device does not support it.
1395 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1396 u8 hopcount, int ftr)
1398 u32 asm_info, ext_ftr_ptr, ftr_header;
1400 if (local)
1401 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1402 else
1403 rio_mport_read_config_32(port, destid, hopcount,
1404 RIO_ASM_INFO_CAR, &asm_info);
1406 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1408 while (ext_ftr_ptr) {
1409 if (local)
1410 rio_local_read_config_32(port, ext_ftr_ptr,
1411 &ftr_header);
1412 else
1413 rio_mport_read_config_32(port, destid, hopcount,
1414 ext_ftr_ptr, &ftr_header);
1415 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1416 return ext_ftr_ptr;
1417 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1418 break;
1421 return 0;
1423 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1426 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1427 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1428 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1429 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1430 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1431 * @from: Previous RIO device found in search, or %NULL for new search
1433 * Iterates through the list of known RIO devices. If a RIO device is
1434 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1435 * count to the device is incrememted and a pointer to its device
1436 * structure is returned. Otherwise, %NULL is returned. A new search
1437 * is initiated by passing %NULL to the @from argument. Otherwise, if
1438 * @from is not %NULL, searches continue from next device on the global
1439 * list. The reference count for @from is always decremented if it is
1440 * not %NULL.
1442 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1443 u16 asm_vid, u16 asm_did, struct rio_dev *from)
1445 struct list_head *n;
1446 struct rio_dev *rdev;
1448 WARN_ON(in_interrupt());
1449 spin_lock(&rio_global_list_lock);
1450 n = from ? from->global_list.next : rio_devices.next;
1452 while (n && (n != &rio_devices)) {
1453 rdev = rio_dev_g(n);
1454 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1455 (did == RIO_ANY_ID || rdev->did == did) &&
1456 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1457 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1458 goto exit;
1459 n = n->next;
1461 rdev = NULL;
1462 exit:
1463 rio_dev_put(from);
1464 rdev = rio_dev_get(rdev);
1465 spin_unlock(&rio_global_list_lock);
1466 return rdev;
1470 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1471 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1472 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1473 * @from: Previous RIO device found in search, or %NULL for new search
1475 * Iterates through the list of known RIO devices. If a RIO device is
1476 * found with a matching @vid and @did, the reference count to the
1477 * device is incrememted and a pointer to its device structure is returned.
1478 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1479 * to the @from argument. Otherwise, if @from is not %NULL, searches
1480 * continue from next device on the global list. The reference count for
1481 * @from is always decremented if it is not %NULL.
1483 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1485 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1489 * rio_std_route_add_entry - Add switch route table entry using standard
1490 * registers defined in RIO specification rev.1.3
1491 * @mport: Master port to issue transaction
1492 * @destid: Destination ID of the device
1493 * @hopcount: Number of switch hops to the device
1494 * @table: routing table ID (global or port-specific)
1495 * @route_destid: destID entry in the RT
1496 * @route_port: destination port for specified destID
1498 static int
1499 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1500 u16 table, u16 route_destid, u8 route_port)
1502 if (table == RIO_GLOBAL_TABLE) {
1503 rio_mport_write_config_32(mport, destid, hopcount,
1504 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1505 (u32)route_destid);
1506 rio_mport_write_config_32(mport, destid, hopcount,
1507 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1508 (u32)route_port);
1511 udelay(10);
1512 return 0;
1516 * rio_std_route_get_entry - Read switch route table entry (port number)
1517 * associated with specified destID using standard registers defined in RIO
1518 * specification rev.1.3
1519 * @mport: Master port to issue transaction
1520 * @destid: Destination ID of the device
1521 * @hopcount: Number of switch hops to the device
1522 * @table: routing table ID (global or port-specific)
1523 * @route_destid: destID entry in the RT
1524 * @route_port: returned destination port for specified destID
1526 static int
1527 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1528 u16 table, u16 route_destid, u8 *route_port)
1530 u32 result;
1532 if (table == RIO_GLOBAL_TABLE) {
1533 rio_mport_write_config_32(mport, destid, hopcount,
1534 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1535 rio_mport_read_config_32(mport, destid, hopcount,
1536 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1538 *route_port = (u8)result;
1541 return 0;
1545 * rio_std_route_clr_table - Clear swotch route table using standard registers
1546 * defined in RIO specification rev.1.3.
1547 * @mport: Master port to issue transaction
1548 * @destid: Destination ID of the device
1549 * @hopcount: Number of switch hops to the device
1550 * @table: routing table ID (global or port-specific)
1552 static int
1553 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1554 u16 table)
1556 u32 max_destid = 0xff;
1557 u32 i, pef, id_inc = 1, ext_cfg = 0;
1558 u32 port_sel = RIO_INVALID_ROUTE;
1560 if (table == RIO_GLOBAL_TABLE) {
1561 rio_mport_read_config_32(mport, destid, hopcount,
1562 RIO_PEF_CAR, &pef);
1564 if (mport->sys_size) {
1565 rio_mport_read_config_32(mport, destid, hopcount,
1566 RIO_SWITCH_RT_LIMIT,
1567 &max_destid);
1568 max_destid &= RIO_RT_MAX_DESTID;
1571 if (pef & RIO_PEF_EXT_RT) {
1572 ext_cfg = 0x80000000;
1573 id_inc = 4;
1574 port_sel = (RIO_INVALID_ROUTE << 24) |
1575 (RIO_INVALID_ROUTE << 16) |
1576 (RIO_INVALID_ROUTE << 8) |
1577 RIO_INVALID_ROUTE;
1580 for (i = 0; i <= max_destid;) {
1581 rio_mport_write_config_32(mport, destid, hopcount,
1582 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1583 ext_cfg | i);
1584 rio_mport_write_config_32(mport, destid, hopcount,
1585 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1586 port_sel);
1587 i += id_inc;
1591 udelay(10);
1592 return 0;
1596 * rio_lock_device - Acquires host device lock for specified device
1597 * @port: Master port to send transaction
1598 * @destid: Destination ID for device/switch
1599 * @hopcount: Hopcount to reach switch
1600 * @wait_ms: Max wait time in msec (0 = no timeout)
1602 * Attepts to acquire host device lock for specified device
1603 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1605 int rio_lock_device(struct rio_mport *port, u16 destid,
1606 u8 hopcount, int wait_ms)
1608 u32 result;
1609 int tcnt = 0;
1611 /* Attempt to acquire device lock */
1612 rio_mport_write_config_32(port, destid, hopcount,
1613 RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1614 rio_mport_read_config_32(port, destid, hopcount,
1615 RIO_HOST_DID_LOCK_CSR, &result);
1617 while (result != port->host_deviceid) {
1618 if (wait_ms != 0 && tcnt == wait_ms) {
1619 pr_debug("RIO: timeout when locking device %x:%x\n",
1620 destid, hopcount);
1621 return -EINVAL;
1624 /* Delay a bit */
1625 mdelay(1);
1626 tcnt++;
1627 /* Try to acquire device lock again */
1628 rio_mport_write_config_32(port, destid,
1629 hopcount,
1630 RIO_HOST_DID_LOCK_CSR,
1631 port->host_deviceid);
1632 rio_mport_read_config_32(port, destid,
1633 hopcount,
1634 RIO_HOST_DID_LOCK_CSR, &result);
1637 return 0;
1639 EXPORT_SYMBOL_GPL(rio_lock_device);
1642 * rio_unlock_device - Releases host device lock for specified device
1643 * @port: Master port to send transaction
1644 * @destid: Destination ID for device/switch
1645 * @hopcount: Hopcount to reach switch
1647 * Returns 0 if device lock released or EINVAL if fails.
1649 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1651 u32 result;
1653 /* Release device lock */
1654 rio_mport_write_config_32(port, destid,
1655 hopcount,
1656 RIO_HOST_DID_LOCK_CSR,
1657 port->host_deviceid);
1658 rio_mport_read_config_32(port, destid, hopcount,
1659 RIO_HOST_DID_LOCK_CSR, &result);
1660 if ((result & 0xffff) != 0xffff) {
1661 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1662 destid, hopcount);
1663 return -EINVAL;
1666 return 0;
1668 EXPORT_SYMBOL_GPL(rio_unlock_device);
1671 * rio_route_add_entry- Add a route entry to a switch routing table
1672 * @rdev: RIO device
1673 * @table: Routing table ID
1674 * @route_destid: Destination ID to be routed
1675 * @route_port: Port number to be routed
1676 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1678 * If available calls the switch specific add_entry() method to add a route
1679 * entry into a switch routing table. Otherwise uses standard RT update method
1680 * as defined by RapidIO specification. A specific routing table can be selected
1681 * using the @table argument if a switch has per port routing tables or
1682 * the standard (or global) table may be used by passing
1683 * %RIO_GLOBAL_TABLE in @table.
1685 * Returns %0 on success or %-EINVAL on failure.
1687 int rio_route_add_entry(struct rio_dev *rdev,
1688 u16 table, u16 route_destid, u8 route_port, int lock)
1690 int rc = -EINVAL;
1691 struct rio_switch_ops *ops = rdev->rswitch->ops;
1693 if (lock) {
1694 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1695 rdev->hopcount, 1000);
1696 if (rc)
1697 return rc;
1700 spin_lock(&rdev->rswitch->lock);
1702 if (ops == NULL || ops->add_entry == NULL) {
1703 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1704 rdev->hopcount, table,
1705 route_destid, route_port);
1706 } else if (try_module_get(ops->owner)) {
1707 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1708 rdev->hopcount, table, route_destid,
1709 route_port);
1710 module_put(ops->owner);
1713 spin_unlock(&rdev->rswitch->lock);
1715 if (lock)
1716 rio_unlock_device(rdev->net->hport, rdev->destid,
1717 rdev->hopcount);
1719 return rc;
1721 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1724 * rio_route_get_entry- Read an entry from a switch routing table
1725 * @rdev: RIO device
1726 * @table: Routing table ID
1727 * @route_destid: Destination ID to be routed
1728 * @route_port: Pointer to read port number into
1729 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1731 * If available calls the switch specific get_entry() method to fetch a route
1732 * entry from a switch routing table. Otherwise uses standard RT read method
1733 * as defined by RapidIO specification. A specific routing table can be selected
1734 * using the @table argument if a switch has per port routing tables or
1735 * the standard (or global) table may be used by passing
1736 * %RIO_GLOBAL_TABLE in @table.
1738 * Returns %0 on success or %-EINVAL on failure.
1740 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1741 u16 route_destid, u8 *route_port, int lock)
1743 int rc = -EINVAL;
1744 struct rio_switch_ops *ops = rdev->rswitch->ops;
1746 if (lock) {
1747 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1748 rdev->hopcount, 1000);
1749 if (rc)
1750 return rc;
1753 spin_lock(&rdev->rswitch->lock);
1755 if (ops == NULL || ops->get_entry == NULL) {
1756 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1757 rdev->hopcount, table,
1758 route_destid, route_port);
1759 } else if (try_module_get(ops->owner)) {
1760 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1761 rdev->hopcount, table, route_destid,
1762 route_port);
1763 module_put(ops->owner);
1766 spin_unlock(&rdev->rswitch->lock);
1768 if (lock)
1769 rio_unlock_device(rdev->net->hport, rdev->destid,
1770 rdev->hopcount);
1771 return rc;
1773 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1776 * rio_route_clr_table - Clear a switch routing table
1777 * @rdev: RIO device
1778 * @table: Routing table ID
1779 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1781 * If available calls the switch specific clr_table() method to clear a switch
1782 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1783 * specification. A specific routing table can be selected using the @table
1784 * argument if a switch has per port routing tables or the standard (or global)
1785 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1787 * Returns %0 on success or %-EINVAL on failure.
1789 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1791 int rc = -EINVAL;
1792 struct rio_switch_ops *ops = rdev->rswitch->ops;
1794 if (lock) {
1795 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1796 rdev->hopcount, 1000);
1797 if (rc)
1798 return rc;
1801 spin_lock(&rdev->rswitch->lock);
1803 if (ops == NULL || ops->clr_table == NULL) {
1804 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1805 rdev->hopcount, table);
1806 } else if (try_module_get(ops->owner)) {
1807 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1808 rdev->hopcount, table);
1810 module_put(ops->owner);
1813 spin_unlock(&rdev->rswitch->lock);
1815 if (lock)
1816 rio_unlock_device(rdev->net->hport, rdev->destid,
1817 rdev->hopcount);
1819 return rc;
1821 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1823 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1825 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1827 struct rio_mport *mport = arg;
1829 /* Check that DMA device belongs to the right MPORT */
1830 return mport == container_of(chan->device, struct rio_mport, dma);
1834 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1835 * with specified local RapidIO mport device.
1836 * @mport: RIO mport to perform DMA data transfers
1838 * Returns pointer to allocated DMA channel or NULL if failed.
1840 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1842 dma_cap_mask_t mask;
1844 dma_cap_zero(mask);
1845 dma_cap_set(DMA_SLAVE, mask);
1846 return dma_request_channel(mask, rio_chan_filter, mport);
1848 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1851 * rio_request_dma - request RapidIO capable DMA channel that supports
1852 * specified target RapidIO device.
1853 * @rdev: RIO device associated with DMA transfer
1855 * Returns pointer to allocated DMA channel or NULL if failed.
1857 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1859 return rio_request_mport_dma(rdev->net->hport);
1861 EXPORT_SYMBOL_GPL(rio_request_dma);
1864 * rio_release_dma - release specified DMA channel
1865 * @dchan: DMA channel to release
1867 void rio_release_dma(struct dma_chan *dchan)
1869 dma_release_channel(dchan);
1871 EXPORT_SYMBOL_GPL(rio_release_dma);
1874 * rio_dma_prep_xfer - RapidIO specific wrapper
1875 * for device_prep_slave_sg callback defined by DMAENGINE.
1876 * @dchan: DMA channel to configure
1877 * @destid: target RapidIO device destination ID
1878 * @data: RIO specific data descriptor
1879 * @direction: DMA data transfer direction (TO or FROM the device)
1880 * @flags: dmaengine defined flags
1882 * Initializes RapidIO capable DMA channel for the specified data transfer.
1883 * Uses DMA channel private extension to pass information related to remote
1884 * target RIO device.
1886 * Returns: pointer to DMA transaction descriptor if successful,
1887 * error-valued pointer or NULL if failed.
1889 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1890 u16 destid, struct rio_dma_data *data,
1891 enum dma_transfer_direction direction, unsigned long flags)
1893 struct rio_dma_ext rio_ext;
1895 if (dchan->device->device_prep_slave_sg == NULL) {
1896 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1897 return NULL;
1900 rio_ext.destid = destid;
1901 rio_ext.rio_addr_u = data->rio_addr_u;
1902 rio_ext.rio_addr = data->rio_addr;
1903 rio_ext.wr_type = data->wr_type;
1905 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1906 direction, flags, &rio_ext);
1908 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1911 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1912 * for device_prep_slave_sg callback defined by DMAENGINE.
1913 * @rdev: RIO device control structure
1914 * @dchan: DMA channel to configure
1915 * @data: RIO specific data descriptor
1916 * @direction: DMA data transfer direction (TO or FROM the device)
1917 * @flags: dmaengine defined flags
1919 * Initializes RapidIO capable DMA channel for the specified data transfer.
1920 * Uses DMA channel private extension to pass information related to remote
1921 * target RIO device.
1923 * Returns: pointer to DMA transaction descriptor if successful,
1924 * error-valued pointer or NULL if failed.
1926 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1927 struct dma_chan *dchan, struct rio_dma_data *data,
1928 enum dma_transfer_direction direction, unsigned long flags)
1930 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1932 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1934 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1937 * rio_find_mport - find RIO mport by its ID
1938 * @mport_id: number (ID) of mport device
1940 * Given a RIO mport number, the desired mport is located
1941 * in the global list of mports. If the mport is found, a pointer to its
1942 * data structure is returned. If no mport is found, %NULL is returned.
1944 struct rio_mport *rio_find_mport(int mport_id)
1946 struct rio_mport *port;
1948 mutex_lock(&rio_mport_list_lock);
1949 list_for_each_entry(port, &rio_mports, node) {
1950 if (port->id == mport_id)
1951 goto found;
1953 port = NULL;
1954 found:
1955 mutex_unlock(&rio_mport_list_lock);
1957 return port;
1961 * rio_register_scan - enumeration/discovery method registration interface
1962 * @mport_id: mport device ID for which fabric scan routine has to be set
1963 * (RIO_MPORT_ANY = set for all available mports)
1964 * @scan_ops: enumeration/discovery operations structure
1966 * Registers enumeration/discovery operations with RapidIO subsystem and
1967 * attaches it to the specified mport device (or all available mports
1968 * if RIO_MPORT_ANY is specified).
1970 * Returns error if the mport already has an enumerator attached to it.
1971 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1973 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1975 struct rio_mport *port;
1976 struct rio_scan_node *scan;
1977 int rc = 0;
1979 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1981 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1982 !scan_ops)
1983 return -EINVAL;
1985 mutex_lock(&rio_mport_list_lock);
1988 * Check if there is another enumerator already registered for
1989 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1990 * for the same mport ID are not supported.
1992 list_for_each_entry(scan, &rio_scans, node) {
1993 if (scan->mport_id == mport_id) {
1994 rc = -EBUSY;
1995 goto err_out;
2000 * Allocate and initialize new scan registration node.
2002 scan = kzalloc(sizeof(*scan), GFP_KERNEL);
2003 if (!scan) {
2004 rc = -ENOMEM;
2005 goto err_out;
2008 scan->mport_id = mport_id;
2009 scan->ops = scan_ops;
2012 * Traverse the list of registered mports to attach this new scan.
2014 * The new scan with matching mport ID overrides any previously attached
2015 * scan assuming that old scan (if any) is the default one (based on the
2016 * enumerator registration check above).
2017 * If the new scan is the global one, it will be attached only to mports
2018 * that do not have their own individual operations already attached.
2020 list_for_each_entry(port, &rio_mports, node) {
2021 if (port->id == mport_id) {
2022 port->nscan = scan_ops;
2023 break;
2024 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2025 port->nscan = scan_ops;
2028 list_add_tail(&scan->node, &rio_scans);
2030 err_out:
2031 mutex_unlock(&rio_mport_list_lock);
2033 return rc;
2035 EXPORT_SYMBOL_GPL(rio_register_scan);
2038 * rio_unregister_scan - removes enumeration/discovery method from mport
2039 * @mport_id: mport device ID for which fabric scan routine has to be
2040 * unregistered (RIO_MPORT_ANY = apply to all mports that use
2041 * the specified scan_ops)
2042 * @scan_ops: enumeration/discovery operations structure
2044 * Removes enumeration or discovery method assigned to the specified mport
2045 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2046 * all mports that have them attached.
2048 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2050 struct rio_mport *port;
2051 struct rio_scan_node *scan;
2053 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2055 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2056 return -EINVAL;
2058 mutex_lock(&rio_mport_list_lock);
2060 list_for_each_entry(port, &rio_mports, node)
2061 if (port->id == mport_id ||
2062 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2063 port->nscan = NULL;
2065 list_for_each_entry(scan, &rio_scans, node) {
2066 if (scan->mport_id == mport_id) {
2067 list_del(&scan->node);
2068 kfree(scan);
2069 break;
2073 mutex_unlock(&rio_mport_list_lock);
2075 return 0;
2077 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2080 * rio_mport_scan - execute enumeration/discovery on the specified mport
2081 * @mport_id: number (ID) of mport device
2083 int rio_mport_scan(int mport_id)
2085 struct rio_mport *port = NULL;
2086 int rc;
2088 mutex_lock(&rio_mport_list_lock);
2089 list_for_each_entry(port, &rio_mports, node) {
2090 if (port->id == mport_id)
2091 goto found;
2093 mutex_unlock(&rio_mport_list_lock);
2094 return -ENODEV;
2095 found:
2096 if (!port->nscan) {
2097 mutex_unlock(&rio_mport_list_lock);
2098 return -EINVAL;
2101 if (!try_module_get(port->nscan->owner)) {
2102 mutex_unlock(&rio_mport_list_lock);
2103 return -ENODEV;
2106 mutex_unlock(&rio_mport_list_lock);
2108 if (port->host_deviceid >= 0)
2109 rc = port->nscan->enumerate(port, 0);
2110 else
2111 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2113 module_put(port->nscan->owner);
2114 return rc;
2117 static void rio_fixup_device(struct rio_dev *dev)
2121 static int rio_init(void)
2123 struct rio_dev *dev = NULL;
2125 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2126 rio_fixup_device(dev);
2128 return 0;
2131 static struct workqueue_struct *rio_wq;
2133 struct rio_disc_work {
2134 struct work_struct work;
2135 struct rio_mport *mport;
2138 static void disc_work_handler(struct work_struct *_work)
2140 struct rio_disc_work *work;
2142 work = container_of(_work, struct rio_disc_work, work);
2143 pr_debug("RIO: discovery work for mport %d %s\n",
2144 work->mport->id, work->mport->name);
2145 if (try_module_get(work->mport->nscan->owner)) {
2146 work->mport->nscan->discover(work->mport, 0);
2147 module_put(work->mport->nscan->owner);
2151 int rio_init_mports(void)
2153 struct rio_mport *port;
2154 struct rio_disc_work *work;
2155 int n = 0;
2157 if (!next_portid)
2158 return -ENODEV;
2161 * First, run enumerations and check if we need to perform discovery
2162 * on any of the registered mports.
2164 mutex_lock(&rio_mport_list_lock);
2165 list_for_each_entry(port, &rio_mports, node) {
2166 if (port->host_deviceid >= 0) {
2167 if (port->nscan && try_module_get(port->nscan->owner)) {
2168 port->nscan->enumerate(port, 0);
2169 module_put(port->nscan->owner);
2171 } else
2172 n++;
2174 mutex_unlock(&rio_mport_list_lock);
2176 if (!n)
2177 goto no_disc;
2180 * If we have mports that require discovery schedule a discovery work
2181 * for each of them. If the code below fails to allocate needed
2182 * resources, exit without error to keep results of enumeration
2183 * process (if any).
2184 * TODO: Implement restart of discovery process for all or
2185 * individual discovering mports.
2187 rio_wq = alloc_workqueue("riodisc", 0, 0);
2188 if (!rio_wq) {
2189 pr_err("RIO: unable allocate rio_wq\n");
2190 goto no_disc;
2193 work = kcalloc(n, sizeof *work, GFP_KERNEL);
2194 if (!work) {
2195 pr_err("RIO: no memory for work struct\n");
2196 destroy_workqueue(rio_wq);
2197 goto no_disc;
2200 n = 0;
2201 mutex_lock(&rio_mport_list_lock);
2202 list_for_each_entry(port, &rio_mports, node) {
2203 if (port->host_deviceid < 0 && port->nscan) {
2204 work[n].mport = port;
2205 INIT_WORK(&work[n].work, disc_work_handler);
2206 queue_work(rio_wq, &work[n].work);
2207 n++;
2211 flush_workqueue(rio_wq);
2212 mutex_unlock(&rio_mport_list_lock);
2213 pr_debug("RIO: destroy discovery workqueue\n");
2214 destroy_workqueue(rio_wq);
2215 kfree(work);
2217 no_disc:
2218 rio_init();
2220 return 0;
2223 static int rio_get_hdid(int index)
2225 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2226 return -1;
2228 return hdid[index];
2231 int rio_mport_initialize(struct rio_mport *mport)
2233 if (next_portid >= RIO_MAX_MPORTS) {
2234 pr_err("RIO: reached specified max number of mports\n");
2235 return -ENODEV;
2238 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2239 mport->id = next_portid++;
2240 mport->host_deviceid = rio_get_hdid(mport->id);
2241 mport->nscan = NULL;
2242 mutex_init(&mport->lock);
2243 mport->pwe_refcnt = 0;
2244 INIT_LIST_HEAD(&mport->pwrites);
2246 return 0;
2248 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2250 int rio_register_mport(struct rio_mport *port)
2252 struct rio_scan_node *scan = NULL;
2253 int res = 0;
2255 mutex_lock(&rio_mport_list_lock);
2258 * Check if there are any registered enumeration/discovery operations
2259 * that have to be attached to the added mport.
2261 list_for_each_entry(scan, &rio_scans, node) {
2262 if (port->id == scan->mport_id ||
2263 scan->mport_id == RIO_MPORT_ANY) {
2264 port->nscan = scan->ops;
2265 if (port->id == scan->mport_id)
2266 break;
2270 list_add_tail(&port->node, &rio_mports);
2271 mutex_unlock(&rio_mport_list_lock);
2273 dev_set_name(&port->dev, "rapidio%d", port->id);
2274 port->dev.class = &rio_mport_class;
2275 atomic_set(&port->state, RIO_DEVICE_RUNNING);
2277 res = device_register(&port->dev);
2278 if (res)
2279 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2280 port->id, res);
2281 else
2282 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2284 return res;
2286 EXPORT_SYMBOL_GPL(rio_register_mport);
2288 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2290 struct rio_dev *rdev = to_rio_dev(dev);
2292 if (dev->bus == &rio_bus_type)
2293 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2294 return 0;
2297 static int rio_net_remove_children(struct rio_net *net)
2300 * Unregister all RapidIO devices residing on this net (this will
2301 * invoke notification of registered subsystem interfaces as well).
2303 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2304 return 0;
2307 int rio_unregister_mport(struct rio_mport *port)
2309 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2311 /* Transition mport to the SHUTDOWN state */
2312 if (atomic_cmpxchg(&port->state,
2313 RIO_DEVICE_RUNNING,
2314 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2315 pr_err("RIO: %s unexpected state transition for mport %s\n",
2316 __func__, port->name);
2319 if (port->net && port->net->hport == port) {
2320 rio_net_remove_children(port->net);
2321 rio_free_net(port->net);
2325 * Unregister all RapidIO devices attached to this mport (this will
2326 * invoke notification of registered subsystem interfaces as well).
2328 mutex_lock(&rio_mport_list_lock);
2329 list_del(&port->node);
2330 mutex_unlock(&rio_mport_list_lock);
2331 device_unregister(&port->dev);
2333 return 0;
2335 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2337 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2338 EXPORT_SYMBOL_GPL(rio_get_device);
2339 EXPORT_SYMBOL_GPL(rio_get_asm);
2340 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2341 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2342 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2343 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2344 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2345 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2346 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2347 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2348 EXPORT_SYMBOL_GPL(rio_init_mports);